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HARMONIC FUNCTIONS ON CLASSICAL RANK ONE BALLS

PHILIPPE JAMING

ABSTRACT. English version: In this paper, we study the links between harmonic functions
on the hyperbolic balls (real, complex or quaternionic), the euclidean harmonic functions on
these balls and pluriharmonic functions under growth conditions. In particular, we extend
results by A. Bonami, J. Bruna and S. Grellier (complex case) and the author (real case) to
the quaternionic case.

Italian version: In questo articolo studieremo le relazioni fra le funzioni armoniche nella
palla iperbolica (sia essa reale, complessa o quaternonica), le funzione armoniche euclidee in
questa palla, e le funzione pluriarmoniche sotto certe condizioni di crescita. In particolare,
estenderemo al caso quaternonico risultati anteriori del autore (nel caso reale), e di A.
Bonami, J. Bruna e S. Grellier (nel caso complesso).

1. INTRODUCTION.

In this paper, we study the links between harmonic functions on the hyperbolic balls (real,
complex or quaternionic), the euclidean harmonic functions on these balls and pluriharmonic
functions. In particular we investigate whether growth conditions may separate these classes.

More precisely, let F =R, C or H (the quaternions) and let n be an integer, n > 2 (n > 3
if F =R). Let B, be the euclidean ball in F™, let A be the euclidean laplacian operator on
B,, and let N = T% be the normal derivation operator. For k € N* a function v of class C%
is said to be k-hamonic if AFu = 0, in particular for k = 1 this are the euclidean harmonic
functions.

The ball B,, can also be endowed with the hyperbolic geometry. Let Dy be the associated
Laplace-Beltrami operator. Let p = "T_l, n,2n + 1 according to F = R, C or H.

It is well known that if u is euclidean harmonic or more generally k-harmonic for k € N*
with a boundary distribution, then every normal derivative of u, N*u, has also a boundary
distribution. We will show that if u is a Dp-harmonic function with a boundary distribution,
then for every integer k < p, N*¥u has also a boundary distribution.

Next, we define a pluriharmonic function as a function that is euclidean harmonic over
every F-line where F is seen as R? with d = dimgF. This extends a classical definition from
the case F = C to the two other cases and seems to be the most pertinent definition for our
study.

It is shown in [[j] for F = R and n odd and in [f] for F = C, that if u is Dg-harmonic
with a boundary distribution, then NPu has a boundary distribution if and only u is also
euclidean harmonic. Note that for F = R, p is an integer if n is odd, whereas for n even,
p is a half-integer. In this last case, although one might give a meaning to N”, the above
result is no longer true. Actually, if F = R and n is even, we will show that if u is Dg-
harmonic then wu is also §-harmonic (up to a change of variables), implying that u behaves
more alike the euclidean-harmonic functions. In particular, as has already been shown in
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A by different methods, if u has a boundary distribution, then N*u has also a boundary
distribution for every k. So, in even dimension, Dg-harmonic functions behave like euclidean
harmonic funtions.

Further, in the case F = R, the only functions that are both Dg-harmonic and euclidean
harmonic (and more generally k-harmonic with k£ > 1) are the constants. In the case F = C,
it is well known that the only functions that are both Dc-harmonic and k-harmonic with
k > 1 are the pluriharmonic functions (see [[L1]), in particular they are already euclidean
harmonic.

We would also like to mention that in the complex case, this result appears as a particular
case of a theorem by Ewa Damek &al (see [[J]) stating that, in a Siegel tube domain, pluri-
harmonic functions satisfying some growth condition are characterized by only the invariant
laplacian and some other elliptic operator. Moreover, here no assumptions on boundary
values is needed and the second elliptic operator can be chosen as the euclidean laplacian.

