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TENSOR PRODUCTS AND p-INDUCTION OF REPRESENTATIONS ON
BANACH SPACES

PHILIPPE JAMING AND WILLIAM MORAN

ABSTRACT. In this paper we obtain LP versions of the classical theorems of induced representations,
namely, the inducing in stages theorem, the Kronecker product theorem, the Frobenius Reciprocity
theorem and the subgroup theorem. In doing so we adopt the tensor product approach of Rieffel to
inducing.

1. INTRODUCTION

The aim of the present paper is to carry over the theory of induced representations of locally
compact groups on Hilbert spaces to more general Banach spaces. The cornerstone of this theory
is the work of Mackey. Several generalisations have already been considered by various authors
(ef [1], [12], [22]). However these treatments do not give a complete and coherent account of the
basic theorems of induced representations: the Inducing-in-stages Theorem, the Kronecker Product
Theorem, the Frobenius Reciprocity Theorem and the Subgroup Theorem, in this context. This
statement is slightly misleading; in fact, [12] does contain an inducing-in-stages theorem and [19],
[22] contain Frobenius Reciprocity Theorems for ”1-inducing”. Our aim here is to investigate the
problems involved in finding such theorems in the more general context of p-inducing, rather than the
classical 2-inducing. We obtain versions of all of these theorems. To do this, we follow the philosophy
of Rieffel in using tensor products as the mechanism for inducing. In doing this, we have as does
Rieffel to impose restrictions which prevent us from obtaining an inducing in stages theorem as sharp
as that of [12]. On the other hand, our version of the Frobenius Reciprocity Theorem is valid for
1 < p < oo instead of p = 1 from [19], [22]. We also obtain a version of the subgroup theorem and of
the Kronecker product theorem, neither of which are, to our knowledge, available in the literature.

It turns out that the extension of the basic theorems to this context relies heavily on properties of
the Banach spaces involved and that a full theory requires the Banach spaces on which the groups are
represented to be close to LP-spaces. Accordingly we spend some time discussing the properties of
these spaces in the next section of the paper, followed by the new definition of p-inducing as a tensor
product in section 3. In section 4, we prove the inducing in stages theorem, the Kronecker product
theorem and the Frobenius Reciprocity theorem. Finally we give a version of the subgroup theorem.

2. PRELIMINARIES

All groups considered here will be locally compact and separable. All Banach spaces considered
will be complex, separable and reflexive. In particular they have the Radon-Nikodym property. We
will also assume that they have the approximation property. Let us also define what we mean by a
representation of a group GG on a Banach space X.

2.1. Representations of groups. Definition Let G be a group and X a Banach space. A represen-
tation m of G on X is a set (my)ge of linear mappings 7y : X — X such that

1. me =1 and for all g1,92 € G, Ty, 9, = Tg, Ty, ;
2. for every g € G, my 1s continuous;
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G — X . , . ,
3. for every x € X the map is continuous (i.e. m Is strongly continuous).
g = Tz
A representation 7 is said to be uniformly bounded if sup ¢ ||my|| < co, 7 is isometric if every 7y is
an isometry.

Remark : Assume 7 is a uniformly bounded representation of a group &G on a Banach space X . Define
a new norm on X by

2]l = sup [|mgz]]
geaq

then ||.||,. is equivalent to ||.|] on X and « is an isometric representation of G on (X, ||.||,.).

In the sequel, every representation considered will be isometric.
Ezample : Let (M, p) be a measured space and let G be a group of transformations of M (M is
then called a G-space). Assume that G leaves p invariant (i.e. u(gM) = pu(M) for every g € G and
every measurable M C M). Let 1 < p < oo and define, for ¢ € G, w4 : LP(M, p) — LP(M, p) by
myf(z) = f(97'x), then (my)4eq is an isometric representation of G on LF (M, p).

2.2. p-spaces. We first describe some results on Banach spaces and tensor products that we will
need. They can all be found in [3], Ch. 23 and 25.6.

Let X be a Banach space, © a locally compact space and p a Radon measure on 2. We shall be
considering the spaces LP(p), LP (i, X), defined in the usual way.

Define ¢, (p) : LP (1) @ X — LP(p, X) by

foz= (= ft)).

Then i, produces on L? (1)©X anorm A, induced by the norm of L? (11, X). We denote by L? (u)®a, X
the completion of L? (1) ® X under this norm, so that LP(u)@a, X ~ LP(u, X).

For X and Y two Banach spaces, we define two norms d, and g, on the tensor product X ® Y as
follows. For y1,...,y, €Y, 1 < p’ < oo define

pr (Y1, -+, Yn) = sup (Z |1/)(yi)|pl) ey [U) =1
i=1

ForzEX@Yand1<p<oo,11—)+1%:11et

4,(2) = inf (ZIIMIIP) o)
i=1

n

where the infimum is taken over all representations of z of the form z = Z T ®Y;.

i=1

The norm g, () is defined by exchanging the roles of #; and y; in the above definition. We write
X ®q, Y (resp. X @4, Y) for the completion of X @Y with respect to the norm d, (resp. gp).

This norms have been introduced independently by S. Chevet [2] and P. Saphar [21] in order to
generalise the projective tensor product norm. If we identify z € X ®Y with an operator T, : X’ — Y
then, under this identification, operators corresponding to elements of X ©@g4, ¥ will be called right
p-nuclear and those corresponding to elements of X @, Y will be called left p-nuclear. We write
N, (X' Y) for the class of all right p-nuclear operators from X’ to ¥ and N?(X',Y) for the class of
all left p-nuclear operators. The following result from [8] (corollary 1.6) tells us that the d, tensor
norm is the nearest ideal norm to A, :

Theorem 2.1.1 Let X be a Banach space and 1 < p < co. The following are equivalent :

1. X is isomorphic to a quotient of a subspace of an L, space (a QSL, space);
2. there exists an infinite dimensional L,(u) and an ideal norm « equivalent to A, on LP(p) © X;
3. for every infinite dimensional L, (u) there exists an ideal norm « equivalent to A, on LF (u) @ X.
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Moreover, the ideal norm « can be chosen to be the d, norm.

