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Abstract. We consider the two dimensional gravitational Vlasov-
Poisson system. Using variational methods, we prove the existence
of stationary solutions of minimal energy under a Casimir type
constraint. The method also provides a stability criterion of these
solutions for the evolution problem.
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1. Introduction

The n-dimensional gravitational Vlasov-Poisson system describes the
evolution of a nonnegative distribution function f : (0,∞) × R

n ×
R

n → [0,∞) according to Vlasov’s equation, under the action of a
self-consistent attractive force determined by Poisson’s equation:

(1)




∂tf + v · ∇xf −∇xUf · ∇vf = 0 ,

∆Uf = ρf ,

ρf (x) =
∫

f(x, v) dv .

In dimension n = 3, this system is used to modelize the evolution of
a large ensemble of particles subject to their own gravity, under the
assumption that both the relativistic effects and the collisions between
particles can be neglected.In this case the newtonian potential Uf is
given in terms of ρf by the mean field equation

Uf(t, x) = − 1

4π

∫
1

|x − y| ρf (y) dy

under the natural asymptotic condition lim|x|→∞ Uf = 0, which has to
be understood in an average sense.

The system (1) also makes sense in dimension n = 2. In the con-
text of gravitation, it modelizes a system with translation invariance
along a direction, giving rise for instance to solutions with cylindrical
symmetry which can be expected to be close, at least heuristically, to
3-dimensional solutions with cigar-like shapes (see [2, 1]).
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At the level of the characteristics, the energy can be defined as

ef(x, v, t) =
1

2
|v|2 + Uf(x, t) .

Newton’s equations are

dx

dt
= ∇v ef ,

dv

dt
= −∇x ef ,

and t �→ ef (x(t), v(t), t) is therefore constant if Uf does not depend
on t. Since the Vlasov equation takes the form

0 = ∂tf + ∇v ef · ∇xf −∇x ef · ∇vf ,

any function of the form

f(x, v) = φ(ef (x, v))

will therefore be a stationary solution of (1).
A wide literature (see [9, 11, 12, 13, 14, 16, 21]) has been devoted to

the characterization by variational methods of the steady states of (1)
and the study of their stability properties. For this purpose, the basic
tool is the total energy

E(f) :=
1

2

∫∫
|v|2 f dx dv +

1

2

∫
Uf ρf dx .

If (f, Uf ) is a solution of (1) with Uf independent of t, then

d

dt
E(f(·, ·, t)) =

∫∫
ef (x, v, t) ∂tf dx dv = 0 .

Observe that the so-called Casimir functionals

C(f) :=

∫∫
Q(f) dx dv

are also preserved along time evolution, as well as the total mass M =
M(f) :=

∫∫
f dx dv. These quantities are therefore appropriate to

study the dynamical stability of the solutions of (1) with respect to the
special stationary solutions which are characterized as the minimizers
of E(f) under Casimir and mass constraints.

Concerning the minimization of E(f) under the Casimir constraint
C(f) ≤ K for some given positive constant K in the 3-dimensional
case, Guo and Rein proved in [14] under the additional assumption

Q(f) ≥ f + f 1+1/k , k ∈ (0, 7/2)

that minimizers exist and are compactly supported stationary solutions
of (1). Afterwards Schaeffer showed in [17] that, if f1 and f2 are two
minimizers, either there exists an a ∈ R

3 such that f2(x, v) = f1(x +
a, v) almost everywhere, or M(f1) �= M(f2). The combination of these
two results gives the following dynamical stability result. With

d(f, g) :=

∫∫
(f − g) eg dx dv ,
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if f∞ is a minimizer, for any ε > 0, there exists a δ > 0 such that,
for any solution of (1) with initial data f0, if d(f0, f∞) < δ, then
d(f(·, ·, t), f∞) < ε.

The goal of this paper is to adapt such results to the 2-dimensional
case. Difficulties arise from the fact that the two-dimensional Newto-
nian potential

Uf :=
1

2π
log | · | ∗ ρf ,

behaves like M
2π

log |x| as |x| → ∞, and that its gradient is not bounded
in L2(R2). The dimension also plays a role in the scaling properties
of the system. This is reflected by interpolation estimates which differ
significantly from the 3-dimensional ones. As a result, the dependence
of the minimization problem in parameters like the total mass is com-
pletely different. See Section 8 for some considerations on the normal-
ization of the potential, the mass of the minimizer and the size of its
support, which are specific to dimension 2, and [8] for results concerning
stationary states and dynamical stability of the 2-dimensional Vlasov-
Poisson system in the electrostatic case with confinement, which are
far simpler to obtain.

This paper is organized as follows. In Section 2 we introduce the
notations and state our main results. Section 3 is devoted to a priori
estimates, which are used in Section 4 to prove the existence of mini-
mizers. Their properties are studied in Section 5. Section 6 is devoted
to the statement and the proof of a dynamical stability result. In Sec-
tion 7, we state some uniqueness properties which apply in the special
case of the polytropic states.

2. Notations and main results

We consider the two-dimensional time-dependent Vlasov-Poisson sys-
tem (1). To any nonnegative, measurable function f : R

2 × R
2 → R,

we associate the spatial density

ρf (x) :=

∫
f(x, v) dv ,

and consider the newtonian potential associated to ρf ,

Uf :=
1

2π
log | · | ∗ ρf .

The distribution function f may, or not, depend on the time t ∈ R
+.

In the sequel all integrals are taken on the whole space R
2 unless it is

explicitly specified. We will omit the subscript f in the density and
the potential whenever there is no ambiguity. Moreover, when working
with a sequence of functions (fn), we will denote the corresponding
densities and potentials by (ρn) and (Un) respectively.
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The kinetic energy, potential energy and total energy associated to f
are respectively

Ekin(f) :=
1

2

∫∫
|v|2f(x, v) dx dv ,

Epot(f) :=
1

2

∫
Uf (x)ρ(x) dx =

1

4π

∫∫
log |x − y| ρ(x)ρ(y) dx dy ,

E(f) := Ekin(f) + Epot(f) .

The main problem we are going to consider in this paper is the
minimization problem

hK := inf
f∈FK

E(f) . (IK)

Here the set FK is defined by

FK :=
{
f ∈ L1(R2 × R

2) | f ≥ 0 , Ekin(f) < ∞ , C(f) ≤ K
}

,

K is a prescribed positive constant and

C(f) :=

∫∫
Q(f(x, v)) dx dv

is the Casimir constraint based on a function Q for which we assume :

(Q1) The function Q is of class C1 on [0,∞) and such that Q(0) = 0.
(Q2) There exist two positive constants C0 and k such that

Q(f) ≥ C0 f 1+ 1
k ∀ f ≥ 0 .

(Q3) Q is convex.

Under these assumptions, our first main result is concerned with prov-
ing that hK is in fact a minimum .

Theorem 1. Let K > 0. There exists a function f∞ ∈ FK, with
symmetric and nonincreasing density ρf∞ , such that the support of ρf∞
is contained in B(0, 1), and

E(f∞) = inf
FK

E(f) = hK .

