
FRAMEWORK FOR EFFICIENT COSIMULATION AND FAST PROTOTYPING ON
MULTI-COMPONENTS WITH AAA METHODOLOGY: LAR CODEC STUDY CASE

Erwan Flécher, Mickaël Raulet, Ghislain Roquier, Marie Babel, Olivier Déforges

IETR CNRS UMR 6164/Image and Remote Sensing Group, INSA of Rennes
20 avenue des buttes de coësmes, 35043 Rennes cedex, France

Email: {eflecher, groquier}@ens.insa-rennes.fr {mraulet, mbabel, odeforge}@insa-rennes.fr

ABSTRACT
Real-time signal and image applications have significant

time constraints involving the use of several powerful calcu-
lation units. Programmable multi-component architectures
have proven to be a suitable solution combining flexibility
and computation power. This paper presents a methodology
for the fast design of signal and image processing applica-
tions. In a unified framework, application modeling, cosim-
ulation and fast implementation onto parallel heterogeneous
architectures are enabled and help to reduce time-to-market.
Moreover, automatic code generation provides a high ab-
straction level for users. Finally, the worthwhile nature of
Matlab/C language cosimulation is illustrated on a still im-
age codec named LAR.

1. INTRODUCTION

New embedded multimedia systems require more and more
computation power. They are increasingly complex to de-
sign yet time-to-market is being constantly reduced. Spe-
cific dedicated circuits are not compatible with short de-
sign timelines or future capacity adjustments. An alternative
is provided by adding several software components (DSP,
ARM) or hardware components (FPGA). [1] presents a Mat-
lab/C/VHDL based codesign to enable specification, cosim-
ulation and cosynthesis of the system. First, the system is
described with multi-language specification and the func-
tional model is developed. Next, language and architecture
models are gradually refined and the system is cosimulated
for early validation. According to [1], system level specifi-
cation, cosimultation and prototyping on multi-components
are based on four concepts: concurrent execution or paral-
lel computation for a given granularity level, hierarchy of
the algorithm description, communication and synchroniza-
tion between processors. In [2], two final concepts are stud-
ied in a multi-language system composed of Matlab/JAVA
processes. The developed framework aims to produce dis-
tributed applications for heterogeneous Clusters of Worksta-
tions (COW). The Matlab application is partitioned and dis-
tributed on workstations which are synchronized with Con-
trol Flow Graph (CFG) developed in JAVA language. The
speed of a fractal-based image processing application is in-
creased using the advantage of multi-languages with coarse-
grain distributed parallel computing.
This paper presents a methodology for fast development and
implementation of distributed signal and image processing
applications on multi-components. Providing reduced time-
to-market, application modeling, cosimulation and fast pro-
totyping on heterogeneous architecture are supported in a
unified framework. The cosimulation presented here is a
concurrent execution on monoprocessor of different models

based on heterogeneous languages. Difficulty with cosimu-
lation occurs during interfacing between processes but it can
easily be solved given that cosimulation is a case of marginal
prototyping on specific heterogeneous architecture. This ap-
proach is possible thanks to the abstraction power of the pro-
totyping methodology that initially provides executives in a
generic language. Based on the SynDEx tool, our unified
framework for rapid application modeling and prototyping
methodology is suitable for transformation-oriented systems
and heterogeneous multi-component architectures. SynDEx
automatically generates synchronized distributed executives
in an intermediate generic language. These generic execu-
tives have to be translated to be compliant with the processor
type or communication medium type so that they automati-
cally become interpretable or compilable codes. In this arti-
cle, we will focus on this mechanism based on the concept of
SynDEx kernels, and detail new developed kernels enabling
automatic code generation for cosimulation and prototyping.
This paper is organized as follows: section 2 introduces the
AAA methodology and SynDEx tool. The executive gen-
eration, kernels for multi-language modeling and Matlab/C
cosimulation are described in Section 3. Section 4 presents a
global methodology for application modeling, cosimulation
and prototyping in a unified framework. Section 5 illustrates
a methodology with a still image codec named LAR. Finally,
our conclusion and future work are described in section 6.

2. AAA FAST PROTOTYPING METHODOLOGY

The aim of the AAA methodology is to find the best match
(or adequation) between an algorithm specifying the applica-
tion and a multi-component architecture. This methodology
is based on a graph theory and is used to model the software
application and the hardware architecture. Both the software
and the hardware are described by distinct graphs. AAA
methodology transforms the two graphs thanks to the graph
transformations in order to find an optimized implementation
that satisfies real-time and memory constraints. As soon as
an optimized implementation is determined, a generic script
is automatically generated for each processor. Figure 1 illus-
trates inputs/outputs of the matching step that is included in
the global sequential state diagram of our framework.

