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Abstract

In this paper we give a much more efficient proof that the real Euclidean φ4-
model on the four-dimensional Moyal plane is renormalisable to all orders. We prove
rigorous bounds on the propagator which complete the previous renormalisation
proof based on renormalisation group equations for non-local matrix models. On
the other hand, our bounds permit a powerful multi-scale analysis of the resulting
ribbon graphs. Here, the dual graphs play a particular rôle because the angular
momentum conservation is conveniently represented in the dual picture. Choosing
a spanning tree in the dual graph according to the scale attribution, we prove that
the summation over the loop angular momenta can be performed at no cost so that
the power-counting is reduced to the balance of the number of propagators versus
the number of completely inner vertices in subgraphs of the dual graph.

1 Introduction

Field theories on noncommutative spaces became very popular after the discovery that
they arise in limiting cases of string theory [1, 2, 3]. Although from string theory’s point
of view there is no reason that the limit is a well-defined quantum field theory, there has
been an enormous activity aiming at renormalisation proofs for noncommutative quantum
field theories. Most of the attempts focused at the Moyal plane with the associative and
noncommutative product

(a ? b)(x) =

∫
d4k

(2π)4

∫

d4y a(x+ 1
2
θ·k) b(x+y) eik·y . (1.1)
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It turned out that the noncommutative analogs of typical field theoretical (in particular
four-dimensional) models on the Moyal plane are not renormalisable due to the UV/IR-
mixing problem [4]. The construction of dangerous non-planar graphs was made precise
in [5] where the problem was traced back to divergences in some of the Hepp sectors which
correspond to disconnected ribbon subgraphs wrapping the same handle of a Riemann
surface.

Recently, the renormalisation of the noncommutative φ4
4-model was achieved [6] within

a Wilson-Polchinski renormalisation scheme [7, 8] adapted to non-local matrix models [9].
The renormalisable model is defined by the action functional

S[φ] =

∫

d4x
(1

2
∂µφ ? ∂µφ +

Ω2

2
(x̃µφ) ? (x̃µφ) +

1

2
µ2

0 φ ? φ +
λ

4!
φ ? φ ? φ ? φ

)

(x) , (1.2)

where x̃µ = 2(θ−1)µνx
ν and the Euclidean metric is used.

At first sight, the appearance of the translation invariance breaking harmonic oscillator
potential for the φ4-action (1.2) might appear strange. However, the renormalisation proof
shows that there is a marginal interaction which corresponds to that term and as such
requires its inclusion in the initial action. Moreover, thanks to the oscillator potential,
the action (1.2) transforms covariantly under the Langmann-Szabo duality [10] which
exchanges position space and momentum space.

We review the main ideas of the renormalisation proof, in particular the analysis
of ribbon graphs, in Section 2. However, it must be underlined that the proof given
in [6] relies on a numerical determination of the asymptotic scaling dimensions of the
propagator. Our paper fills this gap by computing rigorous bounds on the propagator, at
least for large enough Ω. This will be done in Section 3.

On the other hand, our bounds permit another renormalisation strategy which turns
out to be much more efficient. See Section 4. The strategy is inspired by constructive
methods [11]. The key is a scale decomposition of the propagator and an estimation
procedure of the ribbon graphs which takes into account the scale attribution. The proof
is carried out for the duals of the ribbon graphs, because the set of independent variables
is particularly transparent in dual graphs.

The methods developed in this paper will be crucial to write a constructive version of
[9, 6]. Actually the main obstacle to the construction of the usual φ4 model is the non-
asymptotic freedom of the theory. For the four-dimensional Moyal plane, the parameter
Ω controls the UV/IR mixing. When it reaches 1, the entanglement is maximum, and
the β function vanishes [12]. In this view, the Ω-region close to 1, for which we prove
analytical estimates, is particularly important.

2 Main ideas of the previous renormalisation proof

In order to make this paper self-contained, we review the main ideas of the renormalisation
proof given in [6] for the quantum field theory associated with the action (1.2).

In order to avoid the oscillating phase factors of the ?-product in momentum space,
the first step is to pass to the matrix base of the Moyal plane, where the action (1.2)
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becomesa

S[φ] = 4π2θ1θ2

∑

m,n,k,l∈N2

(1

2
∆m,n;k,lφmnφkl +

λ

4!
φmnφnkφklφlm

)

. (2.1)

As usual, we define the quantum field theory by the partition function, which is expanded
into Feynman graphs. As the fields are described by matrices φmn, the resulting Feynman
graphs are ribbon graphs build of propagators and vertices,

oo

//

m l

n k

= Gm,n;k,l ,

�� ?? �� __

??��__��

m1

n4

n1
m2

n2

m3

n3
m4

= δn1m2δn2m3δn3m4δn4m1 . (2.2)

The propagator Gmn;kl is the inverse of the kinetic matrix ∆mn;kl in (2.1). We recall the
explicit formula in (3.1) and (3.2). Due to the SO(2) × SO(2)-symmetry of the action,
Gmn;kl 6= 0 only if m + k = n + l. Matrix indices which are not determined by this index
conservation or as external indices of the graph are summation indices. The corresponding
index summation is possibly divergent and requires a regularisation.

In [9, 6] the regularisation consists in a smooth cut-off of the propagator indices as a
function of a renormalisation scale Λ,

Qm1

m2 , n1

n2 ; k1

k2 , l1

l2
(Λ) = Λ

∂

∂Λ




∏

i∈m1,m2,...,l1,l2

χ
( i

θΛ2

)

Gm1

m2
n1

n2 ; k1

k2
l1

l2



 , (2.3)

where χ(x) is smooth with χ(x) = 1 for x 6 1 and χ(x) = 0 for x > 2. This implies
Qmn;kl(Λ) 6= 0 only if max(m1, m2, . . . , l1, l2) ∈ [θΛ2, 2θΛ2]. The graph is then realised
by the differentiated cut-off propagators Q(Λi) which regulate the index summations. At
the end, the nested integral over dΛi

Λi
is performed within an interval characterised by

mixed boundary conditions [8]. Actually, the graphs are build recursively by adding a
new propagator. This allows an inductive proof of the power-counting behaviour. On the
other hand, one has to carefully discuss the location of the valence of the graph where one
attaches a leg of the additional propagator. This discussion alone extends over 20 pages
in [9].

It is time for an example. We consider the (planar) one-loop four-point graph

�� ?? �� __

??��__��

�� ��__ ??

r

r

s

s
n k

m l

p+m p+l

=

{
∫ Λ

ΛR

dΛ2

Λ2

∫ Λ0

Λ2

dΛ1

Λ1

∑

p

Qm,p+m;p+l,l(Λ2) Qn,p+m;p+l,k(Λ1)

}

+ {Λ1 ↔ Λ2}

+ Arm;ls;sk;nr(ΛR) . (2.4)

aNote that the symbols ∆ and G used in this paper for the (generalised) Laplacian and the Green’s
function are transposed in [9, 6].
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The choice of the boundary conditions is a preliminary one which ensures convergent inte-
grals at the expense of infinitely many initial data Arm;ls;sk;nr(ΛR). This will be corrected
later in (2.11).

One of the bounds we prove in this paper can be put in the following form

Gm1

m2 , n1

n2 ; k1

k2 , l1

l2
6 K

∫ 1

0

dα e−cα(m1+m2+n1+n2+k1+k2+l1+l2) . (2.5)

From the remarks made after (2.3) on the range of the maximal index we conclude

∣
∣
∣Qm1

m2 , n1

n2 ; k1

k2 , l1

l2
(Λ)
∣
∣
∣ 6 32K max

x
χ′(x)

∫ 1

0

dα e−cθΛ2α 6
32K maxx χ′(x)

cθΛ2
. (2.6)

We thus estimate the summation over p in (2.4) by the maximum of the propagators Q
over p and a volume factor (2θΛ2

2)
2 from the support of the cut-off function. This shows

that the integral (2.4) is estimated by a constant times ln Λ
ΛR

.
The scaling of (2.6) and the volume of the support of (2.3) with respect to any index

seem to suggest that N -point graphs have, as in commutative φ4
4-theory, a power-counting

degree 4 − N . However, this conclusion is too early: There is a problem in presence of
completely inner vertices, which require additional index summations. The graph

�� ?? �� __

��
��

��
��

��
�

��
��

��
��

��
�

��

??

??
??

??
??

??
?

??
??

??
??

??
?

��

__

__ ??��

��

��

��

m

n

l

k

q

p1+m

p1+q

p2+l

p2+q

p3+q

p3+lp3+m

(2.7)

entails four independent summation indices p1, p2, p3 and q, whereas for the power-
counting degree 4 − N we should only have three of them. It requires a more careful
analysis of the scaling behaviour of the propagator to show that the q-summation can
actually be performed at no cost, i.e. without a volume factor. The reason is that the
propagators show some sort of quasi-locality which implies that the contribution of a
propagator Gm,n;k,l to a graph is strongly suppressed if ‖m− l‖ is large. Thus, taking for
given m the entire sum over l does not change the power-counting behaviour,

∣
∣
∣
∣
∣
∣

max
mi




∑

l1,l2

max
ni,ki

Qm1

m2 , n1

n2 ; k1

k2 , l1

l2
(Λ)





∣
∣
∣
∣
∣
∣

6
K ′

θΛ2
. (2.8)

The two bounds (2.6) and (2.8) together ensure the expected power-counting behaviour
for all planar ribbon graphs. But (2.8) does even more: it ensures the irrelevance of all
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non-planar graphs. For instance, in the non-planar graphs

oo
//

�� OO

//
oo

OO��

oo
//

��
OO

m4

n4

m1
n1

n2

m2

m3
n3

q

q′

∣
∣
∣
∣
∣
∣
∣
∣
q′=n1+n3−q

oo
// OO

oo

OO��

oo
//

��
OO

m2

n2 r′ r

m1
n1

q

q′

∣
∣
∣
∣
∣
∣
∣
∣
∣

q′ = m2 + r − q
r′ = n2 + r − m1

(2.9)

the summation over q and q, r, respectively, is controlled by (2.8), i.e. the quasi-locality of
the propagator, so that the graphs in (2.9) can be estimated without any volume factor.

