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About the strong propagation of chaos for interacting

particle approximations of Feynman-Kac formulae

P. Del Moral L. Miclo

UMR C5583, CNRS and Université Toulouse III

Abstract

Recently we have introduced Moran type interacting particle systems in order to solve

numerically normalized continuous time Feynman-Kac formulae. These schemes can also

be seen as approximating procedures for certain simple generalized spatially homogeneous

Boltzmann equations, so strong propagation of chaos is known to hold for them. We will

give a new proof of this result by studying the evolution of tensorized empirical measures

and then applying two straightforward coupling arguments. The only difficulty is in the first

step to find nice martingales, and this will be done via the introduction of another family of

Moran semigroups. This work also procures us the opportuneness to present an appropriate

abstract setting, in particular without any topological assumption on the state space, and

to apply a genealogical algorithm for the smoothing problem in nonlinear filtering context.

Keywords: Feynman-Kac formulae, canonical progressive processes, perturbations of general
Markov processes by jump bounded generators, interacting particle systems, weak and strong
propagation of chaos, tensorized empirical measures, Moran semigroups and martingales, cou-
pling, genealogical processes and smoothing problems in nonlinear filtering.

AMS codes: 60F17, 60K35, 60J25, 65C05, 65D30, 60J75, 60G44, 60F05 and 60G35.

1



1 Introduction

The purpose of this article is to present a new proof of the strong propagation of chaos for the
Moran interacting particle systems approximating continuous time and general space Feynman-
Kac formulae.

Without going into the full details of our (over extended) setting, which will be given in
next section, let us recall the latter problem (our original motivation comes from the design of
Monte-Carlo methods to solve numerically nonlinear filtering equations, see for instance the short
explanation given at the beginning of section 5, but one could find extra applications in other
fields, cf the discussion included in [6]): on a measurable state space (E, E), we are provided with
a progressive time inhomogeneous Markovian process (Xt)t≥0 and with a bounded measurable
function U : R+ × E → R+, and we want to estimate the normalized Feynman-Kac formulae

ηt(ϕ)
def.
=

E

[
ϕ(Xt) exp

(∫ t

0
Us(Xs) ds

)]

E

[
exp

(∫ t

0
Us(Xs) ds

)] (1)

for any t ≥ 0 and any bounded measurable function ϕ : E → R (from now on, E will designate
the expectation relative to any underlying probability P).

To deal with this question, we proposed in [5] a scheme of interacting particle systems: for
all N ≥ 1 (which stands for the number of particles), we construct a Markovian process ξ(N) =

(ξ
(N)
t )t≥0 = ((ξ

(N,1)
t , ξ

(N,2)
t , · · · , ξ(N,N)

t ))t≥0 taking values in EN (see the section 2.4 below), such
that in the limit of a large number of particles, for t ≥ 0 given, the empirical measure

η
(N)
t

def.
=

1

N

∑

1≤i≤N

δ
ξ
(N,i)
t

(2)

is quite close to the probability ηt defined by the equations (1).

In the basic principle of its mechanism, the process ξ(N) looks like a Moran particle system
(for a general description of this kind of genetic algorithms, see [3]), but the renormalization with
respect to N that we have chosen for its selection part make it closer to a Nanbu interacting
system (cf for instance [10]) associated to a simple generalized spatially homogeneous Boltzmann
equation.

A standard problem in the related literature is the strong propagation of chaos, ie we are
wondering if the law of a fixed particle, say (ξ

(N,1)
t )t≥0, converge in the total variation sense on

any compact time interval toward the law of some natural time inhomogeneous Markovian process
X̄ = (X̄t)t≥0. The latter is often called the nonlinear process (or sometimes the tarjet process)
associated to the underlying generalized spatially homogeneous Boltzmann equation, because its
evolution at any given time also depends on the marginal law of the process at this instant.

This result could in fact be obtained via an application of the interacting graph approach de-
veloped in the works of Graham and Méléard ([12], [10]), one has just to make some arrangements
to deal with the fact that our general definition of the process X (which in particular has to be
time inhomogeneous for the applications we have in mind) and our unusual assumptions on its
state space (where even no topological structure is assumed) are not exactly the same, but these
appear as perhaps not really essential difficulties. Anyway, the next section describing precisely
our set-up, the basic manipulations it allows and the precautions which have to be taken, is not
completely useless in this respect, since it would have to be considered if one want to extend their
state space (which was assumed to be R

n, n ∈ N
∗). One motivation for this generalization (apart
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from its theoretical consistency) is that it enables one to treat path spaces as state spaces, and
this has some practical applications.

Nevertheless, we prefer to introduce an other method, maybe more immediate (e.g. without
any reference to Botzmann trees . . . ), because we will take into account that our models are
simpler, since we are not in the need of considering the broader setting of [10]. More precisely, in
our case, we have a nice a priori explicit expression (1) for the (deterministic) limiting objects,
making them appear as ratios of linear terms with respect to η0, which is hidden in E as the
initial distribution. This structure is more tractable than the information one would get by
merely looking at the nonlinear equation of evolution satisfied by the family (ηt)t≥0 (in particular
the problem of unicity for its solution(s) has not to be taken in account). So we can make use
of some associated nonnegative Feynman-Kac semigroups to obtain without much difficulty the
weak propagation of chaos for tensorized empirical measures (it corresponds to the convergence
of the moments of the empirical measures, following the terminology of [3], except that we will
have here to consider the empirical measures at different times). This will be done in section 3,
following the spirit already prevailing in [5] and [6], for the usual (ie nontensorized) empirical
measures.

Then two quite straightforward coupling arguments (respectively presented in subsections 4.1
and 4.2) enable us to conclude to the expected result. It should be noticed that the upper bounds
we obtain for this convergence, are of the same order in the numbers of particles as those got by
Graham and Méléard [10].

In the last and short section, we explain an application of our considerations to the genealogical
process associated to the particle system which is related to the practical issue of smoothing in
nonlinear filtering.

Finally we think that the study of the tensorized empirical measures is interesting in itself
and could be developed further (by obtaining for instance related central limit theorems), it
furthermore illustrate the flexibility of the semigroup approach and make clear some links with
the general theory of measure valued process (cf. [3]).

2 The setting

As indicated before, we have try in this paper to work under very minimalist assumptions. This
kind of considerations about an adequate axiomatization of a Markov processes theory (as close
as possible to the general measurable Markov chains theory) may appear like an idle game, but
we played it anyway, in order to fix a robust framework and to see which unnecessary structures
(mainly the topological ones) can be removed from our previous works. To fulfill this side goal,
our approach will have to differ in some aspects from the one presented in [6], but it will be
adapted to the proof of the strong propagation of chaos, which in the end will (almost) always be
satisfied. Along, we will show that even the weak condition considered in [6] was in fact useless to
get the weak propagation of chaos. The principal difference is that the Markovian process X will
be very general, and in particular we will make no explicit reference to the “carrés du champ”.

At the present stage, we are still wondering if this set-up is sufficient to obtain the central
limit theorem shown in [6], but this question will not be investigated here.

2.1 Hypotheses on the model

We begin by presenting the rigorous definition of the objects entering into the composition of the
rhs of (1):
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• The abstract state space E is merely endowed with a measurable structure, and E will
denote its σ-algebra. We will also designate by Bb(E) and P(E) respectively the set of all bounded
measurable functions (equiped with the supremum norm ‖ · ‖) and the set of all probabilities on
E.

• The measurable mapping

U : R+ × E 3 (t, x) 7→ Ut(x) ∈ R+

will only be supposed to be locally bounded in time, in the sense that for all T ≥ 0, its restriction
to [0, T ] × E is bounded. We will then denote

uT
def.
= sup

0≤t≤T, x∈E
Ut(x) < +∞

• The measurable process X appearing in (1) will be defined as a canonical coordinate
process, under an appropriate “inhomogeneous” family of probabilities, ensuring that it satisfies
the Markov property. So the first problem to be tackled is the definition of the space of “canonical
trajectories”:

A priori one would just consider M(R+, E) the set of all measurable paths from R+ to E, but
as we will try to explain it later, this space is too large to be handled efficiently. Nevertheless
X = (Xt)t≥0 will designate the related process of canonical coordinates or its restriction to any
of the subset of M(R+, E). Thus we make the assumption that we are given a nonempty set
M(R+, E) ⊂ M(R+, E) satisfying the condition (so in particular we also have E 6= ∅):
(H1) Consists of the next two points:

• If we are given a sequence (ωi)i≥0 of elements of M(R+, E) and a strictly increasing sequence
(ti)i≥0 of nonnegative real numbers, satisfying t0 = 0 and limi→∞ ti = +∞, then the element
ω ∈ M(R+, E) defined by

∀ i ≥ 0, ∀ ti ≤ s < ti+1, Xs(ω) = Xs(ωi)

belongs to M(R+, E).

• Let M(R+, E) be the σ-field generated by the coordinates (Xt)t≥0 on M(R+, E). Then the
mapping

R+ × M(R+, E) 3 (t, ω) 7→ Xt(ω) ∈ E

is R+ ⊗M(R+, E)-measurable, where R+ denotes the usual Borelian σ-field on R+ (quite
similarly, for any Borelian set I ⊂ R+, RI will stand for the trace of R+ on I).

We will discuss about this condition (H1) in the remarks at the end of this section, but in the
whole subsequent development, we will assume that a particular element � ∈ M(R+, E) has been
chosen (it will often play the role of a cemetery point).

For t ≥ 0, let M([t,+∞[, E) ⊂ M([t,+∞[, E) be the image of M(R+, E) under the mapping
(Xs)s≥t; it is the set of all “admissible” paths after time t. We endow it naturally with the σ-field
M([t,+∞[, E) generated by the variables {Xs : s ≥ t}. As usually, we will also have to consider
on M([t,+∞[, E) the filtration (M([t, s], E))s≥t, where for any interval I of R+, M(I, E) will
designate σ(Xu ; u ∈ I).

Note that for 0 ≤ t ≤ s, the mapping

[t, s] × M([t,+∞[, E) 3 (u, ω) 7→ Xu(ω) ∈ E
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is R[t,s] ⊗M([t, s], E)-measurable.

Our main object is a given family (Pt,x)t≥0, x∈E of probabilities respectively defined on
(M([t,+∞[, E),M([t,+∞[, E)) and satisfying:

- An initial condition parametrization property: for all t ≥ 0 and x ∈ E, we have Xt◦Pt,x = δx,
the Dirac mass at x.

- A regularity property: for all t ≥ 0 and A ∈ M([t,+∞[, E), the mapping

E 3 x 7→ Pt,x[A]

is E-measurable.
- A Markovian compatibility property: for all 0 ≤ t ≤ s, all x ∈ E and all A ∈ M(]s,+∞[, E),

we have Pt,x-a.s. the following equality for the conditional expectation:

Pt,x[A|M([t, s], E)] = Ps,Xs
[A]

Taking into account the initial condition parametrization, it appears that this equality is in
fact true for all A ∈ M([s,+∞[, E), but reciprocally, note that this “extended” assumption does
not imply the initial condition parametrization property.

From now on, such a family will be called Markovian.

Thus for all fixed (t, x) ∈ R+×E, the process (Xs)s≥t is Markovian under Pt,x. More generally,
using the measurability assumption above, for any distribution η0 ∈ P(E), we can define a
probability Pη0 on (M([0,+∞[, E),M([0,+∞[, E)), by stating that

∀ A ∈ M([0,+∞[, E), Pη0 [A] =

∫

E

P0,x[A] η0(dx)

(Eη0 will stand for the expectation relative to Pη0 , the probability η0 ∈ P(E) being fixed, and
in (1) we should now replace E by Eη0). Then X = (Xs)s≥0 is also easily seen to be Markovian
under Pη0 , and the distribution of X0 is η0.

As t ≥ 0 varies, the probabilities Pt,x, for x ∈ E, are defined on different measurable spaces,
and this fact can be annoying for the formulation of some properties. So for any fixed t ≥ 0, we
introduce the injection

It : M([t,+∞[, E) → M(R+, E)

defined by

∀ s ≥ 0, ∀ ω ∈ M([t,+∞[, E), Xs(It(ω)) =

{
Xs(ω0) , for s < t
Xs(ω) , for s ≥ t

This mapping is clearly measurable, so it enables us to see Pt,x as a probability on (M(R+, E),
M(R+, E)), for all x ∈ E, and we will keep abusing of the same notation (ie “Pt,x = IT ◦ Pt,x”).
Then our second and principal hypothesis just says that the Markovian family has some “time
regularity”:

(H2) For all A ∈ M(R+, E), the mapping

R+ × E 3 (t, x) 7→ Pt,x[A]

is R+ ⊗ E-measurable.
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As a consequence of the monotonous class theorem, it appears that for all bounded measurable
functions f : R+ × E × M(R+, E), the mapping

R+ × E 3 (t, x) 7→
∫
f(t, x, ω) Pt,x(dω)

is measurable.

Let us now introduce some functions which will be very interesting in the subsequent devel-
opement:

For all fixed T ≥ 0, V ∈ Bb([0, T ] × E) and ϕ ∈ Bb(E), we define the mapping

FT,V,ϕ : [0, T ] × E 3 (t, x) 7→ Et,x

[
exp

(∫ T

t

Vs(Xs) ds

)
ϕ(XT )

]
(3)

The consideration of the assumptions (H1) and (H2) and the measurability part of the Fubini
theorem enable us to see that FT,V,ϕ is indeed R[0,T ] ⊗ E-measurable.

But this mapping has some more interesting properties, and to present them, let us associate
to the family (Pt,x)t≥0, x∈E the following general time-space martingale problems: for every fixed
T ≥ 0, we denote by AT the vector space of functions f ∈ Bb([0, T ] × E) for which there exists
another function LT (f) ∈ Bb([0, T ] × E) such that for every fixed (t, x) ∈ [0, T ] × E, the process
(Mt,s(f))t≤s≤T defined by

∀ t ≤ s ≤ T, Mt,s(f) = f(s,Xs) − f(t, Xt) −
∫ s

t

LT (f)(u,Xu) du (4)

( = M0,s(f) −M0,t(f) )

is a (M([t, s], E))t≤s≤T -martingale under Pt,x.
In this article the martingales will not be implicitly supposed to be càdlàg (a.s.), because

this is not relevent to our setting. More accurately, noncàdlàg martingales appear naturally in
our calculations, even if we had made more restrictive assumptions (cf. [6]), and in fact these
occurences contributed to our choice of an extended set-up. But when we will need elementary
stochastic calculus, we will have to consider a càdlàg version of the martingales at hand, and each
time we have carefully verified that one can carry out the classical modification via an extension
of the filtration (eg see [8], note also that all our martingales will be bounded). An example of
the kind of the manipulations we have to resort to will be developed in the proof of lemma 2.1
below.

Remark that maybe LT (f) is not uniquely determined by f ∈ AT (but again we will keep abus-
ing of these notations), nevertheless this is not really important, since for martingale problems,
one can consider multivalued operators, cf [9].

Here is the only preliminary result we will need, and which is somewhat well known in the
theory of Feynman-Kac formulae:

Lemma 2.1 For all fixed T > 0, V ∈ Bb([0, T ]×E) and ϕ ∈ Bb(E), the mapping FT,V,ϕ belongs
to AT , and we can (and will) take

∀ 0 ≤ t ≤ T, ∀ x ∈ E, LT (FT,V,ϕ)(t, x) = −Vt(x)FT,V,ϕ(t, x)

Proof:

We have already seen above that FT,V,ϕ ∈ Bb([0, T ] × E). Now let us denote for any fixed
T > 0, V ∈ Bb([0, T ] × E) and ϕ ∈ Bb(E),

∀ 0 ≤ t ≤ T, Nt = FT,V,ϕ(t, Xt)
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we will show that (Nt−N0 +
∫ t

0
Vs(Xs)Ns ds)0≤t≤T is a (a priori not necessarily càdlàg) martingale

under Pη0 , for any given η0 ∈ P(E). The more general requirement (for all initial conditions
(t, x) ∈ [0, T ] × E . . . ) is proved in the same way, and the announced results follow.

The Markov property of X implies that the process (Mt)0≤t≤T defined by

∀ 0 ≤ t ≤ T, Mt = exp

(∫ t

0

Vs(Xs) ds

)
Nt

= Eη0

[
exp

(∫ T

0

Vs(Xs) ds

)
ϕ(XT )

∣∣∣∣M([0, t], E)

]

is a martingale. As we have no information about its time regularity (except the measurability),
we will go into all the details of the calculations, which otherwise would be immediate (just remove
the subscripts + from (5)).

Let N be the set of all Pη0-negligeable subsets, we denote for t ≥ 0,

M+
t = N ∨

⋂

s>t

M([0, s], E)

M+
t = lim sup

s∈Q∩]t,+∞[, s→t

Ms

then it is well known (see for instance [8]) that (M+
t )t≥0 is a (M+

t )t≥0 càdlàg martingale such
that for all t ≥ 0,

Mt = Eη0 [M
+
t |M([0, t], E)]

With some obvious notations, we have

N+
t = exp

(
−
∫ t

0

Vs(Xs) ds

)
M+

t

= N0 +

∫ t

0

exp

(
−
∫ s

0

Vu(Xu) du

)
dM+

s −
∫ t

0

Vs(Xs)N
+
s ds (5)

So let s ≥ 0 and A ∈ M([0, s], E) be given, from the previous equality we get that

E

[(
N+

t −N+
s +

∫ t

s

Vu(Xu)N
+
u du

)
1IA

]
= 0

nevertheless what we do want to show is

E

[(
Nt −Ns +

∫ t

s

Vu(Xu)Nu du

)
1IA

]
= 0

But it is quite clear that

E[N+
t 1IA] = E[Nt1IA]

E[N+
s 1IA] = E[Ns1IA]

and furthermore, using the fact that the mapping

[s, t] × M(R+, E) 3 (u, ω) 7→ Vu(Xu(ω))Nu(ω)
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is measurable and the Fubini’s theorem, we obtain that

E

[(∫ t

s

Vu(Xu)N
+
u du

)
1IA

]
=

∫ t

s

E
[
Vu(Xu)N

+
u 1IA

]
du

=

∫ t

s

E [Vu(Xu)Nu1IA] du

= E

[(∫ t

s

Vu(Xu)Nu du

)
1IA

]

from which our above assertion follows.