Stability results for the minimizers of (IK) will be established in the
framework of the results of Ukai and Okabe, [20], for which we need
some additional definitions and assumptions. Let B1(R2 × R

2) be the
class of all bounded C1 functions with bounded first derivatives. A
function g on D ⊂ R

n, with values in a Banach space B equipped with
a norm | · |, is uniformly Hölder continuous of exponent σ ∈ (0, 1) if
and only if

sup
x,y∈D, x �=y

|g(x) − g(y)|
|x − y|σ < ∞ ⇐⇒ : g ∈ C0,σ

unif(D; B) ,
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and it is said to be uniformly Lipschitz continuous if σ = 1. When D =
[0, T ] and B = L1(R2), we will denote the corresponding functional
space by C0,σ

unif([0, T ]; L1(R2)).

Definition. A function f : R
2 × R

2 → R is an admissible initial data
if and only if

(I1) f ∈ B1(R2 × R
2).

(I2) There are two positive constants κ and γ such that

|f(x, v)| ≤ κ (1 + |x|)−2γ(1 + |v|)−2γ ∀ (x, v) ∈ R
2 × R

2 .

(I3) ∇xf , ∇vf ∈ L1(R2 × R
2).

(I4) There are two positive constants η > 0 and γ > 2 such that

|∇xf | + |∇vf | ≤ η (1 + |v|)−γ ∀ (x, v) ∈ R
2 × R

2 .

Definition. Let 0 ≤ σ ≤ 1 and T > 0. The class of solutions Aσ(T )
is made of pairs of functions (f, U) with f : [0, T ]×R

2 ×R
2 → R

+ and
U : [0, T ] × R

2 → R such that

(A1) The function f ∈ C1([0, T ] × R
2 × R

2) is bounded.
(A2) The function ρf belongs to C0,σ

unif([0, T ]; L1(R2)).

(A3) The function ρf belongs to C0,σ
unif([0, T ] × R

2; R+).

(A4) The function (t, x) �→ |∇xU | belongs to C0,1
unif([0, T ] × R

2; R+).

Theorem 2 (Ukai and Okabe, [20]). Let f0 be an admissible initial
data, T > 0 and 0 < σ < 1. Then there exists a solution (f, U) of (1)
with f(0, ·, ·) = f0(·, ·), which is unique in the class of functions Aσ(T ),
up to the addition to U of any function of t.

Dynamical stability with respect to energy minimizing stationary
states requires an assumption of isolation of the solutions, see [14].
Such a property has been proved in [17] in dimension n = 3, under
an additional mass contraint. In this paper we will state a similar
result in dimension n = 2: see Theorem 26 in Section 6. Now let us
state a stability result without mass constraint, provided the nonlinear
Poisson equation has a unique solution. Let φ = (Q′)−1 on (Q′(0),∞)
and extend it by 0 to (−∞, Q′(0)). Denote by ψ(s) := 2π

∫ s

0
φ(σ) dσ a

primitive. By uniqueness, we mean that the equation


−∆V = ψ(V ) in B(0, 1)
V > 0 in B(0, 1)
V = 0 on ∂B(0, 1)

has at most one bounded solution. Denote this assumption by (U).
Notice that by our assumptions, ψ is a C1 function on R, and by the
theorem of Gidas, Ni and Nirenberg, V is known to be a radial function.

Theorem 3. Let K > 0 and suppose that assumption (U) holds. As-
sume that Q ∈ C2(0,∞) satisfies the following additional assumption:
There exists a p ∈ [1, 2] such that infs>0 s2−p Q′′(s) =: A > 0. Consider
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the unique minimizer (f∞, U∞) for (IK). Then, for any ε > 0 there
exists δ = δ(ε) > 0 such that the following property holds. Let f0 ∈ FK

be an admisible data and consider the corresponding solution of (1). If
E(f0) − E(f∞) < δ, then

‖f ∗x(t) − f∞‖L1(R2×R2) + ‖f ∗x(t) − f∞‖L1+1/k(R2×R2) < ε ∀ t > 0 .

Here f ∗x denotes the symmetric rearrangement of the function f in
the x variable. See Section 3 for more details.

We will prove later that the minimizer (f∞, U∞) is such that V =
λ−1

K U∞ satisfies −∆V = ψ(V ) on B(0, 1), V ≡ 0 and 2π |∇V | ≡ M on
∂B(0, 1). The uniqueness assumption amounts to require that M =
M(f∞) is uniquely determined for any given K. Of course, if M is
fixed to some value for which there exists a minimizer (f∞, U∞), then
a stability result holds without Assumption (U): see Theorem 26.

It is out of the scope of this paper to give optimal conditions on Q
which imply (U). A huge literature has indeed been devoted to this
question. As an example, let us simply mention the following sufficient
conditions, which can be deduced from [19]:

(U1) Q′(0) = 0.

(U2) The function s �→ s φ(s)
ψ(s)

is nonincreasing on R
+.

We will come back to this important example which covers the poly-
tropic case in Section 7.

Notations. Throughout this paper, C will denote a generic positive
constant which is independent of f . Its value may change from line to
line. The characteristic function of a measurable set A will be noted 1lA.

3. A priori estimates

We first prove that the total energy E(f) is bounded from below in FK .
Define

E−
pot(f) =

∫∫
|x−y|<1

log |x − y| ρ(x)ρ(y)
dx dy

4π
≤ 0 .

Lemma 4. Take m = 1+k, k > 0. Then for any f ∈ FK the following
inequalities hold:

(i)
∫

ρ
1+1/m
f (x) dx ≤ C‖f‖L1+1/k Ekin(f)

1
m ≤ C K

m−1
m Ekin(f)

1
m .

(ii)
∫∫

ρf (x) | log |x − y| | ρf(y) dx dy ≤ E(f) + 2 |E−
pot(f)|.

(iii) E−
pot(f) ≥ −C‖f‖

2m
m+1

L1+1/k Ekin(f)
2

m+1 ≥ −C K
2(m−1)

m+1 Ekin(f)
2

m+1 .

Proof. According to (Q2) and the definition of FK , ‖f‖L1+1/k < ∞. By
writing

ρ(x) ≤
∫
|v|<R

f(x, v) dv +
1

R2

∫
|v|≥R

|v|2f(x, v) dv ,
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using Hölder’s inequality,

ρ ≤ (
π R2

) 1
k+1

(∫
|v|<R

f 1+1/k dv

) k
k+1

+
1

R2

∫
|v|≥R

|v|2f dv ,

and then optimizing in R > 0, for (t, x) fixed, we get the inequality

ρ ≤ C

(∫
f 1+1/k dv

) k
k+2

(∫
|v|2f dv

) 1
k+2

.

Taking the power 1 + 1/m and integrating in the x variable, we see
that ∫

ρ1+1/m dx ≤ C

∫ (∫
f 1+1/k dv

) k
k+1

(∫
|v|2f

) 1
k+1

dx ,

and it is enough to apply Hölder’s inequality to prove (i).
To prove (ii) and (iii), observe that

Epot(f) =

∫∫
log |x−y| ρ(x)ρ(y)

dx dy

4π
≥

∫∫
κ(x−y) ρ(x)ρ(y)

dx dy

4π
.

