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Abstract

We prove that there exist some infinitary rational relations which are
analytic but non Borel sets, giving an answer to a question of Simonnet
[Sim92]. Then we show that for every countable ordinal o one cannot
decide whether a given infinitary rational relation is in the Borel class
20 ( respectively II). Furthermore one cannot decide whether a given
infinitary rational relation is a Borel set or a X1-complete set. We prove
some recursive analogues to these properties. In particular one cannot
decide whether an infinitary rational relation is an arithmetical set. We
then deduce from the proof of these results some other ones, like: one
cannot decide whether the complement of an infinitary rational relation
is also an infinitary rational relation

Keywords: infinitary rational relations; topological properties; Borel and analytic
sets; arithmetical properties; decision problems.

1 Introduction

Rational relations on finite words were studied in the sixties and played a fun-
damental role in the study of families of context free languages [Ber79]. Their
extension to rational relations on infinite words was firstly investigated by Gire
and Nivat [Gir81] [GN84]. Infinitary rational relations are subsets of £ x X%,
where ¥; and Y, are finite alphabets, which are recognized by Biichi transduc-
ers or by 2-tape finite Biichi automata with asynchronous reading heads (there
exists an extension to subsets of 3¢ x X4 x ... x X% recognized by n-tape Biichi
automata, with ¥q,..., %, some finite alphabets, but we shall not need to con-
sider it). So the class RAT, of infinitary rational relations extends the class
RAT of finitary rational relations and the class of w-regular languages (firstly
considered by Biichi in order to study the decidability of the monadic second or-
der theory of one successor over the integers [Biic62], see [Tho90] [Sta97] [PP01]
for many results and references).

Infinitary rational relations and rational functions over infinite words they can
define have been much studied, see for example [CG99] [BC00] [Sim92] [Sta97]
[Pri00] [Pri01] for many results and references.



The question of the complexity of such relations on infinite words naturally
arises. A way to investigate the complexity of infinitary rational relations is
to consider their topological complexity and particularly to locate them with
regard to the Borel and the projective hierarchies. It is well known that every
w-language accepted by a Turing machine with a Biichi or Muller acceptance
condition is an analytic set, [Sta97], thus every infinitary rational relation is an
analytic set.

We show that there exist some infinitary rational relations which are ¥1-complete
hence non Borel sets, giving an answer to a question of Simonnet [Sim92].

The question of the decidability of the topological complexity of infinitary ra-
tional relations also naturally arises.

Mac Naughton’s Theorem implies that every w-regular language is a boolean
combination of TI3-sets, [Tho90] [Sta97] [PP01] and Landweber proved that one
can decide, for a given w-regular language R , whether R is in the Borel class
39 (respectively, II9, 9, TI9), [Lan69].

Using an example of X1-complete infinitary rational relation, we show that the
above decidability results can not be extended to rational relations over infi-
nite words: for every countable ordinal & one cannot decide whether a given
infinitary rational relation R is in the Borel class £ ( respectively I1%). Fur-
thermore one cannot even decide whether a given infinitary rational relation R
is a Borel set or a X1-complete set. Then we prove some recursive analogues
to these properties. In particular one cannot decide whether an infinitary ratio-
nal relation is an arithmetical set. The proof of the above results implies some
other properties like the undecidability of the rationality of the complement of
an infinitary rational relation.

We give in this paper a short presentation of the above results; the complete
proofs are included in two papers which are submitted for publication, [Fin01a]
[Fin01c].

The paper is organized as follows. In section 2 we introduce the notion of rational
relations over finite or infinite words. In section 3 we recall definitions of Borel
and analytic sets. We sketch the proof of the existence of £1-complete infinitary
rational relation in section 4. The undecidability of topological properties is
proved in section 5. Recursive analogues are proved in section 6 and other
undecidability results in section 7.

2 Rational relations

Let us now introduce notations for words.

