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PHASE RETRIEVAL TECHNIQUES FOR RADAR AMBIGUITY PROBLEMS

PHILIPPE JAMING

Abstract. The radar ambiguity function plays a central role in the theory of radar signals. Its
absolute value (|A(u)|) measures the correlation between the signal u emitted by the radar trans-
mitter and its echo after reaching a moving target. It is important to know signals that give rise to
ambiguity functions of given shapes. Therefore, it is also important to know to what extent |A(u)|
determines the signal. This problem is called the “radar ambiguity problem” by Bueckner [5]. Using
methods developed for phase retrieval problems, we give here a partial answer for some classes of
time limited (compactly supported) signals. In doing so, we also obtain results for Pauli’s problem,
in particular, we build functions that have infinitely many Pauli partners.

1. Introduction

In this paper three problems of reconstruction of lost phase are considered.
The first one arises in optics, in particular in the experimental use of diffraction to determine

intrinsic structure. In this context, only the modulus of a Fourier transform can be measured after
diffraction occurs. One is lead to the following problem.

Problem 1 (Phase Retrieval) Let u1, u2 ∈ L2(R) be two compactly supported functions such that
|Fu1(x)| = |Fu2(x)| for all x ∈ R (F being the Fourier transform). Can one deduce u2 from u1 ?

Trivial solutions are u2(t) = cu1(t + a) and u2(t) = cu1(−t+ a) with |c| = 1 and a ∈ R. However,
other solutions may arise. A fairly satisfying description of these solutions is given in Rosenblatt [18]
and Walter [23]. For functions u1 satisfying certain properties, there are only trivial solutions, but in
general, the set of solutions is more complex.

One may ask if further conditions could imply uniqueness of the solutions. Such a question arises
for instance in quantum mechanics. Pauli in his article on wave mechanics in the Handbuch der Physik
[16] asked :

Problem 2 (Pauli Uniqueness) Is it possible, for a single particle moving in one dimension, to
determine the wave function ψ(q) from |ψ(q)| and |Fψ(p)| ?

It seemed reasonable that this should be possible as ψ(q) = |ψ(q)|eiα(q), thus only α(q) has to be
found and one may think that the missing information is contained in |Fψ(q)|. However this is not
the case as shown by Bargman (cf. [17]) and later by Corbett and Hurst [7] and Vogt [22]. We will
give new examples, and show in particular that a function may have an infinity of Pauli partners.

Another problem of the same kind occurs in the theory of radar signals and is known as the
(Narrow Band) Radar Ambiguity Problem. The radar ambiguity function is the Fourier transform of
the Wigner function : for u ∈ L2(R),

A(u)(x, y) =

∫

R

u
(
t+

x

2

)
u

(
t− x

2

)
e2iπytdt.

Here the only quantity that is actually measured by a radar is |A(u)(x, y)| for x, y ∈ R. Thus the
following question arises :

Problem 3 (Radar Ambiguity) Let u ∈ L2(R), find all v ∈ L2(R) such that for all x, y ∈ R,

|A(v)(x, y)| = |A(u)(x, y)|.
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Trivial solutions are v(t) = ceiωtu(t + a) and v(t) = ceiωtu(−t − a) with |c| = 1, ω, a ∈ R. The
question arises whether they are the only solutions. Using algebraic methods, Bueckner [5] and de

Buda [8] considered the case when u is of the form P (x)exp
(
−x2

2

)
with P a polynomial. They

proved that, in this case, almost every solution of the ambiguity problem is trivial ; de Buda also gave
examples of functions for which there are non-trivial solutions of the ambiguity problem. We shall
use here the methods developed for the phase retrieval problem to find all solutions to a restricted
ambiguity problem. In doing so, we obtain new examples of functions for which there are only trivial
solutions. We also throw new light on de Buda’s counterexamples and show that they correspond to
a “spectrum ambiguity”.

Before going on, we introduce the following unitary operators L2(R) 7→ L2(R).

(1) F is the Fourier transform,
(2) for a ∈ R, S(a)u(t) = u(t− a) – time shift –
(3) for ω ∈ R, M(ω)u(t) = eiωtu(t) – frequency shift –

(4) for τ ∈ R\{0}, Dτu(t) =
√
|τ |u(τt) – scaling operator –

(5) for λ ∈ R, L(λ)u(t) = eiλ ln |t|u(t).
(6) Zu(t) = u(−t).

We will note < u, v > for the usual scalar product on L2(R) and c will denote a complex number

of modulus 1. We find it convenient to note Cu(t) = u(t). If A ⊂ R is a measurable set, we write χA
for the caracteristic function of A and |A| for its Lebesgue measure.

Finally, we will also study the wide band ambiguity problem. The wide band ambiguity function
is given by the formula

WA(u)(τ, a) =
√
|τ |

∫

R

u(t)u
(
τ(t − a)

)
dt.

We will study the equation |WA(u)(τ, a)| = |WA(v)(τ, a)| for every τ > 0, a ∈ R.
In this case, “trivial” solutions are of the form

(1) v = cu.
(2) v = CZu.
(3) v = F−1L(λ)Fu (i.e. Fv(t) = eiλ ln |t|Fu(t)).

Using again the same tools, we show that these may be the only ones under appropriate conditions,
and also provide an easy method to build counter-examples to the general problem (a “support
ambiguity”). These results are new to our knowledge, except for the fact that the trivial solutions
have been found by Altes [1] (however, he did not show that these may be the only ones).

The article is organised as follows. Section 2 is devoted to the phase retrieval problem and is a
review of results by Rosenblatt [18] and Walter [23]. In order to remain as self contained as possible
we will recall the essential tools in the theory, i.e. the Paley-Wiener theorem and the Hadamard
factorisation theorem, which will be used again in section 3. We will conclude this section with Pauli’s
problem and results by Corbett and Hurst [7],[6] and Vogt [22], and show how to build functions that
have infinitely many Pauli partners. We will also list some connected questions which have probably
not attracted the interest they deserve.

The last section is devoted to the radar ambiguity problems. After a quick review of various
properties, we will present some results which are not, to our knowledge, available in the literature.

Before going on, we would like to attract the reader’s attention to the monograph by Hurt [11] and
to the survey article [15] devoted to the subject of phase retrieval.

We shall usually refrain from saying that equations are true almost everywhere.

2. The Phase Retrieval Problem

Recall that we want to determine, for a given compactly supported function u ∈ L2(R), every
compactly supported function v ∈ L2(R) such that for every x ∈ R, |Fu(x)| = |Fv(x)|.

For this, the Paley Wiener theorem (see [14] theorem VI 7.4) provides us with important information
about the form of Fu when u is compactly supported:
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Theorem (Paley Wiener) Let F be an entire function and a > 0.
The following conditions are equivalent :

(1) F |R∈ L2(R) and |F (z)| = o
(
ea|z|

)
.

(2) There exists a function f ∈ L2(R) with f(ξ) = 0 for |ξ| > a such that

F (z) =
1

2π

∫

R

f(ξ)eiξzdξ.