Specialists of representation theory may be more familiar with p-spaces as defined by Herz [10].
We refrain from giving this definition, since it turns out that Q.SL, spaces and p-spaces are the same.
The following result follows at once from the preceding one and the observation that a p-space is a
subspace of a quotient of an L? space, by Proposition 0 of [10] and Theorem 2’ of [13].

Theorem 2.1.2 Let X be a Banach space and 1 < p < oco. Then X is a Q)SL, space if and only if
it 1s a p-space.

The d, and g, tensor products are also of particular interest when X and Y are both L spaces.
Indeed, if (2, ) and (€, y') are two measure spaces, we have

(1) 17(9) @4, LP () = L7(Q) 0, L (@) = LP(Q x &) = Ny (L (), LF(2))

It is then obvious from (1) that, if R, S, T are measure spaces, then

(2) LP(R) @4, (LP(S) @a, LP(T)) = (L (R) @, LP(S)) @a, LF(T)
In other words, if X,Y, Z are all LP spaces, then

X ®q, Y =Y @q, X
X Qd, (Y Qd, Z) :(X Qd, Y) Qd, Z.
We will now generalise these two identities to a larger class of Banach spaces.
Definition Let A > 1 and 1 < p < oco. We will say that a Banach space X is an ng space if there
exists a projection P of norm ||P|| < A from an LP-space onto X.
X is called an L space if it Is an ng for some A.

It turns out that this spaces have a local caracterisation close to the £, spaces investigated by
Lindenstrauss and Pelczyniski [14].
Proposition 2.1.3 (cf [3]) A Banach space X is an ng if and only if, for every € > 0, and every
finite dimensional subspace M of X, there exists operators R : M w— (" and S : £} — X that factors
the inclusion map I3 = SR and such that ||S||||R|| < A +«.

These spaces have a few nice properties :
Proposition 2.1.4 (c¢f[3]) For 1 <p < oo :

1). If X is an LJ space, then it has the Radon Nikodym property and the bounded approximation

property;

2). X is an ng space if and only if X' is an Ego\ space;

3). if X is an L space then either it is an L, space or it is isomorphic to a Hilbert space;

4). if X and Y are LY then X ®q4, Y Is an L] space.
Proposition 2.1.5 (c¢f[3]) Let 1 < p < co. The following propositions are equivalent :

1). X is isomorphic to a quotient of an LP space;
2). LP®q, X ~ P @4, X =X @q, L.
In particular, this is true for complemented subspaces of L' spaces 1.e. L§ spaces.
Since an L7 space X is a (complemented) subspace of an L? space, we have, by Proposition 2.1.1,
LP(p) @a, X >~ LP () @a, X = LP (p, X).

Using local techniques we can derive from (2) and Proposition 2.1.4 (1) and (5), that if X|Y, 7 are
LJ spaces then

3) X G, (Y 04, Z) = (X 4, Y) @, Z

This identity has an operator counterpart :
Lemma 2.1.6 Let 1 < p < oo and R be a measure space and let X and Y be L spaces. Then
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(4) Npr (L7 (R) @4, X,Y") = Ny (X, Ny (17 (R), Y"))

where the operator T': L (R) ®q4, X + Y is identified with the operator T:X Ny (LP(R),Y') via
T(p)() =T @ ¢).

Proof. Equation (3) can be read, using the identification of tensor products and operators as:

Nyt (LP(R) @a, X,Y') =N, (LP(R, X),Y') = L’(R, X)' @a,, Y’
=L" (R, X") @4, Y' = (LF' (R) ®4, X') ©4,, V'
=(X' @4, I’ (R)) ®4, Y' = X' @q, (L' (R) @a,, V')
=Ny (X, 17" (R) ©a, Y') = Ny (X, Ny (17 (R), Y)) O

Remark : For a fixed p (1 < p < 00), L9 1s a rather large class of Banach spaces. In particular, it
contains the L, spaces, the Hilbert spaces and the Hardy spaces H,.

2.3. p-induction. The concept of p-induction has been defined in various places, eg. [5], [12], and
[22]. Here we will follow Anker [1]. To fix notation we repeat the definitions of that paper. Let G be
a separable locally compact group and H be a closed subgroup. Let 1 < p < oo. Let vg (resp. vp)
denote the (left) Haar measure on G (resp. H). Denote by Ag (resp. Ap) the modular function of

G (resp. H), and let §(h) = iz(2)~

Let ¢ be a continuous positive function defined on G that satisfies the covariance condition ¢(zh) =
q(z)8(h) for all x € G,h € H. We write u for the quasi-invariant measure! on G/H that is associated
to ¢ by

[, U, 2= f s

for all f € C.(G). The fact that such a measure exists can be found in [16].
Let 8 be a Bruhat function for the pair H C G, that is, a non-negative continuous function on ¢
that satisfies

1). supp BN CH is compact for every compact set C' in G

2). [y Blxh)dvg(h) =1 for every x € G.

(For details, see for instance [6] chapter 5 or [18] chapter 8.)

Let 7 be a strongly continuous isometric representation of the subgroup H in a Banach space X.
For 1 < p < oo, we denote by LP (G, H, ) the space of functions f : G — X that satisfy the following
conditions :

1). for every £ € X*, & =< f(x),€ > is measurable;
2). for every x € G,h € H,

Flah) = 8(h)/P i f ().
1/ @)

qLx

This condition is called the covariance condition. Note that it implies that 1s constant

on the cosets ©H. Thus, the following condition makes sense

3).

W@ o] N L
/G|H I H>] —[/an( P Ba)dva(x)| - < oo

= [ R

IRecall that a measure u on a G-space M is quasi invariant if for every g € G, and every measurable M C M,

w(gM) =0 if and only if u(M) =0
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This space is the completion for the norm ||f||p of the space CE (G; H; ) of all continuous functions
f G = X with compact support that satisfy the covariance condition.

