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COMPARISON OF NUMERICAL SCHEMES FOR FOKKER-PLANCK-LANDAU
EQUATION. *

CHRISTOPHE BUET!, STEPHANE CORDIER? AND FRANCIS FILBET?

Abstract. This paper is devoted to the comparison of deterministic schemes to approximate the
Fokker-Planck-Landau equation. We first recall the basic idea of the spectral and the multigrid meth-
ods, and compare them to evaluate their cost, accuracy and robustness. We also present a new method
that is very efficient for quasi-isotropic distribution function. We finally implement a method to deal
with the numerical simulation in the non homogeneous situation.

AMS Subject Classification. 65M06, 65N06, 82C40 .

1. INTRODUCTION

The Fokker-Planck-Landau (FPL) equation is a common kinetic model in plasma physics. It describes binary
collisions between charged particles with long-range Coulomb interaction and is represented by a nonlinear
partial integro-differential equation. The Fokker-Planck-Landau model is also known as the leading term of
classical Boltzmann operator when collisions become grazing.

of

where Q(f, f) is the collision operator:
QLD = o [ 80 =00 (TSt o) (0:67) = (Tur (007D 0.0 o, e
with
®(v) = [o["*?S(v), and S(v) = Id — %. 3)

The unknown f(t,z,v) represents the density of a gas in phase space of positions z and velocities v, it is non
negative and integrable together with its moments up to the second order. As for the Boltzmann equation,
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different values of v lead to usual classification in hard potentials v > 0, Maxwellian molecules v = 0, or soft
potentials v < 0. This latter case involves the Coulombian case v = —3 which is of primary importance in
plasma physics.

As well known in the litterature and mathematically established by the works of Arsene’v, Buryac and more
recently Desvillettes [9], the FPL collision operator is the limit of the Boltzmann operator for a sequence of
scattering cross sections which converge in a convenient sense to a delta function at zero scattering angle.
Concerning the existence of solutions, Arsene’v and Peskov [2] have established the existence of weak solutions
for short time in the spacially homogeneous case for the Coulomb potential. Recently, a global existence result
of renormalized solution with a defect measure has been obtained by Alexandre and Villani [1, 20] in the space
dependance case and for an initial data with a finite energy.

The algebraic structure of the operator is similar to the Boltzmann one, this leads to physical properties such
as the conservation of mass, impulsion, and energy

1
/ QLNW | v |dw=0,

02
and the decay of the kinetic entropy H(t),

dH d

0= Rsf(t;v) In(f(t,v))dv < 0.

Finally, the equilibrium states of the FPL operator, i.e. Q(f, f) = 0, are given by maxwellians:

N [v — ug|?
MN,uo,T(v)—WeXP T2 )

where N is the total mass, ug the mean velocity, and vy, the thermal velocity, which depends on the temperature
Several numerical approaches have been considered in the last years to deal with the FPL equation in the
isotropic case [3] and for cylindrically symmetric problems in [17]. The construction of a conservative and
entropy scheme for the general situation has also been proposed by Degond and Lucquin-Desreux in [8]: the
starting point of this method is to discretize the collision operator using the weak formulation in order to recover
all properties of the continuous operator presented before. But the direct implementation of such a scheme is
very expensive, thus several algorithms have been considered to reduce the computational cost as the multipole
expansion [12] and the multigrid method [5]. Another approach, based on a direct discretization of the FPL
operator using a spectral method has been recently proposed in [14], it permits to reduce the quadratic cost to
Nlog N, where N is the total number of unknowns. In this paper, we shall present a new method based on the
approximation of the collision operator for isotropic distribution functions. This approximation is well known
in plasma physics [18] for the quasi-isotropic cases and permits us to reduce the cost of the evaluation of the
collision operator to a linear complexity.

The spectral and multigrid methods have proved their efficiency in the homogeneous case (the distribution
function f does not depend on z), but to the best of our knowledge, there is no numerical result in the non
homogeneous situation. Nethertheless, the coupling with the transport part is necessary to treat more physical
problem in plasma physics or in rarefied gas dynamic. Moreover, the transport equation creates oscillations or
discontinuities in velocity space and the treatment of the collision operator by fast algorithms becomes more
complex, then it is necessary to use a robust method to obtain an accurate description of the distribution
function. The goal of this paper is to give an algorithm to treat the Vlasov equation coupled with the FPL
operator. The transport equation will be solved by a high order semi-lagrangian scheme preserving mass,
impulsion, energy and positivity.

T,ie. v = m represents the mass of one particle and & is the Boltzmann constant.
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The article is organized as follows: in part two, we briefly recall the main features of the fast algorithms, and
we derive the so-called isotropic approximation. In the third part, we present some classical numerical tests
to compare the accuracy, cost and robustness of different algorithms in the homogeneous case. In the last
section, we present a time splitting scheme algorithm to deal with the transport equation. Numerical tests
which illustrate the effect of collisions frequency (between free transport and hydrodynamics model) are shown.

2. THREE FAST ALGORITHMS FOR FPL

This section is first devoted to a brief description of the spectral and multigrid methods. Let us note that the
FPL operator is a non linear integro-differential equation, where the non linearity is quadratic in f. However,
the complexity of both methods is of order of N log(N), where N is the number of unknowns.

