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Université Paris 10, 92001 Nanterre Cedex, France
and CAMS, EHESS, 54 bd Raspail, 75006 Paris, France

Abstract. We study the Ambrosetti-Prodi problem for nonlinear elliptic equa-
tions and systems, with uniformly elliptic operators in non-divergence form and
non-smooth coefficients, and with nonlinearities with linear or power growth.

1 Introduction

In this paper we revisit an old and classical problem in the theory of elliptic
partial differential equations, the so-called Ambrosetti-Prodi problem.

Although we deal with systems of equations, we start by some background
on the scalar problem, for which we also have new results. Let Ω ⊂ RN be a
smooth bounded domain, and f(x, u), h(x) be real-valued Hölder continuous
in x ∈ Ω, with f locally Lipschitz continuous in u ∈ R. The issue here is the
existence of classical solutions to the problem

{ −Lu = f(x, u) + tϕ1(x) + h(x) in Ω
u = 0 on ∂Ω,

(1)

where L is general second-order uniformly elliptic operator with Hölder con-

tinuous coefficients, L =
N∑

i,j=1

aij(x)
∂2

∂xi∂xj

+
N∑

i=1

bi(x)
∂

∂xi

. Here t ∈ R is a

parameter and ϕ1 is the first (positive) eigenfunction of L, i.e. −Lϕ1 = λ1ϕ1

in Ω, with ϕ1 = 0 on ∂Ω ; we refer to [6] for properties of λ1 > 0 and ϕ1.
We obtain Ambrosetti-Prodi type results (see below) for the solutions of

(1), both in the case of a single equation and in the case of a system. Our
main concern will be obtaining a priori bounds for the solutions. The need
of these comes from the fact that topological methods (degree theory) have
to be used in order to obtain multiplicity of solutions.

1Corresponding author, e-mail : sirakov@ehess.fr
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Problem (1) is said to be of Ambrosetti-Prodi type provided there exist
constants a, b, C such that b > λ1 > a, and for all x ∈ Ω,

f(x, s) ≥ bs− C for s ≥ 0, f(x, s) ≥ as− C for s ≤ 0. (2)

This hypothesis is equivalent to the existence of constants a′, b′ such that

lim sup
s→−∞

f(x, s)

s
≤ a′ < λ1 < b′ ≤ lim inf

s→∞
f(x, s)

s
.

A typical result in this setting states

(AP) There exists t0 ∈ R such that problem (1) has at least two solutions
for t < t0, at least one solution for t = t0, and no solutions for t > t0.

The first result in this line was obtained by Ambrosetti and Prodi in [3],
and this fact originated the present terminology for this sort of problems.
In [3], L = ∆, f(x, u) = f(u) was a convex function of class C2 such that
0 < lims→−∞ f ′(s) < λ1 < lims→+∞ f ′(s) < λ2. With tϕ1(x) + h(x) = g(x)
they proved, using results on differentiable mappings with singularities, that
there is a closed connected C1 manifold M of codimension 1 in the space
C0,α(Ω) which splits the space into two connected components S0, S2 with
the property that, if g ∈ S0 then (1) has no solution, if g ∈ M then (1) has
exactly one solution, and if g ∈ S2 then (1) has exactly two solutions.

The result in [3] received immediately attention by several authors trying
to obtain similar conclusions and relaxing the original hypotheses. In [7]
Berger and Podolak used the Liapunov-Schmidt method, so for them it was
natural to use the decomposition of the function g as it appears in (1) above.
The result obtained there and in most of the subsequent works is precisely
the statement in (AP).

In [24] Kazdan and Warner consider more general functions f and smooth
differential operators of second order. However only one solution is obtained.
In [15], Dancer extended the result in [24], for differential operators in the
divergence form, by getting a second solution. A result for a general L with
smooth coefficients and a nonlinearity f with linear growth is due to Hess
[22]. In these problems, the existence of a second solution depends very
heavily on the growth of the non-linearity at +∞, that is: the existence
of a p ≥ 1 such that for all x ∈ Ω, s ≥ 0, |f(x, s)| ≤ C(1 + sp). The
method used in these papers is topological and the a priori bound for the
solutions of (1) either depends on the linear growth of f or is obtained using
the Hardy-Sobolev inequality (this method of obtaining a priori bounds is
due to Brezis-Turner [10]). The use of Hardy-Sobolev inequalities requires
divergence form operators and restricts the growth of the non-linearity at
infinity to p < (N + 1)/(N − 1).
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Later variational methods were used for divergence form operators, and
fairly general results as far as the growth of the non-linearity at +∞ is con-
cerned were obtained in [17], [13]. In these papers the result holds for all
sub-critical problems, that is, p < (N + 2)/(N − 2), when an additional con-
dition of Ambrosetti-Rabinowitz (mountain-pass) type is assumed in order
to get a Palais-Smale condition for the associated functional. The critical
case p = pc was studied in [19] for dimensions N > 6 and the other dimen-
sions in [12]. Lately the Ambrosetti-Prodi problem for operators of the type
div(A(x, u)Du) and a nonlinearity with pure power subcritical growth was
considered in [4]. The problem for the m-Laplacian and f growing as |u|m−2u
was studied in [5]. For further work on similar problems and for various mul-
tiplicity results see [9], [25], [11], [28], [30], as well as the references in these
papers.

To our knowledge, there are no results on the Ambrosetti-Prodi prob-
lem with a superlinear subcritical nonlinearity, when the operator is in non-
divergence form, that is, the problem does not admit a weak formulation in
terms of integrals. It is this situation that we want to study here. We will
even not suppose that the adjoint operator of L has a principal eigenfunc-
tion. As we shall explain later, the methods from the papers quoted above
do not apply in this case, and some new ideas are needed. An overview of the
method we use, and of the novelties in the approach is given in the beginning
of the next section.