We recall also Mackey’s Mapping f — M, f from C.(G, X) (the space of all continuous functions
G — X with compact support) to CE(G, H, r) defined by the integral

Myfte) = [ s kv ()

The p-induced representation Ind% (p,7) then operates on LF(G; H; ) by left translation : for
geG

(Indf (p, m)gf) (x) = f(g™ ).
The first result on p-induction follows as in the L? case and is given in detail in [12].
Theorem 2.2.1. (Induction In Stages.) Let G be a locally compact group, K a closed subgroup
of G and H a closed subgroup of K. Let m be a representation of H in a Banach space X. Then the
representations Ind% (p, Ind%(p, 7)) and Ind$(p, w) are equivalent.

2.4. Modules. We recall a few properties of Banach modules over groups and Banach algebras. The
reader is referred to [19] for basic definitions. For a locally compact group G, every Banach G-module
V becomes a Banach L!((G)-module under the action

fou= /Gf(g)g.vdyg(g) ferltG),veVv.

Notation : If V and W are two G-modules (thus L!(G)-modules) and if « is a tensor norm, let K
(resp. K1) be the closed subspace of V @, W spanned by elements of the form g.v ® w— v ® g.w with
veEV,weW,g €G (resp. spanned by elements of the form fo@w—v® faw withv e V,w e W, f €
LY(G)). Define then V@& W = (V @o W) |k and V ®%1(G) W= (V& W) |k,

We need a definition from Rieffel:
Definition 2.3.1 et A be a Banach algebra and let V' be a Banach G-module. We say that V is
essential if the space {a.v : a € A, v € V} is dense in V.

Then, following Rieffel ([19] theorem 4.14) every Banach (G-module is an essential L!(G) module
and . .

VeagW=V ®L”1(G) w.

The remaining of this section is taken from [17].
Proposition 2.3.2 Let G be a compact group and let V and W be two Banach G-modules. Then
V ®de W is isometrically isomorphic to the 1-complemented linear subspace (V @% W) consisting
of those z in V @ W for which g @ e(2) = e ® g(2) for all ¢ € G (e the unit element of G), that is,

Vol w= (Ve w)°

isometrically isomorphic. Moreover, the projection from V ©q, W onto (V @, W)% is given by

P(v®w):/ g v @ gawdrg(yg).
e

We will also need the following version of proposition 2.4 in [17] :
Proposition 2.3.3 Let G be a compact group and let V and W be two Banach GG-modules, V' being
a reflexive Banach space with the approximation property. Denote by NpG(V, W) the set of all right
p-nuclear operators T such that for every g € G and every v € V, T(g.v) = g.T'v, then

NEWV, W)=V afw.
From (3) and (4) we then immediately obtain the two following identities :

Lemma 2.3.4 Let 1 < p< oco. Let H, K be compact groups, let R be a measure space, and let V, W
be L§ spaces such that V' is an H-module, W is a K-module and LP(R) is an H — K-bimodule, then
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(5) (L (R) @ V) o w=1r(R) ol (Vv ok W)
and
(6) NS(LP(R) @F ViW') = NJF(V, NS (LP(R), W),

2.5. Rieffel’s 1-induction. We summarize here Chapter 10 of [19].

Grothendieck [9] has shown that L'(G)©,V can be naturally and isometrically identified with
LY (G, V) through the mapping f @ v — (a: — f(x)v) We will not distinguish between L!(G)&,V
and LY(G,V). For f € LY(G) and s € H, let (f;)(z) = Ag(s™H)f(zs™!) (z € G) and let K be the
closed subspace of L}((G)©,V spanned by the elements of the form f; @v— f@mv (s € H, f € LY(G)
and v € V). We define LL(G)oHV = LHG)0,V|z.

Mackey’s transform defined in section 2.2 will allow us to identify the spaces L'(G; H;m) and
LYG)@H V. This is Theorem 10.4 of [19] :

Theorem 2.4 For g € L'(G,V), recall that Mg has been defined on i by

Mg(x):/}lﬁﬂhg(xh)dqu(h).

Then Mg is defined almost everywhere, Mg € L*(G; H; ), and M is a G-module homomorphism
from LY(G,V) to LY(G; H;w). Moreover, the kernel of M is exactly K and the norm in LYG; H; )
can be regarded as the quotient norm in L'(G,V)|k. Thus L'(G; H;x) is isometrically G-module
isomorphic to L (G)oH V.

We shall extend this result to the case p > 1.

3. P-INDUCTION USING TENSOR PRODUCTS

In this section we will show that the Mackey mapping allows us to define LF(G; H; ) as a tensor
product. The proves will be adapted from [19], [20].

Let 1 < p < 0o. We will now assume that V' is a reflexive Banach space. In particular V has the
Radon-Nikodym property.

Let GG be a locally compact group, and let H be a compact subgroup of G. Note that since H is
compact, Ay = 1. Let 8 be a Bruhat function of the pair H C G.

Let ¢ be the function on G defined by

q(z) = /H Blxs)Ag(s)dvg(s).
Then ¢ satisfies, for all z € G and all h € H,
1
q(zh) = AG(h)q(av) =d(h)q(z).

Let u be the quasi-invariant measure on G/ H associated with ¢, defined in the following way:

7) [ [ B v auten = [ i)

for every continuous compactly supported function f : G — C. The existence of such a measure has
been established in various places, eg. [19] Proposition 10.1.

Let 7 be a representation of H on the Banach space V. This space being reflexive, we can define
the coadjoint representation 7* of H on V* by letting 7 = (7,-1)*.

Remember that we defined the Mackey map f — M, f from C.(G, B) to CL(G, H, w) by

Mpf(x):/HWﬂhf(xh)dyH(h):/HAg(s)l/pﬂsf(xs)dyH(s).

We want to show that this defines a continuous projection
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M, : LP(G,V) — LP(G; H; m).

Let f € LP(G,V). We show that M,f € LP(G; H; ). Observe first that M, f is defined a.e., is
measurable and satisfies the covariance condition. The argument is strictly similar to [19] pp 484-486
and will not be reproduced here.