In the case F = H (as in the case F = R), a major difference occurs, namely that the
pluri-harmonic functions are no longer Dp-harmonic (except for the constant functions).
Further there exists functions that are both Dy-harmonic and 2-harmonic, and we will show
that those Dg-harmonic functions that are 2-harmonic but not 1-harmonic are linked to the
pluriharmonic functions, and that this class is orthogonal on every sphere rS**~1, 0 < r < 1
to the Dy-harmonic functions that are 1-harmonic. To conclude, if u is 2-harmonic with
a boundary distribution, then N*u has also a boundary distribution. We will show that,
among the Dg-harmonic functions the converse is also true: let u be a Dg-harmonic with a
boundary distribution, then if N”u has also a boundary distribution, then u is 2-harmonic.

The article is organised as follows: in the next section we give the setting of our problem,
and we make clear the above mentionned links between the different notions of harmonicity in
the real and the complex case. In section 3 we prove that for u Dp-harmonic with a boundary
distribution, N*u has a boundary distribution for k& < p. In the last section we deal with the
quaternionic case.

2. SETTING AND MAIN RESULTS.

2.1. Gauss’ Hypergeometric function. A number of hypergeometric functions will ap-
pear throughout. We use the classical notation 2 Fj(a,b, c¢;x) to note

. =T@+kTOb+k) T a*
2F1(“’b’c’5”)_kzzo T(a) T(b) T(c+k) k!

whith ¢ # 0,—1,—2,... This can also be defined as being the solution of the differential
equation

2

U du
(1—90)35@—i—[c—(a—i—b—l—l)x]%—abuzo

that is regular in 0. We refer to [[] for the theory of such functions.

2.2. Classical rank one balls. Let us recall some facts about symetric spaces of rank 1
of the non-compact type and their realizations as the euclidean unit ball. This facts can
be found for instance in [[j] and their adaptation to the ball model are then straightforward
computations.

Let F = R,C or H and let  — T (x € F) be the standard involution on F, put |z| = 2T
and d = dimg IF.
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Consider F**! as a right vector field over F and define the quadratic form Q(z) = |x1|* +
oot @t = |zpg|? for @ = (21,...,2n41) € F*"1. Then the connected component of the
identity G of the group of all F-linear transformations on F"*! which preserve ) and which
are of determinant one (except for the case F = H) is given as follows :

(1) if F =R then G = SOq(n, 1),
(2) if F = C then G = SU(n,1),
(3) if F = H then G = Sp(n,1).
Let G = KAN be an Iwasawa decomposition for G. Then

K:{@C:<kg>:kesomm%cemkﬁ:1}

0

cht 0 sht

A= a = 0 I,1 O cteR
sht 0 cht

and
1+y+2§ - _§2 52 gn
) )
y+5 l-y—%5 & ... & 4
= e F"
N=<ns,= 52 —52 1 0 . § (527 7_§n)
¢ . . yGF, y=-y

(where 6% = \52\2_4— o+ &P, Put Ay = {a; : t > 0}. The Cartan decomposition of G is
given by G = KA K.
Let M be the centralizer of A in K, i.e.

c

M =< mype= |0

0

If 2 = (z1,...,2,) and y = (y1,...,yn) are in F", set (x,y) = 191 + ... + 2,7, and

|2||* = (z, ). Then the unit ball B, = {x € F* : ||z||* < 1} and its boundary S"*! (the

unit sphere in F™) are identified with G/K and K/M. More precisely, an element of G/K is

identified with the couple (as, &), t > 0,& € S"~1 ~ K/M which is indentified with the point

(sht.£,cht) in the hyperboloid Q(z1,...,%n,nt1) = —1. This point is in turn identified

with the point (th¢)¢ € B, (see figure ).

It is then easily seen that G acts transitively on B,, and on S"*~! as follows :

0
0| : meSOn—1,F), ceF, |¢*=1
C

o FH O

9-(215 - 20) = (Y115 YnYin)
where (y1,. .., Yn, Yn+1) = g(x1,...,2n, 1). The balls B,, with that action of G are the classical
rank 1 spaces of the non-compact type (or the real, complex and quaternionic hyperbolic balls
depending on F = R, C or H).

Recall that d = dimg F. Let « be the positive simple root of (G, A), and m; = d(n — 1),
my = d — 1 be the multiplicities of v and 27y respectively. Let p = 5% + mg, so that
p= %,n,Qn + 1 according to F = R, C or H.