Remarks 2.2:

a) As here we will mainly work with a finite horizon T ≥ 0, ie we will only consider the
restriction of the Markovian family to the path space M([0, T ], E), we could have replaced the
first point of (H1) by the simplest following one:

• If ω0 and ω1 are elements of M(R+, E) and t > 0 is given, then the element ω ∈ M(R+, E)
defined by

∀ s ≥ 0, Xs(ω) =

{
Xs(ω0), if s < t
Xs(ω1), if s ≥ t

belongs to M(R+, E).
Then by induction, the first point of (H1) is true, but for finite sequences of times, and that

is the only thing we need on a bounded interval [0, T ].

b) The hypothesis (H1) can be seen as an ersatz for the lack of regularity of the trajectories,
and from this point of view, its important condition is the second point, which corresponds to
the traditional notion of progressive process. In fact, as soon as E is not a trivial σ-algebra,
M(R+, E) does not satisfy (H1): just note that for any given A ∈ σ(Xt ; t ≥ 0), there exist a
sequence (ti)i≥0 of nonnegative real numbers and a measurable set A′ ∈ E⊗N such that

A = {ω ∈ M(R+, E) : (Xti(ω))i≥0 ∈ A′}

But let ϕ ∈ Bb(E) taking at least the two values 0 and 1. Then the previous caracterization
shows that the set

{ω ∈ M(R+, E) :

∫ 1

0

ϕ(Xu(ω)) du > 0}

cannot belong to σ(Xt ; t ≥ 0), whereas it should if M(R+, E) was to verify (H1).

c) Nevertheless the hypothesis (H1) may appear somewhat strange at a first look. In order to
try to persuade the reader that it is in fact natural, we will present the first approach we thought
of and its drawback. So at the beginning we considered the whole set M(R+, E) and to get rid
of measurability problems we believed it was sufficient to endow it with the σ-algebra F(R+, E)
generated by the coordinates and by the mappings

M(R+, E) 3 ω 7→
∫ t

0

ϕ(Xs(ω)) ds

for all t ≥ 0 and all ϕ ∈ Bb(E).
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For a while, everything worked nice, via extensive use of the monotonous class theorem, even
the construction given in next section can be completed. Furthermore, in this context, the family
of functions

(FT,V,ϕ)T≥0, V ∈Bb([0,T ]×E), ϕ∈Bb(E) (6)

is quite a basic object, as it is easily seen to determine the family of probabilities (Pt,x)t≥0, x∈E (ie
(6) plays the usual role of the associated semigroup, see below). So if lemma 2.1 was still true,
we could for instance deduce a unicity property for the abstract martingale problems (defined as
above) associated to the Markovian family (Pt,x)t≥0, x∈E .

But the trouble arises with this lemma 2.1 (which is fundamental with respect to the properties
of Feynman-Kac formulae); we were unable to show it because in this set-up we could not use
the Fubini theorem at the end of the above proof !

In order to go round this difficulty, we could have try to extend further F(R+, E), but for
instance we do not know if the second point of (H1) is verified even with (M(R+, E), P(R+, E)) in-
stead of (M(R+, E),M(R+, E)), where P(R+, E) is the total σ-field of all the subsets of M(R+, E)
(except for the trivial E = {∅, E}) and so any other σ-algebra on M(R+, E) will not be suitable
either. Note that it would be sufficient to treat the case where E = {0, 1} endowed with its total
σ-algebra. Nevertheless, a short appendix devoted to a similar question make us think that the
situation is not really good in this direction.

In the same circle of ideas, we can weaken (H1), to get say (H′1), by replacing in the second
point the σ-algebra M(R+, E) by the trace of F(R+, E) on M(R+, E), but this is done to the
detriment of the admissible families of probabilities (Pt,x)t≥0, x∈E , as it will then be more difficult
to find such a Markovian family.

d) The typical occurence of the property (H1) is in the situation where E is a topological
space, E is its Borelian σ-field and M(R+, E) = D+(R+, E), the set of all càd trajectories from
R+ to E (eg in [6], E was a Polish space and M(R+, E) was D(R+, E) the Skorokhod space of
càdlàg paths).

The singletons give trivial examples of sets satisfying (H1), but they are not compatible with
the initial condition parametrization for Markovian families, except if E = {∅, E}!

Nevertheless even if there is no topology corresponding to E , there always exists a set M(R+, E)
satisfying (H1) and on which one can put a Markovian family: the set consisting of trajectories
ω ∈ M(R+, E) for which there exist an increasing sequence (ti)i≥0 of elements of R̄+, satisfying
t0 = 0 and limi→∞ ti = +∞, and a sequence (xi)i≥0 of elements of E, such that

∀ i ≥ 0, ∀ ti ≤ s < ti+1, Xs(ω) = xi

But let us give a more exotic example of path space satisfying (H′1) (and not (H1)): we take
E =]0, 1[, E = R]0,1[ and M(R+, E) is the set of trajectories ω ∈ M(R+, ]0, 1[) verifying

∀ t ≥ 0, Xt(ω) = lim
s→0+

1

s

∫ t+s

t

Xu(ω) du

The above examples also illustrate how the first requirement of (H1) can be seen as asking for
the “regularity” of the paths to have a “local” feature.

e) To the Markovian family (Pt,x)t≥0, x∈E, we can associate the semigroup (Ps,t)0≤s≤t, whose
elements act on Bb(E) via the formulae:

∀ 0 ≤ s ≤ t, ∀ ϕ ∈ Bb(E), ∀ x ∈ E, Ps,t(ϕ)(x) = Ft,0,ϕ(s, x)

Due to our definition of the σ-algebras M([t,+∞[, E), for t ≥ 0, it is classical to see that the
semigroup determines the Markovian family (Pt,x)t≥0, x∈E.
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For all T ≥ 0, we will denote the vector space

BT
def.
= {FT,0,ϕ ; ϕ ∈ Bb(E)} ⊂ AT

Now let (P̃t,x)t≥0, x∈E be another Markovian family whose time-space generators are the (ÃT ,

L̃T ), for T ≥ 0. As a consequence of the above discussion, if we assume that for all T ≥ 0,

(ÃT , L̃T ) is an extension of (BT , LT ), ie BT ⊂ ÃT and L̃T |BT
= LT |BT

, then we have (P̃t,x)t≥0, x∈E =
(Pt,x)t≥0, x∈E .

In particular, the family (AT , LT )T≥0 is caracteristic of (Pt,x)t≥0, x∈E , ie the abstract martingale
problems uniquely determine the Markovian family.

f) The definition of a Markovian family and the condition (H2) could also be considered with
respect to other σ-fields verifying the second point of (H1) on our sets of paths (in which cases one
has in addition to assume the measurability of the mapping appearing in the remark (a) above).
But taking into account our particular choice of M(R+, E) and monotonous class arguments, they
can be simplified and expressed through the associated semigroup: for instance the condition (H2)
is equivalent to

(H′2) For all T ≥ 0 and all A ∈ E , the mapping

[0, T ] × E 3 (t, x) 7→ Pt,T (1IA)(x)

is R[0,T ] ⊗ E-measurable.

Thus in this situation it appears that the role of the particular path � entering in the definition
of the injections It, for t ≥ 0, is not very important: for instance (H2) would not have been affected
if we had chosen to let � depend in a measurable way on Xt(ω) (eg we could have rather considered
for any t ≥ 0 the injection defined by Xs ◦ It = Xs∨t for every s ≥ 0, except that it is not so
natural to assume that M(R+, E) contains all constant paths, as we will see it in section 5).

g) The role of T > 0 in the definition of the generator (AT , LT ) is not innocent: in the same
way, we could have considered (A, L) the generator acting on measurable and locally bounded
functions defined on R+ ×E for which the martingale problems are satisfied, but it can be shown
(for instance in the case of the real Brownian motion) that (AT , LT ) can be a strict extension of
the natural restriction of (A, L) on Bb([0, T ] × E). Also note that there are some links between
(A, L) and the full generators defined in [9], but they are not strictly the same, in particular due
to the inhomogeneity in time.

h) A traditional object in related set-ups is the family (θt)t≥0 of the time shifts acting on
M(R+, E), which are defined by

∀ t, s ≥ 0, ∀ ω ∈ M(R+, E), Xs(θt(ω)) = Xt+s(ω)

and more precisely, for t ≥ 0 given, θt is a measurable map from (M([t,+∞[, E), σ(Xs ; s ≥ t)) to
(M(R+, E), σ(Xs ; s ≥ 0)). But with our definition of the M([t,+∞[, E), for t ≥ 0, it is not clear
that the image of M([t,+∞[, E) under θt is included into M(R+, E) (eg if the random variables
Xt naturally take values in different subsets of E as t ≥ 0 varies, see for instance the end of this
remark).

Nevertheless, if we assume in addition that for all t ≥ 0, θt(M([t,+∞[, E)) ⊂ M(R+, E), then
(H2) is easily seen to be equivalent to

(H′′2) For all A ∈ M(R+, E) the mapping

R+ × E 3 (t, x) 7→ Pt,x[θ
−1
t (A)]

10



is R+ ⊗ E-measurable.
Note that this hypothesis is just asking for the time-homogeneous Markov process (t, Xt)t≥0

“with sufficiently regular trajectories” to admit a measurable kernel of transition probabilities

from R+×E to M(R+,R+×E)
def.
= D(R+,R+)×M(R+, E). So under the condition (H′′2), there is

no lost of generality to restrict ourself to the time-homogeneous case, for which (H2) is automat-
ically fulfilled. This may seem as a very mild assumption, but one has sometimes to be careful
about conditioning in just measurable settings, because of the lack of “regular” version (in fact
our hypothesis on the Markov family consists in assuming the existence of regular conditional
expectations, as we cannot deduce it from properties of the state space, and we will be able to
construct every other conditional distributions we will need in terms of these ones). In the same
spirit, recall that every stochastic process can be seen as an homogeneous Markov process, if the
state space is sufficiently enlarged, so one can extend our setting to more general situations if one
is able to check the existence of a measurable version of conditional probabilities (but in general
this regularity property requires more structure on the new state space which is now a set of
paths), see the example of development presented in section 5. Nevertheless, we think that the
point of view of inhomogeneous Markov processes is enough rewarding.

i) There is a more interesting generalization of our setting, which we will only mention: it
corresponds to the cases where the differential ds in formula (1) is replaced by das(ω), for ω ∈
M(R+, E), where (as(ω))s≥0 is a adapted continuous additive functional (with no martingale
part). The martingale problems and consequently the definition of the (AT , LT ), for T ≥ 0, have
to be changed accordingly.

One particular example would be to add to ds some local times, as those appearing when one
is considering Euclidean diffusion processes (with regular coefficients) reflected on the boundary
of a smooth domain. But as an intermediate step, one can replace ds by any (deterministic)
nonnegative diffuse Radon measure on R+ (atomic cases would also be interesting, but certainly
not so immediate).

j) Finally let us note that the corresponding discrete time problem can be imbedded in our
setting: there everything starts with a time-inhomogeneous family of transition probabilities
(Pn)n≥0 on a mesurable space (E, E) and a family (gn)n≥0 of functions belonging to Bb(E) and
satisfying gn ≥ 1 for all n ≥ 0. Then one is interested in estimating the probability defined for
any n ≥ 0 by

ηn(ϕ)
def.
=

Eη0

[
ϕ(Xn)

∏
0≤m≤n−1 gm(Xm)

]

Eη0

[∏
0≤m≤n−1 gm(Xm)

]

where (Xm)m≥0 is a Markov chain whose transition are given by the family (Pm)m≥0 and whose
initial law is a chosen probability η0 on (E, E), and where ϕ ∈ Bb(E) is just a test function.

There is no problem in constructing an associated Markovian family (Pt,x)t≥0, x∈E on the third
example of set M(R+, E) presented in above remark (d) which corresponds to the operation

(Xn)n≥0 ∈ EN 7→ (Xbtc)t≥0 ∈ M(R+, E)

where b·c denote the integer part.
Let us also introduce the function

∀ t ≥ 0, x ∈ E, U(t, x) = ln(gbtc(x))

then it appears that for n ∈ N, the measure ηn is also given by (1), so we can just use the following
considerations to device an efficient algorithm and to derive estimates on it. But in [4] we have
presented a related direct discrete time approach.
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2.2 Bounded perturbations of generators

In the last subsection, we have presented a way to associate to any Markovian family (Pt,x)t≥0, x∈E

an abstract generator (AT , LT ), for all given T ≥ 0. Here we will show how one can add some
bounded operators to this generator, and we will study the perturbations induced by this kind
of manipulations. If it was not for the generality of our setting, these would be standard results
(cf for instance [1] or [9]), but in our situation we have to be a little more careful. There are two
main motivations for these considerations:

- They give another family of simple and useful examples of functions belonging to AT .
- They will enable us to construct the approximating interacting particle systems in subsection

2.4 and to deduce some of their interesting features.

So again we consider a Markovian family (Pt,x)t≥0, x∈E and for T ≥ 0, let (AT , LT ) be its

associated generator on [0, T ] × E. Let R̂ be a locally bounded nonnegative kernel from R+ × E
to E, which is a mapping (R+ × E) × E → R+ such that

• for all given (t, x) ∈ R+ × E, the application E 3 A 7→ R̂((t, x), A) is a nonnegative
measure

• for all fixed A ∈ E , the function R+ × E 3 (t, x) 7→ R̂((t, x), A) is measurable
• for all T ≥ 0, we have

sup
(t,x)∈[0,T ]×E

r(t, x) < +∞

where for every (t, x) ∈ [0, T ] × E, we took r(t, x) = R̂((t, x), E) = maxA∈E R̂((t, x), A).

Sometimes, we will write R̂(t, x) for the measure E 3 A 7→ R̂(t, x, A) ∈ R+.
To such a kernel we can associate the operator R on Bb(R+ × E) (which should be seen as a

locally bounded time-inhomogeneous family of generators on Bb(E), under the interpretation of

R̂(t, x, A) as the intensity of the occurence of a jump from x ∈ E to A ∈ E at time t ≥ 0, at least
if x 6∈ A) defined by

∀ f ∈ Bb(R+ × E), ∀ (t, x) ∈ R+ × E, R(f)(t, x) =

∫
f(t, y) R̂((t, x), dy) − r(t, x)f(t, x)

For T ≥ 0, we will designate by RT the natural restriction of R on Bb([0, T ] × E).

Our first objective is to construct a Markovian family (P̂t,x)t≥0, x∈E such that for all T ≥ 0, its

generator (ÂT , L̂T ) is an extension of (AT , LT +RT ).

To do so, we begin by considering homogeneous Markov chains on R̄+ × M(R+, E), endowed
with its natural σ-algebra, whose transition probability kernel P̌ is defined by

∀ (t, ω) ∈ R+ × M(R+, E), ∀ I ∈ R+, ∀ A ∈ M(R+, E),

P̌ ((t, ω), I × A) =∫

R+×E

1II(t+ s) exp

(
−
∫ s

0

r(t+ u,Xt+u(ω)) du

)
R̂((t + s,Xt+s(ω)), dy)Pt+s,y[A] ds

(the mass of P̌ ((t, ω),R+×M(R+, E)) which maybe missing to 1 is reported to (+∞, �)), and by
setting

P̌ ((+∞, �), · ) = δ(+∞,�)( · )

Due to our hypotheses, especially the second point of (H1) and (H2), there is no real problem
in verifying the measurability properties traditionally assumed for a probability kernel.
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Then according to the theorem of Ionescu Tulcea (cf for instance [14]), for all (t, ω) ∈ R+ ×
M(R+, E) there exists a unique probability P̌t,ω on (R̄+ × M(R+, E))N (endowed with its natural
product σ-field) under which the canonical coordinate chain is Markovian with P̌ as transition
probability kernel and starts from the initial distribution δ(t,ω). Furthermore, for all measurable
subset A ⊂ (R̄+ × M(R+, E))N, the mapping

R+ × M(R+, E) 3 (t, ω) 7→ P̌t,ω[A]

is also measurable.

Next we will transform this regular family (P̌t,ω)t≥0, ω∈M(R+,E) into the wanted Markov family

(P̂t,x)t≥0, x∈E by transporting it through the following mapping. In order to be precise, we have
to introduce some more notations:

Let Ě be the set of elements x = (ti, yi)i≥0 ∈ (R̄+ × M(R+, E))N such that there exists an
index 0 < i∞ ≤ ∞ satisfying

∀ i ≥ 0, i < i∞ ⇒ ti < ti+1 and i ≥ i∞ ⇒ (ti, yi) = (+∞, �)

We endow this set with the σ-algebra Ě inherited from (R[0,+∞] ⊗M(R+, E))⊗N.

Note that each P̌t,ω, for t ∈ R+ and ω ∈ M(R+, E), is in fact a probability on (Ě, Ě), and
with this point of view, the family (P̌t,ω)t≥0, ω∈M(R+,E) obviously retains the same measurability
regularity.

On the other hand we can define on this domain the mapping Φ : Ě → M(R+, E) given by

∀ x ∈ Ě, ∀ i ≥ −1, ∀ ti ≤ s < ti+1, Xs(Φ(x)) = Xs(yi)

where we have used the same notations as before for elements of Ě, and with the convention that
t−1 = 0 and x−1 is the a priori fixed path �.

Due to the first point of hypothesis (H1), Φ(x) really lives in M(R+, E). This mapping Φ is
also clearly seen to be measurable.

Now let us define for all (t, x) ∈ R+ × E,

P̂t,x = Φ(P̌t,x)

where the probability P̌t,x on Ě is given by

∀ A ∈ Ě , P̌t,x(A) =

∫
P̌t,ω(A) Pt,x(dω)

Remark that for t ≥ 0 and in the sense of the injection It, P̂t,x can be seen as a probability
on M([t,+∞[, E).

It is time to verify that the family obtained by putting together these probabilities will do the
job for which it was designed:

Proposition 2.3 The family (P̂t,x)t≥0, x∈E is Markovian and satisfies (H2). Furthermore for any

fixed T ≥ 0, we have AT ⊂ ÂT and for all f ∈ AT , L̂T (f) = LT (f) +RT (f).

Proof:

The measurability requirements (in particular (H2)) follow from the above considerations.
But unlike the approach followed by Ethier and Kurtz in [9], here it is not sufficient to consider

the underlying martingale problems (ie to merely prove the second part of the proposition) to
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insure the validity of the Markov property in the general way we have defined it; we are only
allowed to play with the very basic objects we have just introduced. That is why the subsequent
proof is quite too long and should be admitted at a first reading !

So we are wondering if for all 0 ≤ t < s, all x ∈ E, all A ∈ M([t, s], E) and all B ∈
M(]s,+∞[, E), we have

P̂t,x[A ∩B] = Êt,x[1IAP̂s,Xs
[B]]

Let us denote Ǎ = Φ−1(A) and B̌ = Φ−1(B). Clearly it is equivalent to show that

P̌t,x[Ǎ ∩ B̌] = Ět,x[1IǍ P̂s,Xs◦Φ[B]] (7)

To show these equalities are true, we consider for fixed s ≥ 0, the function

Hs : R̄+ × M(R+, E) → [0, s] × M([0, s], E) × [s,+∞] × M([s,+∞[, E)

(u, ω) 7→ (s ∧ u, (Xt(ω))0≤t≤s, s ∨ u, (Xt(ω))s≤t)

We denote by (Žn)n≥0 the canonical coordinates on Ě and next we naturally write for n ≥ 0,

(Tn, Zn, T
′
n, Z

′
n)

def.
= Hs(Žn)

Let us also define the integer variable

N = inf{n ≥ 0 : Tn = s}

which is P̌t, x-a.s. finite under our local boundedness condition on U .
Then we remark (eg by applying the monotonous class theorem) that at least on {N ≥ 1},

Ǎ ∈ σ(Žn∧(N−1) ; n ≥ 0)

B̌ ∈ σ(Žn+N−1 ; n ≥ 0)

and more precisely that there exist Ă ∈ (R[0,s] ⊗ M([0, s], E))⊗N and B̆ ∈ (R[s,+∞[⊗
M(]s,+∞[, E))⊗N such that

Ǎ = {(Tn∧(N−1), Zn∧(N−1))n≥0 ∈ Ă}
B̌ = {(T ′

n+N−1, Z
′
n+N−1)n≥0 ∈ B̆}

Unfortunately the fact that N − 1 is not a stopping time prevents us from applying directly
the strong Markov property for (Žn)n≥0 under P̌t,x.

