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A KINETIC FORMULATION FOR MULTIDIMENSIONAL SCALAR
CONSERVATION LAWS WITH BOUNDARY CONDITIONS AND
APPLICATIONS

C. IMBERT* AND J. VOVELLE'

Abstract. We state a kinetic formulation of weak entropy solutions of a general multidimensional
scalar conservation law with initial and boundary conditions. We first associate with any weak
entropy solution a entropy defect measure; the analysis of this measure at the boundary of the
domain relies on the study of weak entropy sub and supersolutions and implies the introduction
of the notion of sided boundary defect measures. As a first application, we prove that any weak
entropy subsolution of the initial-boundary value problem is bounded above by any weak entropy
supersolution (Comparison Theorem). We next study a BGK-like kinetic model that approximates
the scalar conservation law. We prove that such a model converges by adapting the proof of the
Comparison Theorem.

Key words. Conservation law, initial-boundary value problem, boundary defect measures,
kinetic traces, weak entropy sub and supersolutions, Comparison Theorem, generalized kinetic solu-
tions, BGK-like kinetic model.
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1. Introduction. Let Q be a strong Lipschitz open subset of RZ. Let 99 denote
its boundary, n(Z) the outward unit normal to Q at a point T € 2, Q = (0, 4+00) x Q
and ¥ = (0, +00) x 9. We consider the following multidimensional scalar conservation
law:

Ou +div, A(u) =01in Q, (1.1a)
with the initial condition:
u(0,z) = up(z),Vz € Q, (1.1b)
and the boundary condition:
u(s,y) = up(s,y),Y(s,y) € X. (1.1¢)

The first step in the understanding of (1.1c) is the work of Bardos, Le Roux and
Nédelec [1]: they show that if the initial datum wug is BV and the boundary datum
is C2%-regular, there exists a unique (weak entropy) solution of (1.1). In particular,
they show that an inequality must hold at the boundary. This inequality is known as
the BLN condition (see (3.19)). Note that the BLN condition does make sense only if
the solution u admits a trace on 9€2. In the case of the Cauchy problem with merely
essentially bounded (L*°) data, some notions of generalized solution have been defined.
The measure-valued entropy solutions were introduced by DiPerna [9], the entropy
process solutions by Eymard, Gallouét and Herbin [11]. These notions of very weak
solution are well adapted to the study of the convergence of numerical schemes and
error estimates are also available. In the case of the Cauchy-Dirichlet problem with
L* data, Otto [25] proposed a notion of weak entropy solution u € L*°(Q), relying
on the notion of boundary entropy-flux pairs. An equivalent definition can be given
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by using “Kruzkov semi-entropies” (see [8, 30, 34]). An accurate notion of entropy
process solution can be given in order to prove the convergence of certain numerical
methods [34] but it does not seem possible to get an error estimate with respect to
the approximation by vanishing viscosity for example. In order to fill this gap, we
follow the ideas developed by Lions, Perthame and Tadmor [18]. Their heuristic idea,
which is, in part, a continuation of the works of Brenier [7] and Di Perna [9], is to take
into account the decrease of the entropy by introducing an “entropy defect” measure.
More precisely, a kinetic function f is associated with the macroscopic function u by
setting:

1 if0<é<u(t,x),
fiz,&)=<¢ -1 ifu(tz) <£<O, (1.2)
0 otherwise.

Such a kinetic function is a so-called equilibrium function. The kinetic formulation of
Lions, Perthame and Tadmor states that u is a weak entropy solution of the conser-
vation law if and only if there exists a bounded nonnegative measure m such that:

(0 +a.Vy)f = 9m in D'((0,T) x R* x R). (1.3)

Next, Perthame [27] showed that these techniques supply a good technical framework
to easily prove, for instance, the L!-contraction property and the error estimate w.r.t.
the parabolic approximation, without relying on the dedoubling variable technique.

We start from [27] and we develop analogous techniques for a conservation law
with boundary conditions. The main difficulty is to study how the weak entropy
solution u and the defect measure m behave at the boundary of the domain. We
handle this difficulty by considering the space kinetic trace f7 of the kinetic function
f [32, 33]. As far as the defect measure is concerned, two nonnegative measures mb
supported by ¥ x R¢ must therefore be considered. They are characterized by the
formula:

(—a-n)fT=Mft+(~a- n)sgn + dem!y (1.4)

where the constant M is a Lipschitz constant of the flux A on a compact subset of R
in which the data ug and u®, which are supposed to be measurable essentially bounded
functions, take a.e. their values (see Section 2). Relation (1.4) can be understood as a
kinetic analogue of the BLN condition'. Why do we need two nonnegative measures
to describe the behaviour of the entropy defect measure at the boundary ? Because
the notion of weak entropy solution is “sided”. Let us be more specific. We define
weak entropy sub and supersolutions for the initial-boundary value problem and we
give a kinetic formulation of them. Hence two different defect measures my are a
priori associated with each weak entropy solution. But eventually, we prove they
coincide in () x R¢ and can be different at the boundary. Notion of weak entropy sub
and supersolutions for the Cauchy problem were previously considered [2, 15, 3, 4] and
comparison principle were established: any weak entropy subsolution of the Cauchy
problem is bounded above by any weak entropy supersolution. Such results have also
been proved by Terracina [31] for the initial-boundary value problem in the context
of BV solutions. We state and prove an analogous result for the initial-boundary

11t is a generalization of it in the sense that no strong traces are required; thus merely L> data
can be treated



value problem in the context of L> solutions. The L!-contraction property and the
maximum principle follow from it.