The Laplace-Beltrami operator on G/K is given by
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Xm—l‘;3 ‘F

QX)=-1

(sh t.§,ch t)

/

(th t.&,1)

t
(th? &.1)

FIGURE 1. The identification of G/K with B,

d? d 1 1

@ —|— (m1 COtht + 2m2 COth Qt)a —|— @Lwl —+ m
where L, and L, are tangential operators (see e.g. [[[(] for precise expressions). Thus, on
B,,, the G-invariant laplacian is given by

L,

1—72 o A0 ) 1 g2 (1—12)2
Ds = 5= [(1=r")N" + (ma+mo — 14 (ma = Jr?) N| + —5— A1 + 51y
where r = [|z||, N = T% and A1, As are two tangential operators having as eigenvectors the

spherical harmonics.
EXAMPLE : ¢ If F = R then A; = 0 while Ay = A, the tangential part of the euclidean
laplacian so that

1—r? 2\ AT2 2 (1- 7'2)
Dsz[(l—T)N +(n—2—T)N]+TAJ
1 o .
o If F = C design by £; j = z_za% — Z@% Then Ay =L = —5 Z(ﬁz‘,jﬁz‘,j +L;:L;;) the
j i

1<j
n
| , )
Kohn laplacian and Ay = 4T* with T' = Im Z z;—, so that
8ZZ'
k=1
1—r2
4r2
(the notation for N is not the same as in [f]).

1 — 72 1 —r?2)2
[(1—r*)N*+2(n—1)N] + y £+( = )

D¢ =

The Poisson kernel associated to Dy is given by

P]F(x,g) = <’11_ <!_ !HQ)

with z € B,, and & € S**~1. The Poisson integral of a distribution f on S"*~! is then defined
in the usual way and written Pg[f].

DEeFINITION Functions u on B,, such that Dpu = 0 will be called Dg-harmonic.
If F = C, these are the M-harmonic functions.
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If F = R, a second identification of G/K with B,, will show to be usefull. In this case, an
clement of G/K is again identified with the couple (ay, ), t > 0,& € S*~! ~ K/M which in
turn is indentified with the point (sh¢.§,cht) in the hyperboloid Q(z1,...,zn, pt1) = —1.
This point will then be identified with the point (th %) ¢ € B, (see figure [l). The Laplace-
Beltrami operator with this identification is then given by

1— 72

D=
T‘2

[(1- r)N? + (n —2)(1 +r*)N + (1 — 7“2)AU]

and according to [[{] a function u on B, will be said H-harmonic if Du = 0. The Poisson
kernel associated to D is given by

1 — 72 20
P(re,€) = <1+r2_2r<<’5>) |

Note that if u is Dg-harmonic, then r{ — u (lirrg ) is H-harmonic. Conversely, if u is
1—v1-12 C
T

‘H-harmonic, then r{ +— u ( > is Dgr-harmonic.
2.3. Boundary distribution. We focus in this article on functions that have a boundary
distribution in the following sense:

DEFINITION A function u on B,, has a boundary distribution if the limit

lim u(r¢)®(¢)do(Q)

r—1 Jgnd—1
exists for every ® € C°(S"d—1).

If w is Dp-harmonic then u has a boundary distribution if and only if u = Pg[f] for some
distribution f on S™@~1. To see this, one may use Lewis’ theorem [f] stating that the Dp-
harmonic functions that are Poisson integrals of distributions are exactly those Dp-harmonic
functions that have a polynomial growth and then prove as in [[] (F = R), [] (F = C)
that the Dp-harmonic functions that have a polynomial growth are exactly those that have
a boundary distribution. Alternatively, one may use the fact that a Dg-harmonic function u
is the Poisson integral of an hyperfunction p and that u has a boundary distribution if and
only if the hyperfunction p is actually a distribution.