But the interest of the previous objects is that the chain (Z ′
n−1, T

′
n, Zn, Tn+1)n≥0 is also Marko-

vian under P̌t,x, with the convention that Z ′
−1 = � (also identified with its restriction to the interval

[s,+∞[). More precisely, for fixed 0 ≤ t < s, its initial distribution is δ� ⊗ δs ⊗mt,x, where mt,x

is the probability defined on M([0, s], E) × [0, s] by

∀ C ∈ M([0, s], E), ∀ I ∈ R[0,s],

mt,x(C × I) = Pt,x

[
1IC((Xv)0≤v≤s)

{∫ s

t

1II(w)r(w,Xw) exp
(
−
∫ w

t

r(w′, Xw′) dw′
)
dw

+1II(s) exp
(
−
∫ s

t

r(w,Xw) dw
)}]

and we calculate down that its probability transition kernel P̆ satisfies
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∀ (z′, u′, z, u) ∈ M([s,+∞[, E)×[s,+∞[×M([0, s], E)×[0, s], ∀ (C ′, I ′, C, I) ∈ M([s,+∞[, E)×
R[s,+∞[ ×M([0, s], E) ×R[0,s],

P̆ ((z′, u′, z, u), C ′ × I ′ × C × I) =

1I{u<s}

[
Ps,Xs(z)[C

′]1II′(s)

∫

E

R̃(u,Xu(z), dy)Eu,y

[
1IC((Xv)0≤v≤s)

{
1II(s) exp

(
−
∫ s

u

r(w,Xw) dw
)

+

∫

[u,s[

1II(w)r(w,Xw) exp
(
−
∫ w

u

r(w′, Xw′) dw′
)
dw
}]]

+1I{u=s=u′}

[
Es,Xs(z)

[
1IC′((Xv′)v′≥s)

∫

]s,+∞[∩I′
r(v,Xv) exp

(
−
∫ v

s

r(w,Xw) dw
)
dv
]
1IC(�)1II(s)

]

+1I{u=s,u′>s}

[ ∫

E

R̃(u′, Xu′(z′), dy)Eu′,y

[
1IC′((Xv′)v′≥s)

∫

]u′,+∞[∩I′
r(v,Xv)

exp
(
−
∫ v

u′

r(w,Xw) dw
)
dv
]
1IC(�)1II(s)

]

where the new probability kernel R̃ from R+ × E to E is given by the renormalization

∀ u ≥ 0, ∀ x ∈ E, R̃(u, x) =

{
R̂(u, x)/r(u, x) , if r(u, x) > 0
δ� , otherwise

(note that P̌t,x-a.s. and for any n ≥ 0, either Tn+1 = +∞ or r(Zn, Tn+1) > 0), and where as usual
the possible missing mass is put on (�,+∞, �, s), which is also assumed to be a cemetery point.

Let us denote for (z′, u′, z, u) ∈ M([s,+∞[, E)× [s,+∞[×M([0, s], E)× [0, s], P̆z′,u′,z,u the law

of a Markov chain (Z̆ ′
n, T̆

′
n, Z̆n, T̆n)n≥0 starting from (z′, u′, z, u) and whose kernel is P̆ . Then we

are in position to apply the strong Markov property to the stopping time N − 1 with respect to
the chain (Z ′

n−1, T
′
n, Zn, Tn+1)n≥0, and we get for x ∈ E and 0 ≤ t < s (which also insures that

P̌t,x-a.s. N ≥ 1),

P̌t,x[Ǎ ∩ B̌] = Ět,x[1IĂ((Tn∧(N−1), Zn∧(N−1))n≥0)1IB̆((T ′
n+N−1, Z

′
n+N−1)n≥0)]

= Ět,x[1IĂ((Tn∧(N−1), Zn∧(N−1))n≥0)P̆Z′
N−2,s,ZN−1,s[1IB̆((T̆ ′

n, Z̆
′
n+1)n≥0)]]

But we notice that for all (z, z′) ∈ M([0, s], E)×M([s,+∞[, E), the law of (T̆ ′
n, Z̆

′
n+1)n≥0 under

P̆z′,s,z,s is P̌s,Xs(z), so (7) follows from the fact that P̌s,Xs(z)[B̆] = P̂s,Xs(z)[B] and from the P̌t,x-a.s.
equality Xs ◦ Φ = Xs(ZN−1).

Now that we have shown that (P̂t,x)t≥0,x∈E is a Markovian family, it remains to verify the
affirmation about the generators.

We first remark that due to the above result, it is sufficient to show that for all fixed 0 ≤ t ≤
s ≤ T , all fixed x ∈ E and all f ∈ AT ,

Êt,x

[
f(s,Xs) − f(t, Xt) −

∫ s

t

L̂T (f)(u,Xu) du

]
= 0 (8)

If in addition we knew that the mapping r : R+ × E → R+ is constant, we could transpose
the usual arguments given by Ethier and Kurtz in the proof of the proposition 10.2 p. 256
of [9] to verify this equality (their processes are assumed to be càdlàg so they are allowed to
use the notation Xu−, and in our setting this has to be interpreted in the following sense: let
us come back to the notations introduced before proposition 2.3 and consider x ∈ Ě, if there
exists 1 ≤ i < i∞ such that u = ti, then we denote Xu−(Φ(x)) = Xu(yi−1), otherwise we take
Xu−(Φ(x)) = Xu(Φ(x)) = Xu(yi) . . . ).
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But it is well-known that the general situation can be reduced to the previous case via an
acceptation/rejection procedure: at each of more frequently selected times, there is more prob-
ability that the process stay at the present position, so these instants are only proposed jump
times. We begin by noting that the law of (Xu)t≤u≤s under P̂t,x and the values of L̂T (f)(u, y), for

t ≤ u ≤ s and y ∈ E, only depend on the restriction of R̂ on [t, s] × E × E , so to prove (8), we
can assume that

r
def.
= sup

(u,y)∈R+×E

r(u, y) < +∞

Under this extra assumption, we construct a new bounded kernel R̂′ from R+ × E to E via
the formula

∀ (u, y) ∈ R+ × E, R̂′(u, y) = R̂(u, y) + (r − r(u, y))δy

This kernel admits the required regularity conditions and the convenient property that

∀ u ≥ 0, ∀ y ∈ E, r′(u, y) = r

meanwhile its associated operators are the same as the previous ones:

∀ T ≥ 0, R′
T = RT

Now as before, we can construct from R̂′ and (Pu,y)(u,y)∈R+×E the Markovian family

(P̂′
u,y)(u,y)∈R+×E and according to the previous case, we have

AT ⊂ Â′
T

∀ f ∈ A′
T , L̂′

T (f) = LT (f) +RT (f)

so (8) will be proved if we can show that P̂
′
t,x = P̂t,x.

But this is a classical computation based on one hand on the fact that for the construction of
the P̂u,y, for t ≤ u ≤ s and y ∈ E, the difference of the proposed jump times are mutually indepen-
dent, independent of the trajectories between these proposed times and distributed as exponential
variables of parameter r, and on the other hand on the following elementary observation:

Lemma 2.4 Let (τn)n≥1 be a sequence of independent exponential random variables of parameter
r and let (Vn)n≥1 be a sequence of independent uniform random variables on [0,1], both families are
furthermore assumed to be independent of each other. Let g : R+ → [0, 1] be a given measurable
mapping.

We note

N = inf{n ≥ 1 : Vn ≤ g(τ1 + · · · + τn)} ≤ +∞
T =

∑

1≤n<N+1

Tn ≤ +∞

then the distribution of T is defined by

∀ u ≥ 0, P[T > u] = exp

(
−
∫ u

0

g(v) dv

)
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This result is applied, for any fixed t ≤ u ≤ s and any trajectory ω ∈ M([u,+∞[, E), with
g : R+ 3 v 7→ r(u+v,Xu+v(ω))/r, but the easy proofs are left to the reader (one has just to take
into account the fact that at the proposed jump times “corresponding” to the mass r − r(u, y),
the process remains at the same place, so one is able to use the Markov property at these times
for the familly (Pu,y)u≥0, y∈E).

Remark 2.5: The above reduction to the case where r( · , · ) is a constant function is often
useful in practice, because independent exponential waiting times are easy to simulate. This
approach is also more convenient when we will have to resort to coupling arguments.

If the mapping r( · , · ) was a priori assumed to be bounded, this procedure could have been

used for the whole time interval R+ (instead of locally) for the construction of (P̂t,x)t≥0,x∈E . In
fact, as we will essentially work with a finite horizon T > 0 in what follows, we could have
merely taken into account this description (and then the theorem of Ionescu Tulcea is not really
necessary, since only random but finite numbers of selections are needed, we can just use the
theorem of integration of kernels, see for instance [7]). Nevertheless, for completeness we have
prefered to present a construction valid for all times (note that we are not under the hypotheses
of Kolmogorov’s theorem, so it is not sufficient to construct compatible processes on finite time
intervals to get one on R+), then, except in some very particular situations (eg if U is constant),
the time interval between two consecutive proposed jump instants will not be an exponential
random variable.

Note that we could also haven take advantage of this reduction in the first step of the proof for
the Markov property, to reduce some formulae, but the argument would have remain unchanged,
as opposed to considerations of martingale problems (the last step in the above proof, or next
proposition), where to consider a constant r really simplify the analysis.

Now that we have seen that (ÂT , L̂T ) is an extension of (AT , LT +RT ), for T ≥ 0, we can go
even further, because the reciproque is also true:

Proposition 2.6 For all T ≥ 0, we have

(ÂT , L̂T ) = (AT , LT +RT )

Proof:

So let T > 0 be fixed and f ∈ ÂT be given, we have to show that for all fixed 0 ≤ t ≤ s ≤ T
and all fixed x ∈ E,

Et,x

[
f(s,Xs) − f(t, Xt) −

∫ s

t

(L̂T −RT )(f)(u,Xu) du

]
= 0 (9)

since it will then follow that f ∈ AT and that LT (f) = L̂T (f) −RT (f).
This is a “local” result, so once again, we can assume that the mapping r(·, ·) is constant.
We will work under the probability P̌t,x, the random variable T1 stands for the first proposed

jump time appearing (T1 − t follows an exponential law of parameter r), XT1− is defined as it was

at the end of the proof of proposition 2.3, and Pt,x is seen as the law of X
def.
= (Xu)u≥t.

With these notations, we can write

(f(s,Xs) − f(t, Xt))1IT1≤s = (f(s,Xs) − f(T1, XT1))1IT1≤s + (f(T1, XT1) − f(T1, XT1−))1IT1≤s

+(f(T1, XT1−) − f(t, Xt))1IT1≤s
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But we notice that by construction, X admits a strong Markov property with respect to the
time T1, so using the fact that f ∈ AT , we get

Ět,x[(f(s,Xs) − f(T1, XT1))1IT1≤s] = Ět,x[1IT1≤sĚT1,X1 [f(s,Xs) − f(T1, XT1)]]

= Ět,x

[
1IT1≤sĚT1,X1

[∫ s

T1

L̂T (f)(u,Xu) du

]]

= Ět,x

[∫ s

s∧T1

L̂T (f)(u,Xu) du

]

On the other hand, it is quite clear that by the properties of T1,

Ět,x[(f(T1, XT1) − f(T1, XT1−))1IT1≤s] = Ět,x[RT (f)(T1, XT1−)1IT1≤s]/r

=

∫ s

t

Et,x[RT (f)(u,Xu)] exp(−r(u− t)) du

and

Ět,x[(f(T1, XT1−) − f(t, Xt))1IT1≤s] = r

∫ s

t

Et,x[f(u,Xu) − f(t, Xt)] exp(−r(u− t)) du

Now let us denote for t ≤ s ≤ T , g(s)
def.
= Et,x[f(s,Xs) − f(t, Xt)], we have

g(s) =
Ět,x[(f(s,Xs) − f(t, Xt))1IT1>s]

P̌t,x[T1 > s]

= exp(r(s− t))(Ět,x[f(s,Xs) − f(t, Xt)] − Ět,x[(f(s,Xs) − f(t, Xt))1IT1≤s])

= exp(r(s− t))
(
Ět,x

[∫ s

t

L̂T (f)(u,Xu) du

]
− Ět,x

[∫ s

s∧T1

L̂T (f)(u,Xu) du

]

−
∫ s

t

Et,x[RT (f)(u,Xu)] exp(−r(u− t)) du− r

∫ s

t

g(u) exp(−r(u− t)) du
)

= exp(r(s− t))
(
Ět,x

[∫ s

t

L̂T (f)(u,Xu)1Iu≤T1 du

]

−
∫ s

t

Et,x[RT (f)(u,Xu)] exp(−r(u− t)) du− r

∫ s

t

g(u) exp(−r(u− t)) du
)

= exp(r(s− t))
(∫ s

t

Et,x

[
L̂T (f)(u,Xu)

]
exp(−r(u− t)) du

−
∫ s

t

Et,x[RT (f)(u,Xu)] exp(−r(u− t)) du− r

∫ s

t

g(u) exp(−r(u− t)) du
)

= exp(r(s− t))
(∫ s

t

Et,x

[
(L̂T −RT )(f)(u,Xu)

]
exp(−r(u− t)) du

−r
∫ s

t

g(u) exp(−r(u− t)) du
)

This differential equation satisfied by
∫ s

t
g(u) exp(−r(u− t)) du, for t ≤ s ≤ T , has a unique

continuous solution, which is
∫ s

t

g(u) exp(−r(u− t)) du

=

∫ s

t

exp(r(u− s))

∫ u

t

Et,x

[
(L̂T − RT )(f)(v,Xv)

]
exp(−r(v − t)) dv du
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and so using again the above equation, that can be easily rewritten in the form (9).

Let us give a first consequence of this identity, mentioned at the beginning of this subsection
and which will be a powerful tool in the subsequent development (because it is the one which will
enable us to remove all regularity assumptions). A little more precisely, as we will mainly work
with martingales (and not directly with their increasing processes), we need to know a lot of them,
and the following result is a good way to construct some interesting ones, via the description of
new elements of AT .

Corollary 2.7 Let T > 0 be fixed, and let V ∈ Bb([0, T ] × E) and ϕ ∈ Bb(E) be given. We
consider the function defined by

∀ 0 ≤ t ≤ T, ∀ x ∈ E, GT,V,ϕ,R̂(t, x) = Êt,x

[
exp

(∫ T

t

Vs(Xs) ds

)
ϕ(XT )

]

Then the mapping GT,V,ϕ,R̂ belongs to AT , and we have

∀ 0 ≤ t ≤ T, ∀ x ∈ E, LT (GT,V,ϕ,R̂)(t, x) = −Vt(x)GT,V,ϕ,R̂(t, x) −R(GT,V,ϕ,R̂)(t, x)

Proof:

This follows immediatly from the combination of lemma 2.1 and proposition 2.6.

Remark 2.8: As our primary object of interest, the flow (ηt)t≥0 defined in (1), is only using
the probability Pη0 , we could have associated to any time T ≥ 0 and any given initial probability
η0, another generator by only requiring that the process (M0,t(f))0≤s≤T should be a martingale
under Pη0 (see (4) for the notation).

But via the use of traditionally coupled processes and perturbation kernels making them jump
on the diagonal, it is easy to find an example for which the proposition 2.6 relative to this slightly
different notion is not true.

This comes from the cut and paste trajectories constructions (indeed the main reason for the
first point of condition (H1)), which can lead the new process to explore more points of the state
space than those which can be attainable under Pη0 .

2.3 “Coupling” arguments

As we shall see in the subsequent development, it is sometimes useful to compare the initial
Markovian family (Pt,x)t≥0, x∈E with its just constructed modification (P̂t,x)t≥0, x∈E, at least in the

cases where the perturbation R̂ is small, and one seemingly nice way to do it would be to couple
them.

But once again our setting does not enable us to work it out in the traditional manner: for
instance even if R̂ ≡ 0, there may not exist the usual Markovian coupling of (Pt,x)t≥0, x∈E with
himself, which would satisfy that when the two coordinates coincide they stay together and so
evolve identically, and when they are different they evolve independently, up to the (contingently)
time when they would be equal. The basic obstruction is that in general it is not clear that the
diagonal 4(E) = {(x, x) ∈ E2 : x ∈ E} belongs to E ⊗E . Recall that we have even not assumed
that (E, E) is separated, but to consider its natural diagonal

4̄(E) = {(x, y) ∈ E2 : δx = δy}
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would not have improved the situation.
In order to overcome this difficulty, we will only couple probabilities (ie we look for probabilities

on a product space with specified marginals, eg P0,x and P̂0,x, for a fixed x ∈ E) and not Markovian
families; in fact our couplings will not be Markovian processes. This will not be important, because
our purpose is to try to make processes issued from a same position to stay together the longest
possible time, and not (as it is more customary) to attempt to make them come back together if
they are separated.

We will also have resort to another trick, as we will really be interested in the diagonal of
E×E for general measurable space (E, E). If m is a nonnegative finite measure on (E2, E⊗2), we
will make the convention that

m(4(E))
def.
= supm1(E)

where the supremum (which is in fact a maximum) is taken over all nonnegative measures m1

defined on (E, E) such that m ≥ m2, where m2 is the image of m1 under the mapping E 3 x 7→
(x, x) ∈ E2.

This notion is quite natural, because the classical proof shows that if µ1 and µ2 are probabilities
on (E, E), then there exists a coupling m of them on (E2, E⊗2) verifying

m(E2) −m(4(E)) =
1

2
‖µ1 − µ2‖tv (10)

As we already mentioned it, we will consider here couplings of probabilities on path spaces, so
we have to be a little more precise about path spaces associated to product state space: for N ≥ 2,
we will always take M(R+, E

N) = M(R+, E)N , definition which implies that M(R+, E
N) =

M(R+, E)⊗N , and so (H1) is clearly verified.
A typical example of the kind of results we are looking for is the following one, where the

Markovian family (P̂t,x)t≥0,x∈E is constructed as in the previous section, starting from (Pt,x)t≥0, x∈E

and R̂:

Proposition 2.9 Let T ≥ 0 and x ∈ E be given. Then there exists a coupling P
†
0,(x,x) of P0,x and

P̂0,x such that

P
†
0,(x,x)[(Xt)0≤t≤T 6= (X̂t)0≤t≤T ] ≤ 1 − exp

(
−T sup

0≤t≤T, x∈E
R̂(t, x, E)

)

(where (Xt, X̂t)t≥0 stands for the canonical coordinate process on M(R+, E
2), and by convention,

we have taken P
†
0,(x,x)[(Xt)0≤t≤T 6= (X̂t)0≤t≤T ] = 1 − P0,(x,x)[4(M([0, T ], E))]).

Proof:

The horizon T ≥ 0 being fixed, it is sufficient to construct a coupling P
†
0,(x,x),[0,T ] on M([0, T ], E2)

of the restrictions to M([0, T ], E) of P0,x and P̂0,x, satisfying the required condition, because it is
then immediate to extend it to a coupling over the whole M(R+, E

2), by letting, after time T , the

coordinates evolve independently and respectively according to (Pt,x)t≥T,x∈E and (P̂t,x)t≥T,x∈E .
This remark make it clear that there is no lost of generality to come down to the situation

where the quantity R(t, x, E) does not depend on t ≥ 0 and x ∈ E, and where its common value
is r = sup0≤t≤T, x∈E R(t, x, E), in terms of the initial kernel.

So under this hypothesis, let us consider a “generalized” Markov family on E2 × {0, 1},
(P‡

t,x)t≥0, x∈E2×{0,1}, in the sense that it will not verify the first assumption of initial parametriza-
tion property:
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• For (x, y) ∈ E2, the probability P
‡
t,(x,y,0) is P

‡
t,(x,x) ⊗ δ0[t,+∞[

, where the first factor is the
image of the probability Pt,x by the mapping

M([t,+∞[, E) 3 ω 7→ (ω, ω) ∈ M([t,+∞[, E2)

and where for any t ≥ 0 and any element a, a[t,+∞[ stands for the constant path defined over the
time interval [t,+∞[ and always taking the value a.