With κ(x) := log |x| 1lB(0,1)(x), using successively Hölder’s and Young’s
inequalities, we get

E−
pot(f) ≥ − 1

4π
‖ρ‖L1+1/m ‖κ ∗ ρ‖Lm+1 ≥ −C ‖κ‖L(m+1)/2 ‖ρ‖2

L1+1/m .

By (i), this completes the proof. �
Lemma 5. Let f ∈ FK and consider for any α > 0 the scaled distri-
bution function

f (α)(x, v) := f(α x, α−1 v) ∀ (x, v) ∈ R
2 × R

2 .

Then ‖f (α)‖L1(R2×R2) = ‖f‖L1(R2×R2), C(f (α)) = C(f) and

E(f) ≥ inf
α>0

E(f (α)) = Epot(f) +
‖f‖2

L1

8π
[1 − 2 log ᾱ] = E(f (ᾱ))

with ᾱ2 :=
‖f‖2

L1

8πEkin(f)
, and

E(f) = E(f (ᾱ)) ⇐⇒ ᾱ = 1 ⇐⇒ Ekin(f) =
1

8π
‖f‖2

L1 .

Proof. An easy calculation shows that, as a function of α,

E(f (α)) = α2Ekin(f) + Epot(f) − 1

4π
‖f‖2

L1 log α .

achieves its minimum for α = ᾱ. �
Corollary 6. For any f ∈ FK,

E(f) ≥ Ekin(f) − C K
2(m−1)

m+1 Ekin(f)
2

m+1

As a consequence, the total energy E is bounded from below in FK and

hK := inf{E(f) | f ∈ FK} ∈ (−∞, 0) .
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Proof. The lower bound on E is a consequence of Lemma 4, (iii). Using
2/(m + 1) < 1, it follows that hK > −∞. To prove that hK < 0, it
is enough to find a function f ∈ FK such that E(f) < 0. For β > 0,
δ > 0, consider therefore

f(x, v) := β 1lB(0,1/2)(x) 1lB(0,δ)(v) .

Such a distribution function f satisfies

‖f‖L1(R2×R2) = 1
4
π2 δ2 β , C(f) = 1

4
π2 δ2 Q(β) ,

Ekin(f) = 1
16

π2 δ4 β , Epot(f) < 0 .

and belongs to FK if π2 δ2 Q(β)/4 ≤ K. If additionally, with the
notations of Lemma 5, ᾱ > e, which amounts to (8πEkin(f))−1‖f‖2

L1 =

π β/8 ≥ √
e, then E(f (ᾱ)) < 0. Taking β = 8

√
e/π and δ = 2

π

√
K/Q(β)

therefore shows that hK < 0. �

Remark. The 2- and 3-dimensional gravitational Vlasov-Poison sys-
tems differ on many points.
(i) In the case n = 3, the Hardy-Littlewood-Sobolev inequality is

∫∫
R3×R3

ρ(x)ρ(y)

|x − y| dx dy ≤ C ‖ρ‖2
L6/5(R3) .

To control ‖ρ‖L6/5(R3) by interpolation between ‖ρ‖L1(R3) = ‖f‖L1(R3×R3)

and

‖ρ‖Lq(R3) ≤ C ‖f‖θ
L1+1/k(R3×R3)

(∫∫
|v|2f dx dv

)1−θ

,

where θ = 2(k + 1)/(2k + 5) and q = (2k + 5)/(2k + 3), one has to
require that q ≥ 6/5, which means k ≤ 7/2. Such a restriction is not
required in dimension n = 2. As seen above, due to the change of
sign of the logarithm we only need to control the term involving the
convolution kernel κ(x) := log |x| 1lB(0,1)(x), which is bounded in Lp for
any p > 1.
(ii) From Lemma 4, (iii), if n = 2, for any f ∈ FK , Ekin(f), Epot(f) and∫∫

ρ(x) |log |x − y|| ρ(y) dx dy are bounded in terms of E(f) indepen-
dently of M := ‖f‖L1(R3×R3), while for n = 3, the bounds on Ekin(f)
and Epot(f) also depend on M .
(iii) In dimension n = 2, if M =

∫∫
f(x, v) dx dv �= 0, Uf (x) ≡

M
2π

log |x| → ∞ as |x| → ∞, and |∇Uf |2 ≡ M
2π |x| is not integrable

(see [18] for more details). H1
0 estimates can however be established

by working on differences of distribution functions with same mass.
Moreover, the following estimate on the mass in terms of E can be
shown :
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Corollary 7. There exists a positive constant A such that, for any
K > 0 and for any f ∈ FK, if M := ‖f‖L1(R2×R2), then

E(f) ≥ E(f̄) ≥ 1

8π
M2 − AK

2k
k+2M

4
k+2 =: g(M, K) .

In other words, M ∈ [M1(K, E(f)), M2(K, E(f))] where Mi(K, E(f)),
i = 1, 2, are the two positive values of m for which g(m, K) = E(f).

Proof. With the notations of Lemma 5, E(f) ≥ E(f (ᾱ)) = g(M, K).
Using Ekin(f

(ᾱ)) = (8π)−1 ‖f‖2
L1, we get E(f) ≥ g(M, K) by Lemma 4,

(iii). �

Proposition 8. Let ρ be a nonnegative function in L1(Rn), M :=
‖ρ‖L1(Rn) and P :=

∫∫
|x−y|>1

ρ(x) log |x − y| ρ(y) dx dy < ∞. Then∫
ρ(x) log(1 + |x|2) dx < 9 M log(1 + R2) + 32

P

M
,

where R ≥ 1 is chosen such that
∫
|x|>R/2

ρ(x) dx ≤ M/2.

Proof. First of all,
∫
|x|≤R

ρ(x) log (1 + |x|2) dx ≤ M log(1+R2). Using

the inequality log (1 + t) ≤ 4 log (1 + t/4) for any t ≥ 0, we get∫
|x|>R

ρ(x) log
(
1 + |x|2) dx ≤ 4

∫
|x|>R

ρ(x) log

(
1 +

1

4
|x|2

)
dx .

Notice now that for any (x, y) ∈ R
2 ×R

2 such that 2 |y| ≤ R < |x|, we

have |x− y|2 ≥ |x|2(1− 2 t + t2) ≥ 1
4
|x|2 since t := |y|

|x| is in the interval

(0, 1
2
). Thus∫

|x|>R

ρ(x) log
(
1 + |x|2) dx ≤ 8

M

∫∫
2 |y|≤R<|x|

ρ(x) ρ(y) log
(
1 + |x − y|2) dx dy

and the conclusion holds by observing that

log
(
1 + |x − y|2) ≤

{
log(1 + R2) if |x − y| ≤ R ,
4 log |x − y| if |x − y| > R .

�

From Lemma 4, Corollary 7 and Proposition 8, we deduce the

Corollary 9. There exists a continuous function b : (0,∞)2 → R
+

such that ∫
ρf(x) log(1 + |x|2) dx < b

(E(f), K
)

.

Additional estimates can be obtained for radial spatial densities,
which motivates the introduction of radially symmetric nonincreas-
ing rearrangements. For any measurable set A ∈ R

n with Lebesgue
measure |A| = meas(A), we set 1l∗A := 1lB(0,n|A|/|Sn−1|). Then, to any
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measurable nonnegative function g on R
n which vanishes at infinity,

we can associate

g∗(x) :=

∫ ∞

0

1l∗{g>t}(x) dt .