Let X be a finite alphabet whose elements are called letters. A finite word over
¥ is a finite sequence of letters: = ajaz...a, where Vi € [1;n] a; € £. We
shall denote z(i) = a; the it® letter of z and z[i] = z(1)...z(i) for i < n. The
length of z is |z| = n. The empty word will be denoted by A and has 0 letter. Its
length is 0. The set of finite words over ¥ is denoted X*. £ = £* — {\} is the
set of non empty words over ¥. A (finitary) language L over X is a subset of X*.
The usual concatenation product of v and v will be denoted by w.v or just uv.
For V C X* we denote V*={v;...v,/n €N and v; €V Vie][l;n]}.



The complement ¥* — L of a finitary language L C ¥* will be denoted L.

The first infinite ordinal is w. An w-word over X is an w -sequence a1as .. .ay, .. .,

where a; € X,Vi > 1. When o is an w-word over ¥, we write 0 = 0(1)0(2)...0(n). ..

and o[n] = o(1)o(2)...0(n) the finite word of length n, prefix of o. The set of
w-words over the alphabet ¥ is denoted by X¥. An w-language over an alphabet
Yisasubset of X¥. For VCE*, V¥ ={o =u1...Upn... € ¥/u; € V,Vi > 1}
is the w-power of V. The concatenation product is extended to the product of
a finite word v and an w-word v: the infinite word u.v is then the w-word such
that: (u.v)(k) = u(k) if k < |u| , and (u.v)(k) = v(k — |u|) if k& > |ul.

The prefix relation is denoted C: the finite word w is a prefix of the finite word
v (respectively, the infinite word v), denoted u C v, if and only if there exists a
finite word w (respectively, an infinite word w), such that v = u.w.

The complement ¥ — L of an w-language L C ¥¢ will be denoted L.

We now assume the reader to have some familiarity with the theory of formal
languages and of rational relations over finite or infinite words, see [Biic62]
[Ber79] [GN84] [Tho90] [Sta97] [PP01] [Pri00] for many results and references.

A relation over finite words is a subset of ¥* x I'™* where X and T are two finite
alphabets, so it is a set of couples of words.

The complement (£* x I'*) — R of a relation R C ¥* x I'* will be denoted R™.
The usual concatenation product can be extended to couples of words: if (u,v) €
¥* x I'* and (w,t) € ¥* x I'™* then (u,v).(w,t) = (v.w,v.t). Then the star
operation is defined for U C ¥* x I'* by U* = Up>1U™ U {(A,A)} where U™ =
{(ur.ug ... Up, V12 ..0,) | Vi >1 (u;,v;) € U}

The set RAT (X* x I'*) of rational relations is the smallest family of subsets of
¥* x T'* which contains the emptyset, the singletons {(a,A)} and {(\,b)} for
a € ¥ and b € T', and closed under finite union, concatenation product and star
operation.

We call RAT the union of the sets RAT(X* x I'*) where ¥ and I' are two finite
alphabets.

Rational relations may also be seen as relations recognized by finite transducers
or accepted by 2-tape finite automata accepting couple of words by final states
[Ber79].

We shall detail these notions below in the case of infinitary rational relations.

Recall that w-regular languages form the class of w-languages accepted by
finite automata with a Biichi acceptance condition and this class is the omega
Kleene closure of the class of regular finitary languages, [Tho90] [Sta97] [PP01].
A relation over infinite words (or infinitary relation) is a subset of ¢ x I'¥
where ¥ and IT" are two finite alphabets, so it is a set of couples of infinite words.
The complement (X% x I'Y) — R of an infinitary relation R C X% x I'Y will be
denoted R™.

We are going now to introduce the notion of infinitary rational relation which
extends the notion of w-regular language, via definition by Biichi transducers:

Definition 2.1 A Biichi transducer is a sextuple T = (K, X, T, A, qo, F'), where
K is a finite set of states, &2 and T are finite sets called the input and the output



alphabets, A is a finite subset of K x ¥* x T* x K called the set of transitions,
qo 1s the initial state, and F C K is the set of accepting states.
A computation C of the transducer T is an infinite sequence of transitions

(QO;U1;1)1;Q1): (CI1,U2,U2;!12), ce. (q'iflauz';'vz';(h'); (qz',uz'+1,vi+1,qz'+1), ...

The computation is said to be successful iff there exists a final state qr € F' and
infinitely many integers i > 0 such that ¢; = q5.

The input word of the computation is u = uj.uz.u3 ...