We recall from [9] that the non-planarity of ribbon graphs is classified by the number
B of boundary components and the genus g = 1 − 1

2
(F − I + V ) of the Riemann surface

on which the graph is drawn. Here, V and I are the number of vertices and edges (inner
double lines) of the graph. To determine the number F of faces we close the external
legs, that is, we connect the outgoing arrow labelled mi of an external leg directly with
its incoming arrow ni. Then, F is the number of closed single lines and B the number of
those closed lines which carry external legs. Then, according to [9, 6], the power-counting
degree of a N -leg ribbon graph in four dimensions is

ω = (4 − N) − 4(2g + B − 1) . (2.10)

The left graph in (2.9) has topology B = 2, g = 0 and the right graph B = 1, g = 1.
As a result, there remain only the planar two- and four-leg graphs which can be

relevant and marginal. The quasi-locality of the propagator improves the situation in
selecting only

• the planar four-leg graphs with constant index along the trajectory as marginal,

• the planar two-leg graphs with constant index along the trajectory as relevant,

• the planar two-leg graphs with an accumulated index jump of 2 along the trajectory
as marginal.

We refer to [6] for details. The trajectories are the open single lines of the graph (before
the closure which identifies the faces). This leaves still an infinite number of divergent
graphs. However, there is a discrete Taylor expansion about vanishing external indices
which decomposes these divergent graphs into four relevant and marginal base functions
and an irrelevant remainder. For instance, the decomposition for the marginal case m = l
and n = k of the graph (2.4) reads

�� ?? �� __

??��__��

�� ��__ ??

r

r

s

s
n n

m m

p p

=

{
∫ Λ0

Λ

dΛ2

Λ2

∫ Λ0

Λ2

dΛ1

Λ1

∑

p

(
Qm,p;p,m(Λ2) Qn,p;p,n(Λ1) − Q0,p;p,0(Λ2) Q0,p;p,0(Λ1)

)

+

∫ Λ

ΛR

dΛ2

Λ2

∫ Λ0

Λ2

dΛ1

Λ1

∑

p

Q0,p;p,0(Λ2) Q0,p;p,0(Λ1)

}

+ {Λ1 ↔ Λ2} + A00;00;00;00;00(ΛR) .

(2.11)
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Thus, this definition necessitates a single initial value A00;00;00;00;00(ΛR) which represents
the normalisation condition for the coupling constant.

Of particular importance are the marginal two-leg graphs with an accumulated index
jump by 2, such as

∑

p,p′,q,q′

oo
// //

oooo
//

�� ��
OO OO

1
0

0
0

1
0

0
0

q+1
q′

p+1
p′

q
q′

p
p′

(2.12)

The corresponding initial value represents the normalisation condition for the frequency
parameter Ω in the initial action (1.2). Therefore, the harmonic oscillator potential must
be present from the beginning in order to obtain a renormalisable model.

3 Bounds for the propagator

3.1 Propagator in the matrix base and cut-offs

The propagator of the noncommutative φ4-model in the matrix base of the D-dimensional
Moyal plane is given byb a positive sum [6], analogous to the heat-kernel or parametric α-
space representation 1

p2+m2 =
∫∞
0

dα e−α(p2+m2) of the ordinary commutative propagator:

Gm,m+h;l+h,l =
θ

8Ω

∫ 1

0

dα
(1 − α)

µ2
0θ

8Ω
+( D

4
−1)

(1 + Cα)
D
2

D
2∏

s=1

G
(α)
ms,ms+hs;ls+hs,ls , (3.1)

G
(α)
m,m+h;l+h,l =

(√
1 − α

1 + Cα

)m+l+h min(m,l)
∑

u=max(0,−h)

A(m, l, h, u)

(
Cα(1 + Ω)√
1 − α (1 − Ω)

)m+l−2u

,

(3.2)

where A(m, l, h, u) =
√
(

m
m−u

)(
m+h
m−u

)(
l

l−u

)(
l+h
l−u

)
and C is a function of Ω, namely C(Ω) =

(1−Ω)2

4Ω
. Indices such as m, l, h and u have D

2
non-negative components ms, ls, hs, us, one

for each symplectic pair of R
D. However, due to (3.1) it is enough to prove estimations

for a single component. We define the norm of an index by ‖m‖ =
∑D/2

s=1 ms. A relation
m > n means ms > ns for all s.

We know that cut-offs in the parametric representation for commutative theories are
specially convenient both for perturbative and constructive renormalisation. In the same
spirit we will divide the integral (3.1) into slices. First we divide it into two different
regions, with M > 1

• M−1 6 α 6 1 where we expect an exponential decay in m + l + h of order O(1),

bOur representation (3.1) and (3.2) corresponds to (A.17) in [6] with z = 1−α. The often used index
parameter α in [6] is denoted by h.
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• 0 6 α 6 M−1. This is the UV/IR region which is further sliced according to a
geometric progression. For each slice we expect a scaled exponential decay.

Then, the decomposition
∫ 1

0

dα =
∞∑

i=1

∫ M−i+1

M−i

dα (3.3)

leads to the following propagator for the ith slice:

Gi
m,m+h,l+h,l =

θ

8Ω

∫ M−i+1

M−i

dα
(1 − α)

µ2
0θ

8Ω
+( D

4
−1)

(1 + Cα)
D
2

D
2∏

s=1

G
(α)
ms,ms+hs;ls+hs,ls . (3.4)

The first slice i = 1 is treated separately.
Remark that the factor A in (3.2) is the only one which prevents us from explicitly

performing the u-sum. All the bounds in this paper are obtained by applying to the
binomial coefficients in A the simple overestimate

(
n
q

)
6 nq

q!
. Of course, this bound is

sharp only for q � n. In the regime n − q � n one should rather use the symmetric
bound

(
n
q

)
6 nn−q

(n−q)!
.

For α = 0 we see from (3.2) that the propagator vanishes unless u = l = m. This
suggests to bound A by

A(m, l, h, u) 6

√

m(h + m)
m−u√

l(h + l)
l−u

(m − u)!(l − u)!
6

(m + h/2)m−u(l + h/2)l−u

(m − u)!(l − u)!
. (3.5)

Hence, for α 6 M−1,

G
(α)
m,m+h;l+h,l 6

(√
1 − α

1 + Cα

)m+l+h

×
min(m,l)
∑

u=max(0,−h)

(

α(1 − Ω2)
√

m(m + h)

4Ω
√

1 − α

)m−u

(m − u)!

(

α(1 − Ω2)
√

l(l + h)

4Ω
√

1 − α

)l−u

(l − u)!

6 e−α(C+1/2)(m+l+h)

min(m,l)
∑

u=max(0,−h)

Xm−u

(m − u)!

Y l−u

(l − u)!
, (3.6)

where

X =
C(1 + Ω)α(1 + α)

√

m(m + h)

1 − Ω
= αD(α)

√

m(m + h) ,

Y =
C(1 + Ω)α(1 + α)

√

l(l + h)

1 − Ω
= αD(α)

√

l(l + h) , (3.7)

with D(α) = 1−Ω2

4Ω
(1 + α). For the inequality (3.6) we performed a second order Taylor

expansion in α and assumed Ω > 1/2 and M > 1
2
(1 +

√
5).
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On the other hand, we observe from (3.2) that for α = 1 the propagator vanishes
unless u = h = 0. In this situation the bound (3.5) is not suitable anymore because m−u
and l − u are of order O(m) and O(l), respectively. Instead, we can use

A(m, l, h, u) 6

√
ml

u√

(m + h)(l + h)
h+u

u!(h + u)!
6

((m + l)/2)u((m + l + 2h)/2)h+u

u!(h + u)!
. (3.8)

Inserting (3.8) into (3.2) we obtain

G
(α)
m,m+h;l+h,l 6

(
α(1 − Ω2)

4Ω + (1 − Ω)2α

)m+l+h

×
min(m,l)
∑

u=max(0,−h)

(

4Ω
√

1 − α
√

ml

α(1 − Ω2)

)u

u!

(

4Ω
√

1 − α
√

(m + h)(l + h)

α(1 − Ω2)

)u+h

(u + h)!
. (3.9)

The further procedure will be to use the estimation

min(m,l)
∑

u=0

Xm−u

(m − u)!

Y l−u

(l − u)!
6 eX+Y . (3.10)

3.2 Main scaled bounds

The first result is to prove that the propagator shows a scaled exponential decay in any
index. This is expressed by

Proposition 1 For M large enough there exists a constant K such that for Ω ∈ [0.5, 1],
we have the uniform bound

Gi
m,m+h;l+h,l 6 KM−ie−

Ω
3

M−i‖m+l+h‖ . (3.11)

Proof. We give here the proof for i > 2. The case of the first slice is treated in Lemma 7
and Lemma 8 in the appendixc. Using

√

m(m + h) 6 m + h/2,
√

l(l + h) 6 l + h/2 and
(3.10), the bound (3.6) becomes

G
(α)
m,m+h;l+h,l 6 e−α(C+1/2−D(α))(m+l+h) . (3.12)

Then for α small enough (that is M large enough), C + 1
2
− D(α) = Ω/2 − 1−Ω2

4Ω
α > Ω

3
.