It is straightforward to check that
∫

q(g∗) dx =
∫

q(g) dx if q is a con-
tinuous function with nonnegative values, and as a special case, we get
‖g∗‖Lp(Rn) = ‖g‖Lp(Rn) for any p ≥ 1, see [15] for more details. Sym-
metric nonincreasing rearrangements with respect to only one of the
variables can also be defined for any nonnegative measurable function
h defined on R

n × R
n and vanishing at infinity as follows:

h∗x(x, v) :=

∫ ∞

0

1l∗{h(x,v)>t}(x) dt

Observe that for almost every (x, v) ∈ R
n × R

n this function is well
defined, see e.g. [9] for more details. The following rearrangement
inequality holds for the logarithmic kernel.

Lemma 10. [6] If g is a nonnegative function in L1(R2) such that∫
g(x) log(1 + |x|2) dx < ∞, then∫∫

g∗(x) log |x − y| g∗(y) dx dy ≤
∫∫

g(x) log |x − y| g(y) dx dy ,

with equality if and only if g = g∗ up to a translation.

Corollary 11. If f ∈ FK is such that E(f) < ∞, then f ∗x ∈ FK, ρf

is radially symmetric nonincreasing and

E(f ∗x) ≤ E(f) .

Proof. The result follows from the basic properties of symmetric non-
increasing rearrangements and from Corollary 9. Note that the value
of the kinetic energy is unchanged by a rearrangement with respect to
the x variable. �

For radially symmetric densities the potential has a simple expression.

Lemma 12. [7] Let w be a nonnegative bounded, radial measure on R,
such that

∫ ∞
0

log(1 + s2) w(s) ds < ∞. Let

Uw(x) :=
1

2π

∫
R2

log |x − y|w(|y|) dy .

Then

(i) Uw(x) =
1

2π
log |x|

∫
|y|≤|x|

w(|y|) dy +
1

2π

∫
|y|>|x|

log |y|w(|y|) dy ,

(ii) ∇Uw(x) =
x

2π|x|2
∫
|y|≤|x|

w(|y|) dy .
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Proof. With u(r) := log r
∫ r

0
w(s) s ds+

∫ ∞
r

log s w(s) s ds, which is well
defined because of the integrability conditions, an elementary compu-
tation shows that

r
du

dr
=

∫ r

0

w(s) s ds and
1

r

d

dr

(
r

du

dr

)
= w .

�
Let f ∈ L1(R2 × R

2) be a nonnegative distribution function such
that E(f) < ∞. Because of Proposition 8, if ρf is radially symmetric,
then one can use Lemma 12, (i), to compute Uf in terms of ρf .

Corollary 13. For any radially symmetric f ∈ FK such that E(f) is
finite, the function f̄(x, v) := f(x, v) ·1lB(0,1)(x) also belongs to FK and

E(f̄) ≤ E(f) .

Proof. Since f̄ ≤ f , Ekin(f̄)−Ekin(f) ≤ 0. According to Lemma 12, (i),

Epot(f̄) − Epot(f) = − 1

2π

∫∫
|x|>1, |y|<|x|

log |x| ρf (x) ρf(y) dx dy

is therefore also nonpositive. �
Inspired by Corollary 13, we can state a more precise result.

Corollary 14. Consider a radially symmetric function f ∈ FK. With
the notations of Corollary 13, for any ε > 0,

E(f̄) +
1

2π
log(1 + ε)

∫∫
|x|>1+ε, |y|<|x|

ρf (x) ρf(y) dx dy ≤ E(f) .

Remark. It may look surprising that for any K > 0, the support of a
radial minimizer has to be contained in the unit ball. Also notice that
the mass of the minimizer is determined by the minimization problem,
at least when the minimizer is unique. This is one of the major dif-
ferences compared to the 3-dimensional case. See Section 8 for more
comments.

4. Existence of minimizers

We are going to prove Theorem 1 by considering an appropriate
minimizing sequence. More general sequences will be considered in
Section 6.

Theorem 15. Let K > 0. There exists a minimizing sequence (fn) of E
in FK with a sequence (ρn) of symmetric and nonincreasing associated
densities, such that fn converges weakly in L1 ∩ L1+1/k(R2 × R

2) to
a function f∞ ∈ FK, with symmetric and nonincreasing density ρf∞ ,
such that the support of ρf∞ is contained in B(0, 1), and

E(f∞) = inf
FK

E(f) = lim
n→∞

E(fn) = hK .
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Summarizing the estimates of Section 3, we can choose a minimizing
sequence (fn) in FK with radially symmetric associated densities (ρn),
and such that the support of fn and ρn are contained for any n ∈
N in B(0, 1) × R

2
v and B(0, 1) ⊂ R

2
x respectively. For simplicity, we

decompose the proof of Theorem 15 into three intermediate results
(Proposition 16, Corollary 18 and Proposition 19).

Proposition 16. Let (fn) be a minimizing sequence as in Theorem 15.
Then there exists a function f∞ ∈ L1 ∩ L1+1/k such that, up to the
extraction of a subsequence,

(i) fn ⇀ f∞ in L1 ∩ L1+1/k(R2 × R
2),

(ii) ρn ⇀ ρ∞ :=
∫

f∞(x, v) dv in L1 ∩ L1+1/m(R2), with m = k + 1,
(iii) supp(ρ∞) ⊂ B(0, 1).

Proof. The weak convergence in L1 is obtained thanks to the Dunford-
Pettis criterion. By Corollary 7, we already know that (fn) is uniformly
bounded in L1. Concentration is forbidden by the inequality∫∫

A

fn(x, v) dx dv ≤ ‖fn‖L1+1/k · |A| 1
k+1

for any measurable set A ⊂ R
2 ×R

2 with Lebesgue measure |A|. Note
that ‖fn‖L1+1/k ≤ (K/C0)

k/(k+1) by Assumption (Q2), which proves the
relative compactness in L1+1/k with respect to the weak convergence.
Vanishing is impossible because supp(fn) ⊂ B(0, 1) × R

2 and∫∫
|v|>R

fn(x, v) dx dv ≤ 1

R2
Ekin(fn)

which is uniformly bounded by Corollary 6. This achieves the proof
of (i).

The relative compactness of (ρn) in L1 holds for the same reasons,
while the relative compactness in L1+1/m is a consequence of Lem-
ma 4, (i). After extraction of subsequences, (fn) and (ρn) weakly con-
verge to functions f∞ and ρ∞, and the fact that ρ∞ =

∫
f∞ dv easily

follows using appropriate test functions. �
The following result on products of sequences (see for instance [10])

allows to pass to the limit in the potential energy term.

Lemma 17. If (gn) and (hn) are respectively a sequence which con-
verges weakly to some g in L1, and a bounded sequence in L∞ which
converges almost everywhere to some function h, then

gn hn ⇀ g h in L1 .

Corollary 18. Let (fn) and (ρn) be as in Proposition 16, and define
Un := 1

2π
log | · | ∗ ρn, U∞ := 1

2π
log | · | ∗ ρ∞. Then∫

Un ρn dx →
∫

U∞ ρ∞ dx as n → ∞ .