The output word of the computation is v = v1.v2.v3 ...

Then the input and the output words may be finite or infinite.

The infinitary rational relation R(T) C X% x T recognized by the Biichi trans-
ducer T is the set of couples (u,v) € ¢ x T such that u and v are the input
and the output words of some successful computation C of T.

The set of infinitary rational relations will be denoted RAT,, .

Remark 2.2 Gire and Nivat have shown in [GN84] that if T is a Biichi trans-
ducer recognizing the infinitary relation R(T) then there exists another Biichi
transducer T' such that R(T) = R(T') and for every successful computation
C' of T' the input and the output words are both infinite. The idea of this
construction may be found in [Pri00].

Remark 2.3 Let ¥ and T be finite alphabets and R C X% x I'“; then R is an
infinitary rational relation if and only if it is accepted by a 2-tape finite automa-
ton with asynchronous reading heads accepting words with a Biichi condition.
One can also consider n-tape finite automata with asynchronous reading heads
accepting words with a Biichi condition and this leads to a generalization: the
notion of infinitary rational relation R C XY x X§ X ... x X% where ¥y, ... %,
are finite alphabets. But we shall restrict here our attention to rational relations
R C Y% xT¥ where ¥ and T are finite alphabets.

As in the case of w-regular languages it turned out that an infinitary relation
R C X% x I'¥ is rational if and only if it is in the form R = Ui<i<nS;. RY
where for all integers ¢ € [1,n] S; and R; are rational relations over finite words
and the w-power U¥ of a finitary rational relation U is naturally defined by
UY ={uruz...upn...|Viu; € U}

Remark 2.4 An infinitary rational relation is a subset of X% xT for two finite
alphabets 2 and I'. One can also consider that it is an w-language over the
finite alphabet ¥ xT. If (u,v) € ¥ xT¥, one can consider this couple of infinite
words as a single infinite word (u(1),v(1))-(u(2),v(2)).(u(3),v(3)) ... over the
alphabet ¥ x T'.

We shall use this fact to investigate the topological complexity of infinitary ra-
tional relations.

3 Borel and projective hierarchies

We assume the reader to be familiar with basic notions of topology which may
be found in [Kur66] [Mos80] [Kec95] [LT94] [Sta97] [PPO1].



Topology is an important tool for the study of subsets of a set X“, where X
is a finite or infinite set. We study here w-languages which are defined over
a finite alphabet. Thus we shall restrict our study to subsets of spaces in the
form X“, where X is a finite set (called here an alphabet). We shall consider
X“ as a topological space with the Cantor topology. The open sets of X“ are
the sets in the form W.X%, where W C X*. A set L C X% is a closed set iff
its complement X% — L is an open set. The class of open sets of X% will be
denoted by X9. The class of closed sets will be denoted by IT9. Closed sets are
characterized by the following:

Proposition 3.1 A set L C X% is a closed subset of X% iff for every o € X%,
[Vn > 1,3u € X¥ such that o(1)...0(n).u € L] implies that o € L.

Define now the next classes of the Borel Hierarchy:

Definition 3.2 The classes £% and IS of the Borel Hierarchy on the topolog-
ical space X are defined as follows:
39 is the class of open subsets of X“.
19 is the class of closed subsets of X*.
And for any integer n > 1:
X9 1 is the class of countable unions of II3-subsets of X“.
II)  , is the class of countable intersections of X2-subsets of X*.
The Borel Hierarchy is also defined for transfinite levels. The classes £° and
I12, for a countable ordinal o > 1, are defined in the following way:
30 is the class of countable unions of subsets of X“ in U7<aH2.
IO is the class of countable intersections of subsets of X“ in U7<a22.
Recall some basic results about these classes, [Mos80]:
Theorem 3.3

(o) ZOUTIS C X9, NIIZ 4, for each countable ordinal a > 1.

(b) Uy<aX = Uy<alId C B0 NTIY, for each countable limit ordinal .

(c) A set W C X% is in the class X2 iff its complement is in the class TI2.

(d) X0 —TI9 # 0 and TI® — X9 # O for every countable ordinal o > 1.