We then use our results to study an approximation of the conservation law, namely
a kinetic model “4 la Bhatnagar-Gross-Krook” (BGK-like kinetic model for short).
It was first introduced by Perthame and Tadmor [29] for the Cauchy problem and
adapted by Nouri, Omrane and Vila [22, 23] to the initial-boundary value problem.
The authors Nouri, Omrane and Vila prove the convergence of the BGK-like kinetic
model whenever the data are at equilibrium or not. Here, we restrict our study to the
case where the data are at equilibrium and show how, in this framework, the concept
of generalized kinetic solution can bu used to prove the convergence of the BGK-like
kinetic model. Such very weak solutions were introduced by Perthame [28] for the
Cauchy problem. They can be viewed as the analogue of the measure-valued solutions
of DiPerna [9] or the entropy process solutions of Eymard, Gallouét and Herbin [11].
The definition of a generalized kinetic solution is based on the kinetic formulation:
instead of considering an equilibrium function, a solution can be a general kinetic
function (See Sections 2 and 5 for precise definitions). The proof of the Comparison
Theorem is slightly modified in order to prove that there is at most one generalized
kinetic solution of (1.1) and that it is in fact a weak entropy solution. Hence, it
permits us to easily pass to the limit in the kinetic model.

To conclude this introduction, let us mention the recent work of Ben Moussa and
Szepessy [6] in which is used the concept of measure-valued solution to deal with “very
weak solutions” and let us state some other occurence of “kinetic methods” in the
study of first order problems with boundary conditions [5, 20], see also [21, 13, 14].

The paper is organized as follows. Section 2 is devoted to notations and assump-
tions. In Section 3, kinetic formulations of weak entropy solutions (Theorem 3.1) and
entropy semisolutions (Proposition 3.3) are stated and proved. In particular, kinetic
traces and boundary defect measures are constructed and characterized (Proposi-
tion 3.4). In Section 4, the Comparison Theorem (Theorem 4.1) is proved. Section 5
is devoted to the study of the BGK-like kinetic model.

To finish with, let us mention that in a forthcoming paper [10], we study another
approximation of the initial-boundary value problem: the parabolic regularization of
the conservation law by an artificial viscosity. We get an error estimate between the
entropy solution of the conservation law and the regular solution of the parabolic equa-
tion. Even if we adapt once again the proof of the Comparison Theorem, additional
difficulties arise and the proof is rather long and technical.

2. Preliminaries. We give here some notations, assumptions and basic proper-
ties that are used throughout the paper.

The space R? is endowed with its usual Euclidian structure. The scalar product
is denoted by z -y and the Euclidian norm by |z|. For the sake of clarity R, and R
denote the lines of reals respectively related to the ¢ and £ variables.

DaATA. We assume ug and u; to be essentially bounded measurable functions. Let
K > 0 be a positive constant such that

—K <up(z) <K forae. 2€Q and — K <up(t,z) < K for ae. (t,2) €X.

The flux function A is assumed to be locally Lipschitz continuous. Let M be the
Lipschitz constant of the function A restricted to [ K, K] and let a(§) = A'(€).

REMARK 1. We could as well consider the equation Oyu+div,(A(t, z,u)) = 0. All
the results presented in this paper remain valid under the assumption that the function
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A is locally Lipschitz continuous with respect to (t,z) € [0,T] x Q uniformly w.r.t. the
u variable, while for every u € R, (t,z) — A(t,z,u) is in C1([0,T] x Q).

KRUZKOV SEMI-ENTROPIES. Define

sen©={ o i t29 md s ©={," § §50

and &t = sgn, (€)€. Let aTb denote max{a,b} and let alb denote min{a,b}. The
Kruzkov semi-entropies are the convex functions u — (u — k)* for K € R. The
corresponding entropy fluxes are given by the formula

F*(u, 5) = sgn (u — k) (A(u) — A(r)).

KINETIC AND EQUILIBRIUM FUNCTIONS. We previously recalled what an equilib-
rium function is (see (1.2)). More generally, a kinetic function is a function f(¢,z,&)
such that:

0< f(t,z,E)sen(®) < 1, o)
Bef (t:,€) = 6(€) — v1,0(6) |

where v is a Young measure. For an equilibrium function, v ,(£§) = 6(§ — u(t,z)). In
the following, we also consider two functions associated with any kinetic one:

f+(ta$a€) = f(taxaé.) - sgn_({),
f—(t7$7£) = f(tawag) - Sgl’l+(§).

Notice that O¢f+ = —14,(§) and that these functions have no longer a bounded
support w.r.t. the kinetic variable £. Nevertheless, and it is essential, there exists k €
R¢ such that fy(t,z,&) = 0if £ > k and there exists ' € R¢ such that f_(¢,2,£) =0
if £ < k'. We simply say that f, vanishes for £ > 1 and f, vanishes for £ < —1. For
equilibrium functions, if (¢, ) is fixed, then for a.e. £ € Re :

f-i-(t:x:E) = Sgn+(u(t7 .CL') - 6)7
f—(trraé-) = sgn—(u(tfr) - g)

LocCALIZATION. The set €2 is assumed to be a strong Lipschitz open subset of
R?, which means that, locally, Q can be represented as the epigraph of a Lipschitz
continuous function. More precisely, there exists a locally finite open cover {Bj, }icr
of Q and a partition of unity {)\;}icr of Q subordinate to {By, }icr such that for any
A

0 :=QNB), = {.73 € By ; (Axw)d > h)\(A)\.CL’)}
00y :=00NB), = {.CC € B, ; (AA.:C)d = h)\(A)\.T)}

where z — Ay z is a change of coordinates of R? (i.e. the composition of a translation
and a rotation of R?) and where 7 stands for (yi,...,yq_1) if y € R%. In the following,
we also use the notations @y = (0, +00) x Q) and Xy = (0, +00) x Q. When proving
the Comparison Theorem and the error estimate, the problem is localized with the help
of the functions \;. For the sake of clarity, we drop the index ¢ and we suppose that
the change of coordinates is trivial: A = Id. The open set IIy = {Z; z € By} C R¢1
is used to parametrize 925. As a matter of fact, we even identify 0€2x with the graph
4



of h restricted to ITy and Q) with its epigraph. The outward unit normal to Q) at
any point (T, h(Z)) of O, is given by

n(@) = 1@, h(z)) = ———t—(Vzh(z), ~1).