• For (x, y) ∈ E2, the probability P
‡
t,(x,y,1) is just the product

Pt,x ⊗ P̂t,y ⊗ δ1[t,+∞[

We now perturbe this family by the nonnegative kernel R̂‡ from R+×E2×{0, 1} to E2×{0, 1},
defined by

∀ t ≥ 0, ∀ (x, y, z) ∈ E2 × {0, 1}, R̂‡(t, (x, y, z)) = δx ⊗ R̂(t, y) ⊗ δ1

to obtain a new generalized Markovian family (P̂‡
t,x)t≥0, x∈E2×{0,1}.

Then let P
†
0,(x,x) be the image of P

‡
0,(x,x,0) under the natural projection of M(R+, E

2 × {0, 1})
on M(R+, E

2). It is not difficult to convince oneself that it is indeed a coupling of P0,x with P̂0,x.
Furthermore, we have, denoting by (Zt)t≥0 the canonical coordinates on {0, 1},

P
†
0,(x,x)[(Xt)0≤t≤T 6= (X̂t)0≤t≤T ] ≤ P

‡
0,(x,x,0)[ZT = 1]

= 1 − exp(−rT )

because under P
‡
0,(x,x,0), ZT is distributed as 1I[0,T ](S), where S is an exponential random variable

of parameter r.

The latter coupling is rather a crude one: roughly speaking, up to any given time we are
considering only two possibilities: either the trajectories of the two processes coincide, either
they are different. But we will need to be a little more precise, by quantifying the distance
between the positions of the two processes, more specifically in the case of a system of particles,
we would like to know how many particles are different. As there is no a priori metric on the
state space in our setting, this is the only natural comparison we can consider!

So let us give a general definition of a particle system with interactions changing one particle
at each time.

First we still assume that we are given a Markov family (Pt,x)t≥0, x∈E on E. Then let N ∈ N
∗

be a number of particles. As underlying “unperturbed” Markovian family on EN , we consider the
one, again written (Pt,x)t≥0,x∈EN , which corresponds to a Markov process on EN whose coordinates
evolve independently and according to (Pt,x)t≥0,x∈E , and which is rigorously defined by

∀ t ≥ 0, ∀ x = (x1, . . . , xN ) ∈ EN , Pt,x =
⊗

1≤i≤N

Pt,xi

clearly it also satisfies (H2).

For each 1 ≤ i ≤ N , we consider a locally bounded nonnegative kernel R̂i from R+ × EN to
E. In order to simplify the presentation, we will work under the hypothesis that the quantity

r
def.
= NR̂i(t, x, E) does not depend on 1 ≤ i ≤ N , t ≥ 0 and x ∈ E.

From these kernels, we define a new one R̂ from R+ × EN to EN , via the formulae
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∀ t ≥ 0, ∀ x = (xi)1≤i≤N ∈ EN ,

R̂(t, x) =
∑

1≤i≤N

δx1 ⊗ · · · ⊗ δxi−1
⊗ Ri(t, x) ⊗ δxi+1

⊗ · · · ⊗ δxN

Let us denote by (P̂t,x)t≥0,x∈EN the perturbation of (Pt,x)t≥0,x∈EN by this kernel R̂. The
mechanism of its interactions at any selected time t ≥ 0 can be interpreted in the following way:
one choose uniformly an indice 1 ≤ i ≤ N , and then the coordinate xi of a position x ∈ EN is
replaced by the value obtained from a sampling according to the law R̂i(t, x, ·)/R̂i(t, x, E), the
other coordinates remain unchanged. Between the random interacting times, the particles evolve
independently.

Let us also denote by ν(r) the law of the usual Poisson process of parameter r on M(R+,N),
the set of “càdlàg” paths from R+ to N. Then we get the following result which in this situation
is more precise than the proposition 2.9:

Proposition 2.10 For any x ∈ EN , there exists a coupling P
†
0,(x,x) of P0,x ⊗ ν(r) with P̂0,x, such

that if we denote by ((X
(i)
t )1≤i≤N , Kt, (X̂

(i)
t )1≤i≤N)t≥0 the canonical coordinates on M(R+, E

N ×
N × EN ), then we have

∀ T ≥ 0, P
†
0,(x,x)

[
∑

1≤i≤N

1I
(X

(i)
t )0≤t≤T 6=(X̂

(i)
t )0≤t≤T

≥ KT

]
= 0

In particular, we get that

∀ T ≥ 0, ∀ k ≥ 0, P
†
0,(x,x)

[
∑

1≤i≤N

1I
(X

(i)
t )0≤t≤T 6=(X̂

(i)
t )0≤t≤T

≥ k

]
≤

∑

l≥k

(rT )l

l!
exp(−rT )

Here again, the above results have to be interpreted in a special way: let (F,F) be a measurable

space, we endow FN × FN with its canonical coordinates ((Xi)1≤i≤N , (X̂i)1≤i≤N). Let m be a
nonnegative finite measure on (FN × FN ,F⊗N ⊗ F⊗N), for any 0 ≤ k ≤ N , we define

m

(
∑

1≤i≤N

1IXi 6=X̂i
≥ k

)
= supm1(F

N × FN)

where the supremum is taken over all nonnegative measure m1 ≤ m on (FN × FN ,F⊗N ⊗F⊗N)
which can be decomposed into

m1 =
∑

A⊂{1,...,N}, card(A)=k

m1,A

where m1,A satisfies that its image m̃1,A by the natural projection from FN × FN to FA × FA

verifies m̃1,A(4(FA)) = m1,A(FA×FA) (in this case also the supremum is a maximum, but except
for k = N , the optimal above decomposition is not unique in general).

By now the signification of the second inequality of the proposition is clear. For the first
equality, it means that when, for k ≥ 0 given, we look at the restriction of P

†
0,(x,x) to the set

{KT = k} and consider its projection P
†,k
0,(x,x) to M([0, T ], EN × EN), then it satisfies

P
†,k
0,(x,x)

[
∑

1≤i≤N

1I
(X

(i)
t )0≤t≤T 6=(X̂

(i)
t )0≤t≤T

≥ k

]
= 0
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We could go further and give a meaning to the affirmation that

P
†
0,(x,x)

[
∃ T ≥ 0 :

∑

1≤i≤N

1I
(X

(i)
t )0≤t≤T 6=(X̂

(i)
t )0≤t≤T

≥ KT

]
= 0

but we will not need it (be careful,
∑

1≤i≤N 1I
(X

(i)
t )0≤t≤T 6=(X̂

(i)
t )0≤t≤T

is not a random variable, so one

cannot use its monotonicity with respect to t ≥ 0, rather one has to use a measurable conditioning
by (Kt)t≥0, which can be well-defined here, if one consider only the increasing trajectories of
M(R+,N) with jumps of height 1 . . . ).

Proof:

It is quite similar to the proof of proposition 2.9, we begin by considering a generalized Markov
family on E2N × PN × N, where PN is the set of the subsets of {1, . . . , N}, defined by

∀ t ≥ 0, ∀ (x, y, z, k) ∈ E2N × PN × N,

P
‡
t,(x,y,z,k) =

(
⊗

i6∈z

P
‡
t,xi,xi

⊗

i∈z

(Pt,xi
⊗ Pt,yi

)

)
⊗ δz[t,+∞[

⊗ δk[t,+∞[

Then we introduce a new nonnegative kernel R̂‡ from R+ ×E2N ×PN ×N to E2N ×PN × N,
by taking, for all t ≥ 0 and all (x, y, z, k) ∈ E2N × PN × N,

R̂‡(t, (x, y, z, k)) =
∑

1≤i≤N

δx ⊗ R̂(t, y) ⊗ δz∪{i} ⊗ δk+1

and we perturbe the family (P‡
t,(x,y,z,k))t≥0,(x,y,z,k)∈E2N×PN×N by this kernel to get a new family

(P̂‡
t,(x,y,z,k))t≥0,(x,y,z,k)∈E2N×PN×N. For x ∈ EN , let P

†
0,(x,x) be the image of P̂

‡
0,(x,x,∅,0) under the

projection

M(R+, E
2N × PN × N) 3 (ω1, ω2, ω3, ω4) 7→ (ω1, ω4, ω2) ∈ M(R+, E

N × N × EN)

The affirmations of the proposition now follow quite easily from this construction, for instance
under P̂

‡
0,(x,x,∅,0), for t ≥ 0, Kt (≥ card(Zt)) counts the number of interaction jump(s) proposed

during the time interval [0, t], so (Kt)t≥0 is distributed as a Poisson process of parameter r.

In more general situations, as usual, one has to replace r by sup0≤t≤T, x∈E R(t, x, E), if he is
only interested in what is happening before time T ≥ 0.

2.4 The interacting particle system

For any given number of particles N ∈ N
∗, the Markovian process ξ(N) announced in the intro-

duction will here be constructed directly from the family (Pt,x)t≥0, x∈E, and not merely defined
by a martingale problem, as it was the case in [6]. There are three reasons for this choice: first
we believe that it emphasizes the close links between the object under study, (ηt)t≥0, and the
approximating scheme (ξ(N))N≥1, which are both deduced directly from the same basic family
(Pt,x)t≥0, x∈E , and it gives a way to sample the interacting particle processes in practice, at least
under the assumption that one knows how to do it wrt Pt,x, for any t ≥ 0 and x ∈ E. Secondly,
the direct construction is nicely adapted to coupling arguments. The last reason is even more
technical: if one wants to start from the martingale problems, one will have to consider a priori
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a set of functions on [0, T ] × EN , for T ≥ 0 given, which in some sense is a (space) tensorization
of AT (cf [6]). But in general this domain is too small for our purposes, because it is strictly
included in the domain of functions giving rise to natural martingales relatively to ξ(N), and one
would have to extend it via some closures. As we will see, it is more convenient to first tensorize
the the family (Pt,x)t≥0, x∈E , to perturbe it in a bounded way, and then to consider the general
associated martingale problem.

Quite obviously, we will use the above sections to construct the interactions between the co-
ordinates of ξ(N). The underlying “unperturbed” Markovian family is the one previously defined,
(Pt,x)t≥0,x∈EN , corresponding to independent evolutions of coordinates according to (Pt,x)t≥0,x∈E .

For any given horizon T ≥ 0, let us denote by (AT,N , L̃(N)
T ) the generator associated as before

(recall that it is contingently multi-valued) to this Markovian family. The third point alluded
to in the above introductory paragraph just amounts to the observation that in general, AT,N is
strictly larger than the set of functions f : [0, T ] × EN → R which can be written as

∀ t ∈ [0, T ], ∀ x = (x1, · · · , xN) ∈ EN , f(t, x) =
∏

1≤i≤N

fi(t, xi)

with f1, · · · , fN ∈ AT .
In order to define the interaction we want to add to the L̃(N)

T , for T ≥ 0, let us introduce the
following notation: for all 1 ≤ i, j ≤ N and all x = (x1, · · · , xN) ∈ EN , xi,j is the element of EN

given by

∀ 1 ≤ k ≤ N, xi,j
k =

{
xk , if k 6= i
xj , if k = i

Then we consider the locally bounded nonnegative kernel R̂ from R+ ×EN to EN defined by

∀ t ≥ 0, ∀ x = (x1, · · · , xN ) ∈ EN , R̂(t, x) =
1

N

∑

1≤i,j≤N

Ut(xj)δxi,j

and will rather write L̂(N)
T for its associated generator on [0, T ] × EN :

∀ f ∈ Bb([0, T ] × EN ), ∀ (t, x) ∈ [0, T ] × EN ,

L̂(N)
T (f)(t, x) =

1

N

∑

1≤i,j≤N

Ut(xj)(f(t, xi,j) − f(t, x))

Now we are in position, via the results of section 2.2, to construct the Markovian family
(P̂t,x)t≥0,x∈EN whose associated generators are the (AT,N ,L(N)

T ), for all T ≥ 0, where

L(N)
T = L̃(N)

T + L̂(N)
T

It appears that at time 0 ≤ t ≤ T , the generator L̂(N)
T (t, · ) have a tendency to choose among

the coordinates of x ∈ EN a xj with a large Ut(xj) and to replace an other coordinate by this

one. This is a Moran selection step with cost function Ut, and the operator (AT,N ,L(N)
T ) can be

seen as a genetic type generator based on the mutation (or a priori) generator L̃(N)
T which makes

the coordinates explore independently the space E.

If η0 is the initial law which has been seen in the introduction, we are particularly interested
in the interacting particle system (ξ

(N,i)
t )t≥0,1≤i≤N , whose law is the probability, denoted by P for

simplicity, defined on M(R+, E
N) by

∀ A ∈ M(R+, E
N), P(A) =

∫

EN

η⊗N
0 (dx)P̂0,x(A)
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ie we will assume that initially the coordinates of ξ
(N)
0 are independent and identically distributed

according to η0, but a careful study of the following proofs would indicate how much this assump-
tion can be weakened.

3 Evolution of the tensorized empirical measures

The purpose of this section is to revisit some weak convergence results given in [6] in order to
improve and extend them. In the classical approach (cf for instance [15] or [10]), one deduces
the weak propagation from the strong one, but we will proceed in the other way round, getting
the strong property in section 4 from a generalization of the weak form presented here. More
precisely, our main goal is to show

Theorem 3.1 For all T > 0, n ∈ N
∗, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T and ϕ ∈ Bb(E

n), we are
assured of the bound

∣∣∣E[η
(N)
t1 ⊗ · · · ⊗ η

(N)
tn (ϕ)] − ηt1 ⊗ · · · ⊗ ηtn(ϕ)

∣∣∣ ≤ εT

(
n2

N

)
‖ϕ‖

where the empirical measures of the lhs were defined in (2) and where εT : R+ → [0, 2] is an
increasing function depending on T (through the quantity TuT , the following computations will
give it explicitly), whose behaviour in zero is given by

lim
a→0+

εT (a)

a
= 14 + 28uTT [1 + exp(uTT )]

The case n = 1 could easily be deduced from the estimations proved in [6], nevertheless, in
order to deal with the general situation, we have to develop a new approach, which will also
enable us to recover this case n = 1, but under the less restrictive hypotheses considered here.

The basic idea is to adopt a “dynamical point of view”, in some sense interpreting a quantity
closely related to η

(N)
t1 ⊗ · · · ⊗ η

(N)
tn (ϕ) as a terminal value, so that we can find nice martingales

to calculate its expectation. Unfortunatly its cautious development is as long as its principle is
simple.

For T > 0, N, n ∈ N
∗ and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T fixed, let us denote by η̃

(N)
t1 ,···,tn the

“integrated” law on En defined by

∀ ϕ ∈ Bb(E
n), η̃

(N)
t1,···,tn(ϕ) = E[η

(N)
t1 ⊗ · · · ⊗ η

(N)
tn (ϕ)]

Then the previous theorem just says that in the total variation sense, we have

∥∥∥η̃(N)
t1,···,tn − ηt1 ⊗ · · · ⊗ ηtn

∥∥∥
tv

≤ εT

(
n2

N

)

As we will explain it latter on, the dependence of the upper bound in n2/N , with T > 0 fixed,
implies (through the second coupling presented in section 4.2) the same type of convergence as
that obtained by Graham and Méléard [10] for the strong propagation of chaos. But if we were
less exacting on this point, it could be possible to give a little more straightforward proof of a
weaker upper bound with respect to n.
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3.1 Actions of the generators

As we are interested in getting results on empirical measures, we will attempt to understand more
particularly the action of the generators L̃(N)

T and L̂(N)
T , for T ≥ 0 and n ∈ N

∗, on functions of
AT,N whose dependence on the space parameter goes more or less naturally through the mapping

m(N) : EN → P(E)

x = (xi)1≤i≤N 7→ m(N)(x) =
1

N

∑

1≤i≤N

δxi

(it simply means that we consider the particles as indistinguishable).
This is what we have already done in [6] for the case n = 1. Here we will have to consider

probabilities on En, and one could think that the natural object replacing m(N)(x), for x ∈ EN ,
is (m(N)(x))⊗n, but it seems that (for 1 ≤ n ≤ N) it is preferable to first look at

m�(N,n)(x)
def.
=

1

Nn

∑

(i1,i2,···,in)∈I(N,n)

δ(xi1
,xi2

,···,xin) ∈ P(En)

where I(N, n) is the set of (i1, i2, · · · , in) ∈ {1, · · · , N}n such that all il and ik are different for
1 ≤ l 6= k ≤ n.

More precisely, we will concentrate our study on mappings of the following form

Ff : [0, T ] × EN → R

(t, x) 7→ m�(N,n)(x)[f(t, · )]

where T ≥ 0 and f ∈ AT,n are fixed. The time dependence appearing above will be important in
what follows.

We remark that the definition of m�(N,n) and the assumed regularity of f imply that Ff ∈
AT,N , but note that this would not have been so if we had considered (m(N))⊗n instead of m�(N,n).

Indeed, for (i1, i2, · · · , in) ∈ I(N, n) and f ∈ AT,n, let us designate by f (i1,i2,···,in) the function
belonging to AT,N and defined by

∀ 0 ≤ t ≤ T, ∀ x = (x1, · · · , xN) ∈ EN , f (i1,i2,···,in)(t, x) = f(t, xi1 , xi2 , · · · , xin)

(if (i1, i2, · · · , in) ∈ {1, · · · , N}n \I(N, n), it is not clear that the above mapping belongs to AT,N),
then we have

Ff =
1

Nn

∑

(i1,i2,···,in)∈I(N,n)

f (i1,i2,···,in) ∈ AT,N

Now taking into account the obvious observation from the martingale problems that

L̃(N)
T (f (i1,i2,···,in)) = (L̃(n)

T (f))(i1,i2,···,in)

we get the following result:

Lemma 3.2 Assume that 1 ≤ n ≤ N and let f ∈ AT,n. Then the next commutation relation
holds

L̃(N)
T (Ff) = F

L̃
(n)
T

(f)
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In fact this lemma is true for all n ≥ 1, since for n > N , the usual conventions give m�n(x) ≡ 0.

