Mesoscale convective systems in Spain: instability conditions and moisture sources involved - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Advances in Geosciences Année : 2008

Mesoscale convective systems in Spain: instability conditions and moisture sources involved

Résumé

Source-receptor water vapor content areas are analyzed for a particular case of deep mesoscale convective system (MCS) developed over the Mediterranean margin of Spain in October 1982. The aim of this work is to study simultaneously the atmospheric instability conditions and water vapour fluxes which finally resulted in very severe precipitation rates, reaching up to 600 mm in a single day. Humidity amounts and transport are quantified along the trajectories computed from a lagrangian particle simulation model (FLEXPART6.2). To evaluate the precipitation probability, the water vapor content and both thermodynamic and dynamic atmospheric instability components were assessed. The October 1982 Iberian MCS occurred as a consequence of a deep cutoff low detected between 500 and 200 hPa levels. The dynamical instability was measured through potential vorticity anomalies and Q vector divergence, which presented their maximum and minimum centers respectively over south-eastern Iberia. Synoptic and dynamic instability conditions were obtained from the ERA-40 reanalysis dataset. It is observed that during this severe weather episode, the specific humidity increased along the lowest and easternmost trajectories, which are mainly spread over the Mediterranean Sea.
Fichier principal
Vignette du fichier
adgeo-16-81-2008.pdf (686.73 Ko) Télécharger le fichier
Origine : Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-00297091 , version 1 (18-06-2008)

Identifiants

  • HAL Id : hal-00297091 , version 1

Citer

S. Queralt, E. Hernandez, D. Gallego, P. Lorente. Mesoscale convective systems in Spain: instability conditions and moisture sources involved. Advances in Geosciences, 2008, 16, pp.81-88. ⟨hal-00297091⟩

Collections

INSU EGU
36 Consultations
72 Téléchargements

Partager

Gmail Facebook X LinkedIn More