We shall say that a subset of X“ is a Borel set of rank «, for a countable ordinal
a, iff it is in 3 U TIY but not in {J, (X9 UILY).
There is a characterization of IT13-subsets of X*, involving the é-limit W9 of a
finitary language W.

Definition 3.4 (see [Sta97]) For W C X*, let W° = {0 € X*/3¥i such that
oli] € W}. (o0 € W? iff o has infinitely many prefizes in W ).

Proposition 3.5 A subset L of X¥ is a I13-subset of X* iff there exists a set
W C X* such that L = W9.

Example 3.6 Let ¥ = {0,1} and A = (0*.1)* C X¢. A is the set of w-words
over the alphabet ¥ with infinitely many occurrences of the letter 1. It is well
known that A is a TI9-subset of £“ because A = ((0*.1)T)?



There exists another hierarchy beyond the Borel hierarchy, which is called the
projective hierarchy and which is obtained from the Borel hierarchy by succes-
sive operations of projection and complementation. More precisely, a subset
A of X¥ is in the class £} of analytic sets iff there exists another finite set
Y and a Borel subset B of (X x Y)“ such that z € A + Jy € Y“ such that
(z,y) € B, where (z,y) is the infinite word over the alphabet X x Y such that
(%,y)(@) = (x(¢),y (7)) for each integer i > 1. The class of Borel subsets of X¥ is
strictly included in the class of analytic subsets of X“. Now a subset of X% is
in the class II1 of coanalytic sets iff its complement in X* is an analytic set.
The next classes are defined in the same manner, (but they will not be useful
in the sequel of this paper): X} ;-sets of X“ are projections of IT}-sets and
II}  ,-sets are the complements of X} ,-sets.

Recall the notion of completeness with regard to reduction by continuous func-
tions. If a is a non null countable ordinal, a set F C X* is said to be a X2
(respectively I19)-complete set iff for any set E C Y (with Y a finite alpha-
bet): E € X9 (respectively E € II9) iff there exists a continuous function
f:Y¥ — X“ such that E = f~}(F). In the same way a set I C X¥ is a
31 (respectively IT})-complete set iff for any set E C Y* (Y a finite alphabet):
E € 27 (respectively E € II3) iff there exists a continuous function f such that
E = f~Y(F).

A X0 (respectively I, X1)-complete set is a X9 (respectively I19, ¥1)-set
which is in some sense a set of the highest topological complexity among the
39 (respectively 19, ¥1)-sets. X9 (respectively I1%)-complete sets, with n an
integer > 1, are thoroughly characterized in [Sta86].

Mac Naughton’s Theorem implies that every w-regular language is a boolean
combination of II9-sets, hence a A = (IT$ N £9)-set, [Tho90] [Sta97] [PPO1].
Landweber studied first the topological properties of w-regular languages and
characterized the w-regular languages in each of the Borel classes 3¢, TI¢, X9,
I19, [Lan69]. In particular A = (0*.1)¥ given in Example 3.6 is a well known
example of IT13-complete subset of {0,1}* and its complement {0,1}* — (0*.1)~
is a X9-complete subset of {0,1}~.

It is well known that every w-language accepted by a Turing machine with
a Biichi or Muller acceptance condition is an analytic set, [Sta97], thus every
infinitary rational relation is an analytic set.

We have shown in [Fin01b] that there exist some infinitary rational relations
which are ¥3-complete and some others which are IT3-complete. We pursue
below the study of the topological complexity of infinitary rational relations.

4 Yl-complete infinitary rational relation

Theorem 4.1 ([Fin0la]) There exist some X1 -complete, hence non Borel, in-
finitary rational relations.

In order to prove this result, we use here results about languages of infinite
binary trees whose nodes are labelled in a finite alphabet . A node of an
infinite binary tree is represented by a finite word over the alphabet {l,7} where



r means "right” and | means ”left”. Then an infinite binary tree whose nodes
are labelled in ¥ is identified with a function ¢ : {I,r7}* — X. The set of infinite
binary trees labelled in ¥ will be denoted T3.