We now show that M, is continuous (with norm < 1).

s = R o)

:/G|H ﬁ ‘/H AP mp f(xh)dvs ()

L Y2 |z, Flzh)||P vy T
<[ oy L At P e o (h) )

But ||z, f(2h)||y, = ||f(zh)|]y,. Thus, by disintegration of measures (i.e. the definition of p), we obtain

1My I < 1A
Next, we identify the kernel of M,. First, define the following representation of G on L*(G) :

puf (&) = Aa(t) 7 f(at)
and note that for f € LP(G),v eVt € H

P
dp(xH)
14

M, (f()ﬂ'tv)(x) :/HAg(s)l/pf(xs)ﬂsmvdqu(s)
:/HAg(st_l)1/pf(xst_1)7rsvd1/H(s)

:/HAG(S)U%(AG(t—l)l/pf(m—l)v)dyH(s)

=My (pe-1 (o) ()
Now, let K be the closed linear span of all the elements of the form x — f(z)mv — pi-1 f(2)v with
f e LP(G),v € Vand t € H. By linearity and continuity of M, we see that ker M, D> K. It is
now possible to adapt the proof of Rieffel [20] for Hilbert spaces (i.e. QS La) to yield ker M, = K for
reflexive Banach spaces.

First consider LP(G,V) and LP(G; H;m) as G-modules where the action of G is defined by left
translation, i.e. g.f(z) = f(¢g~'x). It is then clear, as in [19], that M, is a G-module homomorphism,
that is, M, (g9.f) = g.M, f.

Assume now that ker M, # K. Then, there exists a ¢ such that M, = 0 but ¢ ¢ K. By the
Hahn-Banach theorem and the Radon-Nikodym property of V' (V is reflexive), we can find a functional

Qe k™ c(I’G V) =1 (G, V)

such that < @, ¢ ># 0. Since LP(G, V) is a G-module, it is an essential L!(()-module. Therefore,
there exists an i € L*(() such that < Q,ip ># 0, and if we use a continuous compactly supported
approximation of unity we can even assume that ¢ is continuous and compactly supported. Thus
<iQ,p >=< Q,ip >#£ 0.

Now, K is (¢ invariant, and hence so is K~ so that K~ is invariant under convolution by continuous
compactly supported functions, from which it follows that, for all ¥ € K, < :Q, ¢ >= 0.

By [11] Theorem 20.6, since i@ is a convolution involving a continuous compactly supported func-
tion, i) is a continuous function F'. Arguing as in [20], page 168, it follows from F = i) € K~
that

1
F(zh) = 1/p,7r;;(F(x)) forallhe H,z € G.

Ag(h)
Note too that
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1

< F(l‘h), go(xh) >= W

< TP, $loh) >= 5 < Fla).maloleh) >

Ac(h

Now, by disintegration of measures (7),

< Qo= /G < F(a), ple) > dvo(x)

:/GlH [/H < F(zh), p(zh) >d1/H(h)]du(xH)

q(wh)
= 1 < F(z),h(p(zh) >
B /G|H /H Ag(h)L/r dVH(h)] dp(xH)
:/G| ﬁ - F(x)’/H Ag(i)l/p' h<5(h) dvy (h) > dp(zH)

d(h)q(x)
p(xh))
:/G| ﬁ < F(z), Mpp(x) > du(eH) =0

since M, = 0. This contradicts the assumption < @, ¢ ># 0 and the kernel of M, is exactly K.
Note that the proof of [19], lemma 10.9 carries over to yield that M, is surjective and that the
norm on LP(G; H; m) is the quotient norm of L (G, V)/K ~ (LP(G) ®a, V)/K. We leave the details
to the reader.
We summarize the preceding discussion in the following theorem.
Theorem 3.1 Let 1 < p < oco. Let G be a locally compact group and H a compact subgroup of
G. Let V be a reflexive Banach space and let m be a representation of H on V', for which V is an
H-module. Let K be the closed linear subspace of L¥((G,V) spanned by the elements of the form
z— f(a)mv— (pt—lf)(x)v with f € LP(G),v € V andt € H. Identifying LP(G,V) and LF (G)®a, V,
we also regard K as being spanned by elements of the form z — f(z) ® mv — pi-1 f(x) ® v and write
P (@) ®£Ip V for (LP(G) ®a, V)/K. Morever, if for f € LP(G,V) we define M, f by

M, f(x) = /H th f(ah)dvg (h) = /H Ac(h)MPry feh)dvi (h),

then M, is a G-module homeomorphism from LP (G, V) onto L? (G; H; w). The kernel of M, is exactly
K and the norm of LP(G; H; ) is the quotient norm. Consequently, LF(G; H;7) is isometrically
(i-module homeomorphic to LF () ®£Ip V.

IfV isaQSL, space, then LP(G; H; w) is in fact isometrically G-module homeomorphicto L? (G)®5‘;
V.

4. APPLICATIONS TO CLASSICAL THEOREMS ON INDUCTION

The previous theorem allows us to define p-induction via tensor products. We now use that point
of view to prove the results about induction in stages and a Kronecker product theorem. Finally we
also obtain a new Frobenius reciprocity theorem.

At this stage, we will need various restrictions on the spaces on which we represent our groups.
They will be QSL, spaces or LJ spaces.

Let 1 < p < o0, let GG be a locally compact group, H a compact subgroup of G, and V a QSL,
space. Fix a representation m of H on V' so that V' can be seen as an H-module.

We have seen in section 3 that the p-induced representation of m can be identified with LP () ®5‘; V.

We write PV = LP(G) ®5‘; V' and call this the p-induced module.
We are now in a position to prove an inducing-in-stages theorem, the Kronecker product theorem
and a new Frobenius reciprocity theorem. But first, we will need the following technical result :
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Theorem 4.1.1 Let 1 < p < oo and let V be a QSL, space. Assume that G is a compact
group. Assume also that V is a (G-module and let us consider LpI(G) as a G — G-bimodule, then
NpG (LPI(G), V) ~ V' as G-module. The identification is given by
veV e T,(f) = / fx)z.vdvg(x).
G

Equivalently, L* (G) ®dG VeV,
Proof. Let v € V and define for f € L¥' (@)

/f Jo.vdve(z).