STABILITY FOR THE 2D GRAVITATIONAL VLASOV-POISSON SYSTEM 13

Proof. Because of the assumption on the support of ρn and by Young’s
inequality,

Un(x) =
1

2π

∫
log |x − y| ρn(y) dy

is bounded in L∞ by 1
2π

‖ log |x− y| ‖L(m+1)/2 ‖ρn‖2
L1+1/m . By weak con-

vergence of (ρn) in L1+1/m we have that∫
|y|≤|x|

ρn(y) dy →
∫
|y|≤|x|

ρ∞(y) dy ,

∫
|x|≤|y|≤1

log |y| ρn(y) dy →
∫
|x|≤|y|≤1

log |y| ρ∞(y) dy .

Using Lemma 12, this proves the pointwise of Un to U∞ almost every-
where, and the result then holds by Lemma 17. �
Proposition 19. If (fn) is as in Proposition 16, then

(i) Ekin(f∞) ≤ lim infn→∞ Ekin(fn) < ∞,
(ii) C(f∞) ≤ lim infn→∞ C(fn) ≤ K.

Proof. The proof of (i) follows by weak convergence. By Assumption
(Q3), the functional C is convex and therefore lower semi-continuous
by Mazur’s Lemma. �

The minimizer of Theorem 15 saturates the constraint C(f) ≤ K.

Proposition 20. If f∞ ∈ FK is a minimizer of E , i.e. if E(f∞) = hK ,
then

C(f) = K .

Proof. Take f ∈ FK and define the rescaled distribution function

fµ(x, v) = f( x, µ v) , µ > 0 .

Then

C(fµ) = µ−2 C(f) ,

Ekin(f
µ) = µ−4 Ekin(f) and Epot(f

µ) = µ−4 Epot(f) .

If C(f∞) < K, then for µ =
√C(f∞)/K < 1,

E(fµ
∞) = µ−4 E(f∞) < E(f∞) < 0

since hK = E(f∞) is negative by Corollary 6. Thus fµ
∞ ∈ FK and

E(fµ
∞) < hK , a contradiction. �

As a simple consequence of the above scaling, we obtain the depen-
dence of hK in terms of K.

Corollary 21. If hK := inf{E(f) | f ∈ FK} for any K > 0, then

hK = K2 h1 .

Proof. With the above notations, f ∈ FK if and only if f
√

K ∈ F1, and

E(f
√

K) = K−2 E(f). The result easily follows. �
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5. Properties of the minimizers

Minimizers of E on FK are steady states of the Vlasov-Poisson sys-
tem. The proof in dimension n = 2 is almost the same as in dimension
n = 3. For completeness, we give the main steps of the method in the
spirit of [14]. First of all, we need some additional notations. Assume
that U∞ is fixed and let

e∞(x, v) :=
1

2
|v|2 + U∞(x) ,

and define the function

φ : R → R
+

φ(t) :=

{
(Q′)−1(t) if t > Q′(0) ,
0 otherwise .

For any f ∈ FK , let

λ[f ] :=

∫∫
e∞(x, v) f dx dv∫∫
Q′(f) f dx dv

,

and

e0(λ) := λ Q′(0) .

We can notice that for any λ > 0, the function

(2) f∞(x, v) =




φ
(

e∞(x,v)
λ

)
if e∞(x, v) > e0(λ) ,

0 otherwise ,

is a stationary solution of the Vlasov equation:

∂tf + v · ∇xf −∇xU∞ · ∇vf = 0

such that λ[f ] = λ. In the next result we summarize some properties
of the minimizers and prove that they take this form.

Theorem 22. If f∞ ∈ FK is such that E(f) = hK , then

8π Ekin(f∞) = ‖f∞‖2
L1 , C(f∞) = K .

Up to a translation, ρ∞ =
∫

f∞ dv is symmetric and nonincreasing,
with supp(ρ∞) ⊂ B(0, 1). The potential U∞ = Uf∞ is of class C1 on
R

n/{0} and (f∞, U∞) is a stationary solution of the Vlasov-Poisson
system which takes the form (2) with λ = λ[f∞] < 0.

Proof. The expression of Ekin(f∞) corresponds to the case ᾱ = 1 in
Lemma 4. C(f∞) = K has been proved in Proposition 20. The fact
that ρ∞ is symmetric and nonincreasing is a consequence of Corol-
lary 13 and of the equality case in Lemma 10. The assertion on the sup-
port of ρ∞ is given in Theorem 15 (also see Proposition 16, (iii)). The
regularity of U∞ follows from a general result on solutions ∆U∞ = ρ∞
when ρ∞ is compactly supported (see ([7]).
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We still have to derive the expression of f∞. Take ε > 0 small and
define

Dε := {(x, v) ∈ R
2 × R

2 | ε ≤ f∞(x, v) ≤ ε−1} .

Obviously, Dε is a set of finite, positive measure. Let w be a compactly
supported function in L∞(R2 × R

2), such that w is nonnegative on
Dc

ε = R
2 × R

2 \ Dε. Define

G(σ, τ) :=

∫∫
Q (f∞ + σ 1lDε + τ w) dx dv

and observe that for (σ, τ) ∈ R × R
+, |σ|, τ small, f∞ + σ1lDε + τw is

bounded in Dε and nonnegative on R
2×R

2. The function G is therefore
continuously differentiable with respect to σ and τ on a neighborhood
of (0, 0) in R × R

+. Moreover, G(0, 0) = K and

∂σG(0, 0) =

∫∫
Q′(f∞) dx dv �= 0 ,

so by the implicit function theorem there exists a continously differen-
tiable function τ → σ(τ) with σ(0) = 0 defined for any τ small enough,
and such that G(σ(τ), τ) = K. This means that

f (τ) := f∞ + σ(τ) 1lDε + τ w ∈ FK ,

and we have

(3) σ′(0) = −∂τG(0, 0)

∂σG(0, 0)
= −

∫∫
Q′(f∞) w dx dv∫∫

Dε
Q′(f∞) dx dv

.

G(σ(τ), τ) reaches its minimum at τ = 0, so a Taylor expansion implies

0 ≤ E(
f (τ)

) − E(f∞) = τ

∫∫
e∞(x, v) (σ′(0) 1lDε +w) dx dv + o(τ)

for τ ≥ 0, small. Using (3), we see that

(4)

∫∫
(−λε Q′(f∞) + e∞(x, v))w dx dv ≥ 0 ,

where

λε :=

∫∫
Dε

e∞(x, v) dx dv∫∫
Dε

Q′(f∞) dx dv
.

The choice of the test function w being arbitrary on Dε, (4) implies
that e∞(x, v) = λεQ

′(f∞) a.e. on Dε, and e∞(x, v) ≥ λεQ
′(f∞) Dc

ε .
This also means that λε = λ does not depend on ε, and if we let ε → 0,
it follows that

(5) e∞(x, v) = λ Q′(f∞) a.e. on f−1
∞ ((0,∞)) ,

(6) e∞(x, v) ≥ λ Q′(0) = e0 a.e. on f−1
∞ (0) .

To get the expression for λ given in the theorem, we only need to
multiply (5) by f∞ and then integrate with respect to x and v. The
fact that λ < 0 follows from
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∫∫
e∞(x, v) f∞ dx dv = Ekin(f∞) + 2 Epot(f∞) < E(f∞) < 0 .