It follows that Fu can be expanded into an entire function of exponential type (i.e. |Fu(z)| ≤ eB|z|

for z ∈ C). We denote also by Fu that expansion. By the Hadamard factorisation theorem ([21]
theorem 8.24) Fu can be uniquely written in the form

eα0+α1zzk
∞∏

k=1

(
1 − z

zk

)
ez/zk

where the zk’s are the zeroes of Fu in C. Moreover, if we order the zeroes of Fu so that |z1| ≤ . . . ≤
|zk| ≤ |zk+1| ≤ . . ., and if we write zk = rk(cos θk + i sin θk), then

∑

k≥1

1

r1+εk

converges for every ε > 0.

In particular, the infinite product
∏∞
k=1

(
1 − z

zk

)
ez/zk is convergent.

It is important in what follows to note that for z real,

∣∣∣∣
(

1 − z

zk

)
ez/zk

∣∣∣∣ =

∣∣∣∣
(

1 − z

zk

)
ez/zk

∣∣∣∣
Now as v is also compactly supported, Fv is also an entire function of order 1, by the Hadamard

factorisation theorem, it is (almost) characterised by its zeroes and admits a factorisation of the form

eβ0+β1zzk
∞∏

k=1

(
1 − z

ζk

)
ez/ζk

It can then be shown that

Theorem 1 (Walter) Let u ∈ L2(R) be a compactly supported function. Let {zk}k≥1 be the zeroes
of Fu (counted with multiplicity, and ordered so that |zk| is an increasing sequence) and write

Fu(z) = eα0+α1zzk
∞∏

k=1

(
1 − z

zk

)
ez/zk .

Let v ∈ L2(R) be a compactly supported function, then |Fu(x)| = |Fv(x)| for all x ∈ R if and only
if there exists c ∈ C with |c| = 1, a ∈ R and a choice ζk ∈ {zk, zk}, k = 1, 2, 3, . . ., such that for all
z ∈ C,

Fv(z) = ceiazeα0+α1zzk
∞∏

k=1

(
1 − z

ζk

)
ez/ζk .

Remark : Note that the coefficients c and a in the factorisation of Fv in the above theorem are related
to the trivial solution v(t) = cu(t−a). Every choice of ζk ∈ {zk, zk} gives rise to a non-trivial ambiguity,

excepted when ζk = zk for every k which corresponds to the trivial solution v(t) = cu(−t+ a).
The possible replacement of zk by zk is called “zero-flipping” by Walter.
If all the zk’s are real (i.e. zk = zk) then only trivial solutions can occur. On the other hand, if at

least two zeroes are non-real, there are non-trivial solutions.
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Note also that the zero-flipping corresponds to a factorisation Fu(z) = f(z)g(z) and Fv(z) =

f(z)g(z̄). In higher dimension an entire function can be irreducible and the above factorisation may
be trivial i.e. zero-flipping may be impossible, see [19], [4] for details.

Example 1 : Let H be a fixed function with support in
[
− 1

2 ,
1
2

]
. Let

u(t) =

N∑

j=0

ajH(t− j) and v(t) =

N∑

j=0

bjH(t− j).

Then

Fu(t) = P
(
e2iπt

)
FH with P (X) =

N∑

j=0

ajX
j , and(1)

Fv(t) = Q
(
e2iπt

)
FH with Q(X) =

N∑

j=0

bjX
j.(2)

To have |Fu| = |Fv| it is enough that |P | = |Q| on the unit circle.
But |P | = |Q| on the unit circle if and only if |P (1)| = |Q(1)| and,

{
αj ,

1

αj
: αj zero of P

}
=

{
αj ,

1

αj
: αj zero of Q

}

For instance, if we take

P (X) =(αXN + α′)(βX + β′)

Q(X) =(ᾱ′XN + ᾱ)(βX + β′)

(|α| 6= |α′|, |β| 6= |β′|) then P and Q are two different polynomials with |P | = |Q|, and v is a non-trivial
solution of the phase retrieval problem for u.

One might think that if we impose further conditions on the functions u and v such as regularity,
or positivity, then |Fu| = |Fv| could imply u = cv. However, the preceding example with H a C∞

function and α, α′, β, β′ > 0 shows that this is not the case.
The following example shows that if, in addition, we require that the support of u be connected,

we still do not force uniqueness.

Example 2 : Let f(x) = exp 1
1−x2 if |x| < 1 and f(x) = 0 if |x| ≥ 1. Let u = −f − f ′ − f ′′

and v = −f + f ′ − f ′′. Then u and v are non-negative, with connected support and C∞. However,
Fu = (4π2x2 − 2iπx− 1)Ff and Fv = (4π2x2 + 2iπx− 1)Ff , thus |Fu| = |Fv|.

Let us now consider the Pauli problem. Here again additional information is given. We know that
|Fu| = |Fv| and |u| = |v|. Hence the only trivial solutions are v = cu with |c| = 1. The previous
approach will be difficult to use as zero-flipping on Fu corresponds to a convolution of u with a
distribution, and it is far from obvious how to check that |v| = |u|.

We call u Pauli unique if |Fu| = |Fv| and |u| = |v| implies v = cu. We say that u and v are Pauli
partners if |Fu| = |Fv| and |u| = |v|.

Reisenbach [17] published the examples of Pauli partners found by Bargman, but only in 1978 Vogt
[22] and Corbett and Hurst [7], [6] first started a systematic study of the subject and showed that
there are infinitely many Pauli unique functions as well as infinitely many Pauli partners. To exhibit
Pauli partners, they used a method based on the relation CF = FCZ.

To be specific, let u be a function such that u(−t) = u(t)w(t) with |w(t)| = 1 and w is not a
constant on {t : u(t) 6= 0} (that is, |CZu| = |u|). Let v = F−1CFu = CZu. Then |u| = |v|,
|Fv| = |CFu| = |Fu|. Thus u and v are Pauli partners. Note also that v is a trivial solution for the
phase retrieval problem for u !

Furthermore, if we take |α| = |α′| in example 1, then we obtain Pauli partners that are non trivial
solutions of the phase retrieval problem. We prove more.



PHASE RETRIEVAL TECHNIQUES FOR RADAR AMBIGUITY PROBLEMS 5

Theorem 2 There exists u ∈ L2(R) which has a non-denumerable infinity of Pauli partners that are
not trivial solutions of the phase retrieval problem.

Proof. Let (an) be a sequence of compex numbers such that
∑ |an|2 converges and consider the Riesz

product F (x) =
∏∞
n=0(1 + ian sin 3nx). Write F (x) =

∑∞
k=−∞ bke

ikx. Let H ∈ L2(R) be supported
in [0, 1], and take

u(t) =

∞∑

k=−∞
bkH(t− k).

Let ε ∈ {−1, 1}N and F (ε)(x) =
∏∞
n=0(1 + ianεn sin 3nx). Write F (ε)(x) =

∑∞
k=−∞ b

(ε)
k eikx Then

v(ε) =
∑∞
k=−∞ b

(ε)
k H(t− k) is a Pauli partner for u.

For properties of Riesz products, see [14]. 2

Remark 1 : In the above example, if we take H a C∞ function and (ak) a fastly decreasing sequence,
one can even obtain u in the Schwartz class.

Remark 2 : This theorem has already be found in a less precise form by Ismagilov [12] (a fact we
have not been aware of while writing the first version of this article). It answers a question asked by
Friedman [9].