In order to describe the action of L̂(N)
T on functions of type Ff , we take into consideration a

renormalisation of the Moran kernel from R+ × En to En, and more accurately we will need the
restriction to Bb([0, T ] × En) of its associated generator, which is just given by

lT,N,n
def.
=

n

N
L̂(n)

T

Its interest comes from the

Lemma 3.3 For 1 ≤ n ≤ N and T ≥ 0 fixed, we consider any function f ∈ Bb([0, T × En).
Then we get that

L̂(N)
T (Ff) = FŪ(n)f+lT,N,n(f) − FŪ(n)Ff

where Ū (n) stands for the restriction on [0, T ] × En of mapping defined by

∀ t ≥ 0, ∀ y = (yi)1≤i≤n ∈ En, Ū(n)(t, y) =
∑

1≤i≤n

U(t, yi)

Proof:

This is just basic combinatorial computations: for all 0 ≤ t ≤ T and all x = (xi)1≤i≤N ∈ EN ,

L̂(N)
T (Ff)(t, x)

=
1

N

∑

1≤i,j≤N

(m�(N,n)(xi,j)[ft] −m�(N,n)(x)[ft])Ut(xj)

=
1

Nn+1

∑

1≤i,j≤N

∑

(i1,...,in)∈I(N,n)

(ft(x
i,j
i1
, . . . , xi,j

in
) − ft(xi1 , . . . , xin))Ut(xj)

=
1

Nn+1

∑

(i1,...,in)∈I(N,n)

∑

1≤k≤n

∑

1≤j≤N

(ft(x
ik ,j
i1
, . . . , xik ,j

in
) − ft(xi1 , . . . , xin))Ut(xj)

=
1

Nn+1

∑

(i1,...,in)∈I(N,n)

∑

1≤k≤n

∑

1≤j≤N

ft(xi1 , . . . , xik−1
, xj, xik+1

, . . . , xin)Ut(xj)

−nm(N)(x)[Ut]m
�(N,n)(x)[ft]

=
N − n+ 1

Nn+1

∑

1≤k≤n

∑

(i1,...,ik−1,ik+1,...,in)∈I(N,n−1)

j∈{i1,...,ik−1,ik+1,...,in}

ft(xi1 , . . . , xik−1
, xj, xik+1

, . . . , xin)Ut(xj)

+
N − n+ 1

Nn+1

∑

1≤k≤n

∑

(i1,...,ik−1,ik+1,...,in)∈I(N,n−1)

j 6∈{i1,...,ik−1,ik+1,...,in}

ft(xi1 , . . . , xik−1
, xj, xik+1

, . . . , xin)Ut(xj)

−nm(N)(x)[Ut]m
�(N,n)(x)[ft]

=
N − n+ 1

Nn+1

∑

1≤k≤n

∑

l∈{1,...,n}\{k}

∑

(i1,...,ik−1,ik+1,...,in)∈I(N,n−1)

ft(xi1 , . . . , xik−1
, xil, xik+1

, . . . , xin)Ut(xj)

+
N − n+ 1

Nn+1

∑

(i1,...,in)∈I(N,n)

ft(xi1 , . . . , xin)
∑

1≤k≤n

Ut(xik)

−nm(N)(x)[Ut]m
�(N,n)(x)[ft]
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Note that the intermediate term in the last expression is

N − n+ 1

N
m�(N,n)(ftŪ

(n)
t )

so it just remains to treat the first term which we decompose into the two quantities:

1

Nn+1

∑

1≤k≤n

∑

l 6=k

∑

(i1,...,in)∈I(N,n−1)

(ft(xi1 , . . . , xik−1
, xil , xik+1

, . . . , xin) − ft(xi1 , . . . , xin))Ut(xil)

+
1

Nn+1

∑

1≤k≤n

∑

l 6=k

∑

(i1,...,in)∈I(N,n−1)

ft(xi1 , . . . , xin)Ut(xil)

=
1

Nn

∑

(i1,...,in)∈I(N,n)

lT,N,n(f)(t, xi1 , . . . , xin)

+
n− 1

Nn+1

∑

(i1,...,in)∈I(N,n)

f(t, xi1 , . . . , xin)Ū
(n)
t (xi1 , . . . , xin)

= m�(N,n)(x)[lT,N,n(f)(t, ·)] +
n− 1

N
m�(N,n)(x)(ftŪ

(n)
t )

So in the end, we obtain that for all 0 ≤ t ≤ T and all x ∈ EN ,

L̂(N)
T (Ff)(t, x) = m�(N,n)(x)[Ū

(n)
t ft + lT,N,n(f)(t, ·)] − nm(N)(x)[Ut]m

�(N,n)(x)[ft]

= m�(N,n)(x)[Ū
(n)
t ft + lT,N,n(f)(t, ·)] −m�(N,n)(x)[Ū

(n)
t ]m�(N,n)(x)[ft]

which is the announced result.

This leads us to consider for 1 ≤ n ≤ N , (P
�(N,n)
t,x )t≥0,x∈En the Markovian family on En

construct as in section 2.4 by perturbing with the bounded operators lT,N,n, for T ≥ 0, the
generators of the n-product of independent coordinates evolving according to (Pt,x)t≥0,x∈E . We
will also denote by Y = (Yt)t≥0 the canonical coordinate process on M(R+, E

n).
Besides, the horizon T ≥ 0 and a function ϕ ∈ Bb(E

n) being fixed, we introduce the mapping
defined on [0, T ] × En by

∀ 0 ≤ t ≤ T, ∀ y ∈ En, G
�(N,n)
T,ϕ (t, y) = E

�(N,n)
t,y

[
exp

(∫ T

t

Ū (n)(s, Ys) ds

)
ϕ(YT )

]

To see its interest, let us furthermore define a process ΓT,ϕ = (ΓT,ϕ(t))0≤t≤T by

∀ 0 ≤ t ≤ T, ΓT,ϕ(t) = exp

(∫ t

0

nη(N)
s (Us) ds

)
η
�(N,n)
t (G

�(N,n)
T,ϕ (t, ·))

where by definition η
�(N,n)
t = m�(N,n)(ξ

(N)
t ).

Then we have

Proposition 3.4 The process ΓT,ϕ is a martingale.

Proof:

We begin by looking at the process given by

∀ 0 ≤ t ≤ T, Rt
def.
= η

�(N,n)
t (G

�(N,n)
T,ϕ (t, ·))
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In order to show how it can give rise to a martingale, we have to see that HT,ϕ belongs to AT,N

and to calculate L(N)
T (HT,ϕ), where the mapping HT,ϕ is defined on [0, T ]×EN by HT,ϕ = F

G
�(N,n)
T,ϕ

.

But according to the corollary 2.7, we know that G
�(N,n)
T,ϕ ∈ AT,n and that

∀ 0 ≤ t ≤ T, ∀ y ∈ En, L̃(n)
T (G

�(N,n)
T,ϕ )(t, y) = −Ū (n)

t (y)G
�(N,n)
T,ϕ (t, y) − lT,N,n(G

�(N,n)
T,ϕ )(t, y)

Now taking into account the lemmas 3.2 and 3.3, it appears that

∀ 0 ≤ t ≤ T, ∀ x ∈ EN , L(N)
T (HT,ϕ)(t, x) = −nm(N)(x)[Ut]HT,ϕ(t, x)

so
(
Rt + n

∫ t

0

η(N)
s [Us]Rs ds

)

0≤t≤T

is a martingale.
Then the proposition can be deduced without difficulty, via standard manipulations, under

the precautions already presented in the proof of lemma 2.1.

More generally, the same arguments show that for all 0 ≤ t ≤ T and for all x ∈ EN , the
process

(
exp

(∫ s

t

nη(N)
u (Uu) du

)
η�(N,n)

s (G
�(N,n)
T,ϕ (s, ·))

)

t≤s≤T

is a martingale under P̂t,x, with respect to the usual filtration.

Now let us define for t ≥ 0, the random measure

γ
(N)
t = exp

(∫ t

0

η(N)
s (Us) ds

)
η

(N)
t

The previous martingales will enable us to approximate the quantity

E[γ
(N)
t1 ⊗ γ

(N)
t2 ⊗ · · · ⊗ γ

(N)
tn (ϕ)]

where n ∈ N
∗, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T and ϕ ∈ Bb(E

n).
But once again, we have to introduce a new object, looking like a generalisation/composition

of the G
�(N,n)
T,ϕ . It is a family of operators, the K

�(N,n)
t0,t1,...,tn, indexed by n ∈ N

∗ and 0 ≤ t0 ≤ t1 ≤
· · · ≤ tn, and acting respectively on the Bb(E

n). They are defined by induction on n ∈ N
∗:

- When n = 1, we are only considering a Feynman-Kac semigroup associated to our initial
Markovian family (Pt,x)t≥0,x∈E:

∀ 0 ≤ t0 ≤ t1, ∀ ϕ ∈ Bb(E), ∀ y ∈ E, K
�(N,1)
t0,t1 (ϕ)(y) = Et0,y

[
exp

(∫ t1

t0

Us(Xs) ds

)
ϕ(Xt1)

]

- Then, assuming that all the operators K
�(N,n)
t0,t1,...,tn have been constructed, for a given n ≥ 1,

we define

∀ 0 ≤ t0 ≤ · · · ≤ tn+1, ∀ ϕ ∈ Bb(E
n+1), ∀ y ∈ En+1, K

�(N,n+1)
t0,t1,...,tn+1

(ϕ)(y) = G
�(N,n+1)
t1,Ψt1,t2,...,tn+1

(t0, y)
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where Ψt1,t2,...,tn is the mapping given by

∀ z = (z1, . . . , zn+1) ∈ En+1, Ψt1,t2,...,tn+1(z) = K
�(N,n)
t1,t2,...,tn+1

(ϕz1)(z2, . . . , zn)

(as we will often use it from now on, let us recall that we are assuming that the following
convention is enforced: when some variables are put in the subscript of a function, it means that
we are considering the function where these variables are fixed, eg ϕz1 is ϕ(z1, ·), for any given
z1 ∈ E).

We will give an interpretation of the above operators in next section, nevertheless to justify
their study, we begin by presenting why they are natural in our context.

Proposition 3.5 For all n ∈ N
∗, all 0 ≤ t1 ≤ · · · ≤ tn and all ϕ ∈ Bb(E

n), we have the
estimation

∣∣∣E[γ
(N)
t1 ⊗ · · · ⊗ γ

(N)
tn (ϕ)] − η⊗n

0 [K
�(N,n)
0,t1,...,tn(ϕ)]

∣∣∣ ≤ i(N, n)

1 + i(N, n)
‖ϕ‖ η⊗n

0 [K
�(N,n)
0,t1,...,tn(1I)]

where

i(N, n) = 1 −
∏

1≤i≤n−1

(
1 − i

N

)
=

Nn − card(I(N, n))

Nn

Proof:

We will look at the lhs as a telescopic sum. The basic computation comes directly from the
note after the proposition 3.4, via an application of the Markov property at time tp, and says that
for any 1 ≤ p ≤ n− 1, we have

E

[∫
En−p

tp,tp+1
η
�(N,n−p)
tp+1

[K
�(N,n−p−1)
tp+1,...,tn (ϕz1,...,zp,·)(·)] En−p

0,tp γ
(N)
t1 (dz1) · · ·γ(N)

tp (dzp)

]

= E

[∫
η
�(N,n−p)
tp [G

�(N,n−p)

tp+1,K
�(N,n−p−1)
tp+1,...,tn

(ϕz1,...,zp,·)(·)
(tp, ·)] En−p

0,tp γ
(N)
t1 (dz1) · · ·γ(N)

tp (dzp)

]

= E

[∫
η
�(N,n−p)
tp [K

�(N,n−p)
tp,...,tn (ϕz1,...,zp−1)] En−p

0,tp γ
(N)
t1 (dz1) · · ·γ(N)

tp (dzp)

]

where we have taken the convention that K
�(N,0)
tn is the identity operator, for any tn ≥ 0, and

where the following notation has been used:

∀ 0 ≤ s ≤ t, Es,t = exp

(∫ t

s

η(N)
u (Uu) du

)

Let us remark that we can write

η
(N)
tp ⊗ η

�(N,n−p)
tp − η

�(N,n−p+1)
tp =

1

Nn−p+1

∑

(ip,...,in)∈I(N,n−p)

∑

i∈{ip,...,in}

δ
(ξ

(N,i)
tp

,ξ
(N,ip)
tp

,...,ξ
(N,in)
tp

)

so at any fixed (z1, . . . , zp−1) ∈ Ep−1, we get

∣∣∣E
[∫

η
�(N,n−p)
tp [K

�(N,n−p)
tp,...,tn (ϕz1,...,zp−1)] En−p

0,tp γ
(N)
t1 (dz1) · · ·γ(N)

tp (dzp)

]

−E

[∫
En−p+1

tp−1,tp η
�(N,n−p+1)
tp [K

�(N,n−p)
tp,...,tn (ϕz1,...,zp−1,·)(·)] En−p+1

0,tp−1
γ

(N)
t1 (dz1) · · ·γ(N)

tp−1
(dzp−1)

] ∣∣∣
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=
1

N

∣∣∣∣∣E
[
∑

p≤k≤n

∫
η
�(N,n−p)
tp [K

�(N,n−p)
tp,...,tn (ϕ

z1,...,zp−1,ξ
(N,ik)
tp

)] En−p+1
0,tp γ

(N)
t1 (dz1) · · ·γ(N)

tp (dzp−1)

]∣∣∣∣∣

≤ ‖ϕ‖ 1

N
E

[
∑

p≤k≤n

∫
η
�(N,n−p)
tp [K

�(N,n−p)
tp,...,tn (1I

z1,...,zp−1,ξ
(N,ik)
tp

)] En−p+1
0,tp γ

(N)
t1 (dz1) · · ·γ(N)

tp (dzp−1)

]

Now summing these estimations for 1 ≤ p ≤ n− 1, and taking into account that for p = 0 we
also have

E

[
En

0,t1
η
�(N,n)
t1 [K

�(N,n−1)
t1,...,tn (ϕ·)(·)]

]
= E

[
η
�(N,n)
0 [K

�(N,n)
t0,...,tn (ϕ)]

]

we obtain that∣∣∣E[γ
(N)
t1 ⊗ · · · ⊗ γ

(N)
tn (ϕ)] − E[η

�(N,n)
0 [K

�(N,n)
0,t1,...,tn(ϕ)]

∣∣∣

≤
∑

1≤p≤n−1

∣∣∣E
[∫

En−p
tp,tp+1

η
�(N,n−p)
tp+1

[K
�(N,n−p−1)
tp+1,...,tn (ϕz1,...,zp,·)(·)] En−p

0,tp γ
(N)
t1 (dz1) · · ·γ(N)

tp (dzp)

]

−E

[∫
En−p+1

tp−1,tp η
�(N,n−p+1)
tp [K

�(N,n−p)
tp,...,tn (ϕz1,...,zp−1,·)(·)] En−p+1

0,tp−1
γ

(N)
t1 (dz1) · · ·γ(N)

tp−1
(dzp−1)

] ∣∣∣

≤ ‖ϕ‖
N

∑

1≤p≤n−1

E

[
∑

p≤k≤n

∫
η
�(N,n−p)
tp [K

�(N,n−p)
tp,...,tn (1I

z1,...,zp−1,ξ
(N,ik)
tp

)] En−p+1
0,tp γ

(N)
t1 (dz1) · · ·γ(N)

tp (dzp−1)

]

= ‖ϕ‖
∣∣∣E[γ

(N)
t1 ⊗ · · · ⊗ γ

(N)
tn (1I)] − E[η

�(N,n)
0 [K

�(N,n)
0,t1,...,tn(1I)]

∣∣∣
But let us come back to the above intermediate step in the case ϕ = 1I. Using the fact that

the expression

K
�(N,n−p)
tp,...,tn (1I

z1,...,zp−1,ξ
(N,i)
tp

)

does not depend on the choice of 1 ≤ i ≤ N , we realize that

η
(N)
tp ⊗ η

�(N,n−p)
tp [K

�(N,n−p)
tp,...,tn (1Iz1,...,zp−1,·)(·)] =

(
1 − n− p

N

)
η
�(N,n−p+1)
tp [K

�(N,n−p)
tp,...,tn (ϕz1,...,zp−1,·)(·)]

So considering all the previous steps, we get the equality

E[γ
(N)
t1 ⊗ · · · ⊗ γ

(N)
tn (1I)] =

∏

1≤i≤n−1

(
1 − i

N

)
E[η

�(N,n)
0 [K

�(N,n)
0,t1,...,tn(1I)]

from which we deduce that∣∣∣E[γ
(N)
t1 ⊗ · · · ⊗ γ

(N)
tn (1I)] − E[η

�(N,n)
0 [K

�(N,n)
0,t1,...,tn(1I)]

∣∣∣ ≤ i(N, n)E[η
�(N,n)
0 [K

�(N,n)
0,t1,...,tn(1I)]

Then we also notice, due to the initial independence of the particles, that for any ϕ ∈ Bb(E
n),

E[η
�(N,n)
0 [ϕ]] =

∏

1≤i≤n

(
1 − i

N

)
η⊗n

0 [ϕ]

from where follows the result announced in the proposition.

Note that classical computations show that

i(N, n) ≤ (n− 1)2

N
(11)

The purpose of the next section is to evaluate the operators K
�(N,n)
0,t1,...,tn , for n ∈ N

∗ and 0 ≤
t1 ≤ · · · ≤ tn ≤ T .
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3.2 Estimates on Moran semigroups

We will use here a preliminary coupling argument to give an upper bound on the difference
between K

�(N,n)
0,t1,...,tn and K

⊗(N,n)
0,t1,...,tn, for n ∈ N

∗ and 0 ≤ t1 ≤ · · · ≤ tn ≤ T , where the last oper-
ator is constructed in the same way as the former, but assuming that the coordinates evolves
independently.

More precisely, for fixed 1 ≤ n ≤ N , and ϕ ∈ Bb(E
n), we define

∀ 0 ≤ t0 ≤ t1, ∀ y ∈ En, G
⊗(N,n)
t1,ϕ (t0, y)

def.
= Et,y

[
exp

(∫ T

t

Ū (n)(Ys) ds

)
ϕ(YT )

]

Then we define the operators K
⊗(N,n)
t0,t1,...,tn , also indexed by n ∈ N

∗ and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn,
and acting respectively on the Bb(E

n), by induction on n ∈ N
∗:

- When n = 1, we take the sames as before:

∀ 0 ≤ t0 ≤ t1, K
⊗(N,1)
t0,t1 = K

�(N,1)
t0,t1

- Next, assuming that all the operators K
⊗(N,n)
t0,t1,...,tn have been constructed, for a given n ≥ 1,

we define

∀ 0 ≤ t0 ≤ · · · ≤ tn+1, ∀ ϕ ∈ Bb(E
n+1), ∀ y ∈ En+1,

K
⊗(N,n+1)
t0,t1,...,tn+1

(ϕ)(y) = G
⊗(N,n+1)

t1,K
⊗(N,n)
t1,t2...,tn

(ϕ·(·))
(t0, y)

In order to take advantage of the considerations of section 2.3, we have to interpret the above
operators as something looking as the semigroups associated to some Markovian processes, one
being seen as a bounded perturbation of the other.

So let us start with the “tensorized” operators, which will play the role of the “unperturbed”
ones. We assume that n ∈ N

∗ and 0 ≤ t1 ≤ · · · ≤ tn−1 are fixed. We will construct a locally

bounded function V : R+ × En → R+ and for any given y ∈ En, a probability P̌
⊗(N,n)
0,y on

(M(R+, E
n),M(R+, E

n)) such that for all tn ≥ tn−1, all y ∈ En and all ϕ ∈ Bb(E
n),

K
⊗(N,n)
0,t1,...,tn(ϕ)(y) = Ě

⊗(N,n)
0,y

[
exp

(∫ tn

0

V (s, Ys) ds

)
ϕ(Ytn)

]
(12)

(as usual, Y is the canonical process).
The latter probability will in fact be a product probability, each coordinate evolving indepen-

dently (but not according to the same law): if y = (yi)1≤i≤n,

P̌
⊗(N,n)
0,y =

⊗

1≤i≤n−1

P
(ti)
0,yi

⊗
P0,yn

where for t ∈ R+ and z ∈ E, P
(t)
0,z is just the image of P0,z under the mapping Jt : M(R+, E) →

M(R+, E) defined by

∀ ω ∈ M(R+, E), ∀ s ≥ 0, Xs(Jt(ω)) = Xs∧t(ω)

Clearly, these probabilities can be embedded into a Markovian familly (P̌
⊗(N,n)
t,y )t≥0,y∈En , by

taking more generally

∀ t ≥ 0, ∀ y = (yi)1≤i≤n ∈ En, P̌
⊗(N,n)
t,y =

⊗

1≤i≤n−1

Jt∨ti(Pt,yi
)
⊗

Pt,yn
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where the Js, for s ≥ t, are rather seen as acting on M([t,+∞[, E), and note that Jt(Pt,z) is the
Dirac mass at the trajectory of a nonmoving particle starting from z ∈ E at time t ≥ 0.