We here study the boundary behavior of normal derivatives N*u of Dp-harmonic functions
u that have a boundary distribution. In particular, we generalize lemma 2.1 in [J] in the
complex case and theorem 8 in [f] in the real case and give a unified proof independent of
F =R, C or H. We prove the following :

THEOREM 1. Let u be a Dp-harmonic function with o boundary distribution. Let Y be a
tangential operator that commutes with N. Let k be an integer and v = N*Yu. Then

— if k < p, v has a boundary distribution,

— if k= p, for every ® € C>®(S™4~1),

/Sndl v(r$)®()do(¢) = O <1Og - i T) ‘

REMARK : If Y is tangential and if v has a boundary distribution, then Yu has also a boundary
distribution. The operators Ay, Ay and their products give examples of tangential operators
that commute with N.



6 PHILIPPE JAMING

2.4. Links between pluriharmonic, k-harmonic and euclidean harmonic functions.
We will next clarify a few relations beetween different notions of harmonicity on B,.

To start with, we extend the definition of pluriharmonic in the complex case to the general
case. The most relevant in our context is:

DEFINITION Let u be a function of class C? on B,,.

For a,b € F", define uqy on F identified with R? as x — u(ax 4+ b). Then u is said to be
pluriharmonic if for every a,b € F", u, is harmonic on its domain.

Let k € N*, then u is said to be k-harmonic if u is of class C** on B,, and if AFu = 0.

REMARK : If u is pluriharmonic, then w is also harmonic. In particular if u is pluriharmonic
with a boundary distribution, then all its derivatives also have a boundary distribution.

Let us first consider the cases of R and C for which references [[f] and [2] are available.

Assume first that F = R. If u is pluriharmonic, then u is an affine function, in particular
22712‘ = 0 and A,u = 0. Further, if u is also Dg-harmonic, then Nu = 0 and the only affine
functions such that Nu = 0 are the constant functions.

Assume now that wu is both euclidean and Dg-harmonic (in particular, u is continuous).
But, the radial-tangential expression of the euclidean laplacian is:

1
A= [N?+(n-2)N+4,]

thus, u satisfies

(1 =7 )N*u+ (n—2)(1 —r))Nu+ (1 — r*)Ayu = 0.

Comparing with the radial-tangential expression of Dg, one gets further that Nu =0 i.e. u
is homogeneous of degree 0. But the only continuous homogeneous functions are constant.

The same proof applies if one replaces either Dgr-harmonic or euclidean harmonic by H-
harmonic.

Finally, if F = R then p = "T_l thus the condition & = p in theorem [l| has the above
meaning only when n is odd. Moreover, proposition | bellow shows that the behaviour of
Dg-harmonic functions is different in even and odd dimension. In [f' the equivalence of 1, 5
and 6 in the following proposition has been proved :

PROPOSITION 2. Assume n is odd and let u be an Dr-harmonic. The following are equiva-
lent :

w is pluriharmonic (i.e. constant),
u 18 euclidean harmonic,

u s k-harmonic for some k > 1,
4. u is H-harmonic.

©w o=

Further, if u has a boundary distribution, this three conditions are equivalent to the following :
5. for every ® € C>®(S"1),

N u(rO)®(¢)do(C) = 0 <1og — ) .

§n—1

6. N7 u (i.e. NPu) has a boundary distribution.

Lwhere p has to be replaced by 2p as H-harmonic functions have been considered there instead of Dg-
harmonic functions.
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REMARK : The proposition stays true for H-harmonic functions instead of Dg-harmonic
functions (provided one replaces 4 by 4’: u is Dg-harmonic).

The situation in the case n even is different. Recall from Helgason that every H-
harmonic functions has a spherical harmonic expansion of the form

(1) u(r¢) = > filr)r'u(C)
1>0

where u; a spherical harmonic of degree [ and fi(r) = oF} (l, 1—-3,0+ %,rz). Then, if n is

even, 1 — 5 < 0 is an integer, thus f; is a polynomial of degree 5 — 1. But then, a simple

computation shows that A*u = 0 for k > 5, that is:
PROPOSITION 3. For n even, every H-harmonic function is %-harmonic.

COROLLARY 4. If n is even and if f € C®°(S"™1) then Pg[f] € C®°(By,). Further, if u
is Dr-harmonic and has a boundary distribution, then, for every k, N*u has a boundary
distribution.

