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1 Introduction and Main Results

This paper deals with systems of elliptic partial differential equations of the
following type

(P0)































−∆u1 = f1(u1, . . . , un) in Ω
−∆u2 = f2(u1, . . . , un) in Ω

· · ·
−∆un = fn(u1, . . . , un) in Ω

ui ≥ 0 in Ω, i = 1, . . . , n
ui = 0 on ∂Ω, i = 1, . . . , n,

where Ω ⊂ R
N , N ≥ 3, is a smooth bounded domain, f1, . . . , fn are non-

negative Hölder continuous functions defined on R
n
+ = [0,∞)n, such that

fi(0, . . . , 0) = 0, i = 1, . . . , n.

We pursue two goals. First, we give hypotheses on the nonlinearities
f1, . . . , fn, which make the system sublinear or superlinear, in a sense which
extends the standard notions of sublinearity and superlinearity for scalar
equations. Second, we are concerned with finding conditions under which
(P0) possesses non-trivial solutions.

In order to introduce the subsequent discussion, we recall a standard
definition for scalar equations. We denote with λ1 the first eigenvalue of the
Laplacian in Ω. Let f be a nonnegative Hölder continuous real function.
Then the equation

{

−∆u = f(u) in Ω
u = 0 on ∂Ω,

(1)
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is called sublinear if lim inf
u→0

f(u)

u
> λ1 > lim sup

u→∞

f(u)

u
, or, equivalently, if

there exist positive numbers a, b, r, R such that

b > λ1 > a, f(u) ≥ bu for u ≤ r, f(u) ≤ au for u ≥ R. (2)

Respectively, (1) is called superlinear if lim sup
u→0

f(u)

u
< λ1 < lim inf

u→∞

f(u)

u
,

that is, there exist positive numbers a, b, r, R such that

a > λ1 > b, f(u) ≤ bu for u ≤ r, f(u) ≥ au for u ≥ R. (3)

There is a very well developed existence theory for both types of scalar
equations, which uses for example monotone iterations (for the sublinear
type), variational techniques, topological methods (for both types of prob-
lems). Standard references on these topics are for example [2], [15], [9], [6].

It is our purpose here to show that the notions of sublinearity and su-
perlinearity, as defined for a scalar equation, can be extended to a general
system of type (P0), through a simple matrix notation. We show that for
both types of systems standard topological methods (fixed point theorems
and index theory) permit to prove the existence of nontrivial solutions of
problem (P0).

Let us introduce some notations and conventions. We write system (P0)
in the form

{

−∆U = F (U) in Ω