In the last part, a new method is proposed for the discretization of the FPL equation with a linear cost when
the distribution function is almost isotropic.

2.1. The spectral method

This method has been recently proposed by L. Pareschi et al. to approximate Boltzmann [15] and Fokker-
Planck-Landau [14, 16] equations. We briefly describe the idea of the method and refer to previous references
for more details. Let us write the operator on its usual form,

QLD = [ 300 (oS 0D (007) = (T flt, ) 0] a0 @

For simplicity, we will assume the support of the distribution function is included in the ball B(0, R/2) with
R > 0. Of course, it is wrong since the stationary state is given by a Maxwellian, in fact the distribution
function is truncated to zero for f sufficiently small. From this hypothesis, it is easy to check that the domain
of integration is B(0, R). We next approximate the distribution by a partial sum of a Fourier series,

Into)= > filt)et ®EY, (5)

ke{—N,..,N}

where k=(k1, k2, k3), N is the multi integer (n,n,n), n is the number of half modes in each direction, and the
k-th mode is given by
1

fk(t) = W L(O’R) f(t,’u)e*ik.vdv‘

Then, substituting the approximation fy(t,v) in the operator (4), we obtain

QUN.IN = D filt) fm(®) Bul,m)e’ & H™Y,

l,me{—N,..,N}2

where 3 (I, m) reads to (using a change of variable)

Br(l,m) [%]ws /B(o,# (w) [+ m)(I—m) - (I + m).lwm(l - m)'lz_l] O gy

[%]”” (B, m)~ Bm,m))

and

B(l,m)z/ wll 2 [22 — (1.2 .
B(0,7) |w]
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As the residual term of the FPL operator is orthogonal to all trigonometric polynomials of degree < n, we get
the following system of differential equations
d f mT17+3 . n R R
Fe{-NNy, D[RS fif [BOm) - Bam,m)].

dt R
l,me{—N,..,N}
l4+m=k

Now, we have to approximate B (I,m): we split it in two parts,

~ w .
Blom) = [l (R - R,
B(0,7) [ |w] ]
3
_ 12/ ”w”'y—i-zeiw.mdw_ Z lz'lj/ ||w||fy+2wz“;Jeiw.mdw_
B(0,T) ig=1 B(0,7) |w]
and set
Fom) = [ e
B(0,m)
Lym) = [ el e,
v B(0,T) lw|?

to obtain the system of ODE’s:

e _ (21 S e [0 mF(m) - B,

R me{—N,..,N}

mT1Y+3 3 R R
B I:E] Z Z fkfm fm(kz - mi)(k‘j - mj)Ii,j (m)

i,j=1 me{—N,..,N}

Remark 2.1. Coefficients F'(m) and I; ; only depend on v and are approximated using a recursive quadrature
formula.

Finally, to approximate the right hand side of the system, we only have to compute several sums of discrete
convolutions of the form
Sk = Z Im hk—m-

me{—N,..,N}
To do this, we propose a n3logn?® algorithm based on a Fast Fourier Transform:
e use a FFT method to transform g, and hy_,, into g,, and ﬁk,m with a cost in O(n3 log n3).
e compute the sum in the Fourier space with a linear cost O(n?).
e use an inverse FFT to obtain the discrete sum with a cost in O(n2 logn®).

The approximation using the spectral method preserves mass, whereas variations of momentum and energy are
controled by the spectral accuracy. But, no information is available on the equilibrium states, the decay of the
entropy and the preservation of positivity.

2.2. The multigrid method

This method has been proposed by C. Buet et al. in [5]. We also assume the domain of integration is a box
of length R denoted by Cgy, and define for any test function ¢(v) sufficiently smooth,

H(v,0") = —%f(t, ) f(t,0%)[Vop(v) = Vo (o))" @(v = v*)[Vy In(£(2,0)) = Vor In(f(t,0%))]-
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Then, we write the FPL operator using the weak formulation
[ U@t = [ Hudvds, ©)
R3 CoxCo

and introduce a regular discretization of the box Cy, composed of N = 8" points, where n will denote the total
number of grid levels. The velocity step is denoted by Av = 2%, and fj(t) is the approximation of f(t,v;), where
v =1Av—v, I =('1%1%) € ZT={1,..,2"} and vy is the center of the box.
We now recall the basic entropy conservative discretization introduced in [8] using the weak form (6), for [ € Z,
we define Q(f, f); such that

STAPQU e = D, A H(vi, ),

lez (I,m)e1?

the value H(v;,v,,) is an approximation of H (v;,v,,) defined for any test sequence ¢ by:

H (v, vm) = —% fi(®) fm (D)[(D@)r = (D@)m]®(vr — vi)[(DIn f(2)); — (D In f(E))m], (7)

where D is a finite difference operator approximating the gradient.
>From the weak formulation, we finally obtain the following equivalent system of differential equations:

W) _ rr@) = 0 p)) ®

where D* is the formal adjoint of the finite difference operator D, and

n(t) = 3 i) () = o) (D10 f@®) = (DIn f)m). (9)

meL

To obtain the conservation of mass, impulsion and energy, the FPL operator is finally approximated by the
average of discrete operators obtained from the down-wind, up-wind and centered finite difference operator D.
In [5], authors re-write this scheme as the sum of a second order approximation and an artificial viscosity term
in Av? which kills spurious conservations. A direct approximation of (8) is actually too expensive, then to
reduce the computational cost, we use a fast algorithm : the multigrid method.