Proof of the Corollary. Proposition ] implies that if f € C>(S"™1) then P[f] € C*°(B,,). The
result then follows by witing Pr[f]r{ = P[f] (177 Vrlfﬂ) The second part of the corollary
then immediatly follows. O

Assume now that F = C (p =n). In this case, pluriharmonic functions are both euclidean
harmonic and Dc-harmonic. The converse is also true (see [L1]], theorem 4.4.9). Moreover,
we will show that if w is k-harmonic and Dc-harmonic, then u is pluriharmonic, a fact for
which we have not found any reference. Our proof is again based on the fact from [f] that
every Dc-harmonic function has a spherical harmonic expansion of the form:

(2) u(z) = Y oFi(p.q.p+ q+n|2)up(2)
p,qEN

where u,, 4 is a spherical harmonic of degree p in z and ¢ in Z. Moreover, this series converges
uniformly over compact sets of B,,.

Now, write fp 4(r) = 2F1(p,q,p+q+n, r2). If we further ask for u to be euclidean harmonic
or more generally k-harmonic, then applying A* to () implies that

Z T;iquvq(r)upvq(z) =0

p,qeEN
where T, , = r%(NZ +2n(p+¢)N). Thus, for every p, ¢ such that u, , # 0, Tzﬁqu,q(r) =0 for
0 < r < 1. But, the only functions ¢ that are regular in 0 such that Tzf“; ¢¥ = 0 are polynomials
of degree at most k. Thus f, , has to be a polynomial. Note that a hypergeometric function
2F1(a,b,c,z) (with ¢ > 0) is a polynomial if and only if @ < 0 or b < 0. Thus up, = 0
unless p = 0 or ¢ = 0 i.e. the sum in (B) is reduced to summing over {(p,0) : p € N} and
{(0,q) : g € N}, that is, u is pluriharmonic.

Further, in [f], pluriharmonic functions have been characterized among Dc-harmonic func-

tions with a boundary distribution. This gives equivalence of 1, 4 and 5 of the following :

PROPOSITION 5. Let u be an Dc-harmonic function. The following are equivalent :

1. w is pluriharmonic,
2. u is euclidean harmonic,



8 PHILIPPE JAMING

3. u is k-harmonic for some k € N*.
Further, if u has a boundary distribution, this three conditions are equivalent to the following :

4. N"u (i.e. NPu) has a boundary distribution,
5. for every ® € C>°(S*™1),

/S2n1 N"u(r¢)@(()do(¢) = o (log - i T) ,

We will prove a similar result in the quaternionic case (p = 2n + 1). However, the result
will be more elaborate, as the class of “pluriharmonic” functions and the class of functions
that are both euclidean and Dy-harmonic do no longer coincide. We postpone the description
of results to section [

3. PROOF OF THEOREM [I.

Let us prove theorem 1 by induction on k. For k = 0 this is just the hypothesis on w.
If u is Dp-harmonic, then

(1— rz)N2u + (m1 +mg — 1+ (mg — 1)r2)

If we apply N*~1 and isolate terms in N**1 and N¥, we obtain
(1 —r)N* L y—2(k — 1)r2N*u + (m1+mg — 1+ (mg — 1)T2)Nku

k—1
QZ< >2JNk+1 ju (m2—17°2 ( ]1>2]Nk ]u

Jj=1

w

1— 2 k—1
—NkilAlu—TTNkflAgu—i—rQ ( j
i=1

)2] INF=I=5 A gy,

<.

Let Y be a tangential operator that commutes with /N then
(1 = r*)N* Y ut (mg 4+ ma — 1+ (ma — 2k + 1)r?) N¥Yu

k—1 L 1 k—1
2 - k41— 2 k—

=r E ) 29I N ]Yu— (mg — D)r g 2 Nk=iyy
A2< J > ’ ( )

7j=1
1 k-1
(3) — N*- WAlu——Nk 1YA2u+rzz< ; >2J 2NELZIY Ay,
J=

By the induction hypothesis, all the terms in the right member of (f) have a boundary
distribution. If we fix ® € C*°(S"!) and write

P(r) = /S o N*Yu(r)@(¢)do ()
we get that

(4) gr(r) = (1 —r*)Nepy, + (m1+mg—1+4 (mg+1— Qk‘)rz)ﬂ)k

has a limit L when r — 1.
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But, solving the differential equation (ff) (N = rd%) leads to

(147> g [T gr(s)smtma? —(p—k)—1
Ur(r) = e (=) /OWH—S) (=" ds.