To finish the proof we need to invert (5). First of all, observe that by
Assumptions (Q1)–(Q3)

Q′ : [0,∞) → [Q′(0),∞)

is a continous, increasing and onto function.
For any η ≥ 0, the set {(x, v) ∈ R

2 × R
2 | e∞(x, v) = η} has zero

Lebesgue measure, since for any fixed x, it is made of a sphere in v-
space, so almost everywhere in R

2 × R
2 Equation (5) can therefore be

inverted to yield f∞(x, v) = φ(e∞(x, v)/λ). �
Following the ideas of Schaeffer in [17], we assign an explicit value to

the parameter λ. Notice that λ is the Lagrange multiplier associated
to the constraint C(f) ≤ K in the definition of FK . As we shall see
below, the value of λ does not depend on the minimizer.

Proposition 23. If f∞ ∈ FK is such that E(f) = hK, then

λ[f∞] = 2
hK

K
= 2 K h1 =: λK .

Proof. For α > 0, consider the rescaled distribution function

g(α)(x, v) := αf∞(γ(α) x, δ(α) v) , q(α) =

∫∫
Q(αf∞(x, v)) dx dv

with γ(α) :=
√

α, δ(α) :=
√

q(α)
Kα

. Then∫
Q(g(α)(x, v)) = K and E(g(α)) =

K2α2

q(α)2

(
E(f∞) − log α

8π
‖f∞‖2

L1

)
.

Differentiating E(g(α)) with respect to α at α = 1 and using the fact
that g(1) = f∞ is a minimizer, we get

2

(
1 − 1

K
q′(1)

)
hK − ‖f∞‖2

L1

8π
= 0 ,

which allows to compute

q′(1) =

∫∫
Q′(f∞) f∞ dx dv =

K

2 hK

(
2hK − ‖f∞‖2

L1

8π

)
.

On the other hand, using
∫∫

e∞(x, v) f∞ dx dv = Ekin(f∞)+2Epot(f∞),
we obtain∫∫

e∞(x, v) f∞ dx dv =
‖f∞‖2

L1

8π
+2

(
hK − ‖f∞‖2

L1

8π

)
= 2 hK−‖f∞‖2

L1

8π

and, by Corollary 21 and Theorem 22, end up with

λ[f∞] =

∫∫
e∞(x, v) f∞ dx dv∫∫
Q′(f∞)f∞ dx dv

= 2
hK

K
= 2 K h1 .
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�

Corollary 24. For any K > 0 and M > 0, E has at most one mini-
mizer f∞ ∈ FK such that ‖f∞‖L1 = M .

Proof. By Proposition 8, any minimizer U∞ is such that
∫

ρ∞(x) log(1+
|x|2) dx < ∞. Because of Lemma 10, ρ∞ is radially symmetric. From
Corollary 14, we infer that ρ∞ is supported in the unit ball. U∞ is
radial and by Lemma 12, U∞(1) = 0 and U∞′(1) = M

2π
. With ψ(u) :=

2π
∫ u

−∞ φ(s), the Poisson equation is now reduced to an ODE

U ′′
∞ +

1

r
U ′
∞ = |λK |ψ

(
U∞
λK

)

which has a unique solution. �

6. Nonlinear stability under mass constraint

In this section we adapt a dynamical stability criterion for the three
dimensional Vlasov-Poisson system ([9, 13, 14, 22]) to the two dimen-
sional case. First of all we define an appropriate notion of “distance”
as

d(f, f∞) :=

∫∫
(f − f∞)

(
1

2
|v|2 + U∞(x)

)
dv dx .

Lemma 25. Let f∞ be a minimizer of E on FK, with spatial density
ρ∞ and corresponding potential U∞. For any f ∈ FK such that ‖f‖L1 =
‖f∞‖L1, ρf is radial and

∫
ρf log |x| dx is finite we have that

(7) d(f, f∞) = E(f) − E(f∞) +
1

2

∫
|∇Uf −∇U∞|2 dx

and d(f, f∞) is nonnegative if C(f) = K.

Proof. Observe that

E(f) − E(f∞) − d(f, f∞) = Epot(f) + Epot(f∞) −
∫∫

f U∞ dx dv

=
1

2
lim

R→∞

∫
B(0,R)

(ρf Uf + ρ∞ U∞ − 2ρf U∞) dx .

By integration by parts we get∫
B(0,R)

ρf U∞ dx = −
∫

B(0,R)

∇Uf ∇U∞ dx+

∫
|x|=R

U∞∇Uf · x

|x| dσ(x) .

Applying Lemma 12, (ii), to the second term of the right hand side, we
arrive at∫

B(0,R)

ρf U∞ dx = −
∫

B(0,R)

∇Uf ∇U∞ dx + U∞(R)

∫
|y|≤R

ρf (y) dy ,
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and in the same way∫
B(0,R)

ρ∞ U∞ dx = −
∫

B(0,R)

∇U∞ ∇U∞ dx + U∞(R)

∫
|y|≤R

ρ∞(y) dy ,

∫
B(0,R)

ρf Uf dx = −
∫

B(0,R)

∇Uf ∇Uf dx + Uf (R)

∫
|y|≤R

ρf(y) dy .

Thus, we can rewrite
∫

B(0,R)
(ρf Uf + ρ∞ U∞ − 2ρf U∞) dx as (I) + (II)

with

(I) =

∫
B(0,R)

|∇Uf −∇U∞|2 dx

(II) = [Uf (R) − 2 U∞(R)]

∫
|y|≤R

ρf(y) dy + U∞(R)

∫
|y|≤R

ρ∞(y) dy

Assume that R > 0 is large enough so that supp(f∞) ⊂ B(0, R).∫
|y|≤R

ρ∞(y) dy = M and

∫
|y|≤R

ρf (y) dy = M −
∫
|y|>R

ρ(y) dy .

By Lemma 12,

U∞(R) =
M

2π
log R ,

Uf (R) =
M

2π
log R +

1

2π

[∫
|y|>R

log |y| ρ(y) dy − log R

∫
|y|>R

ρ(y) dy

]
.

Thus

(II) =
1

2π

∫
|y|>R

log |y| ρ(y) dy

[
M −

∫
|y|>R

ρ(y) dy

]

+
log R

2π

[∫
|y|>R

ρ(y) dy

]2

Because of the integrability of y �→ log |y| ρ(y) and the estimate

log R

∫
|y|>R

ρ(y) dy ≤
∫
|y|>R

log |y| ρ(y) dy → 0 as R → ∞ ,

(II) vanishes in the limit R → ∞ and we obtain (7).

If C(f) = K, i.e.
∫

Q(f) dv =
∫

Q(f∞) dv, following [17], we get

d(f, f∞) =

∫∫ [
1
2
|v|2 + U∞(x) − λ Q′(f∞)

]
(f − f∞) dx dv

−λ

∫∫
[Q(f) − Q(f∞) − Q′(f∞)(f − f∞)] dx dv .