Let us highly recall the algorithm: it consists in splitting the operator in different levels and in computing the
interaction betweeen particles on a different way from the relative velocity |[v — v*|.

At level one, we only split the domain Cj in 8 identical boxes denoted by CT, r € I; = {0,1}® and call them
the “children of Cy” and Cj is their “father”, then

/R3 QUf, f)(w)p(v)dv = Z /C{xc;’ H(v,v*)dvdv*.

(r,r1)e{0,1}8

At level two, we split each box CT in sub-cells C5 , for r' € I, = {0,1,2}3, then to compute the interactions
we introduce the following definition: The cell C,’c“' is well separated of C} if and only if their fathers are the
nearest neighbors and if C’,:' is not one of the nearest neighbor of C}. The nearest neighbor of Cj}, is obtained

by the add to the center the quantities 2%(51,62,63), with (e1,€2,e3) € {—1,0,1}.
We write the FPL operator as the sum of integral on well separated and not well separated boxes:
[eupweer= ¥ [ Hewwdr s Y[ He e

R3 T xC3' ozxcy’

(r,r')EI (r,r')EI
w.s. n.w.s.
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where we use the notation w.s. for boxes which are well separated, and n.w.s for the others. If the cell CJ
is “well separated”, we compute the integral using a quadrature formula given below else the contribution is
computed at the next level. We repeat this process until the final level n is reached.

For a fixed level k, when C}, and C’,:' are well separated, we have to approximate the following integral

/ H(v,v*)dvdv*, (10)
orxoy

but a direct approximation requires 82* evaluations which leads to an amount of work in N2. Therefore, to
reduce the computational cost, we only use n; = 8* evaluations to approximate (10), and require that after ny
time iterations all the couples (i,5) € Cf x C% will be chosen: let us denote by {1,...,n} the n;, elements of
the box C}, and let = be a randomly chosen permutation of {1,...,n;}. In the first step we approximate the
integral (10) by a Monte-Carlo quadrature formula using pairs (I, 7 (1)), [ € {1,...,n.}, in the second time step
we use pairs (I,72(1)), etc... Then after ny time iterations, the order 7 is reached.

Finally, when C}, and C,Ql are well separated, the Monte-Carlo approximation of (10) is given by

* * 1
/T . H(v,v*)dvdv* = ok Z Av® H (v, vr())-
CExCy le{l,..,np}

Then, the computational cost for one evaluation of the FPL operator is reduced to the order n N ( < N logN).
For the time discretization, a first order Euler scheme is used. To ensure the stability of the algorithm, we
determine conditions on the time step At under which the scheme gives positive and entropic solution [6]: we
first prove there exists a positive constant C' > 0 such that

[FP(t)| = |(D*p)i| < C In(K) fi(t),

where K = max(; <1} %, then we set Aty = #(K), with a € (0,1), which allows to preserve the positivity
of the approximation. Finally, the entropy decays provided that the time step is smaller than

—Av®) " FPR(t) In(fi(t))
FP2(t)
Avd L
2 filt)
Let us notice, that to avoid a global stability condition of the type (11), which may be too restrictive, the
operator is split into n parts corresponding to each grid level and the time step is chosen at each level.

At <min | Aty,

(11)

2.3. The pseudo-isotropic scheme

The isotropic method for the Fokker-Planck-Landau equation is close to the multigrid method presented
before. We are concerned with an approximation of the Fokker-Planck-Landau operator using finite difference.
The discretized weak formulation of FPL can be re-written using the symmetry of the operator, for any test
function ¢

%QOZ'A’IP = —AU6 Z fi fj (_D(,D)z @(’U,‘ - ’UJ)[(D In f)z - (D In f)j], (12)

i€ (i.4)€T?

where f; is any average of f near the cell i (to be defined later), and D denotes the finite difference operator
previously used for the multigrid method.
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From this finite difference scheme, we finally approximate the following system of ODE’s as in (8). When
the distribution function is isotropic, one can prove that the multiplicative factor |[v — v*|7 in the matrix ® can
be replaced by max(|v|, |v*|)”. This can be checked using an expansion in Legendre polynomials. Indeed, one
has

P(z
(1+2p$+p )2 Z (@

where p = v* /v~ with v* = max(|v], |v*|) and v~ min(|v|, |v |) and 7 is the cosinus of the angle between the
two velocities (see [19]). Then, one can see for the continuous equation, that only the zero-th term in this sum
gives a non zero contribution. This property is used for deriving the simplified isotropic FPL equation (see
[18, 17, 7] for a detailled presentation).

For general distribution function, one can consider a truncated series by retaining only the M first terms
in the above expansion. In this paper, one shall consider the coarser approximation (M = 1). The positivity
and the convergence of this approximation is beyond the scoop of this paper. Using this so called isotropic
approximation (which is relevant for distribution function close to isotropic one and exact for isotropic function),
we shall improve the scheme described in based on multigrid or multipolar methods [5, 6, 12] : the cost of this
method becomes indeed linear and the number of discretization points is no more a power of 2.