We can now estimate (3.4) by

Gi
m,m+h;l+h,l 6

θ

8Ω

∫ M−i+1

M−i

dα e−
Ω
3
‖m+l+h‖α (3.13)

Then, the Proposition follows from (3.13) with K = θ
8Ω

(M − 1). �

cWe prove in Lemma 7 and Lemma 8 an exponential decay with k‖m+ l+h‖ which is possibly smaller
than Ω

3
M−1. We can ignore this discrepancy, because what counts in the renormalisation proof is the

sum over matrix indices such as m, see (4.7). Then, the difference is a simple factor which we absorb
into K.
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Proposition 2 For M large enough there exists two constantsd K and K1 such that for
all Ω ∈ [0.5, 1] we have the uniform bound

Gi
m,m+h;l+h,l

6 KM−ie−
Ω
4

M−i‖m+l+h‖

D
2∏

s=1

min



1,

(
K1 min(ms, ls, ms + hs, ls + hs)

M i

)|ms−ls|
2



 . (3.14)

Proof. Of course, this bound improves (3.11) only when an index component is smaller
than M i/K1. As K1 > M , there is nothing to prove for the first slice i = 1.

Suppose l 6 m 6 m + h and δ = m − l. Instead of (3.10) we use the improved
estimation

l∑

u=0

Xm−u

(m − u)!

Y l−u

(l − u)!
=

l∑

v=0

Xm−l+v

(m − l + v)!

Y v

v!

6
Xm−l

(m − l)!

l∑

v=0

(
1

v!

)2

(XY )v 6
Xm−l

(m − l)!
eX+Y . (3.15)

Then, the propagator (3.6) takes the form

G
(α)
m,m+h;l+h,l 6 e−α(C+1/2−D(α))(m+l+h)

(

αD(α)
√

m(m + h)
)δ

δ!
. (3.16)

By Stirling formula,

1

δ!
6

(e

δ

)δ

(3.17)

⇒ G
(α)
m,m+h;l+h,l 6 e−

Ω
3

α(m+l+h)

(
6e(D(α))2αm

Ωδ

)δ/2

√
(

Ω
6
α(m + h)

)δ

δ!
. (3.18)

For x > 0 we estimate xδ

δ!
6 ex and obtain

G
(α)
m,m+h;l+h,l 6

(
K2αm

δ

)δ/2

e−
Ω
4

α(m+l+h) , (3.19)

where K2 = 3
8
e(1 + M−1)2(1 − Ω2)2/Ω3.

Now we are left with two cases:

a) l = 0 ⇔ m = δ:

G
(α)
m,m+h;l+h,l 6 e−

Ω
4

α(m+l+h) (K2α)δ/2 , (3.20)

dIn the following, the K’s will be kinds of “dustbin” constants. It means that their contents changes
whereas their names do not.
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b) l > 1 and δ > 1: using l + δ 6 2lδ,

G
(α)
m,m+h;l+h,l 6 e−

Ω
4

α(m+l+h) (2K2lα)δ/2 . (3.21)

Inserting this into (3.4) and symmetrising with respect to the smallest index we obtain
(3.14), with K1 = 2MK2. This means K1 > M when all Ω ∈ [0.5, 1] are included. �

Let us now consider a typical graph appearing in the process of renormalisation, that
is, with external legs carrying indices lower than the internal ones. The bound (3.14)
provides a good factor with respect to power-counting unless the index jump δ = |m − l|
is very small, typically δ = 0 or δ = 1. This ensures that if the lower index of a propagator
is smaller than the scale we look at, the index is conserved along its trajectory for power-
counting relevant and marginal graphs.

Unfortunately, that estimation does not carry any information when the lower index
is larger than the scale. It leads to a difficulty for graphs which possess completely inner
vertices. Therefore, we have to find estimates for propagators with a sum over the index
l. The next section is devoted to these bounds.

3.3 Bounds for sums

Now we want to prove that the summation of the propagator G
(α)
m,p−l,p,m+l over l, for m

and p kept constant, gives the same power-counting as in the previous section. The proof
relies on a more accurate estimate of the sum in (3.10).

Proposition 3 For M large enough there exists a constant K such that for all Ω ∈ [ 2
3
, 1],

we have the uniform bound

p
∑

l=−m

Gi
m,p−l,p,m+l 6 KM−i e−

Ω
4

M−i(‖p‖+‖m‖) . (3.22)

Proof. The first slices, say i 6 6, are trivial to treat. Using (3.11) we have

p
∑

l=−m

Gi
m,p−l,p,m+l 6

K

M i

2∏

s=1

(ms + ps + 1)e−
ΩM−i

3
(ms+ps) . (3.23)

Then, the estimation follows from

(x + 1)e−
Ω
3

M−ix 6

(
12M i

Ω
e

ΩM−i

12
−1

)

e−
Ω
4

M−ix . (3.24)

This method fails in the limit i → ∞. Thus, for large i, we have to estimate the
propagator (3.6) more carefully, now putting h 7→ p−m− l and l 7→ m + l. Without loss
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of generality we can assume p > m. We have to divide the range of summation into three
parts according to the smallest index. Using (3.15) we estimate

p
∑

l=−m

G
(α)
m,p−l;p,m+l

6 e−α(C+1/2)(m+p)

( −1∑

l=−m

m+l∑

u=0

Xm−u

(m − u)!

Y m+l−u

(m + l − u)!

+

p−m−1∑

l=0

m∑

u=0

Xm−u

(m − u)!

Y m+l−u

(m + l − u)!
+

p∑

l=p−m

p−l∑

v=0

Xp−l−v

(p − l − v)!

Y p−v

(p − v)!

)

6

( −1∑

l=−m

X |l|

|l|! +

p
∑

l=0

Y l

l!

)

e−α(C+1/2−D(α))(m+p)

6 2

p
∑

l=0

(
1
2
αD(α)(m+p+l)

)l

l!
︸ ︷︷ ︸

Z

e−α(C+1/2−D(α))(m+p) , (3.25)

where X = 1
2
αD(α)(m + p − l) and Y = 1

2
αD(α)(m + p + l).

We can now divide the sum over l into two regions corresponding to l 6 (2β − 3)(p + m)
and l > d(2β − 3)(p + m)e > (2β − 3)(p + m), where dxe is the smallest integer which is
larger than x and β > 3

2
will be determined later:

Z 6

(2β−3)(p+m)
∑

l=0

((β − 1)αD(α)(m + p))l

l!
+

p
∑

l=d(2β−3)(p+m)e

(
β−1
2β−3

αD(α)l
)l

l!
. (3.26)

We extend both sums to infinity and use in the second one the identity (3.17):

Z 6 e(β−1)αD(α)(m+p) +

∞∑

l=0

(
β − 1

2β − 3
αD(α)e

)l

. (3.27)

For α small enough we have β−1
2β−3

αD(α)e < 1. Then the sum gives a constant which we

determine later. Combining (3.27) and (3.25), we have to prove that C+1/2−βD(α) > Ω
4
.

Let us define D′ such that C + 1
2
− D′ = Ω

4
. We have D′ = 1

4Ω
:

{

βD(α) 6
1

4Ω

}

⇔
{
β(1 + α)(1 − Ω2) 6 1

}
. (3.28)

For α 6 1
10

and β = 35
22

, we get Ω > 2
3
⇒
{
C + 1/2 − βD(α) > Ω

4

}
. Under the same

conditions we have β−1
2β−3

αD(α)e < 35
36

so that the second sum in (3.26) is bounded by 36.

For M > 1
2
(
√

5 + 1) we need i > 6 in order to reach α 6 1
10

. This finishes the proof. �
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The previous estimation for the summed propagator is still not enough for the renor-
malisation proof, because the index sums are entangled in the graph. We have to prove
that the exponential decay is still achieved if for given summation variable l we maximise
the other index p:

Proposition 4 For M large enough there exists a constant K such that for all Ω ∈ [ 2
3
, 1]

we have the uniform bound

∞∑

l=−m

max
p>max(l,0)

Gi
m,p−l;p,m+l 6 KM−ie−

Ω
36

M−i‖m‖ . (3.29)

Proof. Again, the main estimate (3.11) guarantees the desired behavior (3.29) for the
first slices, say i 6 16. For l 6 0, the maximum is attained at p = 0 so that we are in the
situation of (3.23) and (3.24). For l > 0, the maximum is attained at p = l so that the
l-sum leads to a geometric series. Here, it is important that i is bounded.

For i > 16 we have to proceed differently. We divide the domain of summation
according to the smallest index at the propagator:

∞∑

l=−m

max
p>max(l,0)

=

−1∑

l=−m

max
06p<m+l

+

−1∑

l=−m

max
m+l6p<m

+

−1∑

l=−m

max
p>m

+

∞∑

l=0

max
l6p<m+l

+

∞∑

l=0

max
p>m+l

.

(3.30)

We now obtain from (3.6) and (3.15)

∞∑

l=−m

max
p>max(l,0)

G
(α)
m,p−l;p,m+l

6

−1∑

l=−m

max
06p<m+l

e−α(C+1/2)(m+p)

p
∑

v=0

Xp−l−v

(p − l − v)!

Y p−v

(p − v)!

+

−1∑

l=−m

max
m+l6p<m

e−α(C+1/2)(m+p)
m+l∑

u=0

Xm−u

(m − u)!