The definition of V is also very simple:

∀ t ≥ 0, ∀ y = (yi)1≤i≤n ∈ En,

V (t, y) =

{ ∑
i≤j≤n U(t, yj) , if there exists 1 ≤ i ≤ n− 1 such that ti−1 ≤ t < ti

U(t, yn) , if t ≥ tn−1

Immediate computations shows that (12) is fulfilled.

Next, but n ∈ N
∗ and 0 ≤ t1 ≤ · · · ≤ tn−1 still fixed, we want to construct for any given

y ∈ En, a probability P̌
�(N,n)
0,y on (M(R+, E

n),M(R+, E
n)) such that for all tn ≥ tn−1, all y ∈ En

and all ϕ ∈ Bb(E
n),

K
�(N,n)
0,t1,...,tn(ϕ)(y) = Ě

�(N,n)
0,y

[
exp

(∫ tn

0

V (s, Ys) ds

)
ϕ(Ytn)

]
(13)

and it is possible to do it via the perturbation technics of section 2.2. So we just have to describe
the corresponding nonnegative kernel R̂ from R+ × En to En:

∀ t ≥ 0, ∀ y = (yi)1≤i≤n ∈ En,

R(t, x, ·) =

{
1
N

∑
i≤j 6=k≤nU(t, yk)δyj,k , if there exists 0 ≤ i ≤ n− 1 such that ti−1 ≤ t < ti

0 , if t ≥ tn−1

Again, direct and not very stimulating computations show that (13) is satisfied, where the

Markovian family (P̌
�(N,n)
t,y )t≥0,y∈En is the perturbation of (P̌

⊗(N,n)
t,y )t≥0,y∈En by R̂.

Now we are in position to use the results of section 2.3.

Proposition 3.6 For all T ≥ 0, all n ∈ N
∗, all 0 ≤ t1 ≤ · · · ≤ tn ≤ T , all y ∈ En and all

ϕ ∈ Bb(E
n), we are assured of the bound

∣∣∣K�(N,n)
0,t1,...,tn[ϕ](y) −K

⊗(N,n)
0,t1,...,tn[ϕ](y)

∣∣∣ ≤ ε̃T

(
(n− 1)n

N

)
‖ϕ‖K⊗(N,n)

0,t1,...,tn [1I](y)

where for any a ≥ 0,

ε̃T (a) = 2(1 − exp[−auTT ]) + exp([exp(uTT ) − 1]auTT ) − 1

which is equivalent to

uTT (1 + exp(uTT ))a

for small a > 0.

Proof:

As usual, we start by fixing the horizon T ≥ 0 and we work on the interval [0, T ]. Let

P be a coupling of Ě
⊗(N,n)
0,y ⊗ ν(r) and Ě

�(N,n)
0,y satisfying the property of proposition 2.10, with

r = (n−1)n
N

uT . Then we can write, with the notations introduced there (but replacing X by Y ):

∣∣∣K⊗(N,n)
0,t1,...,tn [ϕ](y) −K

�(N,n)
0,t1,...,tn [ϕ](y)

∣∣∣
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=

∣∣∣∣E
[
exp

(∫ tn

0

V (s, Ys) ds

)
ϕ(Ytn) − exp

(∫ tn

0

V (s, Ŷs) ds

)
ϕ(Ŷtn)

]∣∣∣∣

=

∣∣∣∣∣
∑

k≥1

E

[(
exp

(∫ tn

0

V (s, Ys) ds

)
ϕ(Ytn) − exp

(∫ tn

0

V (s, Ŷs) ds

)
ϕ(Ŷtn)

)
1I{KT =k}

]∣∣∣∣∣

≤
∣∣∣∣∣
∑

k≥1

E

[
exp

(∫ tn

0

V (s, Ys) ds

)(
ϕ(Ytn) − ϕ(Ŷtn)

)
1I{KT =k}

]∣∣∣∣∣

+

∣∣∣∣∣
∑

k≥1

E

[(
exp

(∫ tn

0

V (s, Ys) ds

)
− exp

(∫ tn

0

V (s, Ŷs) ds

))
ϕ(Ŷtn)1I{KT =k}

]∣∣∣∣∣

≤ 2 ‖ϕ‖E

[
exp

(∫ tn

0

V (s, Ys) ds

)
1I{KT≥1}

]

+ ‖ϕ‖
∑

k≥1

E

[∣∣∣∣exp

(∫ tn

0

V (s, Ys) ds

)
− exp

(∫ tn

0

V (s, Ŷs) ds

)∣∣∣∣ 1I{KT =k}

]

≤ 2 ‖ϕ‖E

[
exp

(∫ tn

0

V (s, Ys) ds

)]
P[KT ≥ 1]

+ ‖ϕ‖
∑

k≥1

E

[
exp

(∫ tn

0

V (s, Ys) ds

)
(exp(kTuT ) − 1)1I{KT =k}

]

≤ 2 ‖ϕ‖K⊗(N,n)
0,t1,...,tn [1I](y)(1 − exp(−rT ))

+ ‖ϕ‖K⊗(N,n)
0,t1,...,tn [1I](y)

∑

k≥1

(exp(kTuT ) − 1)
(rT )k

k!
exp(−rT )

≤ εT

(
(n− 1)n

N

)
‖ϕ‖K⊗(N,n)

0,t1,...,tn[1I](y)

where we have used that on the set {KT = k}, for k ≥ 0, we are assured of the bound
∫ tn

0

∣∣∣V (s, Ys) − V (s, Ŷs)
∣∣∣ ds ≤ TkuT

(in the sense described in section 2.3).

The above dependence in T is not very nice, this comes from the fact that for large T , KT is
not a good bound on the number of coordinates which are different (which should be bounded
by n !). A more cautious analysis would improve this point.

3.3 Proof of theorem 3.1

We begin by explaining why γ
(N)
t , for t ≥ 0, can be an interesting object to evaluate: mainly

because it should be (and is) an approximation of

γt
def.
= exp

(∫ t

0

ηs(Us) ds

)
ηs

But using the well-known fact (cf. for instance [6], and there is no problem in verifying that
it is also true in our new context) that

Eη0

[
exp

(∫ t

0

Us(Xs) ds

)]
= exp

(∫ t

0

ηs(Us) ds

)
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it appears that for all ϕ ∈ Bb(E),

γt(ϕ) = Eη0

[
exp

(∫ t

0

Us(Xs) ds

)
ϕ(Xt)

]

which is a quantity linear in γ0 = η0, more precisely, the deterministic measure-valued flow (γt)t≥0

is obtained from η0 by the application of the semigroup K⊗(N,1):

∀ t ≥ 0, γt = η0K
⊗(N,1)
0,t (14)

(in the sense of the traditionnal action of kernels on measures).
It was these simple acknowledgements which lead us to believe that the γt should be easy

to compare with the γ
(N)
t , for t ≥ 0, and in fact the latters are estimations without biais of the

formers (cf. [6], or the proposition 3.5 with n = 1). For the higher tensor products (n ≥ 2) this
property is lost (it was foreseeable, because for instance the second order tensors are related to
square mean errors bounds), nevertheless the previous computations enable to bound the error:

Proposition 3.7 For all n ∈ N
∗, all 0 ≤ t1 ≤ · · · ≤ tn and all ϕ ∈ Bb(E

n), we have the following
bound on the biais:

∣∣∣E[γ
(N)
t1 ⊗ · · · ⊗ γ

(N)
tn (ϕ)] − γt1 ⊗ · · · ⊗ γtn(ϕ)

∣∣∣ ≤ ε̂T

(
n(n− 1)

N

)
‖ϕ‖ γt1 ⊗ · · · ⊗ γtn(1I)

where

∀ a ≥ 0, ε̂T (a) = 2ε̃T (a) + a

Proof:

As an immediate consequence of the propositions 3.5 and 3.6 and of the upper bound (11),
we obtain,

∣∣∣E[γ
(N)
t1 ⊗ · · · ⊗ γ

(N)
tn (ϕ)] − η⊗n

0 [K
⊗(N,n)
0,t1,...,tn(ϕ)]

∣∣∣

≤
∣∣∣η⊗n

0 [K
⊗(N,n)
0,t1,...,tn(ϕ) −K

�(N,n)
0,t1,...,tn(ϕ)]

∣∣∣+ i(N, n) ‖ϕ‖ η⊗n
0 [K

�(N,n)
0,t1,...,tn(1I)]

≤ (1 + i(N, n))ε̃T

(
(n− 1)n

N

)
‖ϕ‖ η⊗n

0 [K
⊗(N,n)
0,t1,...,tn(1I)] + i(N, n) ‖ϕ‖ η⊗n

0 [K
⊗(N,n)
0,t1,...,tn(1I)]

≤ ε̂T

(
n(n− 1)

N

)
‖ϕ‖ η⊗n

0 [K
⊗(N,n)
0,t1,...,tn(1I)]

and the result follows from the equality

η⊗n
0 [K

⊗(N,n)
0,t1,...,tn(ϕ)] = γt1 ⊗ · · · ⊗ γtn(ϕ)

which in turn comes from (14) and the product structure.

The above approximation has the interesting property to be “self-improving”:

Proposition 3.8 For all n ∈ N
∗, all 0 ≤ t1 ≤ · · · ≤ tn and all ϕ ∈ Bb(E

n), we have the following
bound on the square mean error:

∣∣∣E[(γ
(N)
t1 ⊗ · · · ⊗ γ

(N)
tn (ϕ) − γt1 ⊗ · · · ⊗ γtn(ϕ))2]

∣∣∣ ≤ ε̄T

(
n2

N

)
‖ϕ‖2 (γt1 ⊗ · · · ⊗ γtn(1I))2

where

∀ a ≥ 0, ε̄T (a) = ε̂T (4a) + 2ε̂T (a)
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Proof:

In order to simplify the notations, let us write

γ
(N)⊗
t1,...,tn = γ

(N)
t1 ⊗ · · · ⊗ γ

(N)
tn

γ⊗t1,...,tn = γt1 ⊗ · · · ⊗ γtn

Then we consider the expansion, for ϕ ∈ Bb(E
n),

E[(γ
(N)⊗
t1,...,tn(ϕ) − γ⊗t1,...,tn(ϕ))2]

= E[(γ
(N)⊗
t1 ,...,tn(ϕ))2] − (γ⊗t1,...,tn(ϕ))2 − 2γ⊗t1,...,tn(ϕ)(E[γ

(N)⊗
t1,...,tn(ϕ)] − γ⊗t1,...,tn(ϕ))

≤
∣∣∣E[γ

(N)⊗
t1,t1,t2,...,tn(ϕ⊗ ϕ)] − γ⊗t1,t1,t2,...,tn(ϕ⊗ ϕ)

∣∣∣ + 2 ‖ϕ‖ γ⊗t1,...,tn(1I)
∣∣∣E[γ

(N)⊗
t1 ,...,tn(ϕ)] − γ⊗t1,...,tn(ϕ)

∣∣∣

≤ ε̂T

(
4n2

N

)
‖ϕ⊗ ϕ‖ γ⊗t1,t1,t2,...,tn(1I) + 2 ‖ϕ‖ γ⊗t1,...,tn(1I)ε̂T

(
n2

N

)
‖ϕ‖ γ⊗t1,...,tn(1I)

= ε̄T

(
n2

N

)
‖ϕ‖2 (γ⊗t1,...,tn(1I))2

More generally, one can found in the same way explicit bounds of any given moment of an
integer order p ≥ 1 (which will always be asymptotically equivalent to a factor times n2/N , when
this quantity is small, as p ≥ 1 and T > 0 are fixed).

The above proposition also emphatizes the basic principle underlying this article: usually in
order to study martingales associated to Markov processes, one looks at their increasing processes,
which are given by the integration along the trajectories of the famous carrés du champs. But
that approach leads to difficulties relative to domains of pregenerators which should be algebras
(cf. for instance [6]). Here in order to avoid these kinds of embarrassing problems, in some sense
we have straightly worked with the squares of the martingales: they are related to the squares of
the functionals we are interested in and since the latters are empirical probabilities acting on some
mappings, their squares can be seen as 2-tensorized empirical measures applied on 2-tensorized
functions, which we study directly (or at least their closely related �-product).

Now the proof of theorem 3.1 is quite a standard task: first we write that

η
(N)
t1 ⊗ · · · ⊗ η

(N)
tn (ϕ) − ηt1 ⊗ · · · ⊗ ηtn(ϕ) (15)

=
1

γ⊗t1,...,tn(1I)

[
γ

(N)⊗
t1,...,tn(ϕ) − γ⊗t1,...,tn(ϕ) + η

(N)
t1 ⊗ · · · ⊗ η

(N)
tn (ϕ)(γ⊗t1,...,tn(1I) − γ

(N)⊗
t1,...,tn(1I))

]

This enables us to get a preliminary bound on the second moment:

E[(η
(N)
t1 ⊗ · · · ⊗ η

(N)
tn (ϕ) − ηt1 ⊗ · · · ⊗ ηtn(ϕ))2]

≤ 2
1

(γ⊗t1,...,tn(1I))2

(
E[(γ

(N)⊗
t1,...,tn(ϕ) − γ⊗t1,...,tn(ϕ))2] + ‖ϕ‖2

E[(γ⊗t1,...,tn(1I) − γ
(N)⊗
t1,...,tn(1I))2]

)

≤ 3ε̄T

(
n2

N

)
‖ϕ‖2

and to conclude we integrate again (15):

E[η
(N)
t1 ⊗ · · · ⊗ η

(N)
tn (ϕ) − ηt1 ⊗ · · · ⊗ ηtn(ϕ)]
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=
1

γ⊗t1,...,tn(1I)

[
E[γ

(N)⊗
t1,...,tn(ϕ) − γ⊗t1,...,tn(ϕ)] + ηt1 ⊗ · · · ⊗ ηtn(ϕ)E[γ⊗t1,...,tn(1I) − γ

(N)⊗
t1,...,tn(1I)]

+E[(η
(N)
t1 ⊗ · · · ⊗ η

(N)
tn (ϕ) − ηt1 ⊗ · · · ⊗ ηtn(ϕ))(γ⊗t1,...,tn(1I) − γ

(N)⊗
t1,...,tn(1I))]

]

≤ 1

γ⊗t1,...,tn(1I)

[
E[γ

(N)⊗
t1,...,tn(ϕ) − γ⊗t1,...,tn(ϕ)] + ‖ϕ‖

∣∣∣E[γ⊗t1,...,tn(1I) − γ
(N)⊗
t1,...,tn(1I)]

∣∣∣

+

√
E[(η

(N)
t1 ⊗ · · · ⊗ η

(N)
tn (ϕ) − ηt1 ⊗ · · · ⊗ ηtn(ϕ))2]

√
E[(γ⊗t1,...,tn(1I) − γ

(N)⊗
t1,...,tn(1I))2]

≤ εT

(
n2

N

)
‖ϕ‖

with

∀ a ≥ 0, εT (a) = 2[(ε̂T (a) + ε̄T (a)) ∧ 1]

4 Quantitative strong propagation of chaos

It is time now to present the strong propagation of chaos which was the pretext for all the
above “preliminaries”. The purpose of this result is to explain the behaviour of the nth first
coordinates of the interacting particle system ξ(N) as n2/N is small and in particular to show they
are asymptotically independent (this property accounts for the name “propagation of chaos” due
to Kac [11], see for instance [15] in a different context: if initially the coordinates are independent,
then in the limit of a large number of particles, any fixed finite number of them end up to be still
independent over bounded time interval, despite the interactions).

So let the horizon T ≥ 0 and the numbers of particles 1 ≤ n ≤ N be fixed, the object under
study is P

(N,{1,...,n})
η0,[0,T ] the law of (ξ

(N,i)
t )1≤i≤n, 0≤t≤T under P. In order to describe its limit, we need

more notations.
Recall that η0 being supposed given, we have at our disposal a flow (ηt)t≥0 of probabilities

defined by (1). Starting from them, we introduce the non-negative kernel R̄ from R+ × E to E
given by

∀ t ≥ 0, ∀ x ∈ E, ∀ A ∈ E , R̄(t, x, A) =

∫

A

Ut(y) ηt(dy)

(informally speaking, an important step in the direction of the whole generality of Graham and
Méléard’s setting [10] would be to let the rhs depend on x ∈ E via Ut).

Then we consider the time-inhomogeneous Markovian family (P̄t,x)t≥0, x∈E which is the per-

turbation of (Pt,x)t≥0, x∈E by R̄. Let X̄
def.
= (X̄t)t≥0 denote the canonical coordinate process on

M(R+,E) under the law

P̄η0

def.
=

∫
η0(dx)P0,x

(for T ≥ 0, we will also write P̄η0,[0,T ] for the law of (X̄t)0≤t≤T on M([0, T ], E)), the initial law η0

being always the same one considered everywhere.

Now we have to justify the “nonlinear” aspect of this process we have alluded to in the
introduction.

Proposition 4.1 For any T ≥ 0, the law of X̄T under P̄η0 is ηT .
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Proof:

We have to verify that for any fixed horizon T ≥ 0 and function ϕ ∈ Bb(E),

E[ϕ(X̄T )] = ηT (ϕ)
def.
= E

[
ϕ(XT ) exp

(∫ T

0

Us(Xs) − ηs(Us) ds

)]

So naturally we consider the mapping defined by

F : [0, T ] × E → R

(t, x) 7→ Et,x

[
ϕ(XT ) exp

(∫ T

t

Us(Xs) − ηs(Us) ds

)]

According to corollary 2.7, the time-space generator of (X̄t)0≤t≤T is given on this function by

∀ 0 ≤ t ≤ T, ∀ x ∈ E, L̄T (F )(t, x) = LT (F )(t, x) +

∫
(F (t, y) − F (t, x))U(t, y) ηt(dy)

= −U(t, x)F (t, x) +

∫
F (t, y)U(t, y) ηt(dy)

from where we get that

E[F (T, X̄T )] = E[F (0, X̄0)] −
∫ T

0

E[U(t, X̄t)F (t, X̄t)] − ηt(UtFt) dt

which can be expressed as

mT (ϕ) = ηT (ϕ) −
∫ T

0

mt(UtFt) − ηt(UtFt) dt (16)

where mt is the law of X̄t, for any t ≥ 0.
This easily implies that

‖mT − ηT‖tv ≤ uTT exp(uTT ) sup
0≤t≤T

‖mt − ηt‖tv

and more generally in the same way we obtain

∀ 0 ≤ t ≤ T, ‖mt − ηt‖tv ≤ uT t exp(uT t) sup
0≤s≤t

‖ms − ηs‖tv

So if t0 > 0 is such that uT t0 exp(uT t0) = 1/2, it appears that mt = ηt for all 0 ≤ t ≤ t0.
Now rather considering (X̄t−t0)t≥t0 and replacing η0 by ηt0 , we obtain that for all t0 ≤ t ≤ 2t0,

mt = ηt. Thus in a finite number of steps, we can conclude that ηT = mT .

Note that from (16) we cannot deduce that

‖mT − ηT ‖tv ≤
∫ T

0

‖mt − ηt‖tv dt

just because we have no measurability results for [0, T ] 3 t 7→ ‖mt − ηt‖tv.

But the main interest of X̄ is that the strong propagation of chaos can be expressed as
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Theorem 4.2 Let CT = 4(exp(uTT ) − 1) + (14 + 28uTT [1 + exp(uTT )])uTT (uTT + 1), then we
are assured of

lim sup
n2/N→0

N

n2

∥∥∥P(N,{1,...,n})
η0,[0,T ] − P̄

⊗n
η0,[0,T ]

∥∥∥
tv

≤ CT

So if up to time T ≥ 0, we are considering only n particles, with n �
√
N , then they are

asymptotically independent and distributed according to P̄η0,[0,T ].
The proof is based on the next two direct coupling arguments, the crucial ingredient being

the theorem 3.1.
Nevertheless, let us mentioned that the dependence of the constant CT in T ≥ 0 is very bad,

except for the small ones, and we are wondering if it would not be possible to improve it by using
this behaviour for small T > 0.