2.1 Adequation Algorithm Architecture (AAA)

The application algorithm is modeled by a Data Flow Graph
(DFG) which is an oriented hyper-graph. This means that
data dependency demands algorithm operations on multi-
components. Each vertex corresponds to an algorithm op-
eration and each edge represents a data transfer between op-
erations. Thus DFG shows the potential parallelism of an

©2007 EURASIP 1667

Adequation
(SynDEx)

Translation
(M4)

Compil & load
(compiler)

Com.

Algorithm

State diagram

[Constraints True]

[Constraints False]

Finished

Finished

Finished

Generic synchronized
 distributed scripts

Dedicated scripts
for specific targets

Processor 1 Processor2

Dedicated executives
for specific targets

Graphs

A B D

C

SAM

Processor 1 Processor 2

Kernels

Algorithm

Architecture

Architecture

Processors

SynDEx

Figure 1: State diagram of the framework based on Syn-
DEx. The simple architecture consists of two processors
inter-connnected with a SAM.

algorithm [3].
The architecture is modeled by non-oriented hypergraph in
which each vertex is a processor (component) and each
hyper-edge represents a communication medium. In this
model, a processor consists of one operator and as many
communicators as there are connected media. An operator
executes operations which are a part of the algorithm and a
communicator executes a communication operation when a
data transfer is required. In this way, multi-component ar-
chitecture may be represented by a network of Finite State
Machines (FSM) interconnected with communication media
(FIFO, shared memories etc.).
Once an optimized implementation has been determined,
generic executives are automatically generated for each pro-
cessor. They consist of a list of macro-instructions which
specifies memory allocation, communication sequence(s)
and one computation sequence. Macro-executives are gener-
ics because they are independent of the programming lan-
guage. The executives or scripts are transformed later into
the appropriate language specified by the different target op-
erators (Matlab/C for cosimulation, C or assembler for DSP,
VHDL for FPGA etc.). This is the purpose of section 3.

2.2 SynDEx

SynDEx (Synchronized Distributed Executive) is a system-
level CAD software principally designed at the INRIA Roc-
quencourt Research Unit (France) in association with our im-
age processing lab. This tool supports the AAA method-
ology for both rapid prototyping and optimized implemen-
tation of distributed real-time embedded applications onto
multi-component architectures. Although SynDEx is basi-
cally a framework for exploring various implementation so-
lutions using optimization heuristics [3], we demonstrate that
it can also be used directly for application multi-language
modeling, cosimulation and functional checks. In the algo-
rithm graph interface, SynDEx manually allows the distribu-
tion and scheduling of DFG on a multiprocessor. It can also
be used in multi-language modeling and cosimulation. In-
deed, algorithm graph operations are manually clustered and
executed with the heterogeneous process located on multi-
virtual-processors. The term “Virtual” is used if DFG is dis-

tributed on multi-processes but executed on a monoprocessor
in order to simulate or cosimulate concurrent execution of the
application.

3. GENERIC EXECUTIVE SPECIFICATION

3.1 Translation: automatic executive generation
Each generic script provided by SynDEx is transformed into
a compilable or interpretable source file. Inputs/outputs of
the so-called “translation” operation are illustrated by Fig-
ure 1. The macro-processor transforms the list of macro-
instructions contained in the generic script into code for
a specific processor target. Since the macro-executive is
generic, there is a large number of possible downloadable
source codes. Because of this, users have to specify the most
appropriate possible translations. Depending on the system
development step, two aspects have to be considered. Firstly,
languages that are highly target-dependent have to be used
for optimized execution. Secondly, fast design and efficient
algorithm cosimulation require high-level languages such as
Matlab. This being so, the proposed development methodol-
ogy aims to gradually refine the language model from high-
level modeling to executive for a specific target with inter-
mediate multi-language modeling.