Y m+l−u

(m + l − u)!

+

−1∑

l=−m

max
p>m

e−α(C+1/2)(m+p)

m+l∑

u=0

Xm−u

(m − u)!

Y m+l−u

(m + l − u)!

+

∞∑

l=0

max
l6p<m+l

e−α(C+1/2)(m+p)

p−l
∑

v=0

Xp−l−v

(p − l − v)!

Y p−v

(p − v)!

+

∞∑

l=0

max
p>m+l

e−α(C+1/2)(m+p)

m∑

u=0

Xm−u

(m − u)!

Y m+l−u

(m + l − u)!

12



6

m∑

|l|=1

max
p>0

e−α(C+1/2−D(α))(m+p)

(
1
2
αD(α)(p + m + |l|)

)|l|

|l|! (3.31)

+
∞∑

l=0

max
p>l

e−α(C+1/2−D(α))(m+p)

(
1
2
αD(α)(p + m + l)

)l

l!
, (3.32)

where X = αD(α)
2

(p + m − l) and Y = αD(α)
2

(p + m + l).

The function p 7→ e−γp (p+q)l

l!
attains its maximum eγq−l 1

l!

(
l
γ

)l

at p = l
γ
− q. We need this

property for q = m + |l| and

γ := α(C + 1/2 − D(α)) . (3.33)

However, we have to take into account the range of p. If l
γ
− q < 0 in (3.31), then the

function e−γp (p+q)l

l!
is monotonously decreasing for all p > 0 so that the maximum is at

p = 0. Otherwise we have to insert the specific maximum. This means that we split the
sum over l in (3.31) into two pieces

• |l| 6
mγ
1−γ

, where we insert p = 0. Actually, we can safely extend this sum from 0 to
m, still keeping p = 0.

• |l| >
mγ
1−γ

, where we insert p = 1−γ
γ
|l| − m.

This gives

m∑

|l|=1

max
p>0

e−α(C+1/2−D(α))(m+p)

(
1
2
αD(α)(p + m + |l|)

)|l|

|l|!

6

m∑

l=0

e−γm

(
1
2
αD(α)(m + l)

)l

l!
+

m∑

l= γm
1−γ

e(γ−1)l

(
αD(α)l

2γ

)l

l!
. (3.34)

For the first sum on the right hand side we are in the situation of (3.25) with m 7→ 0, p 7→ m
so that we can bound that sum according to the steps leading to (3.22) by a constant

times e−
Ω
4

αm, for Ω > 2/3 and α small enough. In the second sum we use (3.17) so that,
for some number ε > 0,

m∑

l= γm
1−γ

e(γ−1)l

(
αD(α)l

2γ

)l

l!
6

m∑

l= γm
1−γ

e−εl

(
αD(α)eγ+ε

2γ

)l

6 e−εγm

m∑

l= γm
1−γ

(
αD(α)eγ+ε

2γ

)l

. (3.35)

In the numerator we can bound γ by 1
2
, otherwise the sum vanishes. Moreover, we choose

ε = 1
12

. With (3.33) it thus remains to prove

D(α)e
7
12

2C + 1 − 2D(α)
< 1 . (3.36)
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For α 6 1
10

this means 11−11Ω2

42Ω2−2
e

7
12 < 1, which is indeed satisfied for Ω > 2

3
.

We now pass to (3.32). The condition p > l leads to a splitting of the l-sum at γm
1−2γ

.
For smaller l we have p = l:

∞∑

l=0

max
p>l

e−α(C+1/2−D(α))(m+p)

(
1
2
αD(α)(p + m + l)

)l

l!

6

∞∑

l=0

e−γα(m+l)

(
1
2
αD(α)(m + 2l)

)l

l!
+

∞∑

l= γm
1−2γ

e(γ−1)l

(
αD(α)l

2γ

)l

l!
(3.37)

The second sum on the right hand side is identical to treat as in the previous case (3.31).
The first sum on this right hand side is split as in (3.26) at l = (β − 3

2
)m. Then it works

exactly as in (3.27). This finishes the proof. �

3.4 Composite propagators

This section is devoted to the proofs of bounds on the composite propagators introduced
in [6]. We define their sliced versions as follows:

Qi(0)
m1

m2 , n1

n2 ;n1

n2 , m1

m2

= Gi
m1

m2 , n1

n2 ;n1

n2 , m1

m2

− Gi
0
0
, n1

n2 ;n1

n2 , 0
0

, (3.38)

Qi(1)
m1

m2 , n1

n2 ;n1

n2 , m1

m2

= Qi(0)
m1

m2 , n1

n2 ;n1

n2 , m1

m2

− m1Qi(0)
1
0
, n1

n2 ;n1

n2 , 1
0

− m2Qi(0)
0
1
, n1

n2 ;n1

n2 , 0
1

, (3.39)

Qi( 1
2
)

m1+1

m2 ,
n1+1

n2 ;n1

n2 , m1

m2

= Gi
m1+1

m2 , n1+1
n2 ;n1

n2 , m1

m2

−
√

m1 + 1Gi
1
0
, n1+1

n2 ;n1

n2 , 0
0

. (3.40)

Proposition 5 There exist constants Ki such that for Ω ∈ [0.5, 1) and m 6 M i, we have
the uniform bounds

∣
∣
∣
∣
Qi(0)

m1

m2 , n1

n2 ;n1

n2 , m1

m2

∣
∣
∣
∣
6 K0M

−i m1 + m2

M i
e−

Ω
3

M−i(n1+n2) , (3.41)

∣
∣
∣
∣
Qi(1)

m1

m2 , n1

n2 ;n1

n2 , m1

m2

∣
∣
∣
∣
6 K1M

−i

(
m1 + m2

M i

)2

e−
Ω
3

M−i(n1+n2) , (3.42)

∣
∣
∣
∣
Qi( 1

2
)

m1+1
m2 , n1+1

n2 ;n1

n2 , m1

m2

∣
∣
∣
∣
6 K2M

−i

(
m1 + m2 + 1

M i

)3/2

e−
Ω
4

M−i(n1+n2) . (3.43)

Proof. There is no need to discuss the first slice. From (3.4) we have

Qi(0)
m1

m2 , n1

n2 ;n1

n2 , m1

m2

=
θ

8Ω

∫ M−i+1

M−i

dα
(1 − α)

µ2
0θ

8Ω

(1 + Cα)2

((
G

(α)

m1,n1,n1,m1 − G
(α)

0,n1,n1,0

)
G

(α)

m2,n2,n2,m2

+ G
(α)

0,n1,n1,0

(
G

(α)

m2,n2,n2,m2 − G
(α)

0,n2,n2,0

))

. (3.44)
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Taking (3.11) into account, it remains to obtain estimations for G
(α)
m,n,n,m −G

(α)
0,n,n,0. From

(3.2) we have, expressing m + h by n,
∣
∣G(α)

m,n,n,m − G
(α)
0,n,n,0

∣
∣

=

(√
1 − α

1 + Cα

)n
∣
∣
∣
∣
∣
∣

(√
1 − α

1 + Cα

)m min(m,n)
∑

u=0

(
m

u

)(
n

u

)(
Cα(1 + Ω)√
1 − α (1 − Ω)

)2u

− 1

∣
∣
∣
∣
∣
∣

. (3.45)

The (u = 0)-part of the sum and the separate term −1 yield

1 −
(√

1 − α

1 + Cα

)m

=

(

1 −
√

1 − α

1 + Cα

)m−1∑

j=0

(√
1 − α

1 + Cα

)j

6 m

(

1 −
√

1 − α

1 + Cα

)

6 mα(C + 1) . (3.46)

Next, using
(

m
v+1

)
= m−v

v+1

(
m
v

)
and our central estimate

(
m
v

)
6 mv

v!
, we have

m∑

u=1

(
m

u

)(
n

u

)(
Cα(1 + Ω)√
1 − α (1 − Ω)

)2u

6

m−1∑

v=0

m − v

v + 1

(
m

v

)(
Cα(1 + Ω)√
1 − α (1 − Ω)

)v+1 m∑

u=0

(
n

u

)(
Cα(1 + Ω)√
1 − α (1 − Ω)

)u

6 m

(
Cα(1 + Ω)√
1 − α (1 − Ω)

)

exp

(
Cα(1 + Ω)(m + n)√

1 − α (1 − Ω)

)

6 mα
(1 − Ω)2

4Ω
√

1 − M−1
eαD(α)(m+n) . (3.47)

Inserting (3.46) and (3.47) back into (3.45) we obtain for α 6 M−1 the estimation

∣
∣G(α)

m,n,n,m − G
(α)
0,n,n,0

∣
∣ 6 αm

(
(1 + Ω)2

4Ω
+

(1 − Ω)2

4Ω
√

1 − M−1

)

e−α(C+1/2−D(α))n . (3.48)

Comparing (3.48) with (3.12) we obtain in (3.41) the same restrictions to Ω as in Propo-
sition 1.

To approach (3.42) we consider

Qi(1)
m1

m2 , n1

n2 ;n1

n2 , m1

m2

=
θ

8Ω

∫ M−i+1

M−i

dα
(1 − α)

µ2
0θ

8Ω

(1 + Cα)2

×
((

G
(α)

m1,n1,n1,m1 − G
(α)

0,n1,n1,0 − m1
(
G

(α)

1,n1,n1,1 − G
(α)

0,n1,n1,0

))

G
(α)

m2,n2,n2,m2

+ m1
(
G

(α)

1,n1,n1,1 − G
(α)

0,n1,n1,0

)(
G

(α)

m2,n2,n2,m2 − G
(α)

0,n2,n2,0

)

+ G
(α)

0,n1,n1,0

(

G
(α)

m2,n2,n2,m2 − G
(α)

0,n2,n2,0 − m2
(
G

(α)

1,n2,n2,1 − G
(α)

0,n2,n2,0

)))

.