We are going to show that (AP ) holds for any operator L, provided f
has a precise subcritical power growth at +∞. The following theorem is a
consequence of more general results for systems of equations, which are the
main results of this paper.

Theorem 1 Suppose that (2) holds and that there exists a bounded function
a(x), positive on Ω, such that for all x ∈ Ω

lim
s→∞

f(x, s)

sp
= a(x), for some p ∈

(
1 ,

N + 2

N − 2

)
. (3)

Then (AP) holds.

Remark. We could weaken even further the regularity assumptions on the
operator – instead of Hölder functions, we could consider operators with
bounded (and continuous second-order) coefficients, and h ∈ Lp(Ω), p ≥ N .
Then the solutions we obtain belong to W 2,p(Ω).

Now we come to the discussion of Ambrosetti-Prodi results for systems
of elliptic equations. Let us have a system of d equations, written in matrix
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(Pt)

{ −Lu = f(x, u) + tϕ1(x) + h(x) in Ω
u = 0 on ∂Ω,

here u = (u1, . . . , ud)
T , h = (h1, . . . , hd)

T , f = (f1, . . . , fd)
T , t = (t1, . . . , td)

T ,
ϕ1 = (ϕ1,1, . . . , ϕ1,d)

T , tϕ1 = (t1ϕ1,1, . . . , tdϕ1,d)
T , L =diag(L1, . . . , Ld), with

Lk =
N∑

i,j=1

a
(k)
ij (x)

∂2

∂xi∂xj

+
N∑

i=1

b
(k)
i (x)

∂

∂xi

, where a
(k)
ij (x),b

(k)
i (x) are Hölder

continuous (or, if one wants to have only W 2,p-solutions of the system we

suppose that a
(k)
ij (x) are continuous in Ω and b

(k)
i (x) are bounded), and ϕ1,i

is the first eigenfunction of the operator Li, normalized so that maxΩ ϕ1,i =
1, see [6]. All (in)equalities between vectors will be understood to hold
component-wise. Up to changing h we assume f(x, 0, . . . , 0) = 0. For any
u ∈ Rd, we shall denote with u+ (resp. u−) the vector of the positive (resp
negative) parts of the components of u. So u = u+ − u−. We set e =
(1, . . . , 1) ∈ Rd.

In order to state an Ambrosetti-Prodi problem for a system, one needs
to define a first eigenvalue for a matrix operator of the type L +A(x), which
has the essential property to be a dividing value for the maximum principle
to hold. This was recently done in [8], provided A(x) is a bounded coop-
erative matrix, that is, all off-diagonal entries of A are nonnegative (and
examples were given showing that for noncooperative matrices this may not
be possible), and fully coupled. Note that any matrix A can be written in
block-triangular form A = (Aij)

m
i,j=1, for some m ∈ {1, . . . , d}, with Aii fully

coupled and Aij = 0 for i < j (see Section 2.1).
We shall suppose all along this paper that the map f(x, ·) : Rd → Rd is

quasi-monotone for all x ∈ Ω, that is, fi(x, u) is nondecreasing in uj, for any
i 6= j (this condition is of course void for a scalar equation). This is the usual
condition to have a Maximum Principle for systems.

Condition (2) for systems will be written as : there exist bounded cooper-

ative matrices A1(x), A2(x), and constants b1, b2, such that (L
(i)
1,2 will denote

the minor diag(Lj)j∈J where J contains the same indices as those in the fully
coupled blocks A1,ii, A2,ii, for any i ∈ {1 . . . ,m})

λ1(L
(i)
1 + A1,ii) > 0 for all i ; λ1(L

(i)
2 + A2,ii) < 0 for all i ; (4)

f(x, s) ≥ A1(x)s− b1e in {s ∈ Rd : s ≤ 0} ; (5)

f(x, s) ≥ A2(x)s− b2e in {s ∈ Rd : s ≥ 0}. (6)
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We will also need the following (mild) assumption : for any sequence
{sn} ⊂ Rd such that {‖s−n ‖} is bounded and ‖s+

n ‖ → ∞ as n →∞,

lim inf
n→∞

f(x, sn)− f(x, s+
n )

‖s+
n ‖

≥ 0. (7)

Note that (7) is void when d = 1 and is trivial if f is globally Lipschitz in s.
An Ambrosetti-Prodi result for systems should state

(APS) There exists a Lipschitz hypersurface Γ ⊂ Rd which divides Rd into
two parts Y,N such that problem (Pt) has at least two solutions for
t ∈ Y , at least one solution for t ∈ Γ, and no solutions for t ∈ N .

Theorem 2 (linear growth) Suppose that (4)–(7) hold and, in addition,

f(x, s) ≤ C(1 + |s1|+ . . . + |sd|) , for all x ∈ Ω, s ∈ Rd. (8)

Then (APS) holds.

This result extends a previous one of K.C. Chang [14]. Note that, contrary
to [14], we do not suppose that the matrices A1, A2 are fully coupled, nor
that f is globally Lipschitz, nor that inequalities (5), (6) hold for all s ∈ Rd.
Note also that in [14] a different notion of first eigenvalue was used, namely
concerning problems with weight. That eigenvalue exists under stronger
hypotheses.

The result given by the particular case of Theorem 2, when we have only
one equation, i.e. d = 1, has appeared in several papers (see the remarks
above), under stronger restrictions on the differential operator as well as in
the non-linearities involved. We state this result here, since we are unaware
of a reference where it appears in the present generality.