There is a natural topology on this set 7% [Mos80], [LT94], [Sim92]. It is defined
by the following distance. Let ¢ and s be two distinct infinite trees in T3. Then
the distance between ¢ and s is 2% where n is the smallest integer such that
t(z) # s(x) for some word z € {I,r}* of length n.

If card(X) > 2 then the topological space T is homeomorphic to the Cantor
set hence also to I'“ for every finite alphabet I' having at least two letters.
The open subsets of T3/ are then in the form Ty.7%y where Tj is a set of finite
labelled trees. Tp.T5; is the set of infinite binary trees which extend some finite
labelled binary tree ty € Tg, to is here a sort of prefix, an ”initial subtree” of
a tree in ty.7y. The Borel hierarchy and the projective hierarchy on 7y are
defined from open sets in the same manner as in the case of the topological
space ¢,

Let t be atree. A branch B of ¢ is a subset of the set of nodes of ¢t which is linearly
ordered by the tree partial order C and which is closed under prefix relation, i.e.
if z and y are nodes of ¢ such that y € B and =z C y then € B. A branch B of
a tree is said to be maximal iff there is not any other branch of ¢ which strictly
contains B. Let ¢ be an infinite binary tree in Ty. If B is a maximal branch of
t, then this branch is infinite. Let (u;);>0 be the enumeration of the nodes in B
which is strictly increasing for the prefix order. The infinite sequence of labels
of the nodes of such a maximal branch B, i.e. t(ug)t(uy)....6(un)..... is called a
path. It is an w-word over the alphabet X.

Let then L C 3% be an w-language over X. We denote Path(L) the set of
infinite trees ¢ in Ty such that ¢ has at least one path in L. It is well known that
if L C ¢ is an w-language over ¥ which is a ITI-complete subset of ¥ (or
a Borel set of higher complexity in the Borel hierarchy) then the set Path(L)
is a ¥1-complete subset of 7. Hence in particular Path(L) is not a Borel set,
[Niw85] [Sim93] [Sim92] [PP01, exercise].

In order to use this result we firstly code an infinite binary tree ¢ labelled in
¥ by an w-word h(t) over the finite alphabet (X U {A}) x (X U {A}) where A
is supposed to be a new letter not in ¥.. This coding is chosen such that the
function

h:TE » (SU{A}) x (SU{A})*

is continuous.

In a second step we construct, for every regular w-language B C ¥¢, a rational
relation R C (T U {A4})* x (E U {A})“ such that Path(B) = h~}(R).

Every word of R may be seen as a couple y = (y1,y2) of w-words over the
alphabet ¥ U {A} and then y = (y1,y2) is in R if and only if it is in the form

y1 = 2(1).u1. Ave.x(3).us. Avg.z(5).us.A. ... Avop.x(2n + 1).ugpt1-4A. ..
ya = v1.20(2).uz.Avs.x(4).us.A. ... Avapr1-2(2n + 2).uspto.A. ..



where for all integers ¢ > 1, z(i) € ¥ and u;,v; € ¥* and
il =2[us|  or  |vi| = 2fui| +1
and the w-word z = z(1)z(2) ... z(n)... is in B.

Now if B is II3-complete then Path(B) is ¥1-complete. Thus Path(B) =
h~1(R) implies that the infinitary rational relation R is X1i-complete.

5 Undecidability of topological properties

We shall say that an infinitary rational relation is effectively given if a Biichi
transducer recognizing it or a rational expression defining it is given. we firstly
prove the following result.

Proposition 5.1 Let X andY be finite alphabets containing at least two letters,
then there exists a family F of infinitary rational relations which are subsets of
X% x Y%, such that, for R € F, either R = X¥ x Y“ or R is a X1-complete
subset of X¥ x Y%, but one cannot decide which case holds.

Proof. Recall that if ¥ is an alphabet having at least two letters then it
is undecidable to determine, for a given rational relation (over finite words)
S C ¥* x ¥*, whether S = ¥* x I*, see [Ber79].

We define, from a ¥}-complete infinitary rational relation R C ((Z U {A4})¥ x
(2U{A})¥) and a given rational relation S C ¥* x X*, the following relation:
RS =8 US USs

where

S =8.(4,A4).(BU{A}h” x (ZU{4}))
Sy = (% x £).(4, A).R
Ss =[(BU{A}Y x Z¥TU[EY x (ZU{4})“]

RS is the union of three infinitary rational relations thus RS € RAT,, because
the class RAT,, is closed under finite union.