(3.49)

15



The third line is estimated by (3.48). In the other lines we have for n > 1

∣
∣G(α)

m,n,n,m − G
(α)
0,n,n,0 − m(G

(α)
1,n,n,1 − G

(α)
0,n,n,0)

∣
∣

=

(√
1 − α

1 + Cα

)n
∣
∣
∣
∣
∣

(√
1 − α

1 + Cα

)m

− m

(√
1 − α

1 + Cα
− 1

)

− 1

∣
∣
∣
∣
∣

+ mn

(√
1 − α

1 + Cα

)n+1(
Cα(1 + Ω)√
1 − α (1 − Ω)

)2
∣
∣
∣
∣
∣

(√
1 − α

1 + Cα

)m−1

− 1

∣
∣
∣
∣
∣

+

(√
1 − α

1 + Cα

)m+n min(m,n)
∑

u=2

(
m

u

)(
n

u

)(
Cα(1 + Ω)√
1 − α (1 − Ω)

)2u

. (3.50)

In the third line we use n Cα(1+Ω)√
1−α (1−Ω)

6 exp (nαD(α)). The further procedure is as before.

Finally, we consider

Qi( 1
2
)

m1+1

m2 ,
n1+1

n2 ;n1

n2 , m1

m2

=
θ

8Ω

∫ M−i+1

M−i

dα
(1 − α)

µ2
0θ

8Ω

(1 + Cα)2

((
G

(α)

m1+1,n1+1,n1,m1 −
√

m1 + 1G
(α)

1,n1+1,n1,0

)
G

(α)

m2,n2,n2,m2

+
√

m1 + 1G
(α)

1,n1+1,n1,0

(
G

(α)

m2,n2,n2,m2 − G
(α)

0,n2,n2,0

))

. (3.51)

The estimation for the third line of (3.51) is immediately obtained from (3.48) and (3.14).
In the second line we have
∣
∣G

(α)
m+1,n+1,n,m −

√
m + 1G

(α)
1,n+1,n,0

∣
∣

=

∣
∣
∣
∣
∣

(√
1 − α

1 + Cα

)m min(m,n)
∑

u=0

√

(m + 1)(n + 1)

u + 1

(
m

u

)(
n

u

)(
Cα(1 + Ω)√
1 − α (1 − Ω)

)2u+1

−
√

(m + 1)(n + 1)

(
Cα(1 + Ω)√
1 − α (1 − Ω)

)
∣
∣
∣
∣
∣

(√
1 − α

1 + Cα

)n+1

. (3.52)

We use the estimation
√

n Cα(1+Ω)√
1−α (1−Ω)

6 exp
(

1
2
nαD(α)

)
and proceed along the same lines

as before.
This finishes the proof. �

4 Perturbative power-counting

4.1 Ribbon graphs

Consider a given φ4-ribbon graph G with N external legs, V vertices, I inner lines and
F faces, hence of genus g = 1 − 1

2
(V − I + F ). There are four indices {m, n; k, l} ∈ N

2

associated to each inner line
oo

//

n

lm

k

of the graph and two indices for each external line,
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hence 4I +2N = 8V such indices. But at every vertex, the left index of a ribbon coincides
with the right one of the next ribbon. This creates 4V independent identifications, so we
can write the indices of any propagator in terms of a set I of 4V indices, four per vertex,
for instance each “left” half-ribbon index.

The amplitude of the graph is then the sum

AG =
∑

I

∏

δ∈G

Gmδ(I),nδ(I);kδ(I),lδ(I) δmδ−lδ ,nδ−kδ
, (4.1)

where the four basic indices of the propagator G for a line δ are functions of I called
{mδ(I), nδ(I); kδ(I), lδ(I)}.

The scale decomposition of the propagator being

G =
∞∑

i=0

Gi , (4.2)

we have an associated decomposition of any amplitude of the theory as

AG =
∑

µ

AG,µ , (4.3)

AG,µ =
∑

I

∏

δ∈G

Giδ
mδ(I),nδ(I);kδ(I),lδ(I) δmδ(I)−lδ(I),nδ(I)−kδ(I) , (4.4)

where µ = {iδ} runs over all possible attributions of a positive integer iδ for each line δ.
Such a µ is therefore called a scale attribution.

We recall our two main bounds on the propagator

Gi
m,n;k,l 6 KM−ie−cM−i(‖m‖+‖n‖+‖k‖+‖l‖) , (4.5)

∑

l

max
n,k

Gi
m,n;k,l 6 K ′M−ie−c′M−i‖m‖ , (4.6)

for some constants K, K ′ and c, c′.
A considerable fraction of the 4V indices initially associated to this graph is determined

by external indices of the graph and the δ-function in (4.1). The undetermined indices
are summation indices. Perturbative power counting for a graph consists in finding the
indices for which the summation costs a factor M 2i, and the ones for which it costs only
O(1), thanks to (4.6). The factor M 2i follows from (4.5) after summation over some
indexe m ∈ N

2,

∞∑

m1,m2=0

e−cM−i(m1+m2) =
1

(1 − e−cM−i)2
=

M2i

c2
(1 + O(M−i)) . (4.7)

eRemember that there are two symplectic pairs, one for spatial dimensions 1 and 2, and the other for
spatial dimensions 3 and 4.
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4.2 Dual graphs

We first want to use as much as possible the δ-functions in (4.1) to reduce the set I to
a truly minimal set I ′ of independent indices. It is convenient for this task to consider
the dual graph for which the problem becomes analogous to an ordinary problem of
momentum routing.

The dual graph of a ribbon graph is obtained by associating to each face a vertex
and to each vertex a face. Every line bordering two neighbouring faces is replaced by a
line joining the two corresponding vertices of the dual graph. Hence, the genus does not
change under this duality. We shall write V ′ = F , F ′ = V for the number of vertices
and faces of the dual graph (dual quantities are usually distinguished by a prime). If the
initial graph is a φ4-graph, i.e. has coordination 4 at each vertex, we have 4 = If ′ +Nf ′ for
each face f ′ ∈ F ′, where If ′ and Nf ′ denote the numbers of edges and external valences,
respectively, which belong to f ′. The coordination at the vertices of the dual graph is
arbitrary.

The construction of the dual of a graph goes as follows: First, for each oriented face
of the original ribbon graph, draw an oriented ribbon vertex by assigning

• to a single line of a propagator of the original graph an internal valence of the dual
vertex,

• to an external valence of the original graph an external valence of the dual vertex,

respecting the order according to the arrows on the trajectories. In the second step
we connect the valences by the duals of the propagators of the original graph, which is
obtained according to

m

n

l

k
line

dual line

(4.8)

Let us consider the following example of a ribbon graph with a single face:

oo
// OO

oo

OO��

oo
//

��
OO

m2

n2 r′ r

m1

n1

q

q′ (4.9)
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The above rules lead to the following dual vertex:
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m1 n2
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m1

(4.10)

Now we connect the valences by the duals of the propagators of the original graph, i.e.
n1q with r′q′, qr with q′m2 and n2m1 with rr′:

� !$(-3=Sdt���� � � � � ! $ ( .G̀jry|�?@@ABFPS
s�� � � �   $ ) . 39?DIINT̂m�������

__̀
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ddgkoty��		���-DSX[]̂_
// ?? OO __

oo

??��

��

__��

n1

q

r r′
q′

m2

n2m1

(4.11)

The dual graph is made of the same propagators as the original graph, only the index

assignment is different. Whereas in the original graph we have Gmn;kl =
oo

//

m

kn

l

, the index

assignment for propagators in the dual graph is

Gmn;kl =
������

oo

//

m

kl

n
. (4.12)

The conservation rule δl−m,−(n−k) in (4.1) now states that the difference between outgoing
and incoming indices of the half-propagator attached to a dual vertex, namely l − m, is
conserved as minus the corresponding difference n−k at the other end of the propagator.
Actually, these index differences describe the angular momentum, and the conservation
of these differences ` = l − m and −` = n − k is nothing but the angular momentum
conservation due to the SO(2)×SO(2) symmetry of the noncommutative φ4-action. Thus,
taking the incoming indices as the reference, the angular momentum through the dual
propagator determines the outgoing indices:

����������������

oo

//

oo

//

m

kl

n

`

−`

l = m + ` , n = k + (−`) . (4.13)

In the same way, there are external angular momenta ℘ which enter the dual graph
through the external valences. We shall also use the incoming arrow as the reference
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so that the angular momentum is the index difference between outgoing and incoming
arrows. Furthermore, by cyclicity at any vertex, the sum of all incoming differences at a
vertex, i.e. the sum of incoming angular momenta, must be zero. Of course, this implies
that the total external angular momentum entering a graph is zero, too.

Thus, the angular momentum for the dual graph is exactly like the usual momentum
in an ordinary Feynman graph: a momentum that goes out like p at one half-end must
go out as −p at the other half-end, and the total momentum is conserved at any vertex.
(In Feynman graphs this follows from translation invariance.) It should be stressed that
one has to take into account positivity constraints for the angular momenta `: they lie in
Z, but all indices m, n, k, l must be positive integers.