Corollary 1.1 Let f, h, L, ϕ1 be scalar (d = 1). Suppose

lim sup
s→−∞

f(x, s)

s
≤ a1(x) ∈ L∞(Ω), lim inf

s→∞
f(x, s)

s
≥ a2(x) ∈ L∞(Ω),

and f(x, s) ≤ C(1 + |s|). Assume that the first eigenvalue of L + a1(x) is
positive, and the first eigenvalue of L + a2(x) is negative. Then (AP) holds.

Next we turn to the more difficult case of superlinear systems. We will
only consider systems of two equations (this is due to the necessity of using
Liouville type results for positive solutions of such systems). Also we will
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need the (technical) assumption that the second order coefficients of L1 and
L2 coincide. So, let us have a system with two equations of the form

(Pt)




−L1u = f1(x, u1, u2) + t1ϕ1(x) + h1(x) in Ω
−L2u = f2(x, u1, u2) + t2ϕ2(x) + h2(x) in Ω

u1 = u2 = 0 on ∂Ω,

where ϕi > 0 is the first eigenfunction of Li. We suppose that the functions
fi, i = 1, 2, in (Pt) satisfy

lim
sj→∞

fi(x, s1, s2)

s
αij

j

= aij(x), i, j = 1, 2, (9)

where the exponents αij > 1, and aij(x) ≥ 0, aij ∈ C(Ω).

We denote ~β = (β1, β2) ∈ R2, and consider the lines

l11 =
{

~β | β1 + 2− β1α11 = 0
}

, l22 =
{

~β | β2 + 2− β2α22 = 0
}

,

l12 =
{

~β | β1 + 2− β2α12 = 0
}

, l21 =
{

~β | β2 + 2− β1α21 = 0
}

.

The expressions of the lines above appear quite naturally when applying the
Blow-up Method in order to obtain a priori bounds for the solutions of (Pt)
in the case of systems, see [18]. We call a pair (β0

1 , β
0
2) a blow-up pair if it

has the property to be in the intersection of two of those lines, and further ~β0

is to the left of or on l11, below or on l22, below or on l12, and above or on l21.
Suppose the aij(x) corresponding to these two (or more) lines are positive on
Ω. We recall the following idea from [18] : if the exponents αij are such that
one can choose a blow-up pair, then this will lead to statements of Liouville
type, and consequently to a priori bounds for the solutions.

Theorem 3 (superlinear growth) Let the above hypotheses hold,and sup-
pose that (4)–(7) are satisfied by the system of two equations (Pt), and, in
addition,

min
{
β0

1 , β
0
2

}
>

N − 2

2
or max

{
β0

1 , β
0
2

}
> N − 2 . (10)

Then (APS) holds.

We remark here that Theorem 1 is a particular case of Theorem 3 (with
α12 = α21 = 0, α11 = α22 = p, β1 = β2 = 2/(p − 1)), and that (10) with
~β = l12 ∩ l21 is the best hypothesis under which the Lane-Emden system
−∆u1 = uα12

2 ,−∆u2 = uα21
1 is known not to have classical positive solutions

in RN .
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Previous works on Ambrosetti-Prodi problems for subcritical superlinear
systems are [26] and [27]. In [26] variational systems are considered and
a variant of the result in [17] is obtained. The paper [27] is devoted to
nonvariational systems. In that paper the restriction to the exponents was
considerably stronger than (10) due to the use of Hardy-Sobolev inequalities;
it was supposed that L1 = L2 = ∆, and (4)–(6) were replaced by a stronger
hypothesis concerning the first eigenvalue of ∆. Recently, [20] has used vari-
ational methods to obtain results for variational systems with non-linearities
of the Ambrosetti-Prodi type, both critical and subcritical, extending results
of [19] proved before for the scalar case.

The next section is devoted to the proof of the main theorems. We start
by an overview, then in Section 2.1 we give some preliminaries and results
on the applicability of Perron’s method to our case. The heart of the paper
is Section 2.2, where we prove a priori bounds for solutions of (Pt), as well as
nonexistence of solutions for large t. The proof is concluded in Section 2.3.

2 Proofs

Here are the steps in the proof of Ambrosetti-Prodi type results :

1. prove supersolutions exist for sufficiently small t, subsolutions of (Pt)
exist for all t and can be chosen to be smaller than any solution of (Pt) ;
deduce by Perron’s method that solutions of (Pt) exist for t ∈ (−∞, t∗) ;

2. prove an a priori bound on the negative part of u, for t ≥ −C ;

3. prove an a priori upper bound on t, such that (Pt) has a solution ;

4. prove an a priori bound on u, for t ≥ −C. There are two general ways
to do this in the superlinear case :

• use the Brezis-Turner technique; this restricts the growth of f to
(N + 1)(N − 1);

• use the Gidas-Spruck blow-up technique; this requires exact power
growth of f at ∞ ;

5. use fixed point and degree theory to conclude.

This scheme is well-known since the 1970’s and has been used many times
ever since, when Ambrosetti-Prodi results were to be established. We have
followed this scheme too.
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It is known how to prove Step 1 when Perron’s method is applicable and
one has solvability of the Dirichlet problem and a maximum principle for L.
Consequently, in Section 2.1, we recall some notations and results, essen-
tially from [8], where these question were studied for systems of equations,
and prove some easy results on the application of the Method of Monotone
Iteration to our case.

The main difficulty is in proving steps 2, 3, and 4. In case the operator
L is in divergence form, there are well-known techniques for proving steps 2
and 3, which consist in testing the equation with u− and ϕ1 respectively (this
could easily be checked in the model case L = ∆, f(u) = (λ1− ε)u + (u+)p).
In particular, step 3 follows directly from testing with ϕ1 and ∃C, δ > 0 :
f(u) ≥ (λ1 + δ)u−C, ∀u ≥ 0. Then, once one has the uniform upper bound
in t, one can prove Step 4 supposing t is in a compact interval, that is, the
tϕ1 term in the equation is a L∞ right-hand side, and so trivially disappears
after a blow-up.