Now two cases may happen.
(1) First case. S = ¥* x X* therefore R® = (T U {A})¥ x (TU{A4})¥).

(2) Second case. S # ¥* x ¥* therefore there is some (u,v) € ¥* x ¥*
such that (u,v) ¢ S. But then, for (w,t) € (EU{A}* x (B U {A})¥,
(u,v).(A, A).(w,t) € RS if and only if (w,t) € R.

Consider now the function

Pru) + (BULANY x (BU{A}Y) = (RU{4})” x (ZU{4})*)

defined by
‘P(u,v)((wat)) = (u,v).(4, 4).(w,?)



It is easy to see that ¢(,,) is a continuous function and that, for all
(w,t) € (BU{A}” x (BU{A4})*),

Pluw)((w,)) € RS if and only if (w,t) € R

This means that R = (P(;l,v) (RS). But we know that R is X}-complete
and this implies that RS is also $}-complete.

Remark that we already knew that RS was a X1-set because it is an in-
finitary rational relation as the union of three infinitary rational relations.

But one cannot decide which case holds. So we have got the family F in the
case of two alphabets X and Y having both three elements. It is now easy to
prove the result for two alphabets X and Y having at least two elements. O

We can now state the following results.

Theorem 5.2 Let ¥ and I' be finite alphabets having at least two letters and
a be a countable ordinal > 1. Then for an effectively given infinitary rational
relation R C Y% x T'“ it is undecidable to determine whether:

(a) R is in the Borel class 9.
(b) R is in the Borel class T19.
(¢) R is a Borel set.

(d) R is a $}-complete set.

Proof. Let ¥ and T be finite alphabets having at least two letters and F be the
family of infinitary rational relations included in X% x I'“ obtained in the proof
of proposition 5.1. Then two cases may happen for F' € F: either F' = %% x %
or F is a X1-complete subset of £« x I'*.

In the first case F' is an open and closed subset of X“ x I'“ thus, for every
countable ordinal a > 1, it is in the class X2 and also in the class IT9.

In the second case F is not a Borel set because a $}-complete set is not Borel.
But one cannot decide which case holds and this ends the proof of Theorem 5.2.
O

6 Undecidability of arithmetical properties

We recall first the definition of the Arithmetical hierarchy of w-languages,
[Sta97]. Let X be a finite alphabet. An w-language L C X“ is in the class ¥,
if and only if there exists a recursive relation Ry, C (N)"~! x X* such that

L={ceX” | 3a1...Qnan (a1,...,an-1,0[an +1]) € Rr}

where @); is one of the quantifiers V or 3 (not necessarily in an alternating order).
An w-language L C X“ belongs to the class II,, if and only if its complement
X% — L belongs to the class 3.

The inclusion relations that hold between the classes ¥,, and II,, are the same
as for the corresponding classes of the Borel hierarchy.



Proposition 6.1 (see [Sta97]) a) L,UIl, C X, 11N, 41, for each integer
n>1.

b) ¥, -1, #0 and 0, — ,, # 0 hold for each integer n > 1.

The classes ¥, and II,, are strictly included in the respective classes £9 and X9
of the Borel hierarchy: for each integer n > 1, £,, C £9 and II,, ¢ IIY, [Sta97].

As in the case of the Borel hierarchy, projections of arithmetical sets (of the
second II-class) lead beyond the Arithmetical hierarchy, to the Analytical hi-
erarchy of w-languages. The first class of this hierarchy is the class X1 (light
face). An w-language L C X*“ belongs to the class X} if and only if there
exists a recursive relation Ry, C (N) x {0,1}* x X* such that:

L={oce X" | Ir(r €{0,1}* AVnIm((n,r[m],oc[m]) € Rr))}

Then an w-language L C XY is in the class X} iff it is the projection of
an w-language over the alphabet X x {0,1} which is in the class II; of the
arithmetical hierarchy.