V1+|Vzh(z)?

Eventually, in order to make clearer integrations on 92y, we use the notation

do(T) = /1 + |Vzh(T)|2dz .

REGULARIZATION. Functions that are defined locally, i.e. that are defined on
and 0N, are regularized in the following way. Fix § €]0,1[ and consider a smooth
function 6 : R — Rt whose support is a subset of [4,1] and such that [6 = 1. Then
define a (right-decentred) regularizing kernel 8. := 16(:) and set v,,c(t,T,24) =
00 (t) x TI$2}0=(x;) x B.,(x4)- The space regularizing kernel TI% 0z (x;) x 0., (xq) is
denoted by 7.. Consider now a function H defined on Q, and a function H defined
on X). Their (local) regularized functions are (both) defined on @, by the following
formulae:

—FQ,E

H*(t,2) = (H x 1Q) *Va,e(t,) = [o H(r,2)Va,e(t =, — 2) drdz

{ H (t,z) := (F X 15) * Va,e(t,2) = fz; H(Ta 2)Va,e(t — 1,2 — 2) drdo(z).
These two functions equal zero out of Qy as soon as §eg > v/d Liph &, which is always
assumed. Of course, if a function 9 is defined both on @ and Xy, then the two means
of regularization described above do not lead to the same functions 1)®°; nevertheless,
there will be no risk of confusion in the forthcoming proofs. Let us also point out the
fact that this regularization is local and in fact depends on the map Ay, even if it is
hidden in computations in order to make them more readable.

3. A kinetic formulation of the Cauchy-Dirichlet problem. The main
result of the paper is the following kinetic formulation of generalized entropy solutions.
For any smooth test function ¢ € C®(R¥*?), ¢(!=0) and ¢ denote respectively the
restriction of ¢ to {0} x Q@ x Re and to ¥ x Re.

THEOREM 3.1. Consider a bounded function u € L>®(Q). Let f° and f° be the
equilibrium functions associated with ug and uy. Then u is a weak entropy solution of
(1.1) if and only if there exists a bounded nonnegative measure m € M*(Q x Re) and
two nonnegative measurable functions mf’pmb, € L2 (X x Re) such that the function

mi vanishes for £ > 1 (resp. the function m® wvanishes for £ < —1) and such that
the equilibrium function f associated with u satisfies for any ¢ € C°(R4+2) :

) 0 ;(¢t=0) b —qa- o
/Q e es /| A / ML+ (a3
=/ 85¢dm+/ 8§¢dmbi (3.1)
QXR{ EXRE

where M is the Lipschitz constant of the flux function A on Q x [-K, K].

In order to prove and understand this formulation, we define weak entropy sub
and supersolutions of the initial-boundary value problem (1.1) and we exhibit a kinetic
formulation for these semisolutions.



3.1. Weak entropy sub and supersolutions. Let us define weak entropy sub
and supersolutions for the initial-boundary value problem (1.1).
DEFINITION 3.2. Consider a bounded function u € L*(Q).

1. The function u is a weak entropy subsolution (resp. weak entropy superso-
lution) of (1.1) if for any k € R and any ¢ € C°(R; x R?), ¢ > 0,

/ [(u(t,z) — K)*0:p(t, 2) + F=(u(t, z), k).Vo0(t, )] dt dz
Q

+ / (o (&) — K)*$(0, 2)dz + M / (un(5, ) — k)= (s, )ds do(y) > 0.
? ) (3.2)

2. The function u is an weak entropy solution of (1.1) if it is both a weak entropy
subsolution and a supersolution.

PROPOSITION 3.3. Let f° and f° be the equilibrium functions associated with ug
and up. Consider a bounded function u € L°(Q). Then u is a weak entropy subsolution
(resp. weak entropy supersolution) of (1.1) if and only if there exists my € C(Re;w —
MH(Q)) such that me vanishes for € > 1 (resp. for & < —1) and such that for any
b € CR(RI?),

/ F@Ot+a-Va)g+ / F3=0 4 / (M2 + (~a - n)sgn.)d
QxR¢ QxRe

EXRf

= /7 6§¢dm:|:. (33)
QxR¢

REMARK 2. The function f satisfies (3.3) if and only if the function fi satisfies:

/ Fo(B +a-Vo)é+ / 20 10 [ pa= [ degdmy. (3.4)
QxRe QxRg

EXRE QXRE

Notice that, here, the expression of the boundary term is simplified. Moreover, (3.4)
is the kinetic equation that appears in the construction m4 and it is also the one we
consider when proving the Comparison Theorem.