None of the above can be done when the operator is in non-divergence
form. We will now explain how we deal with the problem. First, the bound
on u− is obtained by showing that the (nonsmooth) function u− satisfies
a linear inequality in the viscosity sense, and then by applying Caffarelli’s
ABP inequality for such solutions, and its extensions to systems, proved in
[8]. Second, the proofs of Steps 3 and 4 are carried out jointly. We perform
a simultaneous blow-up argument in ‖u‖L∞(Ω) and t. This argument gives a
bound neither on u nor on t, but rather leads to the inequality

‖u‖L∞(Ω) ≤ Ct1/p, (11)

which is interesting in its own right. Then through a maximum principle
argument we show that

t ≤ C(1 + ‖u‖L∞(Ω)).

These two inequalities together yield bounds both on u and t. To our knowl-
edge, no similar approach has been used in other works.

We remark that the implementation of the blow-up method follows the
standard blow-up procedure except that the term coming from tϕ1 does not
necessarily disappear at the limit, since t is unbounded as well. Actually we
find its disappearing is equivalent to the failure of (11), which permits to
conclude the contradiction argument.

Finally, it is not difficult to prove Step 5, when one has an uniform upper
bound for t and ‖u‖, such that u is a solution of Pt.
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2.1 Preliminaries

In this section we state some results, and consequences of results from [8]
(see in particular Sections 8, 13 and 14 in that paper).

Let us consider d uniformly elliptic operators in the general non-diver-
gence form

Lk =
N∑

i,j=1

a
(k)
ij (x)

∂2

∂xi∂xj

+
N∑

i=1

b
(k)
i (x)

∂

∂xi

,

where a
(k)
ij (x) are continuous in Ω and b

(k)
i (x) are bounded. Let cij(x) be

bounded functions and set C(x) = (cij(x))n
i,j=1. Let fi(x) ∈ LN(Ω). We will

consider systems in the form

Lu + Cu = f, (12)

where L = diag(L1, . . . , Ld), C(x) = (cij(x))d
i,j=1 , u = (u1, . . . , ud)

T , and

f = (f1, . . . , fd)
T .

We shall need to consider solutions of this system in the viscosity sense,
whose definition we recall next. A function u ∈ C(Ω,Rd) is called a vis-
cosity subsolution of (12) provided for each i, each x0 ∈ Ω, and each ϕ ∈
C2(Ω) such that ϕ(x0) = ui(x0), ϕ ≥ ui in Ω, we have Liϕ(x0) ≥ fi(x0) −∑

k cik(x0)uk(x0). A function is a viscosity supersolution if this definition
with reverse inequalities holds, and u is a viscosity solution if it is both a
viscosity subsolution and a viscosity supersolution. Note that this definition
is valid if all functions in (12) are continuous in x ; if this is not the case
one needs to use the so-called LN -viscosity solutions, see [8]. Any classical
solution is of course a viscosity solution. It is very simple to check that, in
the viscosity sense, the maximum of two subsolutions is a subsolution, and
the minimum of two supersolutions is a supersolution (note that even if two
functions are smooth their maximum is merely continuous, that is why we
need this weaker notion). We shall work with solutions in the viscosity sense,
without necessarily specifying each time.

Viewing to use Alexandrov-Bakelman-Pucci estimates, Harnack inequal-
ities and Maximum Principles we consider cooperative systems. System (12)
is called cooperative (or quasi-monotone) if cij ≥ 0 for all i 6= j.

We recall that a system of this type is called fully coupled (and the matrix
C is called irreducible) provided for any non-empty sets I, J ⊂ {1, . . . , d} such
that I ∩J = ∅ and I ∪J = {1, . . . , d}, there exist i0 ∈ I and j0 ∈ J for which

meas{x ∈ Ω | ci0j0(x) > 0} > 0. (13)
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For simplicity, when (13) holds we write ci0j0 6≡ 0 in Ω. Simply speaking, a
system is fully coupled provided it cannot be split into two subsystems, one
of which does not depend on the other.

As explained in [8], any matrix can have its lines and columns renumbered
in such a way that it is in block triangular form, with each block on the main
diagonal being fully coupled. More precisely, C = (Ckl)

m
k,l=1 , where 1 ≤ m ≤

d, Ckl are tk× tl matrices for some tk ≤ d with
m∑

k=1

tk = d, Ckk is an irreducible

matrix for all k = 1, . . . , m, and Ckl ≡ 0 in Ω, for all k, l ∈ {1, . . . , m} with
k < l. Note that m = 1 means C itself is irreducible, while m = d means C is

in triangular form. We set s0 = 0, sk =
k∑

j=1

tj, and Sk = {sk−1 + 1, . . . , sk}.

It was proved in Theorem 13.1 in [8] that the matrix operator L+C admits
a principal eigenvalue with all the usual properties of the principal eigenvalue
of a scalar operator (see [6]), provided C is cooperative and irreducible. We
recall that the principal eigenvalue of L + C is defined by:

λ1 = λ1(L + C)

= sup{λ ∈ R : ∃ψ ∈ W 2,N
loc (Ω, Rd), s.t. ψ > 0, (L + C + λI)ψ ≤ 0 in Ω}

Hence, using the above explained block triangular representation of the
cooperative matrix C, we can associate to C a set of eigenvalues λ

(1)
1 , . . . , λ

(m)
1 ,

where λ
(k)
1 is the principal eigenvalue of L(k) + Ckk. Here we have denoted

L(k) =diag(Lsk−1+1, . . . , Lsk
) (see above for the notations).