Let us now prove that the complexity is linear. We have to evaluate quantities of the form

AP (w;) =" (max(|oil, [0;])Y fifi(vi = v))a(vi = v;)s((DIn f); = (D1n £);)s) , (13)

J

where , 3 and ¢ are the components in {1,2,3}. These sums are split in two parts provided that either |v;| < |v;]
or not. The first step is to compute the moments but in the "energy" variable |v|. Let us define

HOP5(Jogl) = 3" 010075 (D1n £) 16 3 oy |7%,
J

where the indexes a, 8 and ¢ are now in {0,1,2,3}, (vj, is the a-th component of v; if a € {1,2,3}, else
vj,o = 1), and the dependance on |v;| comes from ¢ which is 0 or 1 (0 for |v;| < |v;| and 1 else).

Note that the number of values of the form |v;| is much smaller than the cardinal of discretization points.
For example, if one uses a centrered uniform grid v; o = (iq + 0.5)Av where i, € {—N, N — 1}, the number of
points is Ny = 8 N3 whereas the number of value of |v;] is less than 3(2N + 1)%.

In fact, due to symmetry, there are a multiple of eight velocities for each possible value. In pratice the number
of values N, which are used is close to 3(2N + 1)?/10. Then, the cost of this step is N; operations but the cost
in storage is No. Due to symmetry properties and the structure of the matrix ® the only quantities that are
needed for computing (12) are

(o, 8,6) € {0,1,2,3}3 such that a < 3, afd ¢ {1,8,27,6}

The cardinal of this set is 34.
The second phase is an accumulation phase :

o83 (i) = £ (jod” BP0 o) + B0 (o))

This evaluation costs only Ny operations.
The third part is the attribution part, for example for the term A!
column, that is

2.2 correponding to first row, second

AL22(y Zmax [vil, [v;])7 (Vs = vi)1 (vi —vj)2 fi fj (Dn f); = (D1n f);)2
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we expand the product of the relative velocity and we obtain

A1,2,2(vi) — (Ui,l V.2 FO,O,O — v F2’0’0 — Vo FI,0,0 + F2,1,0) (D 1nf)i,2

+ (051 03 FOO2 — gy F202 _ gy, LO2 | p212)
The cost of this last part is N1, and we can compute the approximation p; 1 (t) defined by (9):
pi,l(t) — A2’2’1(’UZ') + A3’3’1(’Ui) _ A1,2,2(,Ui) _ A1’3’3(’Uz')

In conclusion, we prove that the evaluation of double integral of the form (13) has a linear complexity despite
of its quadratic structure. The second advantage when using this approximation is that the number of points
is no more of the form 2*. This is also very important for the flexibility of the method.

3. NUMERICAL TESTS IN THE HOMOGENEOUS CASE:

We now present numerical tests to compare the algorithms in different cases:

o the Maxwellian case (v = 0) for which explicit solutions are known [4, 13].

o the Coulombian isotropic case (y=—3) introduced in [18] for which a one dimensional isotropic code [7] is
used to compute reference solutions.

e the Coulombian bi-maxwellian case: this last test is of primary importance in plasma physics and consists
of an initial bi-maxwellian distribution which is far to be isotropic. Therefore, only the two first methods
have been compared. We consider discretizations for which the total CPU time is the same.

In these tests, we will consider the time evolution of the following quantities:
e Discrete kinetic entropy:
H(t) =) Av® fi(t) In(fi(t)).
i€73
e Discrete moment of order 4:
My(t) = Z AV® |vi]* fil(t).
1€Z3
e Discrete temperatures:

3
1
for k=1,2,3, Ti(t) = Y A0®(i* Av —uf)’fi(t), and T(t) = 3 AGE
i€Z3 k=1

where ug = (uf, ud, u3) is an approximation of the impulsion 4 [45v f(t,v)dv, and A an approximation
of the total mass.

e Quadratic error: for the Maxwellian case we are able to compute an explicit solution, we denote by feé*ect
the solution of the Fokker-Planck-Landau equation, and define the discrete L? norm error by,

1/2

(3 A3 | femact(vg, t) — fi(t)]?)

EQ(t) = 172
“ (3 Av3| fevact (v, £)[2)"/

We will consider three test cases, namely
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Number of unknowns

spectral method

multigrid method

pseudo-isotropic method

16 x 16 x 16
32 x 32 x 32

0.4 sec
10 sec

0.08 sec
1.8 sec

0.03 sec
0.37 sec

TABLE 1. Computation time for spectral, multigrid and pseudo-isotropic methods with respect

to the number of unknowns for one evaluation of the FPL operator (TEST 1).

Number of unknowns

spectral method

multigrid method

pseudo-isotropic method

16 x 16 x 16
32 x32x 32

2 min 40 sec
07 h 40 min

10 sec
3 min 21 sec

03 sec
1 min 50 sec

169

TABLE 2. Total computation time for spectral, multigrid and pseudo-isotropic methods with
respect to the number of unknowns (TEST 1).