Proof of Proposition 3.3. Consider a weak entropy subsolution (resp. weak en-
tropy supersolution) u of (1.1). Let us fix kK € R and define a linear form mf on

C(Q) by:

m(g) = /Q (=) =B+ F= (u, k) Vo b+ /Q (ug—k)* 4= + M /E (p—5) 3. (3.5)

Since u is a weak entropy subsolution (resp. weak entropy supersolution), we know

that m% (4) is nonnegative _for any k and any ¢. We corglude that for any k, mf is

a nonnegative measure on () and my € C(Re,w — M1 (Q)). Since my > 0, we have

[Im4|| = ma(1) < +o0 by (3.5) and m is bounded; moreover m4 vanishes for £ > 1
6



(resp. k < 1). Next, we compute:
/; aﬁd)(t: xZ, E)dmﬂ: (t7$7£)
QxR¢

- / (u—€) 0,0+ T (u, €)Y, 0 b+ /
QxRg

QXRf

sgn (uo — £)g1=0 1+ M /E sgn (up— £

(uo—€) =0 4= + M / (up—)* T

:/ sgni(u—§)(8t¢+a'vz¢)+/
QxRg

QXRE

- / Fo(Bb+a- Vo) + / 2649 1 0 / T
QxR¢ QxRg »

- / f@p+a-Vod) + / 3= 4 / (M2 + (—a-n)sgn..)3.
QxRg QxR by

Hence (3.3) is proved.

Conversely, consider u € L*°(Q) and g € C®(R, x R?). Let & — E, (&) be a
smooth approximation of & — (¢ — k)* such that |E!,(£)| < 1 for any positive integer
n. Let ¥ be a smooth function with support in [—2, 2], values in [0, 1] and that equals
1 on [-1,1]. Next, define ¥,(§) = ¥({/n). Now apply (3.4) to the test function

P(t,z,€) = g(t, 2) ¥ (§EL(E) :
Vg -l-/Q

/ / ¥, B s / 0V, fs

Q |/Re Rg

+M / / v, ELfL
z [ /R

Letting n — +o00, we get:

09 + g(tzo)

/ ¥, B2
Re

= / gV B+ U, E")dm..
QxRg

/ (ut, 2) — ) =00 (t, ) + FE (ult, @), K) - Vag t, o)dbde + / (o (&) — K)* 9(0, 2)de
Q Q

+M / (us(5,) — ®)=g(s,y)ds do(y) = /Q ot 2)dm (¢, 7, ). (3.6)

If moreover g is assumed to be nonnegative, (3.6) yields (3.2). O

3.2. Kinetic traces. In this subsection, we prove the following proposition. See
[32, 33] and [19, Lemma 7.34, p. 115].
PROPOSITION 3.4. Consider a function f € L*(Q x R¢) satisfying (3.3).
1. There exist two kinetic functions f € L*°(Q x Re) and f7 € L*(Z x Re)

such that:
+oc
R . [ / f(t)oa@)dt] 6= / ALY
lim (—a-n) /+oo Fh(T) + )b, (r) M(h(Z) + r)dr] )
€4—0% [0;400) XTIy XR¢ 0

:/ (—a-n) f7 X (3.8)

[0;400) XTI xR¢
for any ¢ € LY (Q x Re) and any v € LY(E x Re) and any function X, element
of the partition of unity {\;}icr-
7



2. The time kinetic trace f™ is bounded above (resp. bounded below) by f° and
the space kinetic trace f satisfies (1.4) where mb. denotes the restriction of
m4 to X X Re.

Proof. The proof of the existence of f™ and of f7 such that (3.7), (3.8) hold true
can be found in [32, 33]. Let us prove that for any test function ¢ € C°(R4+2) :

F@ +a-Vo)p+ /Q Frg=0) 4 /E (—a-n)fd = | Ocpdms. (3.9)

QXRQ XRf XRE QXRf

Let ¢ € C([0;4+00) x © x Re); consider a right-decentred regularizing kernel 6, (r);
define a cut-off function wy(r) = for 0. (7)dT and apply (3.3) to the test function

wa(t)B(t,,€) -
/ wa(t)f (B0 + a- Vo) (t, z, &) dtdede + / B0(t)f(t, 7, £)4(t, 2, €)dtdrde
QxRg

QXRf

- / wa (t)De(t, 2, )dm(t, 2, €).
QxRe

Letting @ — 0+ and using the Lebesgue dominated convergence theorem and (3.7),
we obtain:

/ f(6t+a-Vw)¢+/ fT°¢(t:°):/ De pdm. (3.10)
QxRg QxRg¢ QxRg

Next, ¢* denotes the function ¢ A and we define a cut-off function

zd—h(i)
We, (z) = /0 0:,(s)ds.

We apply (3.10) to the test function ¢*W,, :

/ W.,(2)/ (3 +a- Vo) t, o, €)didede + / féa- VW,
QXRg QxRe

+ / 77 (2, )N TOW,, (2)dadé = Bed M (t, 7, &) W., (x)dm(t,z,€). (3.11)
QxRg¢ QxRg

In (3.11), we can pass to the limit in each term, except from foRf fora(é) -V, We,.
Let us study it. Notice that

VeWe,y () = 04 (2a — h(T))(=Vzh(T),1) = —b:,(za — h(T)) V1 + [Vzh(Z)[? n(T).