One may then ask if further conditions could imply unicity. More precisely, the following questions
arise.

Problem 4 Find unitary operators U1, . . . , Un : L2(R) 7→ L2(R) (not necessarily commuting) such
that if u, v ∈ L2(R) satisfy |u| = |v|, |Fu| = |Fv| and |Uiu| = |Uiv| (i = 1, . . . n), then v = cu.

Problem 4bis Given u ∈ L2(R), find unitary operators U1, . . . , Un : L2(R) 7→ L2(R) (not necessarily
commuting) such that if v ∈ L2(R) satisfies |u| = |v|, |Fu| = |Fv| and |Uiu| = |Uiv| (i = 1, . . . n),
then v = cu.

If such operators were found, it would also be important to give them a physical meaning.
Note that an operator that commutes with C as well as the identity operator and the Fourier

transform will not work ([22]).

3. The Radar Ambiguity Problem

3.1. The problem. As radar computations are not familiar to the general mathematical community,
we begin with a brief simplified version of the way ambiguity functions arise in radar theory. In doing
so, we essentially follow Wilcox [24] and Auslander and Tolimieri [3] for the narrow band ambiguity
function and Auslander and Gertner [2] for the wide band case.

Let X be an object or target and assume the radar is at the origin. Let r(t) denote the distance
from X to the radar and let v(t) denote the radial velocity of X at time t. The problem is to transmit
an electromagnetic wave or pulse s(t),−T < t < T , and from the echo e(t) obtained after reflection
on the target, determine the quantities r(0) and v(0).

We will now briefly explain how information is extracted from e(t). The first step is to pass from
the pulse to a complex valued function called the waveform of the pulse. As s(t) is real valued, we have

Fs(−t) = Fs(t), and so s(t) is completely determined by its positive spectrum. Define the operator
ψ : L2(R) 7→ L2(R) by

s 7→ ψs(x) =

∫ ∞

0

Fs(t)e2iπxtdt.

Then ψs(t) = s(t)+iσ(t)
2 where σ is the Hilbert transform of s. Explicitly

σ(x) =
1

π
lim
ε→0

∫

|x−t|>ε

s(t)

x− t
dt.

We have ‖ψs‖2
L2 = 1

2‖s‖
2
L2 . It is customary to call ‖f‖2

L2 the energy of the signal s.
Assume now that s satisfies the following properties,
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(1) ‖ψs‖ = 1,

(2)
∫ ∞
−∞ |tψs(t)|2dt <∞,

(3) and
∫ ∞
−∞ |tFψs(t)|2dt <∞.

Let

t0 =

∫ ∞

−∞
t|ψs(t)|2dt, f0 =

∫ ∞

−∞
t|Fψs(t)|2dt

t0 is called the epoch and f0 the carrier frequency.
We will further assume that s is narrow banded, i.e. that the spectrum of s is small compared to the

doppler shift due to the radial movement of the target. This validates the narrow band approximation,
i.e. the replacement of the Doppler scaling of the spectrum by a shift.

Definition The waveform us(t) of the pulse s(t) is defined by

us(t) = ψs(t+ t0)e
−2iπf0(t+t0)

It follows that s(t) = ℜ{ψs(t)} = ℜ{us(t− t0)e
2iπf0t} and that ‖us‖2

L2 = 1. The waveform us(t) is
“slowly varying” in the sense that its spectrum is centered around the 0 frequency.

Assume the following physical conditions are satisfied :

(1) There is only one target.
(2) The radar cross section of the target is independent of frequency.
(3) The target is in the far field of the radar.
(4) Multiple reflecting waves are negligible.
(5) The function r(t) is approximately linear for −T < t < T .
(6) The velocity of the target is small compared to the speed of electromagnetic propagation.

Then it is generally accepted that the echo is given by e(t) = ℜ{ψe(t)}, with

ψe(t) = e−2πif0x0us(t− t0 − x0)e
2iπ(f0−y0)t

where

x0 =
2

c
r(0) is called the time delay of the echo

y0 =
2f0
c
v(0) is the Doppler or frequency shift of the echo

with c the velocity of light. In particular, x0, y0 completely determine r(0) and v(0).
One then estimates x0, y0 by the following method originally suggested by Woodward [25]. Consider

ψxy(t) = e−2iπf0xus(t− t0 − x)e−2iπyte2iπf0t

and form

I(x, y) =

∣∣∣∣
∫ +∞

−∞
ψe(t)ψxy(t)dt

∣∣∣∣
2

.

As ‖us‖2
= 1, I(x0, y0) = 1 and I(x, y) ≤ 1 for all x, y. Thus if we regard I(x, y) as light intensity on

a screen, the brightest point should be (x0, y0) enabling us to determine the range and velocity of the
target. It is crucial for us to observe that

I(x, y) = |A(us)(x0 − x, y0 − y)|2

where

(3) A(u)(x, y) =

∫

R

u
(
t+

x

2

)
u
(
t− x

2

)
e2iπytdt
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One would like to make sure, in this context, that the observed quantity, which arises from us,
corresponds to the given radar signal or, depending on the aims of the user, to find vs such that
|A(vs)| = |A(us)|. Following Bueckner [5], we formulate :

Problem (Radar Ambiguity) Given u ∈ L2(R), what is the set of all functions v ∈ L2(R) such
that

(4) |A(v)(x, y)| = |A(u)(x, y)|
for all x, y ∈ R ?

If v is such a function, we say that v is an ambiguity partner of u.

Unfortunately, in many cases such as signals arising in seismology, oceanography and sonar, the
narrow-band approximation is not valid. Thus, when the target is moving, there is no uniform Doppler
shift across the entire spectra. In [20], a signal model independent of bandwidth and central frequency
was proposed. Following Auslander and Gertner [2], we will now describe this model. This time

ψe(t) = Aψs(at− τ)

where

A −−− The energetic parameter of the signal

a =
c− v(0)

c+ v(0)
−−− The Doppler stretch − compress factor

τ =
2r(0)

c+ v(0)
−−− The signal delay at time t = 0.

(Note that a > 0). We shall ignore signal attenuation and we will again normalise the energy to 1.
We obtain

1 =

∫ +∞

−∞
|e(t)|2dt = A2

∫ +∞

−∞
|ψs(at− τ)|2dt =

A2

a

∫ +∞

−∞
|ψs(t)|2dt =

A2

a
.

Thus conservation of energy requires that A =
√
a, so the received signal can be represented as

ψe(t) =
√
aψs(at− τ) =

√
aψs

(
a(t− τ ′)

)

with τ ′ = 2r(0)
c−v(0) .

The problem is to estimate the Doppler parameter a and the delay τ (that determine r(0) and
v(0)). The maximum likelihood estimate of these parameters is obtained by finding the maximum of
the cross correlation function

max
a,τ

∣∣∣∣
√
a

∫ +∞

−∞
ψs(t)ψs

(
a(t− τ)

)
dt

∣∣∣∣
2

.

This suggests that the definition of the wide band ambiguity function be

WA(u)(a, τ) =
√
a

∫

R

u(t)u
(
a(t− τ)

)
dt

We also formulate the wide band analogue of the ambiguity problem.