By combining Theorems 8.1, 12.1, 13.1, 13.2, 14.1 and Lemma 14.1 in [8]
we obtain the following result.

Theorem 4 (i) The following are equivalent :

(a) λ
(k)
1 > 0 for all k = 1, . . . , m ;

(b) there exists a vector ψ(x) ∈ C2(Ω)(or W 2,p(Ω)∩C(Ω)) such that ψ ≥ e
and Lψ + Cψ ≤ 0 in Ω ;

(c) for any f ∈ LN(Ω) and any viscosity subsolution of (12) there holds

sup
Ω

max{u1, . . . , ud} ≤ C

(
sup
∂Ω

max{u1, . . . , ud}+ ‖f‖LN (Ω)

)
,

where C depends only on Ω and on the coefficients of L and C. Respec-
tively, for any supersolution we have

inf
Ω

min{u1, . . . , ud} ≥ C
(
inf
∂Ω

min{u1, . . . , ud} − ‖f‖LN (Ω)

)
.
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(d) the operator L + C satisfies the maximum principle in Ω, that is, if
Lu + Cu ≤ 0 in Ω and u ≥ 0 on ∂Ω, then u ≥ 0 in Ω.

(ii) if λ
(k)
1 > 0 for all k = 1, . . . , m, then for any f ∈ Cα(Ω) (or f ∈

Lp(Ω), p ≥ N) there exists a unique classical (resp. in W 2,p(Ω) ∩ C(Ω))
solution of (12), such that u = 0 on ∂Ω ;

(iii) Suppose ψ ∈ C(Ω,Rd) is such that ψ ≥ 0 and Lψ + Cψ ≤ 0 in Ω. If

ψj 6≡ 0 in Ω for some j ∈ Sk and some k ∈ {1 . . . ,m}, then λ
(k)
1 ≥ 0.

Proof. (i) Theorem 14.1 and Lemma 14.1 in [8] give (a) ⇔ (b) ⇔ (d).
Theorem 8.1 in [8] gives (b) ⇒ (c), and (c) ⇒ (d) is obvious.
(ii) If m = 1 this is Theorem 13.2 in [8] (due to Sweers [29]). If m > 1 we
apply this theorem m times : using the block-diagonal structure of C, first
we solve (L(1) + C11)u

(1) = f (1), then (L(2) + C2)u
(2) = f (2) − C21u

(1), etc.
(iii) This follows from the cooperativeness of C and the definition of the first
eigenvalue, together with Theorem 14.1 from [8]. 2

Using this theorem, it is easy to prove the following two lemmas, classical
in the Ambrosetti-Prodi setting. From now on, any time we write a norm of
a function, we are going to mean the L∞(Ω)-norm.

Lemma 2.1 Under the hypotheses of either Theorem 2 or Theorem 3, for
each t ∈ Rd there exists a classical subsolution u ≤ 0 of system (Pt).

Proof. Set K = 2 maxi=1,...,d{‖hi‖ + |ti|} + b1 (b1 is the constant from
hypothesis (5)). By the previous theorem and (4) we can find a solution of
the system

Lu + A1(x)u = Ke− h(x)− tϕ1(x)

with Dirichlet boundary condition. Clearly the solution of this problem is
nonpositive (by the maximum principle, Theorem 4(d)) and can be taken as
the subsolution we are searching for. 2

Remark. We will show in the proof of Proposition 2.1 in the next section
that u is smaller than any supersolution of (Pt).

Lemma 2.2 Under the hypotheses of either Theorem 2 or Theorem 3, there
exists t0 ∈ R such that for each t ≤ t0 e there exists a classical supersolution
u ≥ 0 of system (Pt).

Proof. By the hypotheses, there exist constants C1 and pi ≥ 1 such that for
all u ≥ 0

f(x, u) ≤ C1 (1 + up1

1 + . . . + upd

d ) e.

11



Let u be the solution of the following d equations

Lu + h+ + C1e = 0

with u = 0 on ∂Ω. By the maximum principle u ≥ 0 in Ω. By the well
known properties of ϕ1 and Hopf’s lemma we can choose t0 ∈ R such that

−t0ϕ1 ≥ C1 (up1

1 + . . . + upd

d ) .

Using the two inequalities above in the equation for u we get the result. 2

Once the results of the two previous lemmas are available, the Method
of Monotone Iteration (see [1]) can be applied to get a minimal solution of
the problem for sufficiently small t, see Proposition 2.1 below. Observe that
this method applies for cooperative elliptic systems, which is the case here,
since the functions f are quasi-monotone. For the reader’s convenience we
state the following result, which will be sufficient for our purposes (see for
example [23] for more general statement).

Theorem 5 Suppose f(x, u) is a quasi-monotone map, which is Hölder con-
tinuous in x and locally Lipschitz continuous in u. Suppose u, u ∈ C(Ω,Rd)
are respectively a subsolution and a supersolution of the system

Lu + f(x, u) = 0 (14)

in Ω, such that u ≤ u in Ω, u ≤ 0 ≤ u on ∂Ω. Then there exists a classical
solution u of (14) such that u ≤ u ≤ u in Ω, u = 0 on ∂Ω.

Sketch of the proof of Theorem 5. Set u0 = u, m = infΩ mini ui,
M = supΩ maxi ui and let

k = max
1≤i≤n

∣∣∣∣
∣∣∣∣
∂fi

∂ui

∣∣∣∣
∣∣∣∣
L∞(Ω×[m,M ]n)

.

By Theorem 4 we can solve the hierarchy of problems

−Lu(n+1) + ku(n+1) = f(x, u(n)) + ku(n) in Ω
u(n+1) = 0 on ∂Ω.