Hence:
/ & fa(€) - Vo, W., dtdxde
Q XR&

- /Q a4, 0., (w0 — h@) T+ [Vh@) Patdade

+oo
- / (~a-n) [ / F (@0, (24 — h(E) Nza)dza| 6 didode.
[0;400) xIIx XxRg T

a=h(z)



Using (3.8), we get (3.9) with ¢* instead of ¢ as a test-function. Recalling that the
function A is an element of the partition of unit {\;};cr and summing this previous
inequality over ¢ € I yields (3.9). We then deduce from (3.2) and (3.9) that (1.4)
holds true and that f© = fO + 9;mY where m9 stands for the restriction of m4 to
{0} x Q x Re. It follows that:

/ FT° (2, )sgn (€ — R)dE < (uo(2) — K)*

Since f™ is a kinetic function and f™(§) = 0 for £ > 1, we conclude that it can be
written under the following form:

fro(2,8) = v (€, +00) +sgn_

3.12
(resp. 728 = v (-003€) 43, ). (312)
Next, replace k with ug(z) and conclude that the support of 70 lies in (—o0,ug(z)]
(resp. in [ug(z), +00)). Finally, f™ satisfies:

fP(®,8) = vz® (Luo(x), uo(x)] < sgny (uo(z) — §) (3.13)

(resp. F70(@,€) = v [uo(@), € Tuo(x)) > sgn._(uolz) — 5)). (3.14)

This achieves the proof. O

Proof of Theorem 3.1. ;From Proposition 3.3, we get two measures m. If u
is a weak entropy solution of the initial-boundary value problem, then m, and m_
coincide in @ x Re. Indeed, from (3.5), we get:

ma(t,z,k) = =0y (u — k) — divy FE(u, k) in D'(Q x Re). (3.15)

Choosing x respectively large enough and —k large enough, we obtain that u is a
weak solution of (1.1), i.e. Gyu + div, A(u) = 0 in D'(Q). Next, we conclude that

my=m_in Q@ X Re :
mx(t,z, k) = —%6t|u — K| — %divw F(u, k) in D'(Q x Re) (3.16)

where F = F*+ 4+ F~. Moreover, we proved in Proposition 3.4 that f = f0 + 9em9
and that f™ is bounded above and below by f°. We then conclude that d¢m9 = 0
hence that m%. is constant in £. Since it equals 0 for large £, we conclude that m% = 0.
Eventually, the two measures m’. are functions: indeed, since they satisfy (1.4) and
respectively vanish for £ > 1 and £ € —1, we have:

+oo
il (5,,) = Mlun(o,0) = 0)* = [ (<0 m)f(s,0,dE >0 (317)

K
K

mb (8,9, 5) == M(us(s,y) — K)~ + / (—a-n)f7(5,9,£)dE > 0. (3.18)

The proof of Theorem 3.1 is therefore achieved. d

REMARK 3. Formula (3.16) appears in [18, p. 173]. Additional properties of m
can be derived. See [18].



u(t,x)

Fi1G. 3.1. Weak entropy solution

LINK WITH THE BLN CONDITION. We detail here the link between the kinetic
formulation of weak entropy solutions given in Theorem 3.1 and the BLN condition.
Suppose that the function u is a weak entropy solution of Problem (1.1) such that u €
BV(Q®). Let u, denote the (strong) trace of the function « on X. Obviously, the space
kinetic trace is the associated equilibrium function: f7 = x,. (See Proposition 3.4).
Next, remark that:

|7 4@ ) 176,. 06 = Fuclos) 0w
and combine with (3.17) in order to get
mly (s,y, ) = M(up(s,y) — &)* + FF (ur(s,9), %) - n(y) .-
The fact that the function mi is nonnegative is equivalent to the following condition:
VK € [up,ur], sgn (ur —up)[A(ur) — A(k)]-n > 0.

Similarly m® > 0 if and only if the previous condition holds true replacing sgn 4 with
sgn_. Summing these two inequalities yields the well-know BLN condition [1]:

Wk € [up,ur],  sgnur — up)[A(ur) — A(K)] -1 > 0. (3.19)

3.3. An example. Let us detail the expressions of the entropy defect measure
m and the boundary defect measures m%. for Burgers’ equation d;u + 0,(u?/2) = 0
considered on the domain (0,27) x (0, +00) with data ug(z) = 0 and

b [ 1 if 0<t<T,
“(t)—{—1 if T<t<2T.

A shock occurs at the time t = 0 and a rarefaction wave appears at the time ¢ = 7.
It collides the shock at time ¢ = 27. The corresponding weak entropy solution u is
represented on Figure 3.1. Then the entropy defect measure is

m = (3l - €2 - bentu - 92 2 - /208 o1
where L is the line ¢t = 2z in the (x,t)-plane and where [G(u)]} := G(0) — G(1). In

particular the measure m is concentrated on the line of discontinuity of u and the
10



entropy criterion ensures that it is non-negative. On the other hand, the boundary
defect measures are given by

mi (t,€) = (M (L= )* —sgn® (1 - €)(1/2 - €/2)) 10,1 (¢)
+ (M1 +8)7 —sgn™ ()€ /2)1(r2m) ()

and

m? (t,€) = (M(1 &)~ —sgn™ (1= €)(1/2 - &/2))L0m)(t)
+ (M1 + 8% —sgn ()€ /2)1(r,2m) (1)

where M is a constant greater than 1. The identity a? — b? = (a + b)(a — b) ensures
that the two functions are non-negative. The reader would check that the expressions
of m and mY. are consistent with the formula (3.16) and (3.18)-(3.17) respectively.