Thus, if £ < p, ¥, (r) has limit # wheras if k = p, ¥(r) has logarithmic growth. O

4. BOUNDARY BEHAVIOR OF 2n + 1" DERIVATIVE IN THE QUATERNIONIC CASE.

In this section we will restrict our attention to the case F = H, and we will compare
pluriharmonic functions, euclidean harmonic functions and Dyg-harmonic functions. QOur
study will rely on the spherical harmonic expansion of Dyg-harmonic functions, therefore we
will recall the theory of spherical harmonics adapted to the analysis on S*~1, the unit sphere
of H", as can be found in [§].

4.1. Spherical harmonics in the case F = H. Let A = {(p,q) € N?> : p€ N, ¢—p € 2N}.
Denote by wy, ..., w, the standard coordinates on H", ws = Ts 4+ iTpts + jTonts + kT3nts
where x5 € R (1 < s <4n). The polar coordinates are given as follows :

wy = rcos&(cos P + ysin D)
Ws = rogsiné

where 7 = ||[(wy,...,wy)|[, 0 << F,0< @ < 27, y € H with ly|* =1 and R(y) =0, 05 € H
n

with Z \05\2 = 1. It is easy to see that an M-invariant function on H" depends only on
5=2

r,71 = wi +wy and ry = ]w1]2.

Let K denote the equivalence classes of irreducible unitary representations of K and Ky =
{(r,V;) € K : dim VM # 0} where VM denotes the subspace of V; consisting of M-fixed
vectors. Since G is of rank one, dim VM = 1 if (1,V;) € K. The Peter-Weyl theorem
implies that

LQ(Snd—l): Z V’T
TGK}M

as a representation space of K. The actual parametrization of 7 € Ky and the spherical
harmonics that span VM are given by (see [§]) the following formula. For p,q € A

sin((p+1)® — 2
Pa = qu((pil q)) ) cos? §oFy <p 5 q7 bt (21 i ,2(n — 1); — tan §> :
sin

The corresponding matrix coefficient < 74,®, 4, ®,, > is an M-invariant spherical function
on K. The span of these coeflicients are nothing but the spherical harmonics when restricted
to S"@=1. We will write H(p,q) ((p,q) € A) for the set of spherical harmonics obtained in
this way.

We will use the fact that {H(p,q) : (p,q) € A} provides a complete orthonormal set of
joint eigenfunctions of A; and Ay. More precisely, for ¢, , € H(p,q),

)

1
ZAZQPp,q = _p(p + 2)‘Pp,q

and

1
(A1 + ZAQ)@M = —q(q+4n —2)ppq
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For convenience, for ¢ € B,, \ {0} we write

é=i=<i &)
<]l 9/ Y

4.2. Spherical harmonics expansion of Dyg-harmonic hunctions. Let u be Dyg-harmo-
nic. By the Peter-Weyl theorem, u has an expansion into spherical harmonics

u(C) = Z ¢p,q(r)80p,q(é)

PgeEN
where r = |||| and

Gpalr) = /K u(h. €)@y o (- C) .

Then, using the radial-tangential expression of Dy and the fact that A1, Ay are self-adjoint,
we get

(1-— 7“2)7“21,[);7(](7“)—{—(7’)11 + mg + (mg — 2)7’2)7“1#;,@(7“)
= [a(a+4n —2) = r?p(p + 2)]tpq(r) = 0
Let us look for solutions of the form 7¢F, ,(r?). The function F, , satisfies

(1= t)tE, ,(t) + [q + 2n — gt]F, ,(t) — i[Q(C] —2) = p(p+2)]Fpq(t) = 0.