As (G is compact, ¥ — xz.v € C(G V) C LP(G,V) thus T, € N, (LPI(G),V).
Further, if g € G and f € LP' (@)

100.0) = [ (6D e)edvote) = [ g e dvla)
= [ Hdtedveto) = . [ f)radvate) = o100

Thus T, € NpG (LpI(G) ) In the same way,

Ty (/) = /G F () (g.v)dva(x / Feg—")a-vdve(a)
- /G (/. 9)(@)-vdva(x) = (Tu.g)(f)

I = [ lloalldvote) = [ il dva(e) = oy

as the action of GG has been assumed to be isometric and ' is compact. Thus v — 7T, is an isometric
G-module homomorphism from V' to NpG (Lpl (@), V).

We just have to prove that v — 7, is onto to complete the proof. For T' € NPG(LPI(G), V), we want
to find v € V such that 7' = 1,. As N, (LPI(G), V) ~ LP(G,V) (V is a QSL, space), there exists
F e LP(G, V) such that, for all f € L?'(G)

/ f dI/G( )

But, as T is a G-module homomorphism, for all ¢ € G and all f € I (@),

/f ~14) F(a)dva(e —g/f 2)dva(),

/f Plgz)dva (e /f )g.F (2)dv(x).

Therefore, for all g € G, F(gz) = g(F( )), z a.e. It is easy, however, to see that F'(gz) — g.F () is
measurable in (z,¢) and by Fubini’s theorem

Q={(.g) : Flge)#g.F(x)}
is of measure zero. By Fubini’s theorem again, except for z in a set of measure zero, F(gx) = ¢F(z),
g almost everywhere. Let xp be any x from this set and let v = xal (F(a:o)) Then we have, for almost
all z,

Moreover

that is,
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Fz) = F((xxal)xo) = (xxal).F(xo) = x.[xal.F(xo)] =z.v
in other words, F'(z) = x.v almost everywhere, and T' = T,,. a
Before we go on, we indicate what happens if H is not compact.
Theorem 4.1.2 Let 1 < p < oo and let V be a QSL? space. Let G be a locally compact group

and let H be a closed non-compact subgroup. Let m be a representation of H on V', making V into a
H-module. Then

Nf(LpI(G)’ V) =0 and LP(G) ®jl'—; vV =0.

Proof. Let T € N;,I (LPI(G), V). Then, as in the end of the proof of theorem 4.1, there exists
F e LP(G,V) such that T'= TF and then F(sz) = s.F(z) for all s € H and almost all z. But then F
is of constant norm on cosets of H, and so is integrable if and only if it is identically zero. The second
assertion is just the standard identification between the two spaces under consideration. a.
We can now give a new proof of the theorem of Inducing-In-Stages. This proof is simpler then the
proof given in [12], but we need some restrictive hypothesis on the subgroup H and on the Banach
space V.
Theorem 4.1.3 (Inducing-In-Stages.) Let 1 < p < oo and let V be an LY space. Let G be
a locally compact group, K a compact subgroup of G and H a closed subgroup of K. Let m be a
representation of H on V allowing us to consider V' as an H-module. Then

G (Kpy) o Gy,

Proof. Using the definition, the associativity of the d, tensor product ,i.e. (5), and Theorem 4.1, it
is immediate that

O (KIV) =L(G) &, (11(K) ©f, V) = (17(6) ©ff 17(K) off v
~(LP(G) o 1K) ol V= IP(G) ol v =Py, O

We now define the p-Kronecker product of two representations. Let H and K be two locally
compact groups and V' and W be two Banach spaces. Fix 7 to be a representation of H on V and ~ to
be a representation of K on W. We define the p-Kronecker product of 7 and « as the representation

of H x K on V ®g, W defined by

T X Y(h )V QW= TRV @ YrW.
The next theorem asserts that taking p-Kronecker products and p-inducing are two commutative
operations. This theorem is new to our knowledge.
Theorem 4.1.4 (p-Kronecker Product.) Let 1 < p < oo and let Vi, Vs be LY spaces. Let G, G
be two locally compact groups, let Hy be a compact subgroup of GG; and Hy a compact subgroup of
(s and let m; (i = 1,2) be representations of H; on V;. Then

Glez,p(Vl @, Va) o~ Glypvl @, G”’VQ.
Proof. Using properties of the d, tensor product, we have

Glez,p(Vl @a, V2) =LF (G x Ga) ®ZIXH2 (Vi @a, V2)
~(LP(G1) ®a, LF (G>)) ®§£1XH2 (V1 @4, V)
~(L7(G1) &, Vi) @4, (I7(G2) & Va)

:Glypvl ®d, GQ’pVQ. O
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For W a G-module and H a subgroup of &G, we write Wy for W seen as a H-module. We will now
prove the following version of the Frobenius Reciprocity Theorem.
Theorem 4.1.5 (Frobenius Reciprocity.) Let 1 < p < oo and let V be an LY space and W an
ﬁg, space. Let GG be a compact group and H be a closed subgroup of G. Let w be a representation of
H on V, making V an H-module, and let v be a representation of G on W making W a GG-module,
so that W is also an H-module Wy . Then

NG(OPV, W) = NIV, Wr).

and

NE(W,9PV) = N (Wg, V).

Proof. By definition

Ni(FPV, W) = NJ(LP(G) o Vi) ~ NG (V o] 17(G), W)

and by theorem 2.3.4, NpG,(V ®§£ P (@), W) ~ N;,I (V, NpG, (LP(G), W)) But, according to theorem
4.1, NpG,(Lp(G), W) ~ W, so that,

NPV, W) ~ NE(V, Wh).

The other identity 1s obtained in a similar way. a

5. THE SUBGROUP THEOREM

We shall now generalize Mackey’s subgroup theorem ([16] Theorem 12.1) to the context of p-
inducing. For technical reasons, we will restrict to the case when the group 1s unimodular, one
subgroup considered is compact and the other one is also unimodular.