Problem (Wide Band Radar Ambiguity) Given u ∈ L2(R), what is the set of all v ∈ L2(R)
such that

(5) |WA(v)(x, y)| = |WA(u)(x, y)|
for all x > 0, y ∈ R ?

If v is such a function, we will say that v is a wide band ambiguity partner of u.
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For both ambiguity problems, the complete answer is unknown. However, for the narrow band
case, it may easily be checked that possible choices of u are :

(1) v = cu, where c is a complex number of modulus 1.
(2) v = M(ω)u, ω ∈ R.
(3) v = S(a)u, a ∈ R.
(4) v = Zu.

More cases may be obtained by combinations of such transformations. We will say that v is
Heisenberg related to u if v is obtained from u by a sequence of transformations like 1, 2, 3, 4.

In the wide band case, the situation is more complicated. First note that

WA(u)(a, τ) =< u,DaS(τ)u >

With Parseval’s identity and the commutation relations between F , D and S, we obtain

WA(u)(a, τ) = < Fu,FDaS(τ)u >=< Fu,D1/aFS(τ)u >

= < Fu,M
(τ
a

)
D1/aFu >

=W̃A(Fu)(1

a
,
τ

a
)

where

W̃A(u)(a, τ) =
1√
a

∫

R

u(t)u(at)e2iπtτdt.

Trivial solutions of the wide band ambiguity problem are then

(1) v = cu with |c| = 1.
(2) v = CZu.
(3) v = F−1L(λ)Fu (i.e. Fv(t) = eiλ ln |t|Fu(t)), with λ ∈ R.

If v is obtained from u by a sequence of transformations of that type, we will say that v is A-related

to u.
We will not directly solve the wide band ambiguity problem. Instead, we rather solve the problem

for W̃A, i.e. we ask the following question :

Problem (W̃A Ambiguity Problem) Given u ∈ L2(R), what is the set of all v ∈ L2(R) such that

∣∣∣W̃A(u)(a, τ)
∣∣∣ =

∣∣∣W̃A(v)(a, τ)
∣∣∣

for all a > 0, τ ∈ R ?

The trivial solutions of this problem are then

(1) v = cu with |c| = 1.
(2) v = Cu.
(3) v = L(λ)u with λ ∈ R.

3.2. The Narrow Band Case. We will here deal with the narrow band case and detail the proofs
before giving results in the wide band case. But first, we note that u and v may be ambiguity partners
without v being Heisenberg related to u.

For instance, De Buda [8] gave the following example. Let

u(t) =

(
sin t

t

)n
sin(2πnt) and v(t) =

(
sin t

t

)n

cos(2πnt)

(for n ≥ 1). Then u and v are ambiguity partners even though v is not Heisenberg related to u.
Nevertheless, for special classes of functions u it is the case that every ambiguity partner of u is

Heisenberg related to u. For instance, Bueckner ([5]) and De Buda ([8]) proved that this is the case

if u is of the form P (x) exp(−x2

2 ) with P a polynomial. We conjecture that this result should extend

to functions of the form P (x) exp(−x2

2 ) with P an entire function of order α < 2.
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We start with an easy way to obtain counter-examples (which includes De Buda’s counterexample),
and then provide some positive results.

3.2.1. Counter-examples. Let u1, u2 be two functions in L2(R), respectively supported in A1 and A2,
and let c1, c2 be two complex numbers with |c1| = |c2| = 1. We then have

A(c1u1 + c2u2) =|c1|2A(u1) + |c2|2A(u2) + c1c2A(u1, u2) + c1c2A(u2, u1)

=A(u1) +A(u2) + c1c2A(u1, u2) + c1c2A(u2, u1)

where A(u1, u2) is the bilinear operator associated to A(u). Thus, if we can choose the sets A1 and
A2 so that A(u1, u2), A(u2, u1) and A(u1) +A(u2) have disjoint supports, we obtain

|A(c1u1 + c2u2)| =|A(u1) +A(u2)| + |A(u1, u2)| + |A(u2, u1)|
=|A(u1 + u2)|

though c1u1 + c2u2 need not be Heisenberg related to u1 + u2.
Now note that the support of

t 7→ u1

(
t+

x

2

)
u2

(
t− x

2

)

is included in
(
A1 − x

2

)
∩

(
A2 + x

2

)
; in particular, u1

(
t+ x

2

)
u2

(
t− x

2

)
= 0 for every t ∈ R if x /∈

A1−A2, so that the support of A(u1, u2) is included in the strip (A1−A2)×R. Similarly, the support
of A(u2, u1) is included in the strip (A2−A1)×R. Thus, A(u1, u2) and A(u2, u1) have disjoint support
if A1 −A2 and A2 −A1 are disjoint.

In a similar way, we also need A1−A2 to be disjoint from A1−A1 and from A2−A2. The condition
that A2 −A1 is disjoint from A1 −A1 and from A2 −A2 then follows automatically.

Finally we notice that there is no reason to restrict ourself to two functions. We can then state the
following :

Proposition 3 Let {Aj}j≥1 be a disjoint family of subsets of R, of positive measure, satisfying the
following conditions

(1) the family {Ai −Aj}i6=j is disjoint,
(2) for i < j and for all k, Aj −Ai is disjoint from Ak −Ak.

Let (ui)i≥1 be a family of functions such that ui is supported in Ai and such that
∑

i≥1

ui ∈ L2(R).

Finally let (ci)i≥1 be a family of complex numbers of modulus 1. Then
∑

i≥1 ciui and
∑

i≥1 ui are

ambiguity partners but
∑
i≥1 ciui is generally not Heisenberg related to

∑
i≥1 ui.

It is easy (see [3]) to see that A(Fu)(x, y) = A(u)(−y, x) and we could state a similar proposition
for the spectrum of u instead of the support. In particular, De Buda’s counter example is obtained
with A1 = [−2n,−n], A2 = [n, 2n] (n ≥ 1), Fu = χA1 + χA2 and Fv = χA1 − iχA2 .

1

A slight modification of that method, inspired by example 1, leads us to the following example
which will be crucial to us.

Example 3 : Let H ∈ L2(R) be supported in
[
0, 1

2

]
and let (aj)j=0,...,n be a sequence of complex

numbers. Let u(t) =
∑n

j=0 ajH(t− j). Using the bilinearity of A as before, it is easy to see that, for

x ∈
[
j − 1

2 , j + 1
2

]
, j = 0 . . . , n,

A(u)(x, y) = eiπjy




n∑

k=j

akak−je
2iπky


A(H) (x− j, y) ,

while A(u)(x, y) = 0 for |x| > N + 1
2 , and A(u)(−x,−y) = A(u)(x, y).

1Note added in proof : F.A. Grüenbaum [10] found the example u1 = χ[−1,1], u2 = χ[4,5], u3 = χ[−5,−4].
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If v(t) =
∑n
j=0 bjH(t− j), then u and v are ambiguity partners if and only if for j = 0, . . . , n

∣∣∣∣∣∣

n∑

k=j

akak−je
2iπky

∣∣∣∣∣∣
=

∣∣∣∣∣∣

n∑

k=j

bkbk−je
2iπky

∣∣∣∣∣∣
.