We therefore know that the number of independent index differences is exactly the
number of loops L′ of the dual graph. For a connected graph, this number is L′ = I−V ′+1.
Furthermore, each index at a vertex is clearly only a function of the differences at a vertex
and of a single reference index for the dual vertex. If the dual vertex is an external
one, we take as the reference index the outgoing index at one of the external legs. If
the dual vertex is an internal one, we have to make a choice (determined later) for the
reference index. These internal vertex reference indices correspond to the loop variable
of the original graph. Therefore, after using the conservation rules or δ-functions of each
propagator, the number of independent indices to be summed for every graph is simply
V ′ − B + L′ = I + (1 − B). Here, B > 0 is the number of boundary components of the
original graph, which coincides with the number of external vertices of the dual graph.

Expressing each index in the graph as a function of a set I ′ of such independent indices
is therefore identical to the problem called momentum routing in a Feynman graph. It is
well-known that the solution is not canonical or unique. A good way to root the momenta
is to pick a spanning tree Tµ of the dual graph, with V ′−1 lines, and to use the complement
set Lµ as the set of fundamental independent differences. The subscript µ refers to the
choice of the tree which depends on the scale attribution µ in (4.4).

4.3 Choice of the tree

A given scale attribution µ = {iδ} defines an order of lines in the dual graph. We define

δ1 6 δ2 6 · · · 6 δI if iδ1 6 iδ2 6 · · · 6 iδI
. (4.14)

In case of equality we make any choice. Let δT1 be the smallest line with respect to this

order which is not a tadpole, and G
i
δT
1

m
δT
1

;n
δT
1

;k
δT
1

,l
δT
1

be the corresponding propagator. The

line δT1 will then connect two vertices v±
1 and forms the first segment of the tree. We let

µ1 := µ \ (δ1 ∪ · · · ∪ δT1 ) and T1 = δT1 ∪ v+
1 ∪ v−

1 .
In the remaining set µ1 of lines we identify the smallest line δT2 of µ1 which does not

form a loop when added to T1. We define µ2 = µ \ (δ1 ∪ · · · ∪ δT
2 ) and

• T2 = T1 ∪ δT2 ∪ v+
2 if δT2 connects a vertex v+

2 to T1,

• T2 = T1 ∪ δT2 ∪ v+
2 ∪ v−

2 if δT2 connects two vertices v±
2 /∈ T1.
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In the nth step, we identify the smallest line δTn of µn−1 which does not form a loop
when added to Tn−1. We define µn = µ \ (δ1 ∪ · · · ∪ δT

n ) and

• Tn = Tn−1 ∪ δTn ∪ v+
n if δTn connects a vertex v+

n to Tn−1,

• Tn = Tn−1 ∪ δTn ∪ v+
n ∪ v−

n if δTn connects two vertices v±
n /∈ Tn−1,

• Tn = Tn−1 ∪ δTn if δTn connects two disjoint subsets of Tn−1.

The (V ′−1)th step leads to the desired tree Tµ = TV ′−1. The importance of this construc-
tion is the fact that any line δLj ∈ Lµ which connects different vertices v±

j of the tree has
a scale index iδLj which is not smaller than any scale index of the lines in the tree which

connect v±
j . Such a tree optimisation for a given scale attribution is one of the most basic

tools of constructive field theory [11], so it is an encouraging sign that it appears also here
in a natural way.

In the graphical representations we distinguish the tree by triple dashed lines.

4.4 Index assignment for a tree

For the previously constructed tree Tµ we select one of its B > 1 external vertices as the
root v0 of the tree. If the graph is a vacuum graph i.e. with B = 0 we choose any vertex
as the root. We relabel the vertices in the tree such that all vertices in the subtree above
a vertex vn have a label bigger than n.

The order (4.14) of the lines of the graph provides us with a convenient position for
the main reference index m at each vertex. If v is an internal vertex, we let δv be the
smallest line in (4.14) which is attached to v. By construction of the tree we know that
either δv is a tadpole, or it belongs to the tree. We choose the outgoing index (without
the arrow when viewed from the vertex) of this particular line δv as the main reference
index mv. We let GM be the set of lines at which a main reference index resides. It
is possible that both outgoing indices of a line δv = δv′ attached to v and v′ are main
reference indices. In this case we let δv appear twice in GM. Thus, GM consists of V ′ −B
elements. If v is an external vertex, we take as the “main reference index” the outgoing
index at any external leg. The following graph shows a typical situation of a tree and its
main reference indices, assuming absence of tadpoles and B = 1:

???????

???????

???????

�������
�������

�������

�������

AAAAAAA

VVVVVVVVVVV

VVVVVVVVVVV
VVVVVVVVVVV
� � � � � � � � � �

$$$$$$$

$$$$$$$

$$$$$$$

ddddddd

EEEEEEEEE

EEEEEEEEE

EEEEEEEEE

��������




























JJJJJJJ
(((((((((

(((((((((

(((((((((

hhhhhhhh

xxxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

888888888

��

__

��

@@++

kk
��

RR""

bb

��

DD

��

TT

{{

;;

v0

v1

mv1

v2

mv2
v3

mv3

v4

mv4

v5

mv5

v6mv6

v7

mv7 v8mv8

(4.15)

One can now write down every index in a unique way in terms of

• V ′ − B main reference indices mv,

• B main reference indices at external vertices,
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• L′ internal angular momenta `δ for the set Lµ of “loop lines”

• N external angular momenta ℘ε for the set N of external lines.

The rule goes as follows. One writes first the indices for all the “leaves” of the tree,
that is the vertices (distinct from the root) with coordination 1 in the tree (i.e. vertices
v3, v5, v6, v7 and v8 in (4.15)). For them, starting from the main index mv (at the left
of the unique line of Tµ at v that goes towards the root, unless a tadpole at v has the
smallest scale), which agrees with the incoming index of the next line at v in clockwise
direction, we compute all other indices by turning clockwise around the vertex and by
adding the angular momenta (internal or external ones) associated according to (4.13)
with the loop lines δ1, . . . , δk and possibly external lines ε1, . . . , εk′. This gives indices
mv + `1, mv + `1 + `2, . . . until we arrive at mv + `1 + · · · + `k+k′ which is at the right of
the unique line at v that goes towards the root. Some of the `j could be external angular
momenta. Then we can compute the angular momentum associated to that line: it is
simply −(`1 + · · ·+ `k+k′). The following picture shows these assignments for a particular
“leaf”:

wwwwwwwwwwwwww

wwwwwwwwwwwwww

7777777777777

EE
EE

EE
EE

EE
EE

EE
EE

E

EE
EE

EE
EE

EE
EE

EE
EE

E

EE
EE

EE
EE

EE
EE

EE
EE

E

���
���

���
���

���
� � � � � � � � � �

,,,,,,,,,,,

,,,,,,,,,,,

llllllllll

��
��
��
��
��
�

��
��
��
��
��
�

RR
RR
RR
RR
RR

{{

;;
zzuuu

u

bb

""

bbEEEE

""EE
EE

oo
//

HH����

��

VV

// HH

��

��,
,,

,

mv

`1
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`2
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`3
mv+`1
+`2+`3

`4

mV +`1+`2+`3+`4

−(`1+`2+`3+`4)

`1+`2+`3+`4

(4.16)

Having done this for all leaves, we can prune these leaves and consider the next layer
of vertices down towards the root (i.e. vertices v2 and v4 in (4.15)) and reiterate the
argument.

Any summation index at a vertex v is now clearly equal to mv plus a linear combination
of angular momenta `δ for the set of lines Lv ∪Nv hooked to the “subtree above v”, that
is the lines hooked at least at one end to a vertex v ′ such that the unique path from v′ to
v0 passes through v.

We split therefore the set I ′ of independent indices to be summed into the two sets:

• the set Mµ = {mv} of main reference indices at inner vertices, which consists of
V ′ − B elements,

• the set Jµ = {`δ, δ ∈ Lµ} of angular momenta, which consists of L′ elements.

The amplitude of the graph G is now written as:

AG =
∑

µ

∑

Mµ,Jµ

∏

δ∈G

Giδ
mδ(Mµ,Jµ),nδ(Mµ,Jµ);kδ(Mµ,Jµ),lδ(Mµ,Jµ) χ(Mµ,Jµ) , (4.17)

where the sum over Mµ is over positive integers, but the sum over Jµ is over relative
integers and the function χ(Mµ,Jµ) is the characteristic function which states that all
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the functions {mδ(Mµ,Jµ), nδ(Mµ,Jµ); kδ(Mµ,Jµ), lδ(Mµ,Jµ)} are positive. The de-
pendence of AG on the external indices (B reference indices at external vertices and N
external angular momenta) is not made explicit.

4.5 Power-counting

Our goal is now to prove that sums over difference indices can always be performed
through (4.6), hence at no cost, using precisely the propagator Giδ to perform the sum
over the angular momentum `δ. However, as the angular momenta are entangled, we
need appropriate maximisations of the other Gi′δ over `δ. These maximisations require a
carefully chosen order. For processing the angular momenta, all main reference indices
Mµ and the external indices are kept constant.

We introduce in the set of loop lines Lµ another order “>” than the previous order
“6” defined in (4.14), now according to the position in the tree. For this purpose we let
vδ be the label of the highest vertex to which δ ∈ Lµ is hooked. We define δ1 > δ2 if

• vδ1 > vδ2 , or

• when turning clockwise around vδ1 = vδ2 from the main reference index, first δ1 is
encountered, then δ2 or the tree line which goes down to the root, or

• when turning clockwise around vδ1 = vδ2 from the main reference index, first the
tree line down to the root is encountered, then δ2 and finally δ1.