3.1. The Maxwellian case (y = 0)

The initial data is chosen on the class of known exact isotropic solutions which is an extension of Bobylev
solutions [4]: we set S = 0.6 and consider

_ 1 1-8 |v]?
fO(U) - (27’(’5)3/2 S 29 exp(

|o]®

25')'

Numerical results are compared with the explicit solution

Ftv) = 1 (55’—3

1-S |v]*
(27!’5)3/2 D exp(__)7

55 T 75 35 25

where S =1 — 0.4 exp(—t/6).

In this case the temperatures T1(t), T»(t), T5(t) are equal because of the isotropy of the solution. This test is
carried out to check the accuracy by comparing the quadratic error using the multigrid and the pseudo-isotropic
methods with 16% and 322 points and a time step At = 0.1 whereas the spectral method is used with 162 modes
with At = 0.1 and 32 modes with At = 0.016. A fourth order Runge-Kutta scheme for the time discretization
is used to keep the high accuracy of the method. It is also important to mention that the support of the initial
distribution function for the spectral method is much larger than one used for the multigrid scheme, indeed to
obtain stability and to avoid aliasing effect inherent to the method a sufficiently large support has to be used.
The simulation is stopped when stationary state is achieved i.e. variations of entropy are negligible. The Table
1 shows the computation time for the evaluation of the collision operator, the cost is highly reduced with the
pseudo-isotropic code. In Table 2, we give the total time of computation for different methods with respect to
the number of unknowns. The increase of the computation time for the spectral method with 322 modes is due
to the use of a fourth order time solver which needs four evaluations at each time step. Moreover, the stability
condition is of order O(xz), where N is the number of unknowns, and is very restrictive for this resolution. A
fourth order Adams-Balshforth scheme, which only needs one evaluation by iteration, has also been tested but
the restriction on the time step is too important to have a gain. On the other hand the sub-cycling algorithm
used for the multigrid method is very efficient for this test. The linear cost of the pseudo-isotropic scheme allows
to improve the CPU time even if the stability condition remains quadratic, i.e. At < C Av2.
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The evolution of the discrete error norm, the entropy and the fourth order moment are plotted (see Figures
1,2,3). In view of these results, the multigrid method and the pseudo-isotropic scheme seem to be first order
accurate, indeed even if the finite difference approximation of the gradient is second order, the use of the
Monte-Carlo algorithm for the multigrid method reduces the accuracy. On the opposite, the spectral method
is much more accurate with 322 modes and seems to be at least second order. Let us note that the evolution
of the discrete error norm induced by the spectral method using 16 modes is only four times larger than the
one induced by the multigrid method with 32 points in each direction. But the error obtained by the spectral
method does not converge to zero when ¢ goes to infinity, which means that the stationary state is not well
described. Moreover, the behavior of the entropy and the fourth order moment for the spectral method using

162 modes is not sufficiently accurate, while the evolution obtained by the multigrid method is smooth with
only 16 points per direction.

The quadratic error for the spectral method
0.1 T T T T

The quadratic error for the multigrid method

The quadratic error for the pseudo-isotropic method
0.1 1 T T T T
32 modes © 32 points ¢ 32 points  ©
16 modes + 16 points  + 16 points  +
0.01 F o, 1
MMW“ MM 001 ¢ 00t ¢ " h“**u
0.001 | - ] '
00001 | e . . "oooo‘,oooo‘
Sy 0.001 0.001 ¢
1e-05
1e-06 - - - - 0.0001 - - - - 0.0001
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

FIGURE 1. Ewolution of the relative quadratic error for (1) the spectral method, (2) the multigrid
method, (3) the pseudo-isotropic scheme using 16% and 32° unknowns (TEST 1).

The entropy for the spectral method

The entropy for the multigrid method The entropy for the pseudo-isotropic method
-4.18 -4.18 T T T T -4.18 T T T T
32 modes 32 points o 32 points —<—
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FIGURE 2. Ewvolution of the entropy for (1) the spectral method, (2) the multigrid method, (3)
the pseudo-isotropic scheme using 16% and 323 unknowns (TEST 1).

3.2. The Isotropic case (v = —3)

The initial data is now chosen to be isotropic:

O

S2 o2
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The fourth order moment for the spectral method The fourth order moment for the multigrid method The fourth order moment for the pseudo-isotropic method
16 - 32 modes —<— | 16 - 32 points —=— | 16 - 32 points —=— |
16 modes —+— 16 points —+— 16 points —+—

FIGURE 3. Ewolution of the fourth order moment for (1) the spectral method, (2) the multigrid
method, (3) the pseudo-isotropic scheme using 16° and 32 unknowns (TEST 1).

with S = 10, 0 = 0.3. This test is performed to compute the evolution of entropy and to compare it with results
obtained by the isotropic code, described in [7], which is used with a large number of points representing the
energy variable 2 = |v|?. The spectral method is only used with 16% modes whereas we take 323 points for the
multigrid and pseudo-isotropic methods.

In view of Figures 4 and 5, the evolution of the entropy induced by both methods is in good agreement with one
obtained by the isotropic code. Note that to avoid aliasing effect a large support of the initial data is needed
for the spectral method, then the description of the distribution function is less accurate than one obtained by
the multigrid method, but the stationary state is well described by both methods. The pseudo-isotropic code
also gives nice results in this case since the solution remains isotropic.