4.1 A first coupling

We will present in this section another very simple interacting system on EN , whose nth first
coordinates have a special behaviour (they take information from the other particles but do not
have influence on them, so globally the system will no longer be exchangeable) but are close
enough to the nth first particles of our previous algorithm (at least for n2/N small).

So we begin by describing this auxilliary interacting particle system which is also of the
general type considered in section 2.3: more precisely, with the usual notations, we perturbe the
Markovian family (Pt,x)t≥0,x∈EN by the kernel Ř(N) defined by

∀ t ≥ 0, ∀ x = (xi)1≤i≤N ∈ EN , Ř(N)(x) =
1

N

N∑

i=1

N∑

j=n+1

U(t, xj)δxi,j

where 1 ≤ n ≤ N are fixed, to get a new Markovian family (P̆t,x)t≥0, x∈EN . So for any T ≥ 0, its

associated generator can be written (AT,N , L̆T ), where

L̆(N)
T = L̃(N)

T + Ľ(N)
T

with the selection generator given by

∀ 0 ≤ t ≤ T, ∀φ ∈ Bb(E
N), ∀ x = (x1, . . . , xN ) ∈ EN ,

Ľ(N)
T (φ)(t, x) =

1

N

N∑

i=1

N∑

j=2

(φ(xi,j) − φ(x)) Ut(xj)

In order to avoid confusion with the canonical process on M(R+, E
N), we will denote by

(ξ
(N,i)
t )1≤i≤n, t≥0 and (ξ̆

(N,i)
t )1≤i≤n, t≥0 the processes appearing in the “explicit” construction of the

families (Pt,x)t≥0, x∈EN and (P̆t,x)t≥0, x∈EN .

The generator Ľ(N)
T is quite similar to the selection operator L̂(N)

T , except that the particles

ξ̆
(N,i)
t , for n ≤ i ≤ N and 0 ≤ t ≤ T , are not permitted to inherite by a selection step the values

of ξ̆
(N,j)
t , for 1 ≤ j ≤ n. Furthermore, the restriction of Ľ(N)

T on functions depending only on the

coordinates whose indices belong to {n+ 1, . . . , N} is equal to L̂(N−n)
T , up to a factor (N − n)/N

and to the reindexing of these indices obtained by adding n.
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Note that if we perturbe (P̆t,x)t≥0, x∈EN by the kernel given at time t ≥ 0 and point x =
(xi)1≤i≤N ∈ EN by

1

N

N∑

i=1

n∑

j=1

U(t, xj)δxi,j

then we end up with the Markovian family of the algorithm we considered before (due to the
unicity of the associated generators). We will use this important feature to show our main result
here:

Proposition 4.3 Let P̆
(N,{1,...,n})
η0,[0,T ] designate the law of (ξ̆

(N,i)
t )1≤i≤n, 0≤t≤T “under”

∫
η⊗N

0 (dx) P̆0,x.
Then we are assured of

∥∥∥P(N,{1,...,n})
η0,[0,T ] − P̆

(N,{1,...,n})
η0,[0,T ]

∥∥∥
tv

≤ 4
n2

N
(exp(uTT ) − 1)

Proof:

As we will use a coupling argument, let us come back to the construction of (ξ
(N)
t )0≤t≤T (the

horizon T ≥ 0 is assumed to be fixed) which follows from the considerations of section 2.2 and 2.4:
we denote by (Sp)p≥1 the proposed selection times (such that the differences (Sp − Sp−1)p≥1 are
independent and identically distributed according to exponential laws of parameter NuT , with the
convention that S0 = 0) and by (Zt)t≥0 the corresponding Poisson process. Let us also consider
the following independent objects: (Ip, Jp)p≥1 a family of independent uniformly distributed ran-
dom variables in {1, · · · , N}2 and (Vp)p≥1 a family of independent uniformly distributed random

variables in [0, 1]. We can assume that for any p ≥ 1, the sampling of ξ
(N)
Sp

knowing “ξ
(N)
Sp−

” is done

according to the next mechanism: we replace the Ip-th coordinate of ξ
(N)
Sp−

by its Jp-th coordinate,

if Vp ≤ USp
(ξ

(N,Jp)
Sp

)/uT , otherwise we take ξ
(N)
Sp

= ξ
(N)
Tp−

(classical acceptation/rejection procedure).
Meanwhile, from the sequence (Ip, Jp)p≥1 we can define a family (Ap)p≥1 of random variables

taking values in the subsets of {1, . . . , N}: we start with A0 = {1, . . . , n} and if Ap has been
defined, we put

Ap+1 =

{
Ap ∪ {Ip+1} , if Jp+1 ∈ Ap

Ap , otherwise

To see its interest, let us remark that using the same intuitive ideas and technical precautions
as those presented in section 2.3, we can construct a process (ξ̆

(N)
t )0≤t≤T whose law will be the

restriction to M([0, T ], EN) of
∫
η⊗N

0 (dx)P̆0,x and which is coupled to (ξ
(N)
t )0≤t≤T in the sense that

the next property is satisfied:

∀ p ≥ 1, ∀ T ∧ Sp ≤ t < T ∧ Sp+1, ∀ n+ 1 ≤ i ≤ N, ξ̆
(N,i)
t 6= ξ

(N,i)
t =⇒ i ∈ Ap

(in particular we are starting with ξ̆
(N)
0 = ξ

(N)
0 ). Heuristically, for p ≥ 0, Ap \ {1, . . . , n} is the set

of subscripts n+ 1 ≤ i ≤ N such that ξ̆
(N,i)
Sp

has a good chance to be different from ξ
(N,i)
Sp

.Then it
appears that on the set

{ZT = 0} t
⊔

p≥1

{ZT = p, ∀ 1 ≤ q ≤ p, Iq 6∈ {1, . . . , n} or Jq 6∈ Ap}

we are assured that (ξ̆
(N,i)
t )1≤i≤n, 0≤t≤T = (ξ

(N,i)
t )1≤i≤n, 0≤t≤T .
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So with the usual conventions inforced, we get that

P[(ξ̆
(N)
t )0≤t≤T 6= (ξ

(N)
t )0≤t≤T ] ≤

∑

p≥1

P[ZT = p, ∃ 1 ≤ q ≤ p, Iq ∈ {1, . . . , n} and Jq ∈ Aq]

=
∑

p≥1

exp(NuTT )
(NuTT )p

p!

n

N2

p∑

q=1

E[card(Aq)]

(here P denotes the underlying probability and not the law of the interacting particle system).

This leads us to consider the sequence (Bp)p≥0
def.
= (card(Ap))p≥0. It is quite clear that it is

an increasing inhomogeneous Markov chain taking values in {n, . . . , N}, whose probabilities of
transition are given by

∀ p ≥ 0, ∀ n ≤ k, l ≤ N, P[Bp+1 = l|Bp = k] =





(N−k)k
N2 , if l = k + 1

1 − (N−k)k
N2 , if l = k

0 , otherwise

So we get that for p ≥ 0,

E[Bp+1] = E[E[Bp+1|Bp]]

= E

[
Bp +

(N − Bp)Bp

N2

]

≤
(

1 +
1

N

)
E[Bp]

≤
(

1 +
1

N

)p+1

E[B0] =

(
1 +

1

N

)p+1

n

and we deduce from this inequality that

P[(ξ̆
(N)
t )0≤t≤T 6= (ξ

(N)
t )0≤t≤T ] ≤

∑

p≥1

exp(−NuTT )
(NuTT )p

p!

n

N2

p∑

q=1

(
1 +

1

N

)q

n

=

(
1 +

1

N

)∑

p≥1

exp(−NuTT )
(NuTT )p

p!

n2

N

((
1 +

1

N

)p

− 1

)

≤ 2
n2

N

[
∑

p≥0

exp(−NuTT )
(uTT (N + 1))p

p!
− 1

]

= 2
n2

N
(exp(uTT ) − 1)

which implies the upper bound of the proposition.

Thus, if we want to know the asymptotic behaviour of P
(N,{1,...,n})
η0,[0,T ] as n2/N is going to zero, it is

sufficient to understand that of P̆
(N,{1,...,n})
η0,[0,T ] . For that purpose we note that under this probability,

(ξ̆
(N,i)
t )n+1≤i≤N, 0≤t≤T is Markovian and has the same law as (ξ

(N−n,i)
t )1≤i≤N−n, 0≤t≤T , if we replace

U by N−n
N
U in the working-out of the latter. We will take advantage of this particularity to

construct our second coupling in next section, via the estimation of theorem 3.1.
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4.2 A second coupling

So the objective here is to find an adequate way to couple P̆
(N,{1,...,n})
η0,[0,T ] with P̄

⊗n
η0,[0,T ], for T ≥ 0 and

1 ≤ n ≤ N fixed.

With this purpose in mind, we begin by analysing more precisely the structure of the former
probability. As we noted before, we can first construct (ξ̆

(N,i)
t )n+1≤i≤N, 0≤t≤T because this process

is Markovian by himself. Then let us define for 0 ≤ t ≤ T , the random probability

η̆
(N,{n+1,...,N})
t =

1

N − n

∑

n+1≤i≤N

δ
ξ̆
(N,i)
t

Now it is quite standard to design a probability space (Ω,F ,P) on which are defined random
variables Z, (Ti)i≥1 and (Yi)i≥1 satisfying the following properties: Z is distributed according to
a Poisson law of parameter nuTT , knowing that Z = k ∈ N, T1 < T2 < · · · < Tk are the ordering
of k independent and uniformly distributed random variables on ]0, T [ and Tp = T for p > k,
finally knowing that Z = k and that (Ti)i≥1 = (ti)i≥1, (Yi)1≤i≤k is distributed on Ek according to
the “integrated” law given by

E[η̆
(N,{n+1,...,N})
t1 ⊗ η̆

(N,{n+1,...,N})
t2 ⊗ · · · ⊗ η̆

(N,{n+1,...,N})
tk

]

while we put Yp = � 6∈ E, for p > k.
Next assuming that Z = k, (Ti)i≥1 = (ti)i≥1 and (Yi)i≥1 = (yi)i≥1 have been sampled according

to the previous distribution, we construct a path of M([0, T ], En) in the way described below;
we start by considering in addition the two following independent objects: a sequence (Vi)i≥1 of

independent random variables uniformly distributed on [0, 1] and (ξ̆
(N,i)
0 )1≤i≤n whose law on En

is η⊗n
0 . Knowing (ξ̆

(N,i)
0 )1≤i≤n, we sample (ξ̌

(n,i)
t )1≤i≤n, 0≤t≤t1 according to ⊗1≤i≤nP

0,ξ̆
(N,i)
0

(at least

its restriction to M([0, t1], E
n)). Then we choose 1 ≤ i1 ≤ n uniformly and take for 0 ≤ t ≤ t1

and 1 ≤ i ≤ n,

ξ̆
(n,i)
t =

{
Y1 , if i = i1, t = t1 and V1 ≤ N−n

N
U(t1, Y1)

ξ̌
(n,i)
t , otherwise

Now we let (ξ̌
(n)
t )t≥t1 be distributed according to ⊗1≤i≤nP

t1,ξ̆
(n,i)
t1

, then at time t2 we contingently

proceed at the replacement of ξ̌
(n,i2)
t2 by Y2, where again 1 ≤ i2 ≤ n is independently and uniformly

chosen, and so on.
In a formalized way (using the hypothesis (H2)), this construction leads to a kernel Q from

N × [0, T ]N × (E t {�})N to M([0, T ], En) such that

P̆
(N,{1,...,n})
η0,[0,T ] (·) = E(Ω,F)[Q(Z, (Ti)i≥1, (Yi)i≥1, ·)]

The interest of this representation is that if above we replace (Yi)i≥1 by a family of random
variables (Ȳi)i≥1 which satisfies that knowing that Z = k and that (Ti)i≥1 = (ti)i≥1, (Ȳi)1≤i≤k is
distributed on Ek according to ηt1 ⊗ · · · ⊗ ηtk , while Ȳp = � for p > k, then

P̄
⊗n
η0,[0,T ] = E(Ω,F)[Q(Z, (Ti)i≥1, (Ȳi)i≥1, ·)]

Thus the theorem 4.2 will be implied by the next result:

Proposition 4.4 There exists a construction of the random variables (Z, (Ti)i≥1, (Yi)i≥1, (Ȳi)i≥1)
with the above prescribed distribution such that

P[(Yi)i≥1 6= (Ȳi)i≥1] ≤ 1

2
ε̃(N, n)
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where the lhs is understood in the sense of section 2.3 and where the rhs satisfies the condition

lim sup
n2/N→0

N

n2
ε̃(N, n) ≤ (14 + 28uTT [1 + exp(uTT )])uTT (uTT + 1)

Proof:

We begin by constructing (Ȳi)i≥1 independently from (Yi)i≥1, knowing Z and (Ti)i≥1. Accord-
ing to the formula (10), there exists a smarter coupling if we can show that for any mapping
f : N × [0, T ]N × (E t {�})N → [−1, 1] which is measurable, we have

E[f(Z, (Ti)i≥1, (Yi)i≥1)] − E[f(Z, (Ti)i≥1, (Ȳi)i≥1)] ≤ ε̃(N, n)

But let us define for all k ≥ 1 and 0 < t1 < · · · < tk < T , a function fk,t1,...,tk on Ek by

∀ (y1, . . . , yk) ∈ Ek, fk,t1,...,tk(y1, . . . , yk) = f(k, (t1, . . . , tk, T, T, . . .), (y1, . . . , yk, �, �, . . .))

so the lhs can be written as

exp(−nuTT )
∑

k≥1

(nuTT )k

k !

∫

]0,T [k
1It1<t2<···<tk

(
E[η̆

(N)
t1 ⊗ · · · ⊗ η̆

(N)
tk

(fk,t1,...,tk)]

−ηt1 ⊗ · · · ⊗ ηtk(fk,t1,...,tk)
)
dt1 · · ·dtk

≤ exp(−nuTT )
∑

k≥1

(nuTT )k

k !
‖f‖ ε

(
k2

N

)

≤ exp(−nuTT )
∑

k≥1

(nuTT )k

k !
ε

(
k2

N

)

where ε
(

k2

N

)
is the quantity appearing in the theorem 3.1 (note that this constant is increasing

in uT so it was harmless to replace the latter by N−n
N
uT ).

So we can define ε̃(N, n) as the above rhs and let us verify that it satisfies the condition
mentioned in the proposition.

To do that, we divide the sum in two:

ε̃(N, n) = ε1(N, n) + ε2(N, n)

def.
= exp(−nuTT )

∑

1≤k≤k0(N,n)

(nuTT )k

k !
ε

(
k2

N

)
+ exp(−nuTT )

∑

k≥k0(N,n)+1

(nuTT )k

k !
ε

(
k2

N

)

where

k0(N, n) = min

{
k ≥ 2nuTT : exp(−nuTT )

(nuTT )k

k!
≤ n4

N2

}

This number admits the following interesting property, which comes from the very fast de-

creasing of (nuT T )k

k!
to zero for large k.

Lemma 4.5 The quantity k2
0(N, n)/N goes to zero with n2/N .
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Proof:

In order to get this result, it is sufficient to see that for all α > 0, all N
∗-valued sequences

(Np)p≥1 and (np)p≥1 satisfying limp→∞Np = ∞ and limp→∞ n2
p/Np = 0, if we take kp = α

√
Np for

p ≥ 1 (so kp ≥ 2npuTT for p large enough), then

lim
p→∞

exp(−npuTT )
N2

p (npuTT )kp

n4
p(kp!)

= 0

because this easily leads to a contradiction.
But using a Sterling’s expansion, this convergence follows at once.

Thus we deduce the next estimate for ε2(N, n): noting that for k ≥ 2uTTn,

(nuTT )k+1

(k + 1)!
≤ 1

2

(nuTT )k

k!

we get the bound

ε2(N, n) ≤ exp(−nuTT )
(nuTT )k0(N,n)

k0(N, n)!

∑

p≥0

1

2p

= 2 exp(−nuTT )
(nuTT )k0(N,n)

k0(N, n)!

≤ 2

(
n2

N

)2

so

lim
n2/N→0

N

n2
ε2(N, n) = 0

We now consider ε1(N, n): let α > 0 be given, according to theorem 3.1 and lemma 4.5, we
can find β > 0 such that for all n and N verifying n2/N ≤ β, the quantity k2

0(N, n)/N is small
enough to ensure that for all 1 ≤ k ≤ k0(N, n),

ε

(
k2

N

)
≤ (1 + α)(14 + 28uTT [1 + exp(uTT )])

k2

N

Then it appears that for such n and N ,

ε1(N, n) ≤ (1 + α)(14 + 28uTT [1 + exp(uTT )]) exp(−nuTT )
∑

1≤k≤k0(N,n)

(nuTT )k

k !

k2

N

≤ (1 + α)(14 + 28uTT [1 + exp(uTT )]) exp(−nuTT )
∑

k≥1

(nuTT )k

k !

1

N
(k(k − 1) + k)

≤ (1 + α)(14 + 28uTT [1 + exp(uTT )])
uTTn(uTTn+ 1)

N

≤ (1 + α)(14 + 28uTT [1 + exp(uTT )])uTT (uTT + 1)
n2

N

and the expected behaviour of ε(N, n) follows.
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5 Path spaces

The main purpose of this part is to motivate the abstract considerations of subsection 2.1 by
presenting an interesting consequence for the so-called genealogical/historical processes associated
to the particle systems. As we will indicate it, this application is strongly related to the practical
smoothing problem in nonlinear filtering. The point is that we will now take advantage of our
general setting in order to consider path sets for state spaces. This situation would have been
especially uneasy to deal with in the usual setting of pregenerators defined on algebras (cf for
instance [6]), even if one could keep a Polish state space assumption, via the standard (but not
trivial in contrast with what follows) use of the Skorokhod topology.

We begin by looking at the “new” object we want to numerically approximate: by analogy with
the formula (1) of the introduction, we define for any T ≥ 0 a probability η[0,T ] on M([0, T ], E)
by the formulae

η[0,T ](ϕ)
def.
=

Eη0

[
ϕ((Xt)0≤t≤T ) exp

(∫ t

0
Us(Xs) ds

)]

Eη0

[
exp

(∫ t

0
Us(Xs) ds

)] (17)

valid for all bounded and measurable test functions ϕ : M([0, T ], E) → R.
One of the interest of these measures is that they are the theoretical solutions to some basic

problems in nonlinear filtering. Without entering into the details, let us give a few heuristics about
this subject: assume that a signal (St)t≥0 taking values in E is only seen through an observation
process (Yt)t≥0 (in a nonlinear and noisy way). Then under some hypotheses on the evolution of
the Markovian couple (St, Yt)t≥0 and via some changes of probabilities, one can obtain for any
given time t ≥ 0, a representation of the law of St knowing (Ys)0≤s≤t in the form of (1), where at
any instant s ≥ 0, the generator of X and the function Us depend in fact on Ys (see for instance [6],
a more abstract caracterization of the general nonlinear problems whose solutions can be written
as quotients of Feynman-Kac integrals should be the object of a forthcoming article). This is
the classical nonlinear filtering question. Now if we are interested in law of the whole (St)0≤t≤T

knowing (Yt)0≤t≤T , it can be expressed as (17). Then one can deduce for instance the law of X0

knowing (Yt)0≤t≤T and this is a particularly important example of smoothing problem: after some
observations, to estimate from where the signal has started (ie its conditional distribution).