Let N ≥ 3, and choose u(t) = a0H(t) + a1H(t − 1) + aNH(t − N) + aN+1H(t − N − 1) and
v(t) = b0H(t) + b1H(t− 1) + bNH(t−N)+ bN+1H(t−N − 1). Then, to have ambiguity partners, we
need

(1) for j = 0, |a0|2+|a1|2X+|aN |2XN+|aN+1|2XN+1 and |b0|2+|b1|2X+|bN |2XN+|bN+1|2XN+1

to have same modulus on the unit circle T. Following example 1, if we take α, α′, β, β′ > 0
and the ai’s and bi’s such that

(6) |a0|2 = α′β′ |a1|2 = α′β |aN |2 = αβ′ |aN+1|2 = αβ

(7) |b0|2 = αβ′ |b1|2 = αβ |bN |2 = α′β′ |bN+1|2 = α′β

then, for − 1
2 ≤ x < 1

2 , y ∈ R, we have |A(u)(x, y)| = |A(v)(x, y)|.
(2) for j = 1, a0ā1 + aN āN+1X

N and b0b̄1 + bN b̄N+1X
N to have the same modulus on T. But,

according to 6-7, |aN āN+1| =
∣∣b0b̄1

∣∣, so that the two polynomials have the same modulus on
T if

a0ā1

aN āN+1
+XN and 1 +

bN b̄N+1

b0b̄1
XN

have same modulus on T, which is the case when

bN b̄N+1

b0b̄1
=

a0ā1

aN āN+1
.

Note that by equation 6-7, these two complex numbers have the same modulus. Thus this
reduces to the following condition on the phases :

arg b0 − arg b1 − arg bN + arg bN+1

≡ arg a0 − arg a1 − arg aN + arg aN+1 (2π).(8)

(3) for j = 2, . . . , N − 2, there is no extra condition.
(4) for j = N − 1,

∣∣aN ā1X
N

∣∣ =
∣∣bN b̄1XN

∣∣ on T, which is a consequence of condition 6-7.

(5) for j = N , |aN ā0 + aN+1ā1X | =
∣∣bN b̄0 + bN+1b̄1X

∣∣ on T. As |aN ā0| =
∣∣bN b̄0

∣∣, we need∣∣∣1 + aN+1ā1

aN ā0
X

∣∣∣ =
∣∣∣1 + bN+1b̄1

bN b̄0
X

∣∣∣, that is

aN+1ā1

aN ā0
=
bN+1b̄1

bN b̄0
.

Again, condition 6-7 implies that these two complex numbers have the same modulus while
condition 8 implies that they have the same argument.

(6) finally, for j = N + 1, |aN+1ā0| =
∣∣bN+1b̄0

∣∣, which follows from equations 6-7.

It is important in what follows to note that, by the Paley Wiener theorem, A(u) and A(v) are

entire functions in the y variable but A(u) does not have the same zeroes as A(v) or A(Zv) = A(v).
Also note that we could modify the above example for N = 2 and still obtain ambiguity partners

(the only modification would be for j = 1), but, in addition, the support of A(u) would be connected.
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3.2.2. The Radar Ambiguity Problem for compactly supported functions. Let u ∈ L2(R) be a compactly
supported function. We will now examine some conditions for the solutions v of |A(v)| = |A(u)| to be
Heisenberg related to u. First we need to see that v is also compactly supported.

Lemma 4 Let u ∈ L2(R) be a compactly supported function. Let v ∈ L2(R) satisfy |A(v)(x, y)| =
|A(u)(x, y)| for all x, y ∈ R. Then v is also compactly supported.

Moreover if the support of u is contained in an interval of length 2a then the support of v is also
contained in an interval of length 2a.

Proof. Up to a time shift S(α), we may assume that u is supported in [−a, a], then, if |x| > 2a, we

have, for all t ∈ R, u
(
t+ x

2

)
u

(
t− x

2

)
= 0 thus

A(u)(x, y) =

∫ ∞

−∞
u

(
t+

x

2

)
u

(
t− x

2

)
eiytdt = 0

for all y ∈ R and all x with |x| > 2a.
But then, as |A(v)(x, y)| = |A(u)(x, y)| for x, y ∈ R, we get A(v)(x, y) = 0 for all y ∈ R and all x

with |x| > 2a.
Now, noticing that A(v)(x, y) is the Fourier transform of

v
(
t+

x

2

)
v

(
t− x

2

)

we obtain

v
(
t+

x

2

)
v

(
t− x

2

)
= 0 for all t, and all x with |x| > 2a.

After a change of variables, we deduce from this that v(x1)v(x2) = 0 as soon as |x1 − x2| > 2a.
Therefore, the support of v is contained in an interval of length 2a. 2

Remark : This lemma actually gives more information. Up to a translation, we may assume that the
support of u is contained in [−a, a] and in no smaller interval. Then, by the lemma, the support of v is
contained in an interval of length 2a that, up to a translation, we may assume to be [−a, a]. Assume
that v is actually supported in a smaller interval of length, say 2b < 2a; then we may exchange the
roles of u and v to obtain that the support of u is contained in an interval of length 2b, that is smaller
interval than [−a, a]. This gives a contradiction.

We may now assume that supports of both u and v are contained in [−a, a] and no smaller interval, in
particular, u and v are compactly supported. Thus Paley Wiener theorem ensures us that A(u)(x, y)
and A(v)(x, y) are both entire functions of exponential type in the y variable. But |A(u)(x, y)| =

|A(v)(x, y)| for all x, y ∈ R, thus A(u)(x, y)A(u)(x, y) = A(v)(x, y)A(v)(x, y) and then by analytic
continuation we find that

(9) A(u)(x, y)A(u)(x, ȳ) = A(v)(x, y)A(v)(x, ȳ) for all x ∈ R, y ∈ C.

On the other hand, due to the Hadamard factorisation theorem, an entire function f(z) of exponential
type is entirely determined by its zeros, up to a factor λeµz with λ, µ ∈ C. Unfortunately 9 only tells
us that, for fixed x, if z is a zero of A(u)(x, .) then either z or z̄ is a zero of A(v)(x, .) (zero flipping).

Several cases occur, for instance, A(u) may only have real zeros (e.g. if u = χ[a,b]), then A(u) and
A(v) have the same zeroes.

There are some functions u for which every ambiguity partner v is such that either A(u) and A(v)
have the same zeroes, or A(u) and A(Zv) have the same zeroes. We do not know if this can occur
when A(u) has non-real zeroes, and so we are unable to give a characterisation of the functions u for
which this is the case.

Finally, as in example 3, A(u) and A(v) may have some common non-real zeroes and some conjugate
zeroes.

In what follows, after eventually replacing u by Zu or by some uf if zero flipping occurs, we shall
assume that A(u) and A(v) have the same zeroes. In other words we now consider the following
restricted radar ambiguity problem :
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Problem (Restricted Radar Ambiguity) Given a compactly supported u ∈ L2(R), what is the
set of ambiguity partners v of u, such that for every x ∈ R, A(u)(x, .) and A(v)(x, .) have the same
zeroes in the complex plane ?

We will call such ambiguity partners restricted ambiguity partners.

Example 3 shows that :

Proposition 5 There exist compactly supported functions u which have ambiguity partners that are
not restricted ambiguity partners either of u or of Zu.