Evolution of the entropy for the spectral method Evolution of the entropy for the multigrid method Evolution of the entropy for the pseudo-isotropic method
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00206 | P eotopiccoas {00208 | T eronbcods 1 -0.0208 PP oot code 1
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-0.0212 —‘ -0.0212 —i -0.0212
-0.0214 —i 1 -0.0214 E 1 -0.0214
00216 | % 00216 | % -0.0216 |
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FIGURE 4. Entropy evolution for (1) the spectral method, (2) the multigrid method, (3) the
pseudo-isotropic scheme, compared with the one obtained by the 1d isotropic code (TEST 2).

3.3. The sum of two gaussians (y = —3)

The initial data is now chosen to be bimaxwellian, i.e. a sum of two Maxwellian functions:

Fo(0) = 5 (Man 2(0) + Munr @)

with v = (2,3,3), v2 = (4,3,3), and vy = (3, 3,3) is the center of the domain. The final time of the simulation
is T' = 20 for which the equilibrium state is reached. The thermal velocity is equal to vy, = 0.45, and the total
mass is N' = 5. This test is used to compute the relaxation of the entropy, the temperature and the distribution
function.
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Distribution function evolution for the spectral method Distribution function evolution for the multigrid method Distribution function for the pseudo-isotropic method
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FIGURE 5. Evolution of the distribution function for (1) the spectral method, (2) the multigrid
method, (3) the pseudo-isotropic scheme (TEST 2).

Number of unknowns

spectral method

multigrid method

8x8x8
16 x 16 x 16
32 x 32 x 32

0.03 sec
0.40 sec
9.00 sec

0.08 sec
1.88 sec

TABLE 3. Computation time for the spectral and the multigrid method with respect to the num-
ber of unknowns for one evaluation of the FPL operator (TEST 3).

We first present (see Table 3) the computation time for one iteration with an Euler scheme in order to compare
the time required for one evaluation of the collision operator by spectral and multigrid methods. The increase
of the computational cost of methods is in good agreement with the theoretical prediction in N log N, where
N is the number of unkowns. But, the computation time required for the evaluation of the operator with the
multigrid method is highly reduced compared to the spectral one.

The CPU time for the complete simulation is listed on Table 4, for this test we use 8 and 16% modes for the
spectral method, and 162, 322 grid points for the multigrid scheme. The computation time is very close when the
multigrid algorithm is used with 32% points and the spectral one with only 162 modes. In the following figures,
we present the evolution of physical quantities obtained by both methods. To keep the high order accuracy of
the spectral method, a fourth order Runge-Kutta scheme is required, thus a few number of modes is sufficient
to obtain satisfying results: the relaxation of the temperature (Figure 6) obtained by the multigrid method
using 322 points is in good agreement with one obtained by the spectral algorithm using only 16% modes, even
if the equlibrium state of the temperature is more accurate with the multigrid method. Moreover, in view of
results given in Figure 7, the entropy obtained by the spectral algorithm (which is not an entropic scheme) is
decreasing and as accurate as one obtained by the multigrid method. The evolution of the fourth order moment
generated by the spectral method is still increasing, but the stationary state is well described by both methods
(see Figure 8).

4. THE NON HOMOGENEOUS CASE

The goal of this section is to give an efficient algorithm to solve the non homogeneous equation:

of _
5 Vel = QL) (14)
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spectral method | CPU time multigrid method | CPU time
8x8x8 3 min 57 sec 16 x 16 x 16 1 min 52 sec
16 x 16 x 16 | 33 min 04 sec 32 x 32 x 32 36 min 53 sec

TABLE 4. Total computation time for the spectral (resp. multigrid) method with respect to the
number of modes (resp. points) (TEST 3).

Temperature evolution with 16 modes Temperature evolution with 32 points

1.4 1.4
Tx(t) — Tx(t) —

1.2 Ty(t) and Tz(t) -~ 4 1.2 Ty(t) and Tz(t) - 4

1 1 rF
0.8 0.8
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(0] 2 4 6 8 10 12 14 16 18 20 (o] 2 4 6 8 10 12 14 16 18 20

FIGURE 6. Temperature evolution for the spectral (left) and the multigrid (right) methods

(TEST 3).
Entropy evolution for spectral and multigrid methods Fourth order moment for spectral and multigrid methods
multigrid method — multigrid method ——
i spectral method -+ 24 | spectral method —— |
-5 3 4

0 5 10 15 20 0 5 10 15 20

FIGURE 7. Entropy (left) and fourth order moment (right) evolution for the spectral method
using 16% modes and for the multigrid method with 32° points (TEST 3).

We use the classical time splitting scheme: assume f™(z,v) is an approximation of f at time ¢", we first discretize
the free transport problem,

g+U.me=0, for t € [0, At],

[0, 2,0) = fi(z,v),
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Distribution function evolution for the spectral method Distribution function evolution for the multigrid method
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FIGURE 8. Ewvolution of the distribution function for the spectral (left) and the multigrid (right)
methods (TEST 3).

and, the collision part using a fast algorithm,

of 1 =
a - EQ(faf)a for ¢ € [OaAt]; (]_6)

f((]) ‘CU, /U) = f(At7 -CE, U)'

where k is the Knudsen number linked to the collision frequency. From the numerical tests presented in the
previous section, the multigrid method seems to be more suitable for computations in the non homogeneous case.
Indeed, the computational cost is highly reduced compared to the spectral method for the three dimensional
problem, even if it is only first order accurate. Moreover, the sub-cycling algorithm for the time discretization
allows to use large time step, then it is possible to treat problems with small Knudsen numbers.