Nevertheless, one can think of other justifications for (17), as it is also possible to treat cases
where Us(Xs) is replaced by Us((Xu)0≤u≤s) under some measurability assumptions.

Indeed the basic principle is to consider ((Xs)0≤s≤t)t≥0 as a Markov process whose state space
consists of paths. This idea is very old in the theory of stochastic processes, but we are now able
to use it in order to device natural “particle” algorithms approximating (17) for which we get the
relatively explicit and general bounds presented in the previous sections.

But in order to go in this direction, we have to verify that our setting is in some sense “stable”
when we go from points to trajectories. Thus let us develop the corresponding preliminaries.

As before, we start from a measurable space (E, E) and a given set of paths M(R+, E) satisfying
the condition (H1). As new state space, we consider Ē = E×M(R+, E) endowed with its natural
coordinates (Y, (Xt)t≥0) and the σ-field they generate.

If 0 ≤ s ≤ t and ω,w ∈ M(R+, E) are given, we define a new path Is,t(ω,w) belonging to
M(R+, E) by

∀ u ≥ 0, Xu(Is,t(ω,w)) =

{
Xu(ω) , if 0 ≤ u < s or u ≥ t
Xu(w) , otherwise
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We also introduce the following related object: for t ≥ 0, ω ∈ M(R+, E) and w ∈ M([t,+∞[, E),
Wt(ω,w) is the path of M([t,+∞[, Ē) such that

∀ s ≥ t, X̄s(Wt(ω,w)) = (Xs(w), It,s(ω,w))

where (X̄s)s≥0 will denote the canonical coordinate process on M(R+, Ē).
This kind of trajectories will in some sense be generating: M(R+, Ē) will stand for the subset

of M(R+, Ē) obtained by stabilization of the set of trajectories {I0(ω,w) : ω,w ∈ M(R+, E)}
with respect to the operation described in the first point of (H1), ie it consists of the paths
W ∈ M(R+, Ē) for which there exist an increasing sequence (ti)i≥1 of positive reals satisfying
limi→∞ ti = +∞, and a sequence (ωi, wi)i≥0 of elements of (M(R+, E))2 such that

∀ i ≥ 0, ∀ ti ≤ s < ti+1, X̄s(W ) = X̄s(W0(ωi, wi))

(where the traditional convention t0 = 0 is enforced).
Remark that the assumption that M(R+, E) should contains all constant paths is not very

natural, because under our construction it would not have been preserved at the Ē-level.

Lemma 5.1 The set of paths M(R+, Ē) satisfies the required condition (H1).

Proof:

The first point of this hypothesis is quite immediate, so it is sufficient to look at the second
one. Let Y be the mapping defined by

M(R+, Ē) 3 W 7→ (Y (X̄t(W )))t≥0

it appears that in fact it takes values in M(R+, E) and is M(R+, E)/M(R+, Ē)-measurable. Thus
we obtain that

R+ × M(R+, Ē) 3 (t,W ) 7→ Y (X̄t(W )) ∈ E

is R+ ⊗M(R+, Ē)-measurable, because it can be decomposed into

R+ × M(R+, Ē) 3 (t,W ) 7→ (t,Y(W )) 7→ Xt(Y(W ))

Besides, for s ≥ 0 and W ∈ M(R+, Ē) fixed, we have that the mapping

R+ 3 t 7→ Xs(X̄t(W )) ∈ E

is piecewise constant and the corresponding intervals are closed at the left end and open at the
right end (ie this path is càdlàg if one puts on E the total topology generated by the singletons).
So it makes it clear that for s ≥ 0 fixed, the mapping

R+ × M(R+, Ē) 3 (t,W ) 7→ Xs(X̄t(W )) ∈ E

is R+ ⊗ M(R+, Ē)-measurable and by definition of M(R+, E), it follows that the same is true
for

R+ × M(R+, Ē) 3 (t,W ) 7→ (Xs(X̄t(W )))s≥0 ∈ M(R+, E)
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Now it is time to lift a given Markovian family (Pt,x)t≥0, x∈E to the Ē-level: so let t ≥ 0 and
x̄ = (x, ω) ∈ Ē be given, we define the probability P̄t,x̄ on M([t,+∞[, Ē) as the image of Pt,x

under the mapping

M([t,+∞[, E) 3 w 7→ Wt(ω,w)

Via extensive use of monotonous class theorem, there is no difficulty in verifying that
(P̄t,x̄)t≥0, x̄∈Ē is indeed a Markovian family satisfying (H2).ÊThe true simplicity of this procedure
underlines once again the advantage one has to work directly with laws and not with pregenerators
(at least theoretically).

Thus we can apply all the results of the previous sections with the function U defined by

∀ (t, x̄) ∈ R+ × Ē, U(t, x̄) = U(t, Y (x̄))

In particular, let us describe the evolution of the associated N -particles system in this case:
we denote by P0 the image of P0,η0 under the mapping M(R+, E) 3 ω 7→ (X0(ω), ω) ∈ Ē. Then

we sample (X
(N,1)
0 , ω

(N,1)
0 ), . . . , (X

(N,N)
0 , ω

(N,N)
0 ) independently according to P0.

To simplify the presentation, we fix a horizon T > 0, and we only consider the time interval
[0, T ]. So let (Ti)i≥1 be a sequence of R

∗
+ valued random variables such that the Ti−Ti−1, for i ≥ 1

and with T0 = 0, are independent and distributed according to exponential laws of parameter
NuT . At any instant 0 ≤ t < T ∧ T1, the particle system is given by

∀ 1 ≤ i ≤ N, ξ̄
(N,i)
t = (Xt(ω

(N,i)
0 ), ω

(N,i)
0 )

.
At time T1, we choose two indices 1 ≤ I1, J1 ≤ N , in a equidistributed way for I1 and according

to the probability

1

NuT

∑

1≤j≤N

U(T1, XT1(ω
(N,j)
0 )δj

for J1. Let also V1 be uniformly distributed on [0, 1]. Then if T1 ≤ T , the particle system at this
time T1 is

∀ 1 ≤ i ≤ N, ξ̄
(N,i)
T1

=

{
(XT1(ω

(N,J1)
0 ), ω

(N,J1)
0 ) , if i = I1 and V1 ≤ U(T1, XT1(ω

(N,j)
0 ))/uT

(XT1(ω
(N,i)
0 ), ω

(N,i)
0 ) , otherwise

The next step consists in sampling (ω
(N,1)
1 , . . . , ω

(N,N)
1 ) according to

P
T1,Y (ξ̄

(N,1)
T1

)
⊗ · · · ⊗ P

T1,Y (ξ̄
(N,N)
T1

)

and then at any instant T ∧T1 ≤ t < T ∧T2 and for any indice 1 ≤ i ≤ N , we put the ith particle
at the “position”

ξ̄
(N)
t

def.
= (Xt(ω

(N,i)
1 ), IT1,t((Xs(ξ̄

(N,i)
T1

))s≥0, ω
(N,i)
1 )) ∈ Ē

and so on, in a Poissonian random number of steps we end up with (ξ̄
(N)
t )0≤t≤T .

In order to recover a more usual object, let us denote for t ≥ 0, ξ̆
(N)
t the path of M([0, t], EN)

defined by

∀ 1 ≤ i ≤ N, ∀ 0 ≤ s ≤ t, ξ̆
(N,i)
t (s) =

{
(Xs(ξ̄

(N,i)
t ))1≤i≤N , if s < t

(Y (ξ̄
(N,i)
t ))1≤i≤N , if s = t
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It appears that (ξ̆
(N)
t (t))t≥0 has the same law as our previous algorithm ξ(N) (or equivalently,

the N -product version of the mapping Y defined in the proof of lemma 5.1 could enable us
to recover ξ(N) from ξ̄(N), and consequently the results on E from their Ē-counterparts), but

furthermore (ξ̆
(N)
t )t≥0 gives its genealogy, in the sense that for 0 ≤ s ≤ t and 1 ≤ i ≤ N , ξ̆

(N,i)
t (s)

is the “ancestor” of ξ̆
(N,i)
t (t) at time s, that is why ξ̆(N) is sometimes called the historical process

associated to the particle system ξ(N). We have not been able to use it directly in our definitions
above, because rigorously its state space is varying with time, peculiarity which is not allowed in
our setting (one can try to develop such a theory, but this leads to more far-fetched considerations
than the a priori strange introduction of Ē, one of the main difficulties comes from the initial
parametrization property in our definition of Markovian families which has an innocent touch at
first glance but is especially important in the proof of proposition 3.5).

Thus we are lead to consider for T ≥ 0,

η
(N)
[0,T ]

def.
=

1

N

∑

1≤i≤N

δ
ξ̆
(N,i)
T

∈ P(M([0, T ], E))

since it is a good estimator of η[0,T ] : there exists a constant CT ≥ 0 such that for any ϕ ∈
Bb(M([0, T ], E)), we are assured of

∣∣∣E[η
(N)
[0,T ](ϕ)] − η[0,T ](ϕ)

∣∣∣ ≤ CT
‖ϕ‖
N

(18)

or alternatively

E

[∣∣∣η(N)
[0,T ](ϕ) − η[0,T ](ϕ)

∣∣∣
]

≤ CT
‖ϕ‖√
N

(19)

In particular, if we are only interested in the smoothing problem mentioned before (ie we are
only considering mapping ϕ of the form ϕ = ψ ◦X0, with ψ ∈ Bb(E)) it appears that we should
rather look at the approximating empirical probabilities

η
(N)
0,T

def.
=

1

N

∑

1≤i≤N

δ
ξ̆
(N,i)
T

(0)
∈ P(E)

only putting mass on the initial particles ξ̆
(N,i)
0 (0), for 1 ≤ i ≤ N , which can be identified with

the ξ
(N,i)
0 .

More precisely, let us notice that the process ((ξ̆
(N,i)
t (0), ξ̆

(N,i)
t (t))1≤i≤N )t≥0 taking values in

(E ×E)N is indeed Markovian and can be constructed in a way similar to the one above, so it is

not necessary to keep track of the whole process (ξ̆
(N)
t )t≥0, which would ask for too much memory

if we wanted to implement the previous algorithm as practical code on a computer.
We also recall that our estimates are good asymptotically as the number N of particles is very

large, but we are not saying anything about the behavior for long time T ≥ 0. In fact, if N ≥ 1
is fixed and if the cost function is bounded away from zero (ie there exists α > 0 such that for

all t ≥ 0 and x ∈ E, U(t, x) ≥ α), then for large T , the probability η
(N)
0,T is a.s. converging to a

Dirac measure (this corresponds to the fact that asymptotically in time there is an unique initial
ancestor, because of too much selection procedures), ie we are choosing only one of the initial
particles as an estimator of the distribution η0,T defined by

E 3 A 7→
Eη0

[
1IA(X0) exp

(∫ t

0
Us(Xs) ds

)]

Eη0

[
exp

(∫ t

0
Us(Xs) ds

)]
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which may not be a smart choice: for instance consider the case where E = {−1, 1}, X is the
nonmoving Markov process, η0 = (δ−1 + δ1)/2, U ≡ 1 and ϕ = id, then we have

sup
T≥0

E

[∣∣∣η(N)
0 (ϕ) − η0,T (ϕ)

∣∣∣
]
≤ 1√

N
whereas lim

T→+∞
E

[∣∣∣η(N)
0,T (ϕ) − η0,T (ϕ)

∣∣∣
]

= 1

This is also the occasion for us to mention that while the representation (1) does not uniquely
determine U (for instance one can add to it a locally bounded, measurable and nonnegative
function depending only on time without changing the flow (ηt)t≥0), it is always in our interest to
work with the smaller one possible, either for the theoretical bounds or for the number of selection
procedures needed algorithmically. In the trivial example above, this corresponds to the choice
of U ≡ 0, for which η

(N)
0,T = η

(N)
0 for any T ≥ 0.

Remark 5.2: The bounds (18) and (19) merely express quantitative weak propagation of
chaos in L

1 and L
2. For them it is not necessary to go through our whole development, because

the only ingredient needed is the estimate of theorem 3.1 with n = 2 and t1 = t2 = T , result which
can be obtained quite directly through the proposition 3.4 (let us recall that the main difficulty
of section 3 was the n2/N -dependence).

Appendix: about a product nonmeasurability property

In the remark (c) at the end of section 2.1, we have wondered if the following result is true, where
we have identified M(R+, {0, 1}) with R+ and where for any set E, P(E) will always denote the
total σ-algebra of all its subsets:

Conjecture A.1: The mapping

R+ ×R+ 3 (t, A) 7→ 1IA(t) ∈ {0, 1}

is not R+ ⊗ P(R+)-measurable.

Unfortunately we have not been able either to show this affirmation or to disprove it. Never-
theless, let us mention that this property is true if we replace the Borelian σ-algebra R+ on R+

by the σ-field L+ of all its Lebesgue-measurable subsets. This change is quite natural here, as
the only measure we have considered up to now on the time domain was the Lebesgue measure
(but see also remark (i) of section 2.1). So our objective in this appendix is to show that

Proposition A.2 The mapping

R+ × L+ 3 (t, A) 7→ 1IA(t) ∈ {0, 1}

is not L+ ⊗ P(L+)-measurable.

The preliminary we will need is that

card(L+) = 2card(R+) > card(R+) = card(R)

which can be deduced from the following remark: card(L+) ≤ card(P(R+)) = 2card(R+) and
card(L+) ≥ card(P(C)) = 2card(R+), where C is the usual Cantor fractal. Note that by contrast,
it is known that card(R+) = card(R+), see for instance the theorem 6.2.8 p. 96 of [2].

Next the basic idea is that the σ-algebra generated by a product structure cannot give rise to
too much diversity:
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Lemma A.3 Let E1, E2 be two sets, to any subset A ⊂ E1×E2, we can associate an equivalence
relation ∼ on E2 by

∀ a, b ∈ E2, a ∼ b⇔ Aa = Ab

where for any a ∈ E2, Aa
def.
= {x ∈ E1 : (x, a) ∈ A}.

Then if A ∈ P(E1) ⊗ P(E2), we are assured of

card(E∼
2 ) ≤ card(R)

where E∼
2 is the quotient set of equivalence classes for ∼.

The example where E1 = E2 = R and A is the diagonal of R
2 shows that equality can be obtained.

But notice that in case of a finite E1, this result can be trivially “improved”: card(E∼
2 ) ≤ 2card(E1).

Proof:

Let C be the set consisting of all subsets A ⊂ E1 × E2 such that the associated relation
satisfies the above inequality. We will verify that C is a monotonous class containing A, the
algebra generated by the product subsets of E1 × E2, and the lemma will follow.

We begin by showing that A ⊂ C. Let A ∈ A, it can be written A = t1≤i≤NA
(i) × B(i), with

N ∈ N and A(i) ⊂ E1, B
(i) ⊂ E2, for 1 ≤ i ≤ N , and we can assume furthermore that for all

1 ≤ i 6= j ≤ N , B(i) ∩ B(j) = ∅.
Let ∼ be the relation associated to A. It appears that for all a ∈ E2, we have

Aa ∈ {A(i) : 0 ≤ i ≤ N}

with the convention that A(0) = ∅. Thus card(E∼
2 ) ≤ 1 +N ≤ card(R), and we get that A ∈ C.

Now let (An)n≥0 be a sequence of elements of C, we have to convince ourselves that if it is

increasing (respectively decreasing) then A
def.
= ∪n≥0 An (resp. A

def.
= ∩n≥0 An) belongs to C.

For n ≥ 1, let ∼n be the relation associated to An. We define a new relation ∼ by

∀ a, b ∈ E2, a ∼ b⇔ ∀ n ≥ 0, a ∼n b

Note that ∼ is finer that the relation generated by A (in both cases), so it is sufficient to show
that card(E∼

2 ) ≤ card(R).
But by hypothesis, for any n ≥ 0, there exists a map Fn : R → E2 such that

∀ a ∈ E2, ∃ xn ∈ R : Fn(xn) ∼n a (20)

Now let us consider

F : R
N → EN

2

(xn)n≥0 7→ (Fn(xn))n≥0

and G : EN
2 → E∼

2 be defined in the following way: choose an arbitrary � ∈ E∼
2 , then

∀ (an)n≥0 ∈ EN
2 , G((an)n≥0) =

{
a∼ , if ∃ a ∈ E2 : ∀ n ≥ 0, a ∼n an

� , otherwise

where a∼ is the canonical projection of a ∈ E2 on E∼
2 (one will have remarked that this definition

is consistent: a∼ does not depend on the a satisfying the first assertion above).
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Then G ◦ F is surjective, because for any given a ∈ E2 and n ≥ 0, let a xn ∈ R be given as in
(20), we clearly have G ◦ F ((xn)n≥0) = a∼.

Thus we get the expected result, since card(E∼
2 ) ≤ card(RN) = card(R).

Proof of proposition A.2:

We apply the above lemma with E1 = R+ and E2 = L+. We consider

A = {(t, a) ∈ R+ × L+ : t ∈ a} (21)

and we remark that the associated relation is just the equality, because for a ∈ L+, Aa = a.
Thus if A was to belong to P(R+)⊗P(L+) (and in particular to L+ ⊗P(L+)), then we could

conclude that

card(L+) ≤ card(R)

which is false.

Writing that any σ-field E on a set E is just the σ-algebra generated by the indicator functions
of sets in E , one is next led to the following conclusion:

Proposition A.4 Assume that E is not the trivial σ-field {∅, E}, and let L(R+, E) be the set of
all Lebesgue-measurable trajectories from R+ to E. Then the mapping

F : R+ × L(R+, E) 3 (t, ω) 7→ Xt(ω) ∈ E

is not L+ ⊗ P(L(R+, E))/E-measurable.

The previous considerations give a funny example of a mapping of two variables, which is
partially measurable with respect to each of its coordinates (the other one being fixed), but
which is not globally measurable with respect to the two coordinates (for the product measurable
structure).

They also show that the necessary conditions of Fubini’s theorem (in the situation where there
is no completion of σ-algebra with respect to an underlying probability, some authors prefer to
call it Tonneli’s theorem, but we will keep the previous denomination) for the belonging of a set
to the product σ-field are not always sufficient, in the sense that the next result is not true:

False conjecture A.5: Let (E1, E1) and (E2, E2) be two measurable spaces, and A ⊂ E1 × E2.
We could have think that if for any probabilities m1 and m2, respectively on (E1, E1) and (E2, E2),
we are assured that the mappings

E1 3 x 7→
∫

1IA(x, y)m2(dy)

E2 3 y 7→
∫

1IA(x, y)m1(dx)

are respectively E1 and E2-measurable, then A ∈ E1 ⊗ E2.

A counterexample is obtained by considering again the set A of (21), and taking into account
that by the theorem of Ulam (cf for instance [13]) any probability on (L+,P(L+)) is a denumerable
sum of weighted Dirac masses. This fact also shows that all the conclusions of the Fubini’s theorem
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are satisfied for functions on that product space that are only assumed to be measurable on the
first variable.

To come down to our initial motivation, this also means that in some situations we can dispense
with the strict product assumptions of the Fubini’s theorem to prove the lemma 2.1, but this is
done at an unaffordable price on the restriction of the Markovian families (Pt,x)t≥0, x∈E we can
consider (eg P0,x is only putting mass on a denumberable numbers of trajectories !).
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[14] J. Neveu. Bases mathématiques du calcul des probabilités. Masson, 1970.

[15] A.S. Sznitman. Topics in propagation of chaos. In P.L. Hennequin, editor, Ecole d’Eté de
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