3.2 System level multi-language modeling
Modeling language is used to efficiently describe applica-
tions with a high degree of abstraction. This is an impor-
tant step in application design, providing a reference func-
tional model and while helping to reduce time-to-market.
Indeed, this functional model is quickly developed with a
high-level modeling language and can be used for early val-
idation including cosimulation and functional check. Based
on three criteria, [1] proposes a classification of nine mod-
eling languages in order to facilitate the choice for spe-
cific design constraints. The first criterion is the Expressive
power that takes account of abstract communication, time
model, computation algorithm, specific libraries and FSM–
exception control. The second one is the analytical power
that describes advanced functionalities such as interaction
with complementary tools, transformation and format check-
ing. The third one is the cost of use, referring to a fast
learning stage and ease of use. Of all these nine specifica-
tion languages, Matlab has several advantages. It is one of
the most popular interpreted programming languages, espe-
cially in the signal and image processing community. It is a
matrix-based language including high-level functions for fast
application modeling. Moreover, Matlab’s toolboxes pro-
vide timing model and generic visualization functions that
are appropriate for signal and image processing. [6] presents
a survey of Matlab to C language transformations for fast im-
plementation on DSP; it shows that efficient transformation
is possible from matlab language. Counterparts of this easy
modeling with Matlab are excessive memory allocations, low
computional efficiency and lack of communication abstrac-
tion, the latter being the most critical drawback especially
for multi-language modeling and cosimulation. In order to
meet these requirements, recent researches aim to take po-
tential parallel computation into account especially in image
applications [2]. Most of them attempt to automatically par-
tition work in order to distribute the application on clustered
workstations. In this coarse grain parallel computing situa-
tion, data are transferred and synchronized with a network

©2007 EURASIP 1668

protocol named Message Passing Interface (MPI).
In section 3.3, the principal Matlab drawback for multi-
language modeling and cosimulation is solved. Communi-
cation abstraction is realised with a SAM communication
model and automatic code generation in the unified SynDEx
framework. To accomplish this level of abstraction, kernels
for communication and synchronisation between heteroge-
neous processes have been developed.

3.3 Executive Kernels

For each processor or virtual processor, an executive con-
sists of one computation task and as many communication
tasks as there are connected media. Macro-instruction trans-
lations into the target language are contained in dedicated or
architecture-based kernels given that definition is not, or not
only, application-dependent. Dedicated kernels are used to
describe the algorithm specifications such as function-calls.
Architecture-based kernels include the translation of both
processor and communication media. Processor compo-
nent kernels contain macro-instructions relating to the com-
putation task such as memory allocations or interrupt han-
dling whereas communication media kernels contain macro-
instructions relating to data transfer and synchronization.

3.3.1 Processor component kernels

In prototyping context described in [5], most of the kernels
are developed in C language because that they can be reused
for any C programmable device. Indeed, kernels are quite
similar for the host (PC) and the embedded processors (DSP).
Moreover the gap between two executives resulting from C
language or assembly instructions becomes narrow. During
the adequation (Fig. 1), compliance with constraints associ-
ated with execution time is directly dependenton on the or-
der in which operations are executed on multi-components
architecture. Presented in section 4, the proposed method-
ology shows that multi-language modeling and cosimulation
on a monoprocessor are essential during the application de-
sign stage. This being so, in a modeling context, constraints
associated with the execution time are lifted and operations
are manually clustered depending on the type of modeling
languages. Similarities between cosimulation on a monopro-
cessor and prototyping on multi-components are highlighted
if we consider that heterogeneous processes are initially dis-
tributed on a virtual processor in a first time and are im-
plemented on heterogeneous architecture in a second stage.
Consequently, DFG is unchanged and only specific architec-
ture is defined for cosimulation or concurrent simulation ex-
ecution. Processor component kernels have been developed
for the computation task using Matlab language. They pro-
vide automatic translation of the macro-instructions included
in the computation task such as memory allocations, loop and
condition compatible with Matlab language.

3.3.2 Communication link kernels

In AAA methodology [3], two different models are consid-
ered as communication media: the SAM (Sequential Access
Memory) and the RAM (Random Access Memory). While
the first of these defines a basic FIFO-like protocol between
two processors or virtual processors, the second works with
an undefined number of processors through a shared mem-
ory with controled access. The SAM models consider that