It is then easy to check, with the help of the maximum principle, that we
have u ≤ u(n) ≤ u(n+1) ≤ u for all n, so u(n) converges to a solution of (14).

12



2.2 A priori bounds

We start with a lemma which shows that the negative parts of the solutions
of (Pt) are uniformly bounded, provided t is above some fixed level. From
now on, all constants we write may change from line to line and depend only
on the data in (Pt) - that is, on L, f, h, Ω (and on other quantities, if stated).
We will also make the convention that any norm of a vector is the maximum
of the corresponding norms of its components.

Lemma 2.3 Under the hypotheses of either Theorem 2 or Theorem 3, for
each C0 ∈ R+ there exists a constant M such that for any t ≥ −C0e and any
solution u of (Pt) with this t we have

‖u−‖ ≤ M.

Proof. Set m = max
i
{‖hi‖L∞(Ω) + C0}. So (Pt) yields

Lu + f(x, u) ≤ me in Ω.

Since f is quasi-monotone this implies

Liui + fi(x,−u−1 , . . . ,−u−i−1, ui,−u−i+1, . . . ,−u−d ) ≤ m, (15)

for each i ∈ {1, . . . , d}. On the other hand, again by the quasi-monotonicity
of f ,

fi(x,−u−1 , . . . ,−u−i−1, 0,−u−i+1, . . . ,−u−d ) ≤ fi(x, 0, . . . , 0) = 0.

This means that ui ≡ 0 is also a solution of (15), seen as a scalar equation in
ui. As explained in the previous section, the minimum of two supersolutions
is a viscosity supersolution, hence (15) continues to hold if we replace ui by
−u−i , which gives,

L(−u−) + f(x,−u−) ≤ me,

in the viscosity sense. By hypothesis (5)

L(−u−) + A1(x)(−u−) ≤ (m + b1)e,

Since (4) holds, Theorem 4 (c) implies the lemma. 2.

Proposition 2.1 Under the hypotheses of either Theorem 2 or Theorem 3,
there exists t0 ∈ R such that for each t ≤ t0 e there exists a minimal solution
of system (Pt).

13



Proof. Using Theorem 5 and Lemmas 2.1 and 2.2 we show the existence of
a minimal solution of (Pt), for any fixed t ≤ t0 e, where the t0 is the one of
2.2. For that matter we first claim that any supersolution u of (Pt) satisfies
u ≥ u in Ω, where u is the subsolution constructed in Lemma 2.1. Once
this is done, we use Theorem 5 and finish. In order to prove the claim, we
proceed as in the proof of Lemma 2.3 we have L(−u−) + f(x,−u−) ≤ me
provided u is a supersolution of (Pt), so, by the way u is chosen,

L(−u− − u) + f(x,−u−)− A1(x)u ≤ 0.

Hence, by (5),
(L + A1(x))(−u− − u) ≤ 0,

and so the maximum principle implies −u− − u ≥ 0, which implies u ≥
−u− ≥ u in Ω. 2.

Remark. The above proof shows that, if for some t problem (Pt) has a
solution u, then u ≥ u, where u is the subsolution in Lemma 2.1. So as soon
as (Pt) is solvable for some t, then a minimal solution exists.

Next, we show that for any unbounded sequence {tn}, the growth of the
corresponding solutions – if such solutions exist – controls the growth of {tn}.
Lemma 2.4 Under the hypotheses of either Theorem 2 or Theorem 3, for
each C0 ∈ R+ there exists a constant C1 such that for any t ≥ −C0e and any
solution u of (Pt) with this t we have

t+i ≤ C1(1 + ‖u+
i ‖) ≤ C1(1 + ‖u‖), i = 1, . . . , d.

Proof. By using successively the quasi-monotonicity of f , property (8) and
finally property (7), we get

fi(x, u) ≥ −C(1 + u+
i ), (16)

for all i ∈ {1, . . . , n}, x ∈ Ω, u ≥ −M e (M is the constant from Lemma 2.3).
Suppose now for some t ∈ Rd and some function u we have

Lu + f(x, u) + tϕ1 + h = 0,

and u = 0 on ∂Ω. This implies, by (16), that we have the following d scalar
inequalities

Li(ui − tiλ
−1
1,i ϕ1,i) ≤ C(1 + u+

i ),

and ui − tiλ
−1
1,i ϕ1,i = 0 on ∂Ω, where the constant C absorbs the norm of h.

By the Alexandrov-Bakelman-Pucci inequality (Theorem 4 (c) for d = 1) we
get

ui − tiλ
−1
1,i ϕ1,i ≥ −C(1 + ‖u+

i ‖), i = 1, . . . , d.

14



from which the result follows (we recall that the first eigenvectors ϕ1,i are
normalized so that ‖ϕ1,i‖ = 1). 2

We can now deduce an a priori bound in the linear growth case.

Proposition 2.2 Under the hypotheses of Theorem 2, for each C0 ∈ R+

there exists a constant M such that for any t ≥ −C0e and any solution u of
(Pt) with this t we have

‖u‖ ≤ M.

Proof. Suppose for contradiction that there exists sequences {un}, {tn},
such that tn ≥ −C0 e, and

Lun + f(x, un) + tnϕ1 + h = 0, ‖un‖ → ∞,

as n → ∞. Using Lemma 2.3, we get lim ‖u+
n ‖ = ∞, ‖u+

n ‖ = ‖un‖ for n
large. By dividing the equation by ‖u+

n ‖ and by using tn ≥ −C0 e and (16),
we see that Lvn ≤ C, where vn = un/‖u+

n ‖. By using the linear growth (9)
and Lemma 2.4 we have Lvn ≥ −C. Hence, by elliptic theory, vn converges
(up to a subsequence) to a function v in W 2,p(Ω). Note that v ≥ 0, by
Lemma 2.3. Of course ‖vn‖ = 1 for n large, so ‖v‖ = 1.