As 1 4 is regular in 0, this leads to

This may be summarized in the following lemma (Helgason - [f]) :

LEMMA 6. FEvery Dg-harmonic function u admits a decomposition into spherical harmonics
of the form

: q—p—2 p+tq :
(5) U(TC) - Z 2F1 < 2 ) 2 ,q + 277‘7 T2> rq(ppv‘I(C)
(p,9)EA

where v, 4 € H(p, q).

4.3. Euclidean-harmonic, k-harmonic and pluriharmonic Dyg-harmonic functions.
If w is euclidean harmonic on B,, and Dg-harmonic then the same proof as for the complex
case in section (2.4) implies that the only spherical harmonics that can occur in ([f]) are

those for which oF3 <%ﬂ, pT+q,q—|— 2n;r2> is constant. But an hypergeometric function

oF1(a,b,c,x) is constant if and only if @ = 0 or b = 0, so that the only spherical harmonics
that occur in ([]) are those for ¢ =p+2 or ¢ =p = 0.

Let us now turn to pluriharmonic functions. Recall that a function u on B,, is pluriharmonic
if for every a,b € H", the function u,p : R* = H — F defined by wu,(2) = u(az + b) is
harmonic on its domain.

With this definition, the only pluriharmonic spherical harmonics are the functions in

H(p,p), p € N. But oFy (—1,p,p+ 2n;1?) = <1 — prnr2>, so that the Dy extension from
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S"=1 to B,, of a function in H(p, p) is no longer pluriharmonic, unless p = 0. So as in the real
case, the only pluriharmoic functions that are Dyg-harmonic are the constants. This leads us
to the following notion :

DEFINITION We will say that a function w is the Dy-partner of a pluriharmonic function if u
has a spherical harmonic expansion

(6) u<r<>=§(1 L) tnalr)

= p+2n

In this case, a direct computation shows that A?u = 0, that is, the Dy-partners of pluri-
harmonic functions are Dg-harmonic functions that are 2-harmonic but not 1-harmonic.
Moreover, the same proof as for the caracterization of Dc-harmonic functions that are k-
harmonic shows that every Dyg-harmonic function that is k-harmonic is already 2-harmonic,
and thus a sum of a 1-harmonic function and of a Dy-partner of a pluriharmonic function.

Finally,

2+ 2 2n " opron1
reP = (1—-7r*)rf + 2D sP ds.

p+2n

(1 - prnﬁ) = (1=

From this fact, the definition of a Dyg-partner of a pluriharmonic function, given a priori in
terms of a spherical harmonics expansion, can be reformulated via an integral operator :

LEMMA 7. A function u is a Dyg-partner of a pluriharmonic function if and only if there
exists a pluriharmonic function v such that

2 T
(7) u(re) = (1= r2)o(r¢) + ——— [ > Yu(s¢)ds.
r2(n—1) 0
Moreover, u has a boundary distribution if and only if v has a boundary distribution.

Proof. If v has a boundary distribution, formula ([]) immediatly implies that u has also a
boundary distribution.
For the converse, differentiating ([) leads to the differential equation

ov
U +(1+2n - 3)7“2)2) =2(n—1)u+ Nu.

Solving this equation in v leads to

_ 2n73,,02

(8) v(r¢) = M /OT (2(n — 1)u(s¢) + Nu(s()) exp <2n2— 332> ds.

r

But if u has a boundary distribution, then by theorem [, Nu has also a boundary distribution.
Thus (§) implies that v has a boundary distribution. O
REMARK : Note also that, according to the fact that spherical harmonics for different pa-
rameters are orthogonal, the class of Dy-partners of pluriharmonic functions and the class
of Dg-harmonic and euclidean harmonic functions are orthogonal on every sphere rS**~1
0 <r <1 (thus on B,).
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4.4. Boundary behavior of the 2n + 1*" derivative. We will now establish the following
theorem :

THEOREM 8. Let u be a Dy-harmonic function. Then the following are equivalent :

1. u is k-harmonic for some k > 2,

2. u is 2-harmonic,

3. u is the sum of an euclidean harmonic function and of the Dy-partner of a plurihar-
monic function.