We orient the lines δ ∈ Lµ so that the two indices mδ(Mµ,Jµ), lδ(Mµ,Jµ) are hooked to
vδ and their difference is precisely `δ:

lδ(Mµ,Jµ) − mδ(Mµ,Jµ) = `δ (4.18)

For “tadpole” lines δ of Lµ, i.e. hooking vδ to itself, we define the two indices m, l as the
ones of the first half-line of δ in the clockwise cyclic ordering between the main reference of
vδ and the tree line down to the root. If the tree line is encountered before both half-lines,
we have to select instead the indices on the half-line in anti-clockwise order.

We define J δ+
µ = {`δ′ ∈ Jµ, δ

′ > δ} and J δ−
µ = {`δ′ ∈ Jµ, δ > δ′}. Then, we remark

that the two distinguished indices mδ(Mµ,Jµ), lδ(Mµ,Jµ) at vδ are actually functions
mδ(Mµ,J δ+

µ ), mδ(Mµ,J δ+
µ ) + `δ which are independent of the indices in J δ−

µ . We con-

clude that for δ ∈ Lµ and fixed indices in Mµ and J δ+

µ ,

max
`δ′∈J δ−

µ

Giδ
mδ(Mµ,Jµ),nδ(Mµ,Jµ);kδ(Mµ,Jµ),lδ(Mµ,Jµ)

6 max
nδ,kδ

Giδ
mδ(Mµ,J δ+

µ ),nδ ;kδ ,mδ(Mµ,J δ+
µ )+`δ

, (4.19)

where on the right hand side the max is over any indices nδ, kδ in N. It is instructive to
look at the example (4.16) where we have δ1 > δ2 > δ3 > δ4. The indices m2, l2 depend
on the main refererence index mv and the “bigger” angular momentum `δ1 ∈ J 2+

µ , but
not on the “smaller” angular momenta `δ3 , `δ4 ∈ J 2−

µ .
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For a given scale attribution µ in (4.17) and fixed indices in Mµ we can now evaluate
the telescopic sum over the angular momenta in Jµ. With respect to the previously
defined order “>” let δL′ > δL′−1 > · · · > δ2 > δ1 be the loop lines. The summation is
performed from the smaller to larger labels:

∑

Jµ

∏

δ∈G

Giδ
mδ(Mµ,Jµ),nδ(Mµ,Jµ);kδ(Mµ,Jµ),lδ(Mµ,Jµ) χ(Mµ,Jµ)

6
∑

J δ1+
µ

{

max
`δ1




∏

δ∈Tµ

Giδ
mδ(Mµ,Jµ),nδ(Mµ,Jµ);kδ(Mµ,Jµ),lδ(Mµ,Jµ)





× max
`δ1




∏

δ∈Lµ , δ>δ1

Giδ
mδ(Mµ,Jµ),nδ(Mµ,Jµ);kδ(Mµ,Jµ),lδ(Mµ,Jµ)





×
∑

`δ1

G
iδ1

mδ1
(Mµ,J δ1+

µ ),nδ1
(Mµ,Jµ);kδ1

(Mµ,Jµ),mδ1
(Mµ,J δ1+

µ )+`δ1

}

χ(Mµ,Jµ)

6
∑

J δ2+
µ

{

max
`δ1

,`δ2




∏

δ∈Tµ

Giδ
mδ(Mµ,Jµ),nδ(Mµ,Jµ);kδ(Mµ,Jµ),lδ(Mµ,Jµ)





× max
`δ1

,`δ2




∏

δ∈Lµ , δ>δ2

Giδ
mδ(Mµ,Jµ),nδ(Mµ,Jµ);kδ(Mµ,Jµ),lδ(Mµ,Jµ)





×
∑

`δ2

(

max
`δ1

G
iδ2

mδ(Mµ,J δ2+
µ ),nδ2

(Mµ,Jµ);kδ2
(Mµ,Jµ),mδ2

(Mµ,J δ2+
µ )+`δ2

)

× max
`δ2

∑

`δ1

(

max
nδ1

,kδ1

G
iδ1

mδ1
(Mµ,J δ1+

µ ),nδ1
;kδ1

,mδ1
(Mµ,J δ1+

µ )+`δ1

)}

χ(Mµ,Jµ) , (4.20)

and so on. At the end we arrive at
∑

Jµ

∏

δ∈G

Giδ
mδ(Mµ,Jµ),nδ(Mµ,Jµ);kδ(Mµ,Jµ),lδ(Mµ,Jµ)χ(Mµ,Jµ)

6
∏

δ∈Tµ

(

max
Jµ

Giδ
mδ(Mµ,Jµ),nδ(Mµ,Jµ);kδ(Mµ,Jµ),lδ(Mµ,Jµ)

)

×
∏

δ∈Lµ






max
J δ+

µ




∑

`δ>−mδ(Mµ,J δ+
µ )

(

max
nδ ,kδ

Giδ
mδ(Mµ,J δ+

µ ),nδ ;kδ ,mδ(Mµ,J δ+
µ )+`δ

)









. (4.21)

The positivity constraints in χ are used to fix the correct range of sums over `δ.
The result is a bound for the Jµ-summation in (4.17). For tree lines δ ∈ Tµ where all

indices depend on Jµ the bound, due (4.5), is given by

max
Jµ

Giδ
mδ(Mµ,Jµ),nδ(Mµ,Jµ);kδ(Mµ,Jµ),lδ(Mµ,Jµ) 6 KM−iδ , δ ∈ Tµ , δ /∈ Gµ . (4.22)
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If one of the indices of δ ∈ Tµ is a main reference index at v, we have

max
Jµ

Giδ
mv ,nδ(Mµ,Jµ);kδ(Mµ,Jµ),lδ(Mµ,Jµ) 6 KM−iδe−cM−iδ‖mv‖ , δ ∈ Tµ ∩ Gµ . (4.23)

If two indices of δ are main reference indices at v, v′, we have

max
Jµ

Giδ
mv ,nδ(Mµ,Jµ);mv′ ,lδ(Mµ,Jµ) 6 KM−iδe−cM−iδ (‖mv‖+‖mv

′‖) , δ ∈ Tµ , δ ∈ Gµ \ {δ} .

(4.24)

Next, each summed propagator which corresponds to a line δ ∈ Li delivers according to
(4.21) a factor KM−iδ ,

max
J δ+

µ

(
∑

`δ

(

max
J δ−

µ

Giδ
mδ(Mµ,J δ+

µ ),nδ(Mµ,Jµ);kδ(Mµ,Jµ),mδ(Mµ,J δ+
µ )+`δ

))

6 K ′M−iδ ,

δ ∈ Lµ , δ /∈ Gµ . (4.25)

In the case that δ ∈ Li is a tadpole at vi which has the smallest scale index among the
set of lines at vi we obtain from (4.6) the bound

max
J δ+

µ

(
∑

`δ

(

max
J δ−

µ

Giδ
mv ,nδ(Mµ,Jµ);kδ(Mµ,Jµ),mv+`δ

))

6 K ′M−iδ e−c′M−iδ ‖mv‖ , δ ∈ Lµ ∩ Gµ .

(4.26)

Eventually, there will be indices mε, nε which are fixed as external ones. Each one delivers
according to (4.5) and (4.6) an additional factor e−cM−iε‖mε‖ and e−cM−iε‖nε‖, respectively,
because these decays cannot be removed by maximising loop momenta. For external
indices which are not connected to internal lines we put c ≡ 0.

Altogether, the Jµ-summation in (4.17) can be estimated by

AG 6
∑

µ

∑

m1,...,mV ′−B∈N2




∏

δ′∈Gµ

e−cM−i
δ′ ‖mv(δ′)‖





(
∏

δ∈G

KM−iδ

)

×
(

N∏

ε=1

e−cM−iε‖mε‖

)(
N∏

ε=1

e−cM−iε‖nε‖

)

, (4.27)

where mv(δ′) is the main reference index at δ′ ∈ Gµ. After summation over m1, . . . , mV ′−B

we have

AG 6
∑

µ

KI

c2(V ′−B)

(

M−
P

δ∈G iδ
)(

M
2

P

δ′∈Gµ
iδ′
)
(

N∏

ε=1

e−cM−iε‖mε‖

)(
N∏

ε=1

e−cM−iε‖nε‖

)

.

(4.28)
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The dangerous region of the sum over the scale attribution is at large scale indices.
To identify this region, we associate to the order (4.14) of lines a sequence of subgraphs
GI ⊂ GI−1 ⊂ · · · ⊂ G1 = G of the original ribbon graph by defining Gγ as the possibly
disconnected set of lines δγ′ > δγ, together with all vertices attached to them. To Gγ

we associate the scale attribution µγ which starts from an irrelevant low-scale cut-off
iγ−1 6 iγ′ . We conclude from (4.28) that the amplitude AGγ corresponding to the subgraph
Gγ converges if

ωγ := 2(V ′
γ − Bγ) − Iγ = 2Fγ − 2Bγ − Iγ = (2 − Nγ

2
) − 2(2gγ + Bγ − 1) (4.29)

is negative, where Nγ , Vγ, Iγ = 2Vγ − Nγ

2
, Fγ and Bγ are the numbers of external legs,

vertices, edges, faces and external faces of Gγ, respectively, and gγ = 1− 1
2
(Vγ − Iγ + Fγ)

is its genus. We have thus proven the following

Theorem 6 The sum over the scale attribution µ in (4.28) converges if for all subgraphs
Gγ ⊂ G we have ωγ < 0.

For the total graph γ = G the power-counting degree becomes ω = (2− N
2
)−2(2g+B−1),

which reproduces the power-counting degree derived in [9].