4.1. Discretization of the transport equation

In this section, we present a numerical scheme based on a Lagrange-Galerkin method to deal with the
transport equation (15). For simplicity, we will restrict ourselves to a one dimensional problem, but the algorithm
can be easily extended to higher dimensions. Let (%iin,Zmaz) be the computational domain, we denote by
n, the number of cells of the mesh, the space step Az = (Lmaz — Tmin)/Na, @i is the center of the cell
Ci = (Ti—1/2, Tiy1/2), With @410 = 2; + B2,

We now assume f}'(.,v) is a piecewise constant function approximating the average of the distribution function
f({™,.,v) on each cell C;, i € {0,..,n, — 1},

frao) =)~ [ fe a0

i—1/2

The numerical scheme proposed can be split in three steps: the reconstruction, the resolution and the cell-
averaging step.

Let us assume that v is fixed and positive (here, the variable v acts as a parameter, and will be omitted in the
reconstruction part). The use of the method of reconstruction via primitive function allows to obtain a high
order approximation of the distribution function. For example, we set F™ be a primitive of the distribution
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function f}}, then we have for all i, F™(x;11/2) — F™(x;_1/2) = Azf]*, an

K3

F™"(@iy1/2) AﬂUka =wj
On the cell Cj, we first compute the polynom of degree three interpolating the primitive F™ at points {x;_1/2, Zit1/2, Tit3/2}-
By differentiation, we obtain a first approximation

~ drm i .
fuw = U = e C B g e Afp = g - g

Finally, we introduce slope correctors to ensure the positivity of the numerical reconstruction:

fuw) = g+ E e gy,

where

mln(l 2Affn) ifAfF>0

€; =

min (1 —Zf‘sz'n) if Affr <0
where fo, = max;—qo,...n,}{f'}. The parameter €; allows to preserve the positivity and to eliminate spurious
oscillations. A classical slope limiter (minmod, superbee) also allows to preserve positivity but introduces
dissipation giving a strong decay of the entropy, which is theoretically conserved by the transport step.

Now, the resolution step consists in approximating the characteristic curves corresponding to the transport
equation. In this case, the solution can be explicitly computed since the characteristic curves become straight
lines

™ z) = fr(t™, 2 — vAt).
This method allows to avoid a CFL condition which can be very restrictive since the velocity support is large.
Finally, the average on the cell C; at time t"*! is computed

fn+1 1 / itz f (tn At)d
h , L —v Z.
’ Am Ti—1/2

This leads to the following scheme

1
+1 _
= - A_x( i1/ — Pij1/2)-
with

Ti—j41/2

7 —_

i—j+1/2 —/ fn(z)dz,

Tioj1/2—
v At

j= [ A ], where [.] represents the integer part and a@ = v At — j Az, then we obtain

Pijrrjp =0 [ iy +5- A_a:) eafisj|-
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This numerical scheme preserves the positivity, indeed the use of slope correctors ensure the positivity of the
reconstructed approximation, and the resolution and cell-averaging steps are obviously positive. Moreover, the

approximation satisfies:
1

1
PN ASOI I EDIHO

i v 2

v

4.2. Numerical tests:

4.2.1. The bi-mazwellian test case:

We first consider an initial data which is bi-maxwellian with a strong modulation of the density

1
fo(@,0) = 5 (Mw0r, 7 (0) + M 7(0) ) (1+0.5 cos(hoa) ).
with kg = 0.3. For simplicity we consider periodic boundary conditions in z
f(t,0,0) = f(t,L,v), V(t,v) € Rt x R3.

Under this condition, mass, impulsion and energy are conserved and the stationary state is given by the
Maxwellian obtained from the total mass, velocity and total temperature of the initial data. This test is
achieved to check the evolution of temperature and entropy in the non homogeneous case (see Figure 9). Total
temperature is well conserved, and entropy is first exponentially decreasing and is finally stabilized to the value
of the entropy of the Maxwellian at the stationary state. In Figure 10, the evolution of the distribution function
in the phase space (z,v,) obtained by integrating in (vy,v.) is plotted: the transport equation with periodic
boundary conditions induces oscillations in the velocity space, but after some iterations, the collision operator
acts as a diffusion equation which kills oscillations and leads to the the stationary state.

Evolution of the temperature for test 1 Evolution of the entropy for test 1
1.3 ‘ 5.7 ‘ — ‘ ‘
Tx(t) Numerical entropy ~ +
12 ¢ Ty(t) and Tz(t) - 4 5871 Stationary state - ]
Total temperature ~ x :
1.1+ , N
5.9 1
1 +
09 6. |
0.8 61 |
+
07 6.2 - . ,
0.6 00O OO R 63 ' |
05 f T 1 .
i e ta
o 6.4 e, B
0.4 e , e,
**M 65k ++++++++++++++++++++++++++t
0.3 +* | .
0.2 L L L L L L L L -6.6 L L L L L L L L
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

FIGURE 9. Ewolution of the temperature (left) and the entropy (right) for the non homogeneous
case (TEST 1).