two processors are synchronized by means of hardware sig-
nals. Sequentially, data are pushed by the producer if FIFO
is not full and they are used by the receiver if FIFO is not
empty. This model requires data to be received in the same
order as it is sent. On the other hand, the read and write order
need not necessarily be respected in the RAM model but data
transfer management is more complex.
Most of the communication kernels proposed in [5] are de-
signed according to the SAM model. Libraries for traditional
media such as TCP and BIFO have been created for multi-PC
and multi-component transfers. They have been specified in
C language for obvious reasons if only fast prototyping with
reusable functions are required. For fast application mod-
eling, a higher-level language is considered. Dedicated to
Matlab language, a communication medium that relies on a
SAM model using TCP protocol and hardware synchroniza-
tions has been developed. Included in the SynDEx frame-
work, the system allows communication between two Mat-
lab (MM) processes, one Matlab and one C (MC) process or
xM processes based on the prerequisite condition that a TCP
based communication kernel has been developed in SynDEx
for the process x. More generally, an undefined number of
heterogeneous processes (x j) and Matlab processes (Mi) can
be interconnected with the appropriate number of SAM. It
should be noted that, data transfers between processes are
automatically generated and synchronized by SynDEx using
automatic code generation. For users, a high abstraction level
allows for less communication protocol knowledge and no
restrictions are imposed on Mix j process organization.

4. METHODOLOGY FOR SIGNAL AND IMAGE
PROCESSING APPLICATION DESIGN

This section presents an extension of the methodology for
the fast development of applications over heterogenous ar-
chitectures proposed by [4]. The authors have demonstrated
that SynDEx may be used as the front-end of the process
for the design of fast signal and image processing applica-
tions. Functional check, emulation and fast prototyping on
heterogenous architecture have been defined in [4]. In this
paper we improve the methodology by adding application
modeling, cosimulation and enriched functional check which
are supported in the same SynDEx-based framework. Illus-
trated by Figure 2, this new methodology is described with
a cycle of five sequential steps. The principle is to gradually
refine the language model starting from functional modeling
of the application until reaching final multiprocessor imple-
mentation. Naturally, the more efficient the computational
power, the more the simulation capacity is reduced.

4.1 Algorithm design
In this step a Data Flow Graph (DFG) is created to provide a
high-level application description which will be reused espe-
cially in the fast prototyping step, in accordance with AAA
methodology. In a second stage, a reference functional model
is developed with a high-level modeling language and will
be used in subsequent steps for early validation. Matlab has
been retained because it has several advantages for fast appli-
cation modeling, especially for signal and image processing.
In the SynDEx framework, automatic code generation pro-
vides a Matlab code (mono-process) for use on a single PC.
In this way, users can design each Matlab function associated
with each operation or vertex of its DFG.

©2007 EURASIP 1669

Architecture graphs

Algorithm graphs

A'

Computional efficiency

Simulation power

B' D'

C'

A' B' D'

C'

B' A' B' D'

C'

SAM

Process 1 Process 2

A D

C

Process 1

A B D

C

D

SAM

Process 1 Process 2 Process 1 Process 2

Modeling Prototyping

SAM

1

2

3 4 5
1-
2-
3- Functional validation
 Ouput display
4- Communication validation
5- Multi-components matching

Level
3

Level
2

Level
3

Level
2

Level
3

Level
2

Level
2

SimulationCosimulation

SAM

Processor
1

Processor
2

Level
2

Level
1

SAM

Processor
3

Level
1

D ?= D'

Figure 2: Methodology cycle including five sequencial steps: application modeling (1), cosimulation (2), functional check (3),
emulation (4) and fast prototyping (5)

4.2 Heteregeneous modeling & cosimulation
As far as mono-PCs are concerned, cosimulation has been
defined as concurrent execution of several models based on
heterogeneous languages [1] but parallel execution on multi-
PCs can be carried out very easily with SynDEx. Note
that the final aim is to provide an application execution that
meets difficult time constraints, especially in image process-
ing. This means that language model refinement is often re-
quired and intermediate multi-language modeling is neces-
sary in order to provide progressive steps in the application
design process. Moreover multi-language modeling, cosim-
ulation and functional check (respectively steps 2 and 3 in
Fig. 2) allow early validation. For example, functional check
can be easily carried out between an operation developed in
C language and the result provided by the reference func-
tional model specified in Matlab. In section 5, C/Matlab cosi-
multation is illustrated with a still image coder named LAR.
This example shows that automatic code generation allows
the use, in a C application, of generic vizualisation functions
efficiently developed in Matlab. The last two last steps are
similar to the ones proposed in [4].

4.3 Emulation or concurrent execution & simulation
In the step 4 of Fig. 2, the user can easily check his own DFG
on a cluster of PCs interconnected by TCP links. This clus-
ter can emulate the topology of an embedded platform. Next
DFG developed in the target language is used for the auto-
matic prototyping onto a monoprocessor and chronometrical
macros are automatically inserted by the SynDEx code gen-
erator. The execution duration associated with each opera-
tion is automatically estimated through dedicated temporal
primitives and is used to define operation duration in the ad-
equation algorithm.