By the Hadamard factorisation theorem, if u and v are restricted ambiguity partners, we have
that, for each x ∈ R, there exist two complex numbers λx, µx such that, for all y ∈ C, A(v)(x, y) =
λxe

µxyA(u)(x, y), as these two ambiguity functions have same zeroes. Further, as |A(u)(x, y)| =
|A(v)(x, y)|, we see that |λx| = 1 and µx is a purely imaginary complex number. We can, therefore,
write

(10) A(v)(x, y) = eiϕ(x)+iψ(x)yA(u)(x, y) for all x, y ∈ R

where ϕ, ψ : R 7→ R.
We first identify ψ. (10) implies that A(v)(0, y) = A(u)(0, y) for every y ∈ R. But A(u)(0, y) =

F
[
|u|2

]
(y) and A(v)(0, y) = F

[
|v|2

]
(y), thus |u|2 = |v|2. In particular u and v have same support, so

for every x ∈ R,

t 7→ u
(
t+

x

2

)
u

(
t− x

2

)
, and t 7→ v

(
t+

x

2

)
v

(
t− x

2

)

have same support. But, the Fourier transforms of these functions are A(u)(x, .) and A(v)(x, .) thus,
by the Paley Wiener theorem, they have same exponential type. On the other hand, equation (10)
implies that the exponential type of these two functions differs by |ψ(x)| so ψ(x) = 0 for every x ∈ R.

Now we identify ϕ. Let Ω be the set of all x such that A(u)(x, y) is not identically 0, thus

Ω = {x : t 7→ u
(
t+

x

2

)
u

(
t− x

2

)
is not 0 a.e.}

As A(u)(x, y) is continuous (cf. [3]), we may assume that ϕ is continuous on Ω. As A(u)(0, 0) =
A(v)(0, 0) = 1, we can assume that ϕ(0) = 0. Moreover, Ω is an open set of R, and so a countable

union of disjoint intervals. Further, as A(u)(−x,−y) = A(u)(x, y), −Ω = Ω, and we can assume that
ϕ is odd. As A(u)(0, 0) = 1, 0 ∈ Ω, and so we can write Ω =

⋃∞
k=−∞ Ik with 0 ∈ I0 and I−k = Ik.

Definition Let f : R 7→ C be a measurable function. Then a point x ∈ R will be called a Lebesgue

point of f if

1

|B|

∫

B

f(y)dy →Bց{x} f(x)

where ϕ(B) →Bց{x} α means that for every ε > 0 there exists r > 0 such that for every ball B of
radius ≤ r containing x, |ϕ(B) − α| < ε.

Recall that a point x in a set A ⊂ R is called a point of density of A if |A∩I|
|I| → 1 where I is an

interval containing x of length η → 0. In other words a point of density of A is a point of A that is a
Lebesgue point of χA.

Recall that if f ∈ L1(R) then almost every point of R is a Lebesgue point of f , in particular, almost
every point of a measurable set A is a point of density of A.

In what follows we assume that every point in the support of u is a Lebesgue point of u, and so a
Lebesgue point of |u| thus also a point of density of the support of u. Let S = {x ∈ R : u(x) 6= 0}
be the support of u, and let

Ex =
(
S − x

2

)
∩

(
S +

x

2

)
= {t :

∣∣∣u
(
t+

x

2

)∣∣∣
∣∣∣u

(
t− x

2

)∣∣∣ 6= 0}.
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By definition, |Ex| > 0 if and only if x ∈ Ω. Note also that, as every point of Ex is a point of density
of Ex, if |Ex| = 0 then Ex = ∅.
Proposition 6 If S is the support of u, then Ω = S − S.

Proof. We first prove that S − S ⊂ Ω. Let x /∈ Ω. By definition |Ex| = 0, so that Ex = ∅, that is,(
S − x

2

)
∩

(
S + x

2

)
= ∅ which yields x /∈ S − S.

For the reverse inclusion, let x ∈ Ω, then |Ex| > 0 which implies that |(S − x) ∩ S| > 0, in
particular, there exist η, ξ ∈ S such that η − x = ξ thus x = η − ξ ∈ S − S. 2

Lemma 7 If t0, t1, t2 are in S then

(11) ϕ(t2 − t1) + ϕ(t1 − t0) ≡ ϕ(t2 − t0) (2π).

Proof. As A(u)(x, .) and A(v)(x, .) are Fourier transforms, we have

u
(
t+

x

2

)
u

(
t− x

2

)
= eiϕ(x)v

(
t+

x

2

)
v

(
t− x

2

)
.

If x and y are in S, then

1

(2η)2

∫

|t− x+y

2 |<η

∫

|s−(x−y)|<η
u

(
t+

s

2

)
u

(
t− s

2

)
dsdt→ u(x)u(y),

as η → 0. If we further assume that x and y are Lebesgue points of v, using the continuity of ϕ, we
obtain

1

(2η)2

∫

|t− x+y

2 |<η

∫

|s−(x−y)|<η
eiϕ(s)v

(
t+

s

2

)
v

(
t− s

2

)
dsdt → eiϕ(x−y)v(x)v(y),

as η → 0 Thus

(12) u(x)u(y) = eiϕ(x−y)v(x)v(y).

Applying relation (12) to t2, t1 ∈ S, and to t1, t0 ∈ S, we have

u(t2)u(t1) = eiϕ(t2−t1)v(t2)v(t1) and u(t1)u(t0) = eiϕ(t1−t0)v(t1)v(t0).

Multiplying these two relations, we find

u(t2)u(t0)|u(t1)|2 = eiϕ(t2−t1)+iϕ(t1−t0)v(t2)v(t0)|v(t1)|2.
Then, as |u| = |v| almost everywhere, relation (12) leads us to

ϕ(t2 − t1) + ϕ(t1 − t0) ≡ ϕ(t2 − t0) (2π)

for almost every t0, t1, t2 in S, and by continuity of ϕ on Ω = S−S, relation (11) is valid everywhere.
2

Lemma 8 There exists ω ∈ R and a real sequence (bk)k∈Z such that, if there are t0, t1, t2 ∈ S such
that t2 − t1 ∈ Ik, t1 − t0 ∈ Ik′ and t2 − t0 ∈ Ik′′ , then

(13) bk + bk′ ≡ bk′′ (2π).

and, for every x ∈ Ik, ϕ(x) = ωx+ bk.

Proof. First, by choosing t0, t1, t2 ∈ S such that x = t2−t1 ∈ I0, y = t1−t0 ∈ I0 and x+y = t2−t0 ∈ I0,
(11) becomes ϕ(x+ y) = ϕ(x) +ϕ(y) from which it is easy to see that ϕ is linear, that is, there exists
ω ∈ R such that ϕ(x) = ωx on I0.

Now we look at an other connected component Ik of Ω. If t0, t1, t2 ∈ S are such that x = t2−t1 ∈ Ik,
y = t1 − t0 ∈ I0 and x + y = t2 − t0 ∈ Ik, then ϕ satisfies ϕ(x + y) = ϕ(x) + ωy. Thus, for every k,
there exists bk such that, for x ∈ Ik, ϕ(x) = ωx+ bk.

