On some new aspects of nonlinear modes of vibrating systems - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2004

On some new aspects of nonlinear modes of vibrating systems

Résumé

Extending the concept of normal modes of vibrating systems to the case where the restoring forces contain nonlinear terms, has been a challenge to many authors, mainly because the principle of linear superposition does not hold for nonlinear systems. However, the existence of "synchronous" periodic oscillations has great potential for applications to nonlinear free and forced vibration problems and it is becoming more important to generate of effective reduced-order models for multi-degree-of-freedom nonlinear systems. Following the pioneer work by Rosenberg on conservative systems, several attempts have been made to develop methods of calculating Nonlinear Normal Modes (NNMs). These include the normal form theory, the invariant manifold method (which led to a new definition of NNMs extending the concept to non conservative systems), the perturbation method, the balance harmonic procedure, the method of multiple scales, and various combinations.

The aim of this paper is to present two approaches for calculating the NNMs of vibrating nonlinear undamped mechanical systems: the time integration periodic orbit method and and the amplitude-phase representation method.

In the time integration periodic orbit method, the NNMs are defined by continuation of periodic orbit. To do this, an energy conserving time stepping for time variable is used combined with the asymptotic-numerical method. This approach allows us to compute the bifurcation diagram of the NNMs. This approach provides the period of the oscillations on NNMs and it leads also to a numerical representation of the invariant manifold associated to the NNM.

In the amplitude-phase representation method, as in the linear case, an expression is developed for the NNM in terms of the amplitude, mode shape, and frequency, with the distinctive feature that the last two quantities are amplitude and total phase dependent. The dynamics of the periodic response is defined by a one dimensional nonlinear differential equation governing the total phase motion. The period of the oscillations, depending only on the amplitude, is easily deduced. It is established that the frequency and the mode shape provide the solution to a 2π-periodic nonlinear eigenvalue problem from which a numerical Galerkin procedure is developed for approximating the NNMs. This formulation allows us to characterize the similar NNMs. It leads also to an analytical (parametric) expression of the invariant manifold and it permits to compute the NNM even in the case of resonance relations between the eigenvalues of the linearized system. The extension of the formulation for the case of a damped autonomous mechanical systems will not be considered. The two approaches will be compared for several simple discrete and continuous vibrating systems.
Fichier non déposé

Dates et versions

hal-00097563 , version 1 (21-09-2006)

Licence

Paternité

Identifiants

Citer

Sergio Bellizzi, Rémi Arquier, Robert Bouc, Bruno Cochelin. On some new aspects of nonlinear modes of vibrating systems. 7th International Conference on Computational Structures Technology, Sep 2004, Lisbonne, Portugal. ⟨10.4203/ccp.79.86⟩. ⟨hal-00097563⟩
39 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More