4.4 Fast prototyping
SynDEx generates a real-time distributed and optimized
executive, in which previous chronometrical macros are
automatically removed, depending on the target platform.
Several platform configurations can be simulated (processor
type, their number, but also different media connections).

5. IMAGE PROCESSING APPLICATION

5.1 LAR for still color image coding
Proposed in [7], LAR (Locally Adaptive Resolution) relies
on the principle that an image can be described as a super-
position of local textures (fine details) over some basic infor-
mation. With the same scheme, a low bit rate image (basic
information) can be transmitted with or without its additional
error image. This two-layer, context-based coding approach
intrinsically provides at least two levels of progressivity.
Firstly, still image coding step aims to generate a low-
resolution image adapted to the Human Visual System. It
results from a variable block-size decomposition in which
block size depends on local activity. Indeed, homogeneous
areas are represented by larger blocks whereas higher reso-
lution is required for textured areas and edges.Without the
second layer, the resulting coder named “Flat LAR”, clearly
aims to achieve a high compression ratio. The low bit-rate
decoded image is visually acceptable thanks to quadtree par-
titioning and efficient post-processing. For higher bit-rates,
the first step can be followed by a refinement layer but only
the Flat LAR coder is considered in this paper. Applied to
an image of the Foreman sequence, Figure 3.a shows the
quadtree partition QP[Nmax..Nmin] where Nmax and Nmin are the
upper and lower limits of square block size and 3.b is the
post-processed low-resolution image. As far as this low res-
olution image is concerned, a low-complexity spatial seg-
mentation algorithm has been developed to achieve a higher
compression ratio. Contrary to pixel-based processing with
traditional segmentation, in [7] region merging is processed
on the grey-level block image and provides a self-extracting
hierarchical segmentation. In other words, the segmentation
process takes place in both coder and decoder from the highly
compressed image. Taking advantage of the YUV correla-
tion, a high compression ratio is obtained using region de-
scriptions to encode the chromatic components.

5.2 C/Matlab cosimulation and compression results
It has been proven that spatial segmentation can be efficiently
described with a Region Adjacency Graph. In a RAG, each
region is defined with a vertex and for each spatial connexity
between two regions a edge is created. We have developed a

©2007 EURASIP 1670

Matlab toolbox that includes RAG manipulation and display
functions. In the RAG display function, the vertex is rep-
resented as an ellipse that can be transformed in accordance
with region properties. The ellipse position is given by the re-
gion’s gravity-center. The ellipse color is the weighted mean
color of the blocks included in the region and the ellipse sur-
face is proportionate to region surface. Figure 3.c and 3.d
are respectively the region representation and its associated
RAG.

(a) (b)

(c)

 1
 2

 8

 10

 24

 28

 32

 74

 81 82 83 84

 7
 23

 25

 61

 76
 79

 3

 11

 14

 17

 19

 54

 4 22

 58

 59

 60

 69 70 72 73

 5
 64 65

 6
 66

 75

 78 26 77
 27

 85

 86

 9

 12

 13

 15

 16

 31
 33

 87 88

 29 30
 80

 34 35 36

 38 39

 40 42

 89

 92

 41

 46

 49 53

 94 95
 97

 99

111
119

 37

 43

 20

 48

 50
 51 98102103

105106

 93

 18
104

107
117120118

 55
110
114

116

 21
 67 68

 62 63

 90

 47

 91

 44 45

 57

 96

100 101

108
109

115
 52113 56

 71

112

(d)

Figure 3: (a) Quadtree partition QP[16..2] (b) Decoded im-
age + post-processing (c) Segmentation with 120 regions (d)
RAG provided with Matlab

An RAG display function is included in a Matlab toolbox
whereas an LAR coder has been developed in C language.
The joint use of RAG display and LAR coder provides a
particular case of Matlab/C cosimulation. Here, the RAG
display function is used to illustrate the segmentation result
obtained with the LAR coder. In the SynDEx framework il-
lustrated by Figure 4, images and RAG are displayed with
Matlab functions whereas image segmentation and coding
are rapidly processed with C language. Concurrent execu-
tion is realized using architecture consisting of two PCs, one
real and the other virtual. In our framework, a generic matlab
function for data read or display can be easily included in a
C application thanks to automatic code generation.