Now, by (5), we have

1

2
|v|2 + U∞(x) − λ Q′(f∞) = 0
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on the support of f∞, so, by (6),

d(f, f∞) =

∫∫ [
1
2
|v|2 + U∞(x) − λ Q′(f∞)

]
+

f dx dv

−λ

∫∫
[Q(f) − Q(f∞) − Q′(f∞)(f − f∞)] dx dv ,

which completes the proof because of the convexity of Q, Assump-
tion (Q3). �

Theorem 26. Let f∞ be a minimizer of (IK) and M = ‖f∞‖L1(R2×R2).
For any ε > 0 there exists δ = δ(ε) > 0 such that the following property
holds. Let f0 ∈ FK be an admisible data in the sense of Ukai and Okabe
(see Section 2) verifying ‖f0‖L1(R2×R2) = M , C(f0) = K and consider
the corresponding solution of (1) given in Theorem 2.

If d(f0, f∞) < δ , then d(f ∗x(·, ·, t), f∞) < ε ∀ t > 0 .

Here f ∗x(t) denotes the symmetric rearrangement of f with respect to
the x variable.

Proof. Assume by contradiction that we can find ε0 > 0, tn > 0 and
a sequence of solutions fn(t) = fn(·, ·, t) of (1) with admissible initial
data f0,n ∈ FK such that

lim
n→∞

d(f0,n, f∞) → 0 and d(f ∗x
n (tn), f∞) ≥ ε0 ∀ n ∈ N .

By Lemma 25, (f ∗x
n (tn)) is a minimizing sequence for (IK) since

f ∗x
n (tn) ∈ FK , E(f∞) ≤ E(f ∗x

n (tn)) ≤ E(fn(tn)) = E(fn(0)) → E(f∞) .

Moreover, the associated densities ρ∗
n := ρf∗x

n
are symmetric and nonin-

creasing. Define Mn(r) :=
∫
|x|>r

ρ∗
n dx. Observe that from Corollary 14,

limn→∞ Mn(1) = 0. Let us compute∫
|x|>1

|∇U∗
n−∇U∞|2 dx =

∫
|x|>1

(Mn(|x|))2 dx

4π2|x|2 =

∫ ∞

1

(Mn(r))2 dr

2π r
,

according to Lemma 12, (ii). By Corollary 9,

Mn(r) ≤ 1

log(1 + r2)

∫
|x|>r

log(1 + |x|2) ρ∗
n(x) dx ≤ b

(E(fn), K
)

log(1 + r2)
,

so that for some constant C, as n → ∞,∫
|x|>1

|∇U∗
n −∇U∞|2 dx ≤ C

√
Mn(1)

∫ ∞

1

1

[log(1 + r2)]3/2

dr

r
→ 0 .

By Lemma 25, to provide a contradiction, it suffices to prove that∫
|x|≤1

|∇U∗
n −∇U∞|2 dx → 0 .
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Notice first that by Lemma 4, ρ∗
n is bounded in L1+1/m. By Hölder’s

inequality, ∫
|x|<r

ρ∗
n dx = O

(
r2/(m+1)

)
.

As a consequence, by Lemma 12, (ii),
∫
|x|<r

|∇U∗
n − ∇U∞|2 dx can

be made uniformly small as r → 0. The sequence f ∗
n weakly con-

verges to f∞ in L1 ∩ L1+1/k for the same reasons as in the proof of
Theorem 15, so, using again Lemma 12, (ii), one can establish that
limn→∞

∫
r<|x|≤1

|∇U∗
n −∇U∞|2 dx = 0. �

Proof of Theorem 3. In the polytropic gas case Q(f) = C0 f p,
p = 1 + 1

k
, we can simply use the fact that C(f0) = limn→∞ C(gn) to

deduce that gn := f ∗x
n (tn) strongly converges to f0.

In the general convex case, from the assumptions made on Q, we
deduce by integrating Q′′(s) twice from s = f0 to s = gn, and then
with respect to x and v, that

C(gn) − C(f0) −
∫∫

Q′(f0) (gn − f0) dx dv

≥ A
p(p−1)

∫∫ [
gp

n − f p
0 − p f p−1

0

]
dx dv

if p > 1. In the limit case p = 1, the r.h.s. has to be replaced
by

∫∫
[gn log(gn/f0) − (gn − f0)] dx dv. Since Q′(f0) is bounded and

gn ⇀ f0 in L1, then limn→∞
∫∫

Q′(f0) (gn − f0) dx dv = 0. Thus, since
limn→∞ C(gn) = C(f0), the r.h.s. of the above inequality also converges
to 0. Using the generalized Csiszár-Kullback inequality stated in [5],
we get∫∫ [

gp
n − f p

0 − p f p−1
0

]
dx dv ≥ C min

(
‖f0‖p−2

Lp , ‖gn‖p−2
Lp

)
‖gn − f0‖2

Lp

with C := 2−2/p A. Thus gn → f0 in Lp and a.e. By [4], gn → f0

in L1+1/k. Since f0 has compact support, by Corollary 14, the strong
convergence also holds in L1.

By assumption (U), the mass M is uniquely determined. The result is
then a consequence of Corollary 24 and Theorem 26. �

Whether the uniqueness assumption (U) is justified or not is a dif-
ficult issue, which depends on the nonlinearity of Q. We are going to
illustrate this question in the next Section, and come back to the mass
normalization issues in Section 8.

7. Uniqueness and dynamical stability. Application to

the polytropic case

Many results of uniqueness for the solutions of radial semilinear ellip-
tic equations have been obtained during the last twenty years, and it is
definitely out of the scope of this paper to give a review of the various
cases which are now covered. We will however illustrate the kind of
results which can be achieved with the following Theorem, which can
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be deduced from the results listed in [19]. We refer to this paper for a
partial list of earlier results and do not pretend that this example is in
any sense optimal.

Theorem 27 (Uniqueness, [19]). Assume that ψ ∈ C1[0,∞), ψ(0) = 0

and ψ(s) > 0 for any s > 0. If g(s) := s ψ′(s)
ψ(s)

is nonincreasing on R
+

and such that either lims→0 g(s) < 1 or lims→∞ g(s) > 1, then

(8)




−∆V = ψ(V ) in B(0, 1) ⊂ R
2

V > 0 in B(0, 1)
V = 0 on ∂B(0, 1)

has a unique solution.

With the notations of Sections 1 and 2, let φ := (Q′)−1 on (Q′(0),∞)
and extend it by 0 to (−∞, Q′(0)), ψ(u) := 2π

∫ u

−∞ φ(s). Then V =

λ−1
K U∞ solves (8) if f∞ is a minimizer for FK . If the solution of (8)

is unique, then by Lemma 12, M ≡ 2π |∇V | on ∂B(0, 1) is uniquely
determined. Then, by Corollary 24, f∞ is uniquely determined.

It is left to the reader to check that under assumptions (U1), (U2)
of Section 2, Theorem 27 applies. To illustrate somewhat further this
issue, let us reformulate in terms of V the main quantities which appear
in our statements. Since

f∞(x, v) = φ(e(x, v)) = φ

(
V (x) − |v|2

2 |λK|
)

,

by the change of variables s = |v|2/(2 |λK|), we get

M = |λK |
∫

ψ(V ) dx .