We will make extensive use of regularly related subgroups and their measure theoretic properties
as may be found in [16] section 11. For sake of completeness, we will now recall those that we shall
use.

Let pt be a finite measure on a set X and suppose there is an equivalence relation R given on X. For
z € X, let r(x) € X/R be the equivalence class of . The equivalence relation is said to be measurable
if there exists a countable family E1, Es, ... of subsets of X/R such that r~!(E};) is measurable for
each 7 and such that each point in X/R is the intersection of the F;’s which contain it.

Let GG be a locally compact group and let G; and G5 be two subgroups of . We say that 1 and
(5 are regularly related if there exists a sequence Fy, By, E, ... of measurable subsets of GG each of
which is a union of G; : G double cosets such that £y has Haar measure zero and each double coset
not in Ejy is the intersection of the E; which contain it. Hence (G; and (5 are regularly related if and
only if the orbits of X = G/G; under the action of (s, outside a certain set of measure zero, form
the equivalence classes of a measurable equivalence relation. In other words, there is a measurable
cross-section ¢ of the set D of all G5 : G2 double cosets in G i1.e. ¥ : D — (G measurable. The
following lemma ([16] lemma 11.1) states that a measure p defined on X may be decomposed as an
integral over X/R of measures y, concentrated on the equivalence classes.

Lemma 5.1 Let ji be the measure in X/R such that a subset E/ of X/R is measurable if and only
if =Y (E) is p measurable and that ji(F) = pu(r~Y(E)). Then for each y in X/R there exists a finite
Borel measure p, on X such that py (X \ r"1({y})) = 0 and

X

x)dpy (x)di(y) = r(x x)du(z),
S0 [ st = [ re)ateine)

whenever f is in L*(X/R, i) and g is bounded and measurable on X.
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Lemma 5.2 Let X be a GG-space, and assume that the measure p on X is quasi-invariant. Then, in
the decomposition of y in the previous lemma, almost all of the p,’s are also quasi-invariant under
the action of GG

Notation : In what follows, G will be a locally compact group, (G; a compact subgroup of G and G5 a
closed subgroup of G. We will also assume that G and G5 are unimodular. We will further assume
that (G; and G5 are regularly related.

Let D be the set of all Gy : Gi3 double cosets. For @ € G, we will note s(x) = GieG2 the Gy : Gy
double coset to which z belongs. If v is any finite measure on G with the same null sets as the Haar
measure on (7, we may define a measure vy on D by setting vo(F) = I/(S_l(E)). Such a measure is
called ([16] section 12) an admissible measure on D (associated to v).

Let 1 < p < oo and let V be an @SL, Banach space. Fix a representation m of G; on V, and

consider V as a G module. Let G2V = P (@) ®del V' be the induced module. For x € G write
Gy = G2 N (z71G1x) and denote 7% the representation of Gy on V defined by n — Tope-1. We
can consider V' as a Gy-module (denoted by V*) with the action defined by this representation.
Furthermore, we define the module induced on Gy : “2PV® = LP(G9) ®de” Ve,

Lemma 5.3 “2PV?® depends only (up to equivalence) on the coset s(x) = G1zG.

Proof. By definition “2PV?® = LP((35)® ®de” V?® where LP(G2)” = LP((G2) seen as a Gp-module with
the action of s € G, defined as s.p(t) = ¢(s71t) and V¥ = V also seen as a Gy-module with the
action of s € G, defined by s e v = (zsz~1).v. Thus “2PV¥ = (Lp(Gz)x ®d, Vx)|KI with K, the
closed linear span of all

SRV —pPRsev
such that ¢ € LP(G2),v € V and s € Gy
We want to show that 2PV depends only on the double coset s(z). In other words, we want to
show that for all g1 € G, 92 € Go,

Ga,p VT~ Ga,p V91892

It is enough to prove that Ky .4, >~ K.
First, note that

Gowg, = G2 N (g5 27 g7 Grgiegs) = g5 ' (Go N (271 Gh)) gs.
Define the group isomorphism agy, : Gy — Ggyng, by ag,8 = gz_lsgz. We can now regard LF((G2) as a
G g,zg,-module where the action is defined as so@ = (92595 )., and also regard V' as a G g,zg,-module
with action
sov = (rgasgy ™).
By definition

Kgipg, =5pan{socp Qu—p@sov: ¢ € LP(G),v € V,s € Gy pg, }
=span{ag,(s) o Qv —p @agy,(s)ov:p € LP(Ga),v € V,s € Gy}
=span{s.p@uv—p@sev:p € LF(Gy),v €V,s € Gy} = K,

which completes the proof. a
Tt now makes sense to write 2PV for z a G : G2 double coset. Recall that 2 PV? = LP(Go) ®de”

V¥ can be seen as a complemented subspace of LF((G2) @g4, V' via the projections

Po(f @v) = / pefTp-rigvdva, (t)

x

where v, is a Haar measure on G,. As V is QSL,,

(LP(Ga) @a, V)" = (LP (G2, V)" = LP (G2, V*) = LV (G2) @4, V",
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and (G”’Vx)* will be complemented in Lpl(Gz) Qd, V* via Py

We will now show that the Pf(g®¢) = fGI pr-197i 1, Edva, (t) can be chosen to be "measurable”.
For this, we will need a few more definitions and lemmas.
Notation : Let G be a locally compact group. Let X' (G) be the set of closed subsets of G and let S(G)
be the set of all closed subgroups of G.

For K a compact subset of G and Uy, ..., U, a finite family of open subsets of (¢, define

UK Uy,...,U)={FeX(G) : FNK=0¥i=1... n, FNU; #0}.
The compact open topology on X (() is then the topology generated by the sets of the form

UK, U, ... Up).
We will also call compact open topology on S(G) the induced topology. (cf. [4]).

Lemma 5.4 Let GG be a locally compact group, (G1 a compact subgroup and (G5 a closed subgroup.
Endow S8((G) with the compact open topology. Then the mapping ¢ : G — S(G) defined by  —
(a:Gla:_l) N G5 1s of the Baire first class, and is therefore measurable.

Proof. We will need two steps.