6. CONCLUSION

We have presented a framework for the fast development of
signal and image applications based on multi-language mod-
eling. Thanks to high-level language modeling, this enables
the design of a real-time application with a high level of ab-
straction. This work is linked to the development of a second
generation video coder named “LAR video” that is an exten-
sion of the LAR codec for still color images. In this case, an
RAG can be used to show time changes in regions in order
to evaluate the temporal consistency of spatio-temporal seg-
mentation. Given region movements, it is easy to consider

Read_LAR_Param
xsc_1(ref)

GradThreshold_Color
MinimalSize

AuthorizedSize
SegmentationThresholds

MinimalSurface
ChromaticControlCoe�cient

Read_ImagePPM
xsc_1(ref)

R
G
B
Y
U
V MATLAB_RAG

xsc_2(ref)

Display_Seg

Y
U
V

Display_Y

Y
U
V

Spatial_Segmentation
xsc_1(ref)
YBlocks
UBlocks
VBlocks
ImageVertices
ImageSizes
SegmentationThresholds
MinimalSurface
ChromaticControlCoe�cient

ImageLabels
Yaverage
Uaverage
Vaverage

BlocksImage
xsc_1(ref)
Y
U
V
ImageVertices
ImageSizes

YBlocks
UBlocks
VBlocks

Post_Processing
xsc_1(ref)
YBlocks
ImageVertices
ImageSizes

Y_Smoothed

Quadtree_Partitioning
xsc_1(ref)
Y
U
V
GradThreshold
MinimalSize
AuthorizedSize

ImageVertices
ImageSizes

xsc_2(ref)

xsc_2(ref)

ImageLabels
Yaverage
Uaverage
Vaverage

PC1 (lib_archi/pentium) (main)
TCP1
TCP2

PCIsam_0
PCIram_0

PC2 (lib_archi/pentiumMATLAB)
TCP1
TCP2

TCP1 (lib_archi/TCP)
Algorithm graph

Architecture graph

LAR segmentation (PC1) Display (PC2)

PC1 real PC2 virtual

Figure 4: Description of LAR segmentation and display with
algorithm and architecture graph interface proposed by Syn-
DEx

the use of a M-RAG in which ellipse axes describe domi-
nant translation movements. Morever, C/Matlab modeling
and cosimulation aim to take advantage of the fast matlab
modeling that is essential in the development of new algo-
rithms and benefit from the computational efficiency of C
language for real-time image sequence decoding.

REFERENCES

[1] A. A. Jerraya, M. Romdhani, Ph. Le Marrec, F. Hessel,
P. Coste, C. Valderrama, G. F. Marchioro, J. M. Dav-
eau and N.-E. Zergainoh, “Multilanguage specification
for system design,” System-level synthesis, pp. 103–136,
1999.

[2] E.S. Manolakos, D. Galatopoullos and A. Funk, “Dis-
tributed Matlab Based Signal and Image Processing
Using JavaPorts,” in Proc. ICASSP 2004, Montreal,
Canada, May 17-21. 2004.

[3] T. Grandpierre and Y. Sorel, “From algorithm and ar-
chitecture specifications to automatic generation of dis-
tributed real-time executives: a seamless flow of graphs
transformations,” in First ACM and IEEE International
Conference on Formal Methods and Models for Co-
Design, Mont Saint-Michel, France, June 2003.

[4] M. Raulet, M. Babel, J.-F. Nezan, O. Déforges, and Y.
Sorel, “Automatic Coarse Grain Partitioning and Au-
tomatic Code Generation for Heterogeneous Architec-
tures,” in Proc. SIPS 2003, Seoul, Korea, August 27-29.
2003.

[5] M. Raulet, F. Urban, J-F. Nezan, O. Déforges and C.
Moy, “SynDEx Executive Kernels for Fast Develop-
ments of Applications over Heterogeneous Architec-
tures,” in Proc. EUSIPCO 2005, Antalaya, Turquey,
September 2005.

[6] R. Allen, “Compiling high-level language to DSPs,”
IEEE Signal Processing Mag., vol. 22, no. 3, pp. 47-56,
May 2005.

[7] O. Déforges, M. Babel, L. Bédat and J. Ronsin, “Color
LAR codec: a color image representation and com-
pression scheme based on local resolution adjustment
and self-extraction region representation,” IEEE Trans-
actions on Circuits and Systems for Video Technology,
accepted, 2007.

©2007 EURASIP 1671

	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