It turned out that an w-language L C X is in the class 31 iff it is accepted by
a non deterministic Turing machine (reading w-words) with a Muller or Biichi
acceptance condition [Sta97]. This class is denoted NT (inf,=) (where (inf,=)
indicates the Muller condition) in [Sta97] and also called the class of recursive
w-languages REK,, !. In particular the class RAT,, is strictly included into
the class REK,, of recursive w-languages. There exist some infinitary rational
relations which are in 1 — U,>1X,: for example each Xi-complete R € RAT,
is not in U,>1X, because it is not a Borel set.

The following undecidability results directly follow from Proposition 5.1.

Theorem 6.2 Let X and T' be finite alphabets having ot least two letters and
j be an integer > 1. Then for an effectively given infinitary rational relation
R C X% x T'Y it is undecidable to determine whether:

(a) R is in the class X;.
(b) R is in the class II;.

(c) R is an arithmetical set in Up>15,.

Proof. Let ¥ and T be finite alphabets having at least two letters and F be the
family of infinitary rational relations included in ¥¥ x I'“ obtained in the proof
of proposition 5.1. Then two cases may happen for F' € F: either FF = X% x I'¥
or F is a X1-complete subset of ¥¢ x I'“.

In the first case F' is in both classes ¥; and II; thus it is in all classes ¥,, and
II,. In the second case F' is not a Borel set hence it is not in U,>13, because
each arithmetical class ¥, (respectively II,) is included in the Borel class X2
(respectively TI9). But one cannot decide which case holds. O

'Tn another presentation, as in [Rog67], the recursive w-languages are those which are in
the intersection X1 N1II, see also [LT94].
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7 Other undecidability results

Proposition 5.1 establishes a strong undecidability result which implies other
ones. We can firstly infer from proposition 5.1 an already known result:

Theorem 7.1 Let ¥ and T be finite alphabets having at least two letters. Then
it is undecidable to determine, for an effectively given infinitary rational relation
R C X% x T%, whether R is accepted by a deterministic Bichi (respectively,
Muller) 2-tape finite automaton.

Proof. Let ¥ and T be finite alphabets having at least two letters and JF be the
family of infinitary rational relations included in X% x I'“ obtained in the proof
of proposition 5.1. Then two cases may happen for F' € F: either FF = X% x I'¥
or F is a X1-complete subset of ¢ x I'“.

In the first case F is obviously accepted by a deterministic Biichi (respectively,
Muller) 2-tape finite automaton.

In the second case F is ¥3-complete thus it cannot be accepted by any deter-
ministic finite machine with a Biichi (respectively Muller) acceptance condition
because otherwise it would be a boolean combination of ITo-sets hence a A$-set.
In fact w-languages accepted by deterministic Biichi Turing machines form the
class Il and w-languages accepted by deterministic Muller Turing machines
form the class of boolean combinations of II>-sets, see [Sta97]. O

Thus we have also proved the following result showing that the ”intrinsic deter-
minism” of infinitary rational relations is undecidable:

Theorem 7.2 Let ¥ and I be finite alphabets having at least two letters. Then
it is undecidable to determine, for an effectively given infinitary rational relation
R C X% x I'¥, whether R is accepted by a deterministic Biichi (respectively,
Muller) Turing machine.

We consider now the problem of the rationality of the complement of an infini-
tary rational relation.

Theorem 7.3 Let ¥ and I be finite alphabets having at least two letters. Then
it is undecidable to determine, for an effectively given infinitary rational relation
R C X¥ x 'Y, whether its complement (£ x T%) — R is an infinitary rational
relation.

Proof. Let ¥ and I be finite alphabets having at least two letters and F be the
family of infinitary rational relations included in ¥¥ x I' obtained in the proof
of proposition 5.1. Then two cases may happen for F' € F: either F' = % x I'%
or F is a X1-complete subset of ¥« x I'*.

In the first case F~ = ) is in RAT,,. In the second case F is ¥1-complete thus
its complement is a IT}-complete subset of £« x I'“. It is well known that a
I1}-complete set is not a Xi-set thus it cannot be in RAT,,. But one cannot
decide which case holds. O

Acknowledgements. Thanks to Jean-Pierre Ressayre and Pierre Simonnet
for useful discussions.
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