4. A Comparison Theorem. THEOREM 4.1. Let u € L®°(Q) be a weak en-
tropy subsolution of (1.1) with data (ug,up) and let v € L°(Q) be a weak entropy
supersolution of (1.1) with data (vo,vs). Then:

T
%/0 /Q(u(t,:c) ot 2) e dt < /Q(uo(x) — vo(@))*dz
+M/0T /Bg(ub(t,x) —vp(t,z))Tdtdo . (4.1)

In particular, u < v as soon as ug < vo and up < vp ( Comparison principle ).
Before proving Theorem 4.1, let us enlight that the L!-contraction property and the
maximum principle follow from it.
COROLLARY 4.2.
1. Let u,v € L*(Q) be two weak entropy solutions of (1.1). Then:

%/OT/Q |u(t,z) — v(t,z)|dz dt < /Q [uo(z) — vo(x)|dz
M

lus(t, y) — vo(t, y)|dtdo(y)
(0;T)x 002

( L'-contraction property ).
2. Let u be a weak entropy solution of (1.1) and suppose that there exists two
constants U,,,Upnr € R such that:

Unp<ug<Upy ae mQ and U, <up<Uy ae inX

then Up, <u < Uy  a.e in @ ( Maximum principle ).

Proof of Corollary 4.2. The L-contraction property is obtained by combining the
two equations (4.1) obtained successively with u as a weak entropy subsolution and
v as a weak entropy supersolution and with v as a weak entropy subsolution and u
as a weak entropy supersolution. In order to prove the maximum principle, one may
remark that the constant function U, is a weak entropy subsolution for data ug, up
and that the constant function Uy, is a weak entropy supersolution for data wug, up-
O
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Proof of Theorem 4.1. In order to prove Theorem 4.1, we show that:
[ =06+ FHw0)-Vas+ [ (a-0) 60+ M [ (wy-u)*5 >0, (42)
Q Q b))

holds true for any test function ¢ € C®(R; x R?). Passing from (4.2) to (4.1) is
classical. Let f,f° and f° (resp. g,¢° and g¢°) denote the equilibrium functions
associated with u,ug and wup (resp. with v, vy and vp). The kinetic traces associated
with u (resp. with v) are denoted by f™ and f7 (resp. g™ and g”). Eventually, let
m (resp. ¢) denote the entropy defect measure associated with u (resp. v) and set,

for (s,y,£) € ¥ x R,
F_+(87y7€) = (_a(f) ) n(y))f-‘{—(say7£) and K(572/75) = (_a(f) ) n(y))gz('%yag) -

Since u is a weak entropy subsolution of (1.1), the following kinetic equation holds
true:

O +a-V, T ¢(t=0) Fi¢= 4.
/Msf+(t+a V)<f>+/mREf+ p +/m5 o /csz56£¢dm (43)

for any ¢ € C°(R*2). Let us fix a test function ¢ € CX°(R¥*2) and apply (4.3) to
the test function ¢* x ¥,,c, where 7,,c denotes a right-decentered regularizing kernel
and ¢* denotes ¢\ :

/ O +a-Va)pt + [P0ad* + F ¢ = / O™ dm™*  (4.4)
Rd+2 Rd+2

TOE _

Where_ff:’s = (fix lQ) *t,x Ya,e) f (fji—-o X ]-Qx) *z Ve, MO = (m X ]-Q) *t,x Yo,e
and F}.° = (Fy x 1x,) *t.0 Ya,e- NOW, let us also regularize the kinetic equation
satisfied by g, but with different parameters:

/ 97O +a- Vo) + g 050 + G-V = / O™ dg®” (4.5)
Rd+2 Rd+2

Now apply (4.4) to —g°"(t,z,€)¢*(t,2) and (4.5) to —f°(t,z,€)¢* (¢, ) and sum
the two equations:

/ . —MO +a- V) (f77 97 pv )+2/ (—f9°g B8y + a- V)
Rd 2 Rd
o O L N e A B i s T
Rd+2 Rd+2
= MO dm™* + 53¢ dg®v]  (4.6)
Rd+2

where §2¢ = (§(€ — u(t,x)) X 1g) * Ya,c and 65 = (§(¢ — v(t,z)) x 1g) *v5,,- Use
the fact that the right-hand side of (4.6) is nonnegative and make an integration by
parts in the first line:

(—f5°9%") (0 + a- Vo)

Rd+2

-l o - [T 00
Rd+2 Rda+2

12



Now let successively 3,7 and vg4 go to 01 :

/ (=/5°9-)(@+a-Vo)$*~ [ g-0ag*~ F™g-¢* 2 0. (47)
Q,\XRe Q/\XRE Q’\XRE

We used the fact that regularized functions equal zero at ¢ = 0 and at the boundary.
Next, let successively «,% and g4 go to 0. The first limit is easy to compute:

lim lim lim (- ﬁ’sg_)(8t+a-vw)¢>‘=/ (=fr9-)(0: +a-V)o*

eq—0tT =0t a—0+ Qa xRg QxRg
= / (u—v)T 0™ + FH(u,v) - Vo*. (4.8)
Q

Use (3.7) for g, and (3.13) for f and (3.14) for g :

eq—0t =0+ a—0+ gq—0t =0t

= [ @<= [ 120 @) = [ -t ()W)
Qx xRg Qi xRg Q

lim lim lim —/ 1°Eg_0a¢)‘ = lim lim _/ o< gTo (¢>\)(t=0)
Q)\XR&‘ Q,\XRE

We proceed analogously with the boundary term.

lim lim lim —/ F g ¢ = (—a-n)f} g
Qx XR( EXRE

eqa—0t =0t a—0t
<M [P @10)
¥

Let us now justify the inequality in (4.10). In order to do so, we use (1.4) and we
represent f7 and g” with their Young measures as in (3.12).