Further if u has a boundary distribution, then the three above assertions are also equivalent
to the following :

4. Nty has a boundary distribution,
5. for every ® € C®(S41),

/§4d—1 N2 Hy(r)®(¢)do(¢) = o <1Og - i r) _

Moreover, in this case, both the euclidean part and the pluriharmonic partner part of u have
a boundary distribution.

Proof. The equivalence of 1, 2 and 3 has already been established. Now let u be a Dy-
harmonic function with a boundary distribution and assume 3. Write u = uy + us where u;
is Dy and euclidean harmonic and ug is a Dyg-partner of a pluriharmonic function. Then
by orthogonality of uq and of us on every sphere, it is obvious that u; and us both have
boundary distributions. In particular, N?"*1u; has a boundary distribution.

Furhter, lemma [] implies first that us is the Dy-partner of a pluriharmonic function with a
boundary distribution and then that N?"*1u, also has a boundary distribution. So 3 implies
4. The implication 4 = 5 is obvious. Let us prove 5 = 3. Let w be Dyg-harmonic with a
boundary distribution.

Lemma [ tells us that u admits an expansion in spherical harmonics

9) U(TO: Z fp,q(r2)rq¢p,q(é)

(p.a)€EA

where ¢, , € H(p,q) and f, 4 is the hypergeometric function

—p—2 p+
fp,q(x):2F1<q g ,pzq’q+2n;x>

Moreover the sum [, as well as its derivatives converges uniformly on compact subsets of B,,,
in particular

(10) ||80p,q||L2(gn_1)Nk (fp,q(rz)rq) = Nku(TC)SDp,q(OdU(C)-

Sn—1
We will need the three following facts (see [H]):
i/ oF1(a,b,c;x) has a limit when 2 — 1 if and only if at least one of the following holds :
a) a<0, B) b<0, or 7) Re(c—a—b)>0andc#0,-1,-2,...;
i/ oF1(a,b,c;2) > C (log 72— in the cases not covered by i.

i) raFi(a,b,¢;2) = SR By (0t by b+ by e + ks 2)
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But hypothesis 5 says that the right hand member of [I( has a limit when » — 1. Thus,
property i3/ implies that, if ¢, , # 0, then 9 F <q_12’_2 +2n+1, % +2n+1,g+4n+1, :U)

has a limit when x +— 1. Thus properties ¢/ and 4i/ imply that ¢, , = 0 unless ((p,q) € A):

o q_g_Q < 0 (property i), that is ¢ = p+ 2 — the euclidean harmonic part— or p = ¢
— the pluriharmonic partner—

o % = 0 (property ig), that is if (p,q) = (0,0) the constant part of u.

o or p—q < 0 (property i), that is again p = q.

Sumarizing, v has a spherical harmonics expansion

0 = 31 peal©) - nolé) + ) (1= 525 ) el

where ¢, , € H(p,p), ¢ppt2 € H(p,p+ 2), thus u is of the desired form.
The fact that both parts have a boundary distribution results directly from the orthogo-
nality mentioned above and lemma [ a

5. FURTHER REMARKS ON PLURIHARMONIC FUNCTIONS

(1) The notion of pluriharmonicity is not invariant under Sp(n,1).

Indeed, at 0, Dy and A coincide. Moreover, a pluriharmonic function is euclidean
harmonic at 0, thus Dy-harmonic at 0. Thus, if the notion of pluriharmonicity was
invariant under the action of Sp(n, 1), pluriharmonic functions would be Dy-harmonic
which, as we have seen, is not the case.

(2) A theorem of Forelli in the case F = C asserts that a function u is pluriharmonic if
and only if, for every ¢ € S, the function u¢ : 2z +— u(2() is harmonic (see [,
theorem 4.4.9). In case F = H such a theorem can not hold.

Indeed, as the slices z(, z € C,¢ € $*"~! are invariant under the action of Sp(n, 1),
this would imply the invariance of the notion of pluriharmonicity, a contradiction
with the previous fact.
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