4.6 Subtraction procedure for divergent subgraphs

The power-counting theorem 6 implies that planar subgraphs with two or four external
legs are the only ones for which the sum over the scale attribution can be divergent. These
graphs require a separate analysis. We first see from Proposition 2 that

• only those planar four-leg subgraphs with constant index along the trajectory are
marginal,

• only those planar two-leg graphs with constant index along the trajectory are rele-
vant,

• only those planar two-leg graphs with an accumulated index jump of 2 along the
trajectory are marginal.

For the other types of graphs there is a sufficient power of M−i through the terms (M−il)δ

in (3.21) which makes the sum over the scale attribution convergent.
For the remaining truly divergent graphs one performs similarly as in the BPHZ scheme

a Taylor subtraction about vanishing external indices. For instance, a marginal four-leg
graph with amplitude Amn;nk;kl;lm is written as

Amn;nk;kl;lm = (Amn;nk;kl;lm − A00;00;00;00) + A00;00;00;00 . (4.30)

The difference of graphs Amn;nk;kl;lm−A00;00;00;00 can be expressed as a linear combination
involving the composite propagators (3.38). See also [6] for more details. Then, the
estimation (3.41) provides an additional factor M−i which makes the sum over the scale
attribution for the difference Amn;nk;kl;lm − A00;00;00;00 convergent.
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Eventually, there remain only the four divergent base functions A 0
0

0
0
; 0
0

0
0
; 0
0

0
0
; 0
0

0
0
, A 0

0
0
0
; 0
0

0
0
,

(A 1
0

0
0
; 0
0

1
0
−A 0

0
0
0
; 0
0

0
0
) and A 1

0
1
0
; 0
0

0
0
, taking into account the symmetry properties of the model.

These are normalised to their “experimentally” determined values: the physical coupling
constant, the physical mass, the physical field amplitude and the physical frequency of
the harmonic oscillator potential, respectively.

At the end, any graph appearing in the noncommutative φ4-model has an amplitude
which is uniquely expressed by four normalisation conditions as well as convergent sums
over the scale attribution. Thus, the model is renormalisable to all orders.

5 Conclusion

For many years, noncommutative quantum field theories were supposed to be ill-behaved
due to the UV/IR-mixing problem [4]. Meanwhile, it turned out [9, 6] that at least
the Euclidean noncommutative φ4

4-model is as good as its commutative version: it is
renormalisable to all orders. In fact, the noncommutative φ4

4-model is even better than
the commutative version with respect to one important issue: the behaviour of the β-
function.

It is well-known that the main obstacle to a rigorous construction of the commutative
φ4

4-model is the non-asymptotic freedom of the theory. The noncommutative model is very
different: The computation of the β-function [12] shows that the ratio of the bare coupling
constant to the square of the bare frequency parameter remains (at the one loop level)
constant over all scales, λ

Ω2 = const. (This was noticed in [14].) As the bare frequency
is bounded by 1, this means that the bare coupling constant is bounded. For appropriate
renormalised values, the coupling constant can be kept arbitrarily small throughout the
renormalisation flow. We are, therefore, optimistic that a rigorous construction of the
noncommutative φ4

4-model will be possible.
In this paper we have undertaken the first important steps in this direction. We have

formulated the perturbative renormalisation proof in a language which admits a direct
extension to constructive methods. More details about our program are given in [15].
Moreover, our new renormalisation proof is much more efficient than the previous one
(by a factor of 3 when looking at the number of pages). Eventually, we have established
analytical bounds for the asymptotic behaviour of the propagator which before were only
established numerically.

A The first slice

Let us now have a look at the first slice, that is the region M−1 6 α 6 1. For technical
reasons, we divide it into two subregions, namely M−1 6 α 6 a called the intermediate
region and a 6 α 6 1 called the bulk.

27



A.1 The intermediate region

Let us call Ginter(a) the propagator restricted to the region M−1 6 α 6 a. We have then
the following Lemma:

Lemma 7 Let Ωmin(a) = 1+ 18
25

√
1−a
a

ln(1−a). For each Ω ∈ [ 2
3
, 1] there exists an a ∈ [0, 1]

with Ω ∈ [Ωmin(a), 1] and a constant k > 0 such that we have the uniform bound

Ginter

m,m+h;l+h,l(a) 6 Ke−k‖m+l+h‖ . (A.1)

Proof. Here we can’t safely approximate the expressions involving α by their expansions
about α = 0. But we have, using (3.5) and (3.10)

G
(α)
m,m+h;l+h,l 6

(√
1 − α

1 + Cα

)m+l+h

exp

(
Cα(1 + Ω)√
1 − α(1 − Ω)

(m + l + h)

)

. (A.2)

To obtain the claimed result, we have to prove that

f(α, Ω) =
Cα(1 + Ω)√
1 − α(1 − Ω)

+ ln

(√
1 − α

1 + Cα

)

< 0 . (A.3)

We have

f(α, Ω) =
1 − Ω2

4Ω

α√
1 − α

+ ln
√

1 − α + ln

(
4Ω

4Ω + (1 − Ω)2α

)

6
1 − Ω2

4Ω

α√
1 − α

+ ln
√

1 − α . (A.4)

In the preceeding sections, we bounded Ω from below by 2/3. Thus,

f(α, Ω) 6
5

8
(1 − Ω)

α√
1 − α

+
1

2
ln(1 − α) . (A.5)

Thus ∀Ω > Ω1(α) = 1 + 4
5

√
1−α
α

ln(1− α), h 6 0. An expansion of ∂Ω1

∂α
about α = 0 shows

that Ω1 increases with α. This means that h(α, Ω) 6 −k for all α ∈ [M−1, a] and all

Ω > Ωmin(a) = 1 +
18

25

√
1 − a

a
ln(1 − a) . (A.6)

This finishes the proof. �

A.2 The bulk

Let us call Gbulk(a) the propagator restricted to the region a 6 α 6 1. We have then the
following Lemma:
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Lemma 8 Let Ωmin(a) = 1 + 18
25

√
1−a
a

ln(1 − a) and Ωmax(a) = 1 − 2
√

1−a
a

. For each

Ω ∈ [2
3
, 1) there exists an a ∈ [ 6

3+
√

10
, 1] with Ω ∈ [Ωmin(a), Ωmax(a)] and a constant k > 0

such that we have the uniform bound

Gbulk

m,m+h;l+h,l(a) 6 Ke−k‖m+l+h‖ . (A.7)

Proof Using (3.9) and (3.10) we obtain

G
(α)
m,m+h;l+h,l 6

(
α(1 − Ω2)

4Ω + (1 − Ω)2α

)m+l+h

exp

(
4Ω

√
1 − α

α(1 − Ω2)
(m + l + h)

)

. (A.8)

Like in the intermediate region, we have now to study

g(α, Ω) =
4Ω

1 − Ω2

√
1 − α

α
+ ln

(
(1 − Ω2)α

4Ω + (1 − Ω)2α

)

(A.9)

in order to know in which (α, Ω)-region it is negative.

g(α, Ω) 6
2

1 − Ω

√
1 − α

α
+ ln

(
1 − Ω2

4Ω

)

6
2

1 − Ω

√
1 − a

a
+ ln

(
5

8
(1 − Ω)

)

≡ i(a, Ω) . (A.10)

A simple analysis of i considered as a function of Ω allows to draw

Ω 0 Ω2 1

∂i
∂Ω

− +

i(a, 0) +∞
i(a, Ω) ↘ ↗

i(a, Ω2)

We have taken into account that M can be as small as 1
2
(
√

5 + 1) so that ∂i
∂Ω

∣
∣
Ω=0

< 0.

We have Ω2 = 1 − 2
√

1−a
a

. Let us now remember what we are looking for. We want to
determine whether there exists a (a, Ω)-region where i(a, Ω) 6 0. Clearly, if i(a, 0) 6 0,
then i(a, Ω) < 0 for all Ω ∈ (0, Ω2]. We have

i(a, 0) 6 0 ⇐⇒ a >
2

ln2 8
5

(

−1 +

√

1 + ln2 8

5

)

' 0.9502 . (A.11)

Actually, the derivation of (A.10) used Ω > 2
3

so that the relevant condition is

Ω2 >
2

3
⇐⇒ a >

6

3 +
√

10
' 0.973666 . (A.12)
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The study of the behaviour of the propagator in the intermediate region gave us a
lower bound (cf. Lemma 7) for Ω which was Ωmin. For compatibility of the intermediate
and bulk regions, we need Ωmin < Ω2, which is satisfied under the condition (A.12).
This provides a uniform exponential decay of the propagator at least for a > 6

3+
√

10
and

Ω ∈ [Ωmin(a), Ωmax(a)] with Ωmax(a) = Ω2 = 1 − 2
√

1−a
a

.
The limit a → 1 allows to study the propagator when Ω is close to 1 thanks to

lima→1 Ωmax(a) = 1. The case Ω = 1 is treated in the next section. �

B The case Ω = 1

The case Ω = 1 can be directly treated. According to (3.2), only the terms with u = m = l
survive:

GΩ=1
mn;kl =

θ

8

∫ 1

0

dα(1 − α)
µ2
0θ

8
+( D

4
−1)+ 1

2
(‖m‖+‖k‖) δmlδnk (B.1)

=
δmlδnk

µ2
0 + 2

θ
(‖m‖ + ‖n‖ + ‖k‖ + ‖l‖ + D

2
)

. (B.2)

The exponential decay of the propagator in any index is easily obtained from (B.1) for
all slices. Moreover, the l-sum is trivial to perform due to the index conservation δml at
each trajectory.
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