Let Ψ(u) :=
∫ u

0
ψ(s) ds. Using the relations

(Q ◦ φ)(u) =

∫ u

0

(Q ◦ φ)′ ds =

∫ u

0

s φ′(s) ds = u φ(u) − 1

2π
ψ(u) ,

2π

∫ u

0

s φ(s) ds = u ψ(u) − Ψ(u) ,

2π

∫ u

0

(Q ◦ φ) ds = u ψ(u)− 2Ψ(u) ,

we obtain

C(f∞) = |λK |
∫

[V ψ(V ) − 2Ψ(V )] dx ,

Ekin(f∞) = |λK |2
∫

Ψ(V ) dx ,

Epot(f∞) = −1

2
|λK |2

∫
V ψ(V ) dx .
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Collecting these estimates, we obtain

E(f∞) =
1

2
|λK |2

∫
[−V ψ(V ) + 2Ψ(V )] dx ,

which gives another proof of Proposition 23:

E(f∞) = −1

2
|λK | C(f∞) = −1

2
|λK |K .

In the case of polytropic gases, up to a multiplicative constant which
plays no role, Q is assumed to take the form

Q(f) =
k

k + 1
f 1+1/k ⇐⇒ φ(e) = ek

+

for some k > 0 (the case k < 0 can also be considered: see for instance
[14]). All the above quantities can be rephrased as follows:

ψ(u) = 2π
u+

k+1

k + 1
and Ψ(u) = 2π

u+
k+2

(k + 1)(k + 2)
,

C(f∞) = 2π |λK | k

(k + 1)(k + 2)

∫
V k+2

+ dx = K .

Using Proposition 23, we get∫
V k+2

+ dx =
(k + 1)(k + 2)

4π k h1
.

All the other quantities are therefore explicit:

Ekin(f∞) = 2π
|λK |2

(k + 1)(k + 2)

∫
V k+2

+ dx =
2

k
K2 |h1| ,

Epot(f∞) = −π
|λK |2
k + 1

∫
V k+2

+ dx = −k + 2

k
K2 |h1| ,

E(f∞) =
π |λK |2 k

(k + 1)(k + 2)

∫
V k+2

+ dx = −K2 |h1| .

Moreover, using the fact that Ekin(f∞) is uniquely determined and
Theorem 22, we find that for a fixed K > 0, M is given by

M =
√

8πEkin(f∞) = 4

√
π |h1|

k
K .

Since M = 2π |λK |
k+1

‖V+‖k+1
Lk+1, this also allows to compute ‖V+‖Lk+1.

Remark. On the above example, we see that assumption (U) is too
strong. Indeed we need the uniqueness of the solutions to (8) only for
solutions such that

1

2
|λK |2

∫
[V ψ(V ) − 2Ψ(V )] dx = −K2 h1 .

This uniqueness property is equivalent to assert that among all boun-
ded positive solutions to (8) the value of |λK | ∫ ψ(V ) dx is uniquely
defined under the above constraints.
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Although we will not use it later, the minimization result in the case
of polytropic gases amounts to optimal inequalities, exactly as in [9].
We state the result without proof, since it is only a

Corollary 28. For any k > 0, if m = k + 1, then

inf
f∈L

1+1/k
+ (R2×R2)

(∫∫
f 1+1/k dx dv

) 2 k
2+k (Ekin(f))

2
2+k

|Epot(f)| = C1(k) ,

inf
ρ∈L

1+1/m
+ (R2)

‖ρ‖2

L
1+1/m
+ (R2)∣∣∫∫

ρ(x) ρ(y) log |x − y| dxdy
∣∣ = C2(m) ,

where the optimal constants are given by f∞ and by ρ∞:

C1(k) = 2
2

k+2 k
3k

2+k

(k+2) (k+1)
2k

k+2 |h1|
k

k+2
and C2(m) = 2

2
m+1 m

4m
m+1

(m+1) (2π (m−1) |h1|)
m−1
m+1

.

In other words, we have found the optimal constants in the interpo-
lation of Epot(f) between Ekin(f) and C(f), in Lemma 4. The value of
h1 is not explicitly known but can easily be computed numerically for
any value of k > 0.

8. On Lagrange multipliers, mass, normalization of the

potential and support of the minimizers

From the point of view of the dynamics, the potential Uf in (1)
is defined up to an additive constant with respect to the x variable.
In dimension n = 3, if one writes the potential energy as Epot(f) =
−1

2

∫
R3 |∇Uf |2 dx, this additive constant does not play any role. In

dimension n = 2, the function x �→ |∇Uf (x)|2 is not integrable, and
this is why we define the potential energy as Epot(f) = 1

2

∫
ρf Uf dx.

If one considers the minimization problem (IK), the additive constant
plays a role for the normalization of the minimizer in L1.

Consider for K > 0 and M > 0 the minimization problem

IK,M = inf
f∈FK,M

E(f) ,

where FK,M := {f ∈ FK : ‖f‖L1 = M}. If µK,M is the Lagrange mul-
tiplier associated to the constraint ‖f‖L1 = M , the above minimization
problem is equivalent

IK,M := inf
f∈FK

(
E(f) − µK,M ‖f‖L1

)
.

The mass which shows up in (IK) is the one (the ones if the minimizers
are not unique) for which µK,M = 0. Requiring (U) is equivalent to
ask that M �→ µK,M has only one zero. Proving the convergence of a
minimizing sequence for IK,M does not present any additional difficulty
compared to the proof of Theorem 15.
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To determine the range of µK,M when M varies, consider therefore
for µ ∈ R, given, the minimization problem

Iµ
K := inf

f∈FK

(
E(f) − µ ‖f‖L1

)
.

Consider as in Proposition 23 the rescaling

g(α)(x, v) := αf(γ(α) x, δ(α) v) , q(α) =

∫∫
Q(αf(x, v)) dx dv

with γ(α) :=
√

α, δ(α) :=
√

q(α)
Kα

. If f ∈ FK , then g(α) ∈ FK and

E(g(α)) =
K2α2

q(α)2

(
E(f) − log α

8π
‖f‖2

L1

)
.

Assume that M is the smallest (resp. largest) possible value of M =
M(f∞) for all f∞ ∈ FK which are a minimizer for (IK) if µ > 0 (resp.
if µ < 0), and choose α := exp(8π µ/M). It is then easy to prove that

Iµ
K =

K2α2

q(α)2

(
IK − log α

8π
M2

)
.

Assume for simplicity that (U) holds. Then Iµ
K makes sense for any

µ ∈ R, and the mass of the corresponding minimizer is therefore
parametrized by µ �→ M(µ) = K α

q(α)
M . Since IK,M has a minimizer

for any M , the range of µ �→ M(µ) is therefore (0,∞).

As a final remark, the above scaling explains why the support of ρ∞ is
B(0, 1). For the more general minimization problem (IK,M(µ)) = (Iµ

K),
µ ∈ R, given, the support of the spatial density of a minimizer is
contained in the ball B(0, (γ(α))−1). The special choice of Uf made in
Section 1 corresponds to the choice of the Lagrange multiplier µ = 0,
which itself selects a minimizer with a fixed mass M(µ), at least if (U)
holds. This minimizer has a spatial density ρ∞ with support in B(0, 1)
only because of the sign of the term log |x− y| in the potential energy.
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