/ (—a-n)fl g = - / " (€ +o0)0ed
Re

— 00
+oo

vy T Uup
+ / (—a - n) (& +oo)u” (=003 €) + / 7 (—o0; €)Bem,

Vb Vb Tub

Vb
< —/ @ dv - [qb_VT(§;+oo)]ibOO + M (up —vp)*

4o
T T +oo
= [ b (o0 €)1, < M=)

W Tus Up | Up
Hence, we can pass to the limit in (4.7). By using (4.8), (4.9) and (4.10) and by
summing over ¢ € I, (4.1) follows and the proof of Theorem 4.1 is complete. O

5. Convergence of a BGK-like model. In this section, we present the first
application of the kinetic formulation we introduced above. Let us consider the fol-
lowing BGK-like model:

fe

(6t+a-Vm)fE:X”% in Q x R, (5.1a)

ue(t, ) = /R £t 2, )dE,V(t, 3) € Q, (5.1b)
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f-(0,2,6) = f°(6),¥(z,€) € A x Re, (5.1c)

ft,y,6) = f*(y,8),Y(t,y,&) € =T, (5.1d)

where fY and f° are the equilibrium functions respectively associated with the initial
and the boundary data, and where ¥ = {(t,4,€) € £ x Re : —a(€) - n(y) > 0}.
The approximation (5.1a)-(5.1b)-(5.1¢) for the Cauchy problem (i.e. when Q = R")
was first considered by Perthame and Tadmor [29]. They proved that the “hydrody-
namic limit” as e — 0 is precisely the entropy solution of the initial value problem
(1.1a)-(1.1b). Their study relies on the fact that the right-hand side of (5.1a) can be
written as the derivative of a measure: Jgm,. This is a consequence of the following
observation:

LEMMA 5.1 ([18]). Let g € LY(R) satisfy 0 < sgn(€)g(€) < 1 a.e. Then the

13
function mg : & r—)/ (Xu, — 9)(€)dC is non-negative.

As e goes to 0, the measure m, converges to the entropy defect measure m. This kinetic
model has been adapted by Nouri, Omrane and Vila [22, 23] to take into account
boundary conditions. In [22, 23], data at equilibrium as well as general kinetic ones
are considered. The convergence of the kinetic model is proved and, particularly in
the non-equilibrium case, the boundary conditions satisfied by the limit such obtained
are discussed and compared to the BLN condition. In the present paper, we restrict
ourselves to the case of data at equilibirum and we show how the concept of boundary
defect measures can help in the understanding of the “hydrodynamic limit”; more
precisely, we define approximate boundary defect measures and we prove that they
converge to m’. (See Subsection 3.2). As in [28], we intend to show how a concept of
generalized kinetic solution can be used to prove the convergence of the kinetic model
associated with (1.1) without “strong” (for instance BV) a priori estimates.

5.1. Solution of the kinetic model. We suppose that  is convex. The prob-
lem (5.1) admits an integral representation and is therefore solved by a fixed point
method. The characteristic of the partial differential operator 0; + a(£)0, arriving at
(t,z) € Q is the line of equation X (7) = a(§)(r —t) + z. If u. € C(0,T;L()), the
solution f. of the linear equation & f. + a(§) - Vf. + £ f. = Lx,, satisfies

tq

£62,9 = L X0,007 + [ Duxon@Fds (52

for any T < t such that X ([r,t]) C Q. Using the boundary condition (5.1d), we see
that the computation of the value f.(¢,z,£) depends on the point of intersection of
the characteristic line with the parabolic boundary:
o if X([0,¢]) C 9, the characteristic starts from {0} x Q at 7 = 0 and we put
11, X(1),€) = 2@ — ta(£),) in (5.2);
e if there exists 7* € [0, t] such that X ([7*,¢]) C Q and X (7*—0) ¢ €, the char-
acteristic starts from the boundary ¥ at 7 = 7* and we put f.(r, X (7),&) =
F(r, X (1%),€) in (5.2).

Thanks to the integral representation (5.2), it is therefore possible to build an operator
T from C(0,T;L}()) to itself which maps v on v : (t,z) — / fe(t, z,£)dE. We then
R

show that this operator is a contracting map and the existence and the uniqueness of
the solution f. of (5.1) follows [29, 22, 28]. This solution satisfies additional properties:
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PROPOSITION 5.2 ([29, 22, 28]). Suppose that Q2 is conver. Let € > 0 and let
f: € C(0,T; LY x Re)) be the solution of (5.1). Under the hypotheses of Section 2,
we have:
1. f. satisfies

0 < sgn(&) f:(t,2,8) < 1 for ae. (t,2,8) € Q x Re;
2. there exists a nonnegative function m. such that

e =22 = dem; (5.3)

3. for every convex function n € C2(R,R) with a bounded derivative ' satisfying
n'(0) = 0:

/ me(t, 7, €' (€)dédudt < / 1) () dédz
QxR¢ QxRg

+ / (=a-n)* (s,5,€) (€)' (€)dedt;  (5.4)
Y xRg

4. there exists p € L (R), independent of € and such that p(€) =0 if [£] > 1

and:
[ mett,z,&)dadt < (o) (5.5)
Q
5. for a.e. (t,2,6) € Q x Re : fo(t,2,&) =0 as soon as || > K; consequently
fe(t,z,6)dE| < K for a.e. (t,x) € Q. (5.6)
Re

Sketch of the proof. The fact that f. is a kinetic function follows from (5.2).
We previously mentioned that (5.3) is a consequence of Lemma 5.1. A rigorous
proof of (5.4) relies on the integral representation (5.2). Here is a formal argument:
multiply the equation 0,f. + a(§)0,f- = Ogme by 1/ (£), integrate the result with
respect to (t,x,&) and use the fact that n'(§) fe(t,z,&) > 0 (for sgn(n'(£)) = sgn(§)).
Estimate (5.5) is a consequence of (5.4) with n(§) = (6—&)T if & > 0,n(€) = (6=&)~
if & < 0. It leads to the expression p = ut + = with

=€) = Isgns (6] ([[(uo — EF i) + Ml (us(t,y) — O* ()

Eventually, (5.6) is a consequence of (5.2) and of the first point. O

5.2. Generalized kinetic solutions. In order to prove the convergence of the
model, we need to introduce a very weak notion of solution of (1.1).