By using the fact that (7) implies f(x, un) ≥ f(x, u+
n ) − o(1)‖un‖, we

obtain

Lvn +
f(x, u+

n )

‖u+
n ‖

≤ o(1),

Hence, by (6) and passage to the limit we see that v ≥ 0 is a nontrivial
solution to Lv + A2(x)v ≤ 0, which contradicts (4) and Theorem 4 (iii). 2

We now turn to the superlinear case. The following bound plays an
essential role.

Proposition 2.3 Under the hypotheses of Theorem 3, there exists a constant
C such that for every vector t ≥ e and every solution u = (u1, u2) of (Pt)
corresponding to this t, the following inequalities hold

‖u1‖
1+ 2

β0
1 ≤ Ct1 and ‖u2‖

1+ 2

β0
2 ≤ Ct2.

Here (β0
1 , β

0
2) > 0 is the vector which appears in Theorem 3.

For clarity, before proving Proposition 2.3, we state the particular case of
it when only one equation is considered, that is, when we are in the framework
of Theorem 1.
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Proposition 2.4 Under the hypotheses of Theorem 1, there exists a con-
stant C such that for every number t ≥ 1 and every solution u of (Pt),
corresponding to this t, we have

‖u‖ ≤ Ct
1
p .

More precisely, to get Proposition 2.4 from Proposition 2.3, we take L1 =
L2 = L, a11 = a22 = a, α11 = α22 = p, a12 = a21 = 0, so β0

1 = β0
2 = 2/(p− 1).

Proof of Proposition 2.3. It follows from (9) that we can write, for i = 1, 2,

fi(x, s1, s2) = ai1(x)sαi1
1 + ai2(x)sαi2

2 + gi(x, s1, s2),

where
lim

|(s1,s2)|→∞
[ai1s

αi1
1 + ai2s

αi2
2 ]−1gi(x, s1, s2) = 0.

Now suppose that the result of the proposition is false, that is, there exist
sequences {un}, {tn}, such that tn ≥ e,

−L1u1,n = a11(u
+
1,n)

α11 + a12(u
+
2,n)

α12 + g1(x, u1,n, u2,n) + t1,nϕ1,1 + h̃1

−L1u2,n = a21(u
+
1,n)

α21 + a22(u
+
2,n)

α22 + g2(x, u1,n, u2,n) + t2,nϕ1,2 + h̃2,

(here h̃i = hi + di, where di is some bounded function, that corresponds to
the negative part of ui,n, which is bounded by Lemma 2.3) and

‖u1,n‖
1+ 2

β0
1 ≥ nt1,n or ‖u2,n‖

1+ 2

β0
2 ≥ nt2,n.

Taking a subsequence if necessary, we may suppose that one of these inequal-
ities (say the first) holds for each n.

Assume first that

lim
n→∞

‖u1,n‖
1+ 2

β0
1

t1,n

= lim
n→∞

‖u2,n‖
1+ 2

β0
2

t2,n

= ∞. (17)

We will use a blow-up type argument, originally due to Gidas and Spruck
[21] in the case of a scalar equation, and developed for our type of systems
in [18] - we refer to that paper for details. Set

λn = ‖u1,n‖−1/β0
1 if ‖u1,n‖β0

2 ≥ ‖u2,n‖β0
1 ,

and λn = ‖u2,n‖−1/β0
2 otherwise (say we are in the first of these situations).

Then λn → 0 and the functions

vi,n = λβ0
1

n ui,n(λnx + xn)
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are such that v1,n(0) = 1, 0 ≤ vi,n ≤ 1 in Ω (here xn is the point in Ω where
u1,n attains its maximum). Then

−L1,nv1,n = a11(·)λγ11
n (v+

1,n)
α11 + a12(·)λγ12

n (v+
2,n)

α12 + λ
β0
1+2

n t1,nϕ1,1

−L2,nv2,n = a21(·)λγ21
n (v+

1,n)
α21 + a22(·)λγ22

n (v+
2,n)

α22 + λ
β0
2+2

n t2,nϕ1,2,
(18)

(we have omitted the terms coming from gi, hi, di, since they tend to zero as
n →∞) ; here

γij = β0
i + 2− β0

j αij,

(recall the equations of the lines lij = {~β | βi + 2− βjαij = 0}), and

Lk,n =
N∑

i,j=1

aij(·) ∂2

∂xi∂xj

+ λn

N∑
i=1

b
(k)
i (·) ∂

∂xi

,

the dot stands for λnx + xn, and the equations are given in the domain
λ−1

n (Ω− xn).
We can pass to the limit in (18) as in Lemma 2.1 in [18], and conclude

that vi,n converges (up to a subsequence) to a bounded function vi (note that
vi are nonnegative, since the negative parts of ui,n are bounded, by Lemma
2.3). The difference with [18] is in the last terms in the right hand side of (18).
However, these terms turn out to vanish as n → ∞, under the hypothesis
that Proposition 2.3 is false. Indeed, under (17),

λβ0
1+2

n t1,n = ‖u1,n‖
−β0

1+2

β0
1 t1,n −→ 0 as n →∞,

while, by the choice of λn,

λβ0
2+2

n t2,n ≤ ‖u2,n‖
−β0

2+2

β0
2 t2,n −→ 0 as n →∞,

by (17).
Hence, after the passage to the limit, we obtain a system in RN or in

a half-space, which, by the results in [18] (see also the references there),
has only the trivial solution, which contradicts v1(0) = 1. Note that the
differential operator in the limiting system has constant coefficients and can
be transformed into the Laplacian through an orthogonal change of variables.