First step Let U be a compact neighborhoud of (1, that is the closure of an open neighbourhood
of 1 (in G) and let V be the closure of an open neighborhood of Ga. Then ¢ : G — X (G) defined
by z — 2U{z~' NV is continuous with respect of the topology of GG and the compact open topology of
X(G) :

Let # € (G and z,, € (G be a sequence that converges to z, let K be a compact subset of GG and
Uy, ..., Ug a finite family of open subset of (G such that

wUr "NV NK=0andfori=1,... &k ae™' 0V NU; # 0.

If there exists a subsequence of x,, that for convenience we will still call x,,, such that z, 4z 1NV N
K # (), then there exists a sequence k, € U such that z,k,z;! € 2, Uz 1NV N K. U being compact,
we can assume without loss of generality that &, converges to k € U, but then zkz~! € 2Uz NV NK
contradicting the emptiness of that set. Thus, for n big enough, z, Uzt NV N K = 0.

As Uy intersects 2z~ NV, U, intersects the interior Uz~ NV of sz~ NV. Let k € U be such

that zkz=1 € 2U2z~1NV N Ui. Then xnerjl — zkz~ ! thus is in ‘o/ N Uy for n big enough. Therefore,
there exists Ny such that, for n > Ny, xnUa:gl NV NU; # @. There exists then Ny > N such that for
n > No, x,dz; 1NV N Uy # 0... thus, for n big enough and i = 1,...  k we get z,Uz 1NV NU; £ 0.

Second step Let Uy, be a decreasing sequence of compact neighbourhoods of G such that (U, = Gy
and let V,, be a decreasing sequence of closed neighbourhoods of G5 such that |V, = G2 Let
U 1 G X(G) be defined by ¢, (2) = alU,2=t N'V,,. According to the first step, 1, is continuous.
Further, for each « € G| ¢, (2) = () thus ¢ is in Baire’s first class :

Let # € G, K be a compact subset of G and Uy, ..., Uy a finite family of open subsets of (G such
that

Gz ' NGoNK =0andfori=1,... k Gz ' NGy U; # 0.
Then asU, D Gy and V,, D Gy, fori=1,...,k

tUpz PNV, NU; D eGre ™ NGaNT; £ 0.

Further zi{,z~'NV, NK is a decreasing sequence of compact sets whose intersection zG12~'NGNK
is empty, thus for n big enough, zi/,z~' NV, N K = §, which concludes the proof of the convergence
of 1y, (2) towards ¢(z). a
Definition For each K € 8((G), let vg be a Haar measure on K. The map K — vk Is said to be
a continuous choice of Haar measures if, for every continuous compactly supported function f on G,

the map S(G) — C defined by
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K /K F(t)dvg (1)

Is continuous.

We will need the following lemma du to Fell (¢f. [7])
Lemma 5.5 Let fy be a non-negative continuous compactly supported function on GG such that
fo(e) > 0 (e being the unit element of G). For each closed subgroup K of G let vk be the Haar
measure on K such that fK fot)dvg (t) = 1. Then K — vg is a continuous choice of Haar measure.

Notation : In what follows, fy will be a fixed non-negative continuous compactly supported function
on G such that fy(e) > 0 and K — vk will denote the continuous choice of Haar measures associated

to fo.
Lemma 5.6 There exists M > 0 such that for every x € G, vg, (Gy) < M.
Proof. Let € > 0 and let U be a neighbourhood of e such that fy(t) > e > 0fort e U.

For each s € (G1, let U, be a neighbourhood of s such that Us_lUs C U. As (51 is compact, Gy is
covered by a finite subfamily Uy, ..., U, of the {Us}seq,. Then, 2U1z7 N Ga, ... 2U,z NGy is a
cover of G2~ N Gy. Thus

n
Vg, (Gx) = / dI/GZ S Z/ dVGZ~
Gy i=1 cU;z- NG,

Now choose a y; in each U;, and note that, for t € U, 1 < %fo(t).Then if s € 2U;z7 1, yi_lx_lsx €
UT'U; C U thus 1 < %fo(yi_lx_lsx) and therefore

va, (Gr) < z folyy '~ tsz)dva, < E/G folyi ta™ sw)dvg,
i=1 i=1 z

zU,z~1NG,

as fo > 0. But vg, is a Haar measure of the compact (thus unimodular) group Gy so

/ fo(y;1$_18$)dygz = fo(s)dvg, =1
Gy G

(by the definition of vg, ). But then vg (Gz) < Z. a
We are now able to prove the following
Proposition 5.7 For every f € LP(Gy),g € LP (G),v € V, & € V*,

r=< fRu, Pl g®&) >= / < fy pr-rg >< v, Thon,, £ > dvg, (B).
G

1s measurable.

Proof. Tt is of course enough to prove that

T = / < fa P19 > Tr;_ltxngGz(t)'
Ge

is measurable.

Let ¢ > 0. As Gy is compact and ¢ — 7} & is continuous, there exists a disjoint relatively compact
cover Uy,..., U, of Gy and t; € Uy,...t, € U, such that for each # = 1,... ,n and each t € U;,
||7T;‘€ — 71'215’” < e. Let xu, be the characteristic function of U;, then, the norm of
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/ < S pr-1g > mooagfdvg, (1) — / <Lope=19 > D Xm0, (W7o, Edve, (1)
e

© i=1

n
Z/ < fa P19 > (Tr:_ltxg - Tr:_lt,xg)dsz(t)
i=1 zU,z~1NG,

n
=Sl N 14 [ £ Ry ety
i=1 cU;z—1NGo

<el[fllllgllve. (Gz) < el fllllgll M

by lemma 5.6. It is thus enough to prove measurability for

z s / < pirg > Yo (Odve, (75, L.
Gy

Further, as x — 7 ¢ is continuous, and as X,-1p,,(t) = xv, (ztz~1), we will just consider

—1l¢,x

x — / < f,pe-19 > xv(zte™Ydva, (1)
G

where U is a relatively compact measurable subset of (G;. Consider now a sequence ¢, of continuous
compactly supported functions on G such that ¢, converges almost everywhere to yy and such that
0 < ¢, < 1. Then, as for every z € G,