DEFINITION 5.3. Consider a kinetic function f € L>(Q x Re). We say that f is
a generalized kinetic solution of (1.1) if there exists a bounded nonnegative measure
m € MT(Q x Re) and two nonnegative measurable functions mb ,m® € L2 (X x Re)
such that the function mi vanishes for € > 1 (resp. the function m® wvanishes for
& < —1) and such that (3.1) holds true.

The kinetic formulation can therefore be stated in the following terms: a function
u is an entropy solution of (1.1) if and only if its associated equilibrium function is a
generalized kinetic solution of (1.1).

15



THEOREM 5.4. Any generalized kinetic solution of (1.1) is in fact an equilibrium
function associated with an entropy solution of the initial-boundary value problem.

Proof. We just adapt the proof of the Comparison Theorem. Consider a general-
ized kinetic solution f of the initial-boundary value problem. We can therefore easily
prove that for a.e. t > 0:

/ (—f+ 1) (2, €)dwde < 0.
QxR¢

Now use the fact that f is a kinetic function to get that for a.e. (¢t,x) € @ :
f_(taxaé.) :I/t,w(—OO;E) and f+(t,$,§) :Vtw(g; +OO)

Consequently: v z(—00;&) = 0 or v ,(§;+00) = 0. It follows that v, is a Dirac
mass. The proof is therefore complete. O

5.3. Proof of the convergence. We now state and prove a precise convergence
result.

THEOREM 5.5. Suppose that Q is convexr. Under the hypotheses of Section 2, if
f= denotes the solution of (5.1), then the sequence of function u. defined by u.(t,z) =

/ f-(t, 2, £)dE converges as e — 0 to the entropy solution u of (1.1) in any LP((0,T) X
R

2),1<p< +oo. _

Proof of Theorem 5.5. Let f. denote the space kinetic trace of f. and consider
¢ € C(Q x Re). By integrating the equation 8, f. + a(§) - 0, f- = O¢m. against ¢ we
get:

. 0,,(t=0) 0 -\ G
/QxREfs(atcp+a VWH/QxREf ® +/ (—a-n)f.p

EXRE
= Ogpdm..  (5.7)
QXRE
By analogy with (3.17), define the function mi’s by:
+o0 _
0,0 1= Mlntt9) =) = [ (—a-m)(F. —san ) (),

and get from (5.7):

/ f-@p+a- Vo) + / Fpl=0) 4 / (M + (~a-n)sgn_)p
QxR¢ QxRg

EXRe
= / depdm,. + / depdm”.  (5.8)
QXRE EXRE

Let us check that m{’f (t,y,€) is a nonnegative function. Since f. is a kinetic function,
f. —sgn_ is nonnegative, hence:
+oo _
my(ty, &) > M(up(t,y) — €T — / (—a-n)*(f.(t,y, ) — sgn_(k))drk
€,
Mu(t) =% = [ (aom)* (e 9,5) = sgn_ ()
+oo

J O = Caem (g ) s ()
0.

WV
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Since f: is bounded in L*°-norm and m. is bounded in mass by (5.5), we have, up to
subsequences,

fa_\]: in w_*_LOO(QXR{):
75—\f in w—%—L*®ExRe),
m: —=m in w-—x*x—M"(Q xRe)

where f and f are, respectively, functions of L*(Q x Re) and L>®(X x Re) such
that ~(‘chis property is preserved at the w — x—limit): 0 < f(-,&)sgn(§) < 1 and

0 < f(-,8)sgn(€) < 1. We first deduce from Proposition 5.2 that:
+oo _ K o
[ e w0 s = [ (-amFp,8) = sgn_ ()
It follows that m%*(t,y,£) — m% where

mh (t,9,€) == M(us(t,y) — )F - /E (—a-n)(f" —sgn_(W)dx  (5.9)

so that, at the limit £ — 0 in (5.8), we have:

/ fOrp+a-Vap) + / P04 / (M + (~a-n)sgn )
QxR¢ QxRg

EXRE

:/ 8§cpdm+/ Oepdm!, . (5.10)
QxR¢

EXRf

Besides, it is clear from (5.9) that mb (t,y,£) vanishes for £ > 1; moreover (5.5)
remains true at the limit. Derivating (5.1a) with respect to & gives:

¢ fo = OXu. + e = 00(€) = 0u, (§) + ac

where a. = € (Ot fz + a(§)0er fe) tends to zero in D' (Q x Re). We then define a Young
measure vy ,(€) as an adherence value of 6(§ — u.(¢,z)) and we obtain that:

Ocf =00(§) —1,2(§) inD'(QxRe).

Of course, the same arguments remain valid for m® and consequently f is a general-
ized kinetic solution of (1.1). In virtue of Theorem 5.4, it is therefore the equilibrium
function associated with the unique entropy solution of (1.1). Since f is an equilib-
rium function, the weak-* convergence of f. to f in L*(Q x R¢) implies the strong
convergence of u. to u in LP(Q), 1 < p < +o00. The proof is therefore complete. O
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