Next, suppose (17) does not hold, that is

‖u2,n‖
1+ 2

β0
2 ≤ Kt2,n,
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for some constant K. Combining this inequality with Lemma 2.4 (used
twice), we see that both sequences {‖u2,n‖} and {t2,n} are bounded. Then
we can repeat exactly the same argument as above to get a contradiction

with ‖u1,n‖
1+ 2

β0
1 ≥ nt1,n ≥ n - note that at the end λ

β0
2+2

n t2,n → 0 trivially
follows from λn → 0. 2

Actually, looking at the proof of Proposition 2.3, we see that it implies
the following stronger statement.

Proposition 2.5 Under the hypotheses of Theorem 3, for each C0 ∈ R+

there exists a constant M such that for any t ≥ −C0e and any solution
u = (u1, u2) of (Pt) with this t we have

‖u1‖
1+ 2

β0
1 ≤ M max{1, t1} and ‖u2‖

1+ 2

β0
2 ≤ M max{1, t2}.

Proof. First, since tϕ1 = t+ϕ1 − t−ϕ1, we can think of the bounded term
t−ϕ1 as being part of the function h(x), and assume t > 0. Then we simply
repeat the proof of Proposition 2.3, replacing t by max{t, e} in it. 2

We can now conclude that solutions of our system admit a priori bounds
and that the system does not have solutions if t is large.

Proposition 2.6 Under the hypotheses of Theorem 2 or Theorem 3, there
exists a constant M such that if for some t ≥ 0 there exists a solution u of
system (Pt), then

t ≤ Me and ‖u‖ ≤ M.

More generally, for each t ∈ Rd there exists a constant M with this property,
and M depends only on t−.

Proof. Combine Proposition 2.2 or Proposition 2.5 with Lemma 2.3 and
Lemma 2.4. 2

2.3 Conclusion

In the previous sections we have established the following facts, which will
now be used to complete the proofs of Theorems 2 or Theorem 3 :

(i) if C is sufficiently large, (Pt) has a minimal solution for t ≤ −Ce ;

(ii) if C is sufficiently large, (Pt) does not have a solution for ‖t‖ ≥ C ;

(iii) a priori bound : given t0 ∈ Rd, the (eventual) solutions of (Pt) for all
t ≥ t0 are bounded by the same constant.
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Next, the surface Γ will be defined by parametrization with respect to the
hyperplane H = {t ∈ Rd | t1 + . . . + td = 0}. Let us define, for each t0 ∈ H

A(t0) = {k ∈ R : (Pt0+ke) has a solution }

By (i) above this set is not empty.
On the other hand we know ((ii) above) that for each t0 ∈ H there is a

k0 ∈ R such that problem (Pt0+ke) does not have a solution for all t0 + ke
with k ≥ k0. So the function K : H → R, K(t) = sup A(t) is well defined.
Further, if k ∈ A(t) for some t then any k′ ≤ k also belongs to A(t). Indeed,
a solution of (Pt0+ke) is a supersolution for (Pt0+k′e) and by Lemma 2.1 and
Theorem 5 we have a solution of (Pt0+k′e). So A(t) is an interval.

Next, the function K(t) : H → R is Lipschitz continuous, with Lipschitz
constant 1. Indeed, to show this one can use the following argument from
[14] : given t1, t2 ∈ H it follows from what we just saw that

t1 + K(t1)e 6< t2 + K(t2)e, t2 + K(t2)e 6< t1 + K(t1)e.

Hence there exist indices i, j ∈ {1, . . . , d} such that

t2i + K(t2) ≤ t1i + K(t1), t2j + K(t2) ≥ t1j + K(t1),

so
−|t1 − t2| ≤ t2i − t1i ≤ K(t1)−K(t2) ≤ t2j − t1j ≤ |t1 − t2|.

This yields that the hypersurface Γ = {t + K(t)e : t ∈ H} is Lipschitz.
Next we prove that problem (Pt0+ke) has at least two solutions for k <

K(t0). Viewing to use topological degree arguments, let us define the map-

ping St : C1,α(Ω)
d → C1,α(Ω)

d
by u = Stv, where

{ −Lu = f(x, v) + tϕ1(x) + h(x) in Ω
u = 0 on ∂Ω,

Finding a solution of (Pt) is equivalent to obtaining a fixed point of St. The
search for fixed point will be done with the help of degree considerations. We
will be brief here, we refer for example to [16], where a simple and thorough
account of this type of argument is given.

Fix t0 ∈ H and k0 < K(t0). By Proposition 2.1 problem (Pt0+k0e) has
a minimal solution. It is classical that the Leray-Schauder degree of this
minimal solution is one, so there exists an open set O in C1,α(Ω)

d
which

contains the minimal solution and

deg (I − St0+k0e,O, 0) = 1.
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On the other hand, by (ii) above there exists k ∈ R such that problem
(Pt0+ke) has no solution for k ≥ k. This implies

deg
(
I − St0+ke, BR, 0

)
= 0.

for any ball BR ⊂ C1,α(Ω)
d
.

However, the a priori bound (iii) implies that there exists R sufficiently
large, such that

deg (I − St0+ke, BR, 0) is constant in k ≥ k0.

This means that deg (I − St0+k0e, BR, 0) = 0, and by the excision property of
the degree there exists a solution of (Pt0+k0e) in BR \ O.

Finally, given t ∈ H we take a sequence kn ↗ K(t) and a sequence of
solutions of (Pt+kne). Thanks to the a priori bounds this sequence is bounded
in L∞(Ω) and elliptic theory permits us to pass in the limit in (Pt+kne), which
gives one solution of (Pt+K(t)e).
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