4.2.2. The shock tube: from free transport to hydrodynamics models.

In this example, we are interested in gas dynamic problems, then the evolution of macroscopic quantities is
observed: p(t,x) represents the gas density, u(t, z) is the gas velocity, and T'(¢, z) is the total temperature of the
gas. These macroscopic quantities are obtained by computing moments of the distribution function f(t,z,v)
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FIGURE 10. Ewolution in time of the distribution function for the non homogeneous case in the
(z,vz) space (TEST 1).
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with respect to the variable v.
Then, we discretize the non homogeneous equation:

of af 1

R P
where k is the Knudsen number, which determines the frequency of collisions. We present simulations for
different Knudsen numbers and compare macroscopic values (p,u,T’) obtained by the numerical scheme with
the approximated solution of the free transport (without collision) and with the numerical solution of Euler
equations which are hydrodynamic limit of the Boltzmann equation in gas dynamics:

((dp O _
5 + %(UP) =0,

0 0 .
{ — — 2 =
at(p“)+ax(p“ +p) =0,

d d
| 5P+ 5 (Petp)u=0.

with an equation of state to close the system, here we will consider an ideal gas.
Let us consider the initial conditions from Sod’s shock tube problem

(p1;w, Ty) = (1,0,1) if0<z<0.5,
(pr,ur, Tp) = (0.125,0,0.25) if0.5< 2 <1,
>From this quantities, we compute the initial data given by a
fo(z,v) = My, w1 if0<z<0.5,
fo(z,v) =M, w1 f05<2<]1,

The solution starts with a hot high density gas in the region 0 < z < 0.5, and a cold low density gas in the
region 0.5 < z < 1. The gas is initially at rest. At ¢ = 0 the diaphragm separating two regions is removed,
causing a shock wave to propagate into the low density medium and a rarefaction wave into the high density
medium.

We observe that when the Knudsen k¥ number goes to zero, the macroscopic values (p,u,T) are close to the
solution of Euler equations. Moreover, the distribution function solution of the free transport equation (k = +00)
develops large gradients in velocity, whereas a smoother profile in v is obtained when the Knudsen number &
goes to zero (see Figure 11).

5. CONCLUSION

In this paper, we have reviewed and compared the spectral and multigrid methods and have presented a new
method to approximate the FPL operator in the pseudo-isotropic case. This last method drastically reduces
the computational cost, but cannot be applied when the distribution function is too far from the isotropy.

The spectral method only conserves mass, but gives an approximation of momentum and energy with the
spectral accuracy provided that the support is large enough. A compromise has to be found on the size of the
support to obtain a good accuracy and to avoid aliasing effect. Numerical tests show that the variations of
moments are negligible, but the computational cost is still too important to use a sufficiently large number of



COMPARISON OF NUMERICAL SCHEMES FOR FOKKER-PLANCK-LANDAU EQUATION.

Distribution function for the free transport
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FIGURE 11. Ewolution of the distribution function at x = 1/2 for (1) the free transport, for (2)

the FPL equation with k=102 and (8) k=10"* (right) (TEST 2).
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FIGURE 12. Density for the free transport equation, the FPL operator with k=10"* and the
Euler system at time t = 0.10 (TEST 2).
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modes or to treat the non-homogeneous equation in three dimensional velocity space. Moreover, the stability
condition on the time step is of order O( 4z ), where N is the number of unknowns in v. Let us note that a third
order DUMKA scheme [11] has been used for the two dimensional computation of the FPL operator and allows
us to reduce the cost of the method. Then, in this case the non homogeneous equation can be also treated [10].
Finally, the high order accuracy of the spectral method is particulary useful for short time simulation.
Concerning the multigrid method coupled with the finite difference scheme preserving moments, it gives
satisfying results with a few number of points and with a reasonable cost. Indeed, the sub-cycling algorithm,
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Comparison of the temperature at t=0.10
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FIGURE 13. Temperature for the free transport equation, the FPL operator with k=10"* and
the Euler system at time t = 0.10 (TEST 2).
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FIGURE 14. Mean velocity for the free transport equation, the FPL operator with k=10"* and
the Euler system at time t = 0.10 (TEST 2).
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avoiding a global stability condition on the time step, allows to highly reduce the computational cost. Moreover,
the conservation of moments and the preservation of positivity seem to be necessary for long time simulation.
The monte-Carlo formula considerably reduces the accuracy of the method, but it is sufficient to treat the full
problem in the non homogeneous case. Finally, let us remark that for the shock tube test, the solution remains
isotropic near the boundary, then in this case the pseudo-isotropic scheme could be used to reduce the cost of
the method.

The discretization in time with pseudo-isotropic method needs to be optimized : note that the subcycling
strategy used for multigrid method (see [5, 6]) is not easy to adapt. Let us point out that this method is optimal
for the CPU time point of view : its cost is linear and the number of points is not restricted to some power of 2.
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