Finally, relation (13) is a direct consequence of relation (11). 2
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We have proved that there exist t0 ∈ S, ω ∈ R, and a sequence (bk) satisfying (13) such that, for
x ∈ Ik + t0, v(x) = ceiωxeibku(x).

Conversely, assume that the bk’s satisfy condition (9), let t0 ∈ S, and define ϕ(x) = ωx + bk for
x ∈ Ik + t0. Let v(x) = c̄eiϕ(x)u(x). Then for x ∈ Ik + t0 and almost every t ∈ R, either there exists
k′, k′′ such that t+ x

2 ∈ (Ik′ + t0)∩ S and t− x
2 ∈ (Ik′′ + t0)∩ S, (as x =

(
t+ x

2

)
−

(
t− x

2

)
∈ Ik + t0),

bk = bk′ − bk′′ and

v
(
t− x

2

)
v

(
t+

x

2

)
= eiωxeibku

(
t− x

2

)
u

(
t+

x

2

)
;

or t+ x
2 and t− x

2 are not both in S whence

v
(
t− x

2

)
v

(
t+

x

2

)
= u

(
t− x

2

)
u

(
t+

x

2

)
= 0.

In particular, A(eiϕ(x)u)(x, .) = eibk+iωxA(u)(x, .), and

∣∣∣A(eiϕ(x)u)(x, .)
∣∣∣ = |A(u)(x, .)|.

Summarising the previous results, we can now state the following theorem.

Theorem 9 Let u ∈ L2(R) be a compactly supported function and let v be a restricted ambiguity
partner of u.

If Ω is the open set of all x such that A(u)(x, .) is not identically 0, there exists a locally constant
function ϕ on Ω such that, for every t0, t1, t2 belonging to the support of u,

(14) ϕ(t2 − t1) + ϕ(t1 − t0) ≡ ϕ(t2 − t0) (2π)

and

v(x) = ceiϕ(x−a−x0)eiωxu(x− a)

for some a ∈ R, ω ∈ R, c ∈ T and some x0 belonging to the support of u.
Conversely, every function v of that form is a (restricted) ambiguity partner of u.

Remark : Using to the relation A(Fu)(x, y) = A(u)(−y, x) we can easily state this theorem for band
limited functions if we replace u and v by Fu and Fv in the above theorem.

Proposition 3 is a particular case of theorem 9 in which condition 14 is reduced to ϕ odd.
In the case u = χ[a,b] all the zeroes of A(u) are real, thus for every solution v of the ambiguity

problem for u, A(u) and A(v) have same zeroes and we have a complete solution of the ambiguity
problem for this u. Moreover, if every ambiguity partner of H in example 3 is a restricted ambiguity
partner of H , then example 3 and theorem 9 give every ambiguity partner of U(t) = a0H(t)+a1H(t−
1) + aNH(t−N) + aN+1H(t−N − 1).

The theorem essentially states that if u is “simple” (in particular, the support is an interval) then
the solutions of the ambiguity problem are “simple”, whereas for complicated u (for example, when
the support has big gaps) the solutions are also complicated.

3.3. The wide band case. Recall that

WA(u)(a, τ) =
√
a

∫

R

u(t)u
(
a(t− τ)

)
dt

and that WA(u)(a, τ) = 1√
a
W̃A(Fu)(1/a, τ/a) where

W̃A(u)(a, τ) =

∫

R

u(t)u(at)e2πiτtdt.

We want to know if |WA(u)| = |WA(v)| implies that v is A-related to u.
We will here briefly review some results for the wide band ambiguity problem for band limited

functions or, equivalently, for the W̃A-ambiguity problem for compactly supported functions. This
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results can be obtained in a similar way to those of the previous section, therefore we will only give
sketches of the proofs.

First, let us write u = u0 + u1 and v = c0u0 + c1u1 where u0 = χ[a0,a1], u1 = χ[a2,a3]. We seek

conditions on a0, a1, a2, a3 for W̃A(u0)+ W̃A(u1), W̃A(u0, u1), W̃A(u1, u0) to have disjoint supports.
One then finds functions having wide-band ambiguity functions with same absolute value which are
not A-related. The precise result is the following :

Proposition 10 Let (ak)k≥0 be an increasing sequence of positive real numbers such that

(1) for all k ≥ 0, a2(k+1) > a2k+1
a2k+1

a2k
; and

(2) for all k ≥ 0, a2(k+1)+1 < a2(k+1)
a2(k+1)

a2k+1
.

Let (uk)k≥0 be a sequence of functions in L2(R) such that for all k ≥ 0, Fuk is supported in
[a2k, a2k+1], and

∑
k≥0 uk ∈ L2(R).

Finally, let (ck)k≥0 be a sequence of complex numbers of modulus 1. Then, for every a > 0 and
every τ ∈ R,

∣∣∣∣∣∣
WA


∑

k≥0

ckuk


 (a, τ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
WA


∑

k≥0

uk


 (a, τ)

∣∣∣∣∣∣

whereas, in general
∑

k≥0 ckuk is not A-related to
∑

k≥0 uk.

We now focus on finding examples of band limited functions for which the solutions of the wide

band ambiguity problem for u are all A-related to u. Again, it is equivalent to work with W̃A and
compactly supported functions. We will first need the following lemma :

Lemma 11 Let K be a compact set of positive measure such that 0 /∈ K and let u ∈ L2(R) be
supported in K. If v ∈ L2(R) satisfies

∣∣∣W̃A(v)(a, τ)
∣∣∣ =

∣∣∣W̃A(u)(a, τ)
∣∣∣

for all a > 0, τ ∈ R, then v is also compactly supported.

Proof. K being a compact not containing 0, we can find an ε > 0 and an η > 0 such that if |x| < ε
or |x| > η then u(x) = 0. But then,

W̃A(u)(a, τ) =

∫

R

u(t)u(at)e2πiτtdt = 0

if a > η
ε or if a < ε

η , and so v(t)v(at) = 0 a.e. Thus, if t0 is any Lebesgue point of v that is in the

support of v, v(t) = 0 if |t| > η
ε |t0| and if |t| < ε

η |t0|. Hence v is compactly supported.

Remark : The Paley-Wiener theorem implies that if u is supported in [−η, η], so is v and the previous
proof tells us that if K is contained in [−η,−ε] ∪ [ε, η], so is the support of v.

To go further, we again use the methods of section 3. A second appeal to the Paley Wiener theorem

tells us that W̃A(u)(a, τ) and W̃A(v)(a, τ) are entire functions of order 1 in τ .

Here again, W̃A(u) and W̃A(v) need not have the same zeroes. For instance, let N ≥ 4 be an
integer, and let

u = a0χ[1,2] + a1χ[4,8] + aNχ[22N ,22N+1] + aN+1χ[22N+2,22N+3]

and

v = b0χ[1,2] + b1χ[4,8] + bNχ[22N ,22N+1] + bN+1χ[22N+2,22N+3]

Then if |ai| = |bi| for i = 0, 1, N,N + 1 and if

arg b0 − arg b1 − arg bN + arg bN+1 ≡ arg a0 − arg a1 − arg aN + arg aN+1 (2π)
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but arg b0−arg b1 6≡ arg a0−arg a1 (2π) and arg bN −arg bN+1 6≡ arg aN −arg aN+1 (2π) then W̃A(u)

and W̃A(v) have same modulus, but not same zeroes, neither do W̃A(u) and W̃A(CZv) have same
zeroes.