/ < f,pe-19 > enl(xte™Ydva, () —>/ < f,pe-19 > xv(zte™Ydva, ()
[ Ge

we just need to consider

x — / < fopeerg > p(ateYdva, (1)
G

where ¢ 1s a continuous compactly supported function on GG. But, K — vg is a continuous choice of
Haar measures, so

(K,z) — / < f,pi-19 > p(ate™Ydvg (t)
K

is continuous, and as ¢ — G, 1s measurable,

z— (Gy,x) — / < f,pe-1g > p(xteYdva, (1)
Ge

is measurable. Finally « is in P and not in G. To overcome that difficulty, recall that (G; and G5 are
assumed regularly related so that there exists a measurable cross-section ¢ of D in G, thus we just
have to compose the previous map and . a
Notation : Let py be the quasi-invariant measure on G/G; defined by

/G/Gl ( G f(St)d”Gl(t)) dpi(sG1) = /Gf(s)dvg(s)

For D € D, let up be the quasi-invariant measure on D obtained from p; via lemmab.1 and 5.2 :

[ sz = | 0

For z € G, let u, be the measure on G3/G, defined by

/G2/GI </Gz f(st)dvg, (t)) dug(sGy) = . (s)dve, (s)



16 PHILIPPE JAMING AND WILLIAM MORAN

Note that G being unimodular, every quasi-invariant measure on G5/G, is proportional to p,. Thus,
identifying Goa Gy with G5/G, we may assume that gy = pe,za, -

Let {¢n tnen be a dense family of elements of Lpl(Gz) ®d,, V* of the form ¢, ® &, where the g¢,’s
are continuous compactly supported functions on G3. Let ¢, (2) = P} (¢y). According to proposition
5.7, = ¥, (2) is weakly measurable. Further, for fixed @, {¥,(2)}nen is dense in (F2PV®)*.

First let B = H G2PY® an element of B is thus a mapping ¢ : & — ¢(x) such that for every

zeD
z €D, p(x) € G=rPye,
Definition Let LP (D, p1, B) be the linear subset of B consisting of all ¢ such that

) for every n € N, & —< (), ¥n(x) > Is measurable, and
) Nell, = Up lle(@) ez py e du(x)) 7 < oo.

We will of course identify two elements if they are equal almost everywhere. Then LP (D, p, B) is a
Banach space and a Go-module if we define the action of G'a by g2 @ @ — ga9(2).
Theorem 5.8 Under the above notations, “PVg, is isometrically Go-module homomorphic to
LP (D, u, B).
Proof. Recall from section 2 that we can identify “2PV* as the set of all functions f : Gy — V such
that

1). & =< f(z),v" > is measurable for every v’ € V*|
). f(sh) =n} we—1f(s) forall s € Go, h € Gy,
)- G = fG2|G IF @O dp(tH) < oco.

Note that conditions (2) and (3) are simplified by the assumption that Gz is unimodular.

We will take advantage of disintegration of measures (lemma 5.1) to complete the proof. To do this
we first need to write 92PV? ag a set of functions on the double coset Gox Gy instead of functions on
(Go. This is done in the next lemma.

Lemma 5.9 Let ¢ € GG and define £ to be the set of all f : GaxGy — V such that

1). s =< f(s),v' > is measurable for all v/ € V*,

2). f(sé) = ﬂglf(s) for all £ € G4, s € GoxG,
3)- Jao, IO dpa(t) < oo.

Then “2PV¥ and EF are G3-module homomorphic and isometric.

Proof. Note first that = being isometric, the condition (2) implies that ||f(¢)||" is constant on G-cosets
of G2, thus condition (3) makes sense.

Let f € &P so that f is defined on Ga2Gy. We define f(t) = f(tz) for t € G2. For all v/ € V*|
t—< f(t), v/ >=< f(tx),v' > is clearly measurable. Further, let n € G and let £ = znz~!, then

Ftn) = ftw€a™) = f(tad) = n7 ' flte) =  F(1) = w5 F (1)

Now let g € ¥2PV® (seen as afunction G5 — V). Define a function f on GozG1 by f(tz€) = ﬂglg(t)
fort € G4 and € € Gy.

Let us first check that f is unambiguously defined. Thus, assume that {128, = taxés withty,t5 € G
and &1,& € G1. Then t; = tzxé’zé’flx_l and x&’zé’flx_l € G2 N (zG1z7Y) = G, thus

gt =7 19(te) = 7o g(t) = T T g (1)

thus ﬂgllg(tl) = 7T§_21g(t2) and f(t12&1) = f(t2xé2) and f is unambiguously defined.
Fix v/ € V* and define for (£,n) € G1 x G, f1(€,n) = ﬂglg(n), then

< Ji&m), v >=<g(n), (mg=1)"0" >

is a Borel function of (£, ) € G x G2. We can now finish the proof of the lemma in exactly the same
way as the proof of the lemma 6.1 of [16]. O
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We have just established lemma 5.9 for functions defined on Gsx (G double cosets in order to remain
close to the proof of [16] lemma 6.1. Tt is then obvious that a similar result is true for GyzGa.
Proof (of the theorem). Recall from section 2 that we can identify PV as the set of all functions
f G =V such that

1). s =< f(s),v" > is a Borel function for all v/ € V*,
2). F(s¢) = ﬂglf(s) for every € € G1,s € G,
3). Jaya IFOI dpa(t) < oo.

We can now finish the proof of the theorem simply by using disintegration of measures as in [16].
Let f € ©PV (seen as a function on ) then with lemma 5.1,

) [ [usonandmm) = [ jpdn < .
DeD JD G/Gy
Thus, for almost all D € D,

/ 1P dup < oo.
D

Define then, for D € D, fp to be the restriction of f to D. For almost all D € D, we then have that
fp € 8 (where z is such that D = G1z(5) so that, by lemma 5.3, we may assume that fp € “2PV®.
Equation 8 then asserts that @?V is isometric to LF (D, p, B). a
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