In what follows, we assume that W̃A(u) and W̃A(v) have same zeroes and solve the following
restricted wide band ambiguity problem :

Problem (Restricted Wide Band Ambiguity) Given a compactly supported function u ∈ L2(R),
what is the set of all v ∈ L2(R) such that

∣∣∣W̃A(u)(a, τ)
∣∣∣ =

∣∣∣W̃A(v)(a, τ)
∣∣∣

for all a > 0, τ ∈ R, and such that W̃A(u) and W̃A(v) have same zeroes ?

Using Hadamard’s factorisation theorem we can write

W̃A(v)(a, τ) = ei
(
ϕ(a)+ψ(a)τ

)
W̃A(u)(a, τ)

with ϕ, ψ : R 7→ R, from which we deduce again that ψ = 0, as in the narrow band case.

We will now identify ϕ. Let Ω be the set of all a such that W̃A(u)(a, τ) is not identically 0, thus :

Ω = {a : t 7→ u(t)u(at) is not 0 a.e.}
As W̃A(u)(a, τ) is a continuous function of (a, τ), Ω is an open set of R and so a countable union of
disjoint intervals, Ω =

⋃
k∈N

Ik.
Now, as

W̃A(u)(a, τ) = eiϕ(a)W̃A(v)(a, τ),

as W̃A(u)(a, τ) and W̃A(v)(a, τ) are continuous, and as

W̃A(u)(1, 0) = W̃A(v)(1, 0) = 1,

we may assume that ϕ is continuous and that ϕ(1) = 0, in particular |u| = |v| almost everywhere.
We again assume that every point in the support S of u is a Lebesgue point of u, and so a Lebesgue

point of |u| and a point of density of S. We also assume that 0 /∈ S.
The following proposition can be obtained in a similar way to proposition 6 :

Proposition 12 Let u ∈ L2(R) be supported in a compact set not containing 0. Let S+ be the set
of positive density points of the support of u and S− the set of negative density points of the support
of u. Then

Ω =
S+

S+
∪ S−
S−

=

{
x

y
: x, y ∈ S+

}
∪

{
x

y
: x, y ∈ S−

}
.

But now, W̃A is the Fourier transform of u(t)u(at) in the τ variable and

W̃A(u)(a, τ) = eiϕ(a)W̃A(v)(a, τ),

so that

u(t)u(at) = eiϕ(a)v(t)v(at).

Thus, if t1, t2 ∈ S, then

u(t1)u(t2) = e
iϕ

(
t2
t1

)

v(t1)v(t2)

and, as for lemma 7, we obtain

Lemma 13 If t0, t1, t2 are in S, then

ϕ

(
t0
t1

)
+ ϕ

(
t1
t2

)
≡ ϕ

(
t0
t2

)
(2π).



PHASE RETRIEVAL TECHNIQUES FOR RADAR AMBIGUITY PROBLEMS 17

From this we deduce the following analogue of lemma 8 :

Lemma 14 There exist λ ∈ R and a real sequence (bk)k∈Z such that, if there are t0, t1, t2 ∈ S such
that t0

t1
∈ Ik,

t1
t2

∈ Ik′ and t0
t2

∈ Ik′′ , then

bk + bk′ ≡ bk′′ (2π)

and, for every k ∈ N, x ∈ Ik, ϕ(x) = λ log x+ bk.

Translating the results from W̃A to WA we finally have the following analogue of theorem 9 :

Theorem 15 Let K be a compact set not containing 0, and let u ∈ L2(R) whose spectrum is in K.
Let v be such that Fv is a solution of the restricted wide band ambiguity problem for Fu. If Ω is the

open set of all x such that W̃A(Fu)(x, .) is not identically 0, there exists a locally constant function
ϕ on Ω such that for every t0, t1, t2 belonging to the spectrum of u

ϕ

(
t0
t1

)
+ ϕ

(
t1
t2

)
≡ ϕ

(
t0
t2

)
(2π)

and

Fv(x) = ce
iϕ

(
x
t0

)

eiλ log xFu(x)
for some c ∈ T, λ ∈ R and some t0 belonging to the spectrum of u.

Conversely, every function v of that form is such that Fv is a solution of the restricted wide band
ambiguity problem for Fu.

4. Conclusion

The radar ambiguity problem is far from being solved. The phenomenon of zero flipping is certainly
not understood and indeed, in some cases the extra structure of ambiguity functions (cf. [3]) may
well intervene to render it superfluous. That is, no zero-flipping may be allowed.

This article improves our understanding of the radar ambiguity problem in three ways:

(1) it completely solves the radar ambiguity problem up to zero flipping;
(2) it provides new examples where the solution set is minimal (for example, when u = χ[a,b]) or

near to minimal, that is, without zero flipping (for instance, when u is a sum of translates of
χ[a,b], via Proposition 2);

(3) it provides a method of obtaining many functions u for which the solution set is much bigger
then expected, in particular, it contains functions that are far from being Heisenberg related
to u (example 3).

It would be particularly interesting to explain what happens for functions of the form P (x)e−x
2

with P a polynomial. In this case A(u) is essentially a polynomial and the additional structure alluded
to above comes into play, forbidding zero flipping. We believe that this result extends to functions of

the form P (x)e−x
2

with P an entire function of order less than 2. (One can easily show that, if u is
of the form P (x) exp(−x2) with P an entire function of order α < 2 and if v is an ambiguity partner
of u, then v is of the form M(ω)S(a)

(
Q(x) exp(−x2)

)
with Q an entire function of same order α.)

Such a result would be of theoretical significance. Recall that Bueckner associated to every function
u a Hilbert-Schmidt operator Ku. It turns out that v solves the radar ambiguity problem for u if
and only if Ku and Kv are “similar”. A careful reading of [5] also shows that if Ku is of finite rank,

then u is of the form P (x)e−x
2

with P an entire function of order at most 2. As finite rank operators
approximate Hilbert-Schmidt operators, we think that the result for finite rank operators and some
considerations on the “speed” of approximation should also bring new results.
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Note added in proof

After the first submission of this paper the author became aware of certain earlier examples of non-
trivial Pauli partners and ambiguity partners. In [13], A.E.J.M. Janssen gave other examples of Pauli
partners and found non-trivial ambiguity-partners of Proposition 3 with a method based on the Zak
transform Zf(τ, ω) =

∑
k∈Z

e−2iπkωf(τ+k). His example 1 can also lead to another proof of Theorem

2 : let (Ak)k∈N, (Bk)k∈N be two partitions of [−1/2, 1/2] into open sets and let ϕk ∈ L2 ([−1/2, 1/2])
be supported in Ak × Bk. Let fk = Z−1ϕk, then f =

∑
k∈N

fk and g =
∑
k∈N

ckfk with |ck| = 1
are non-trivial Pauli partners that are non-trivial solutions of the phase-retrieval problem, however

these examples are essentially different from those in Theorem 2. Note also that f and f̂ are never
compactly supported, nevertheless taking a smooth ϕk leads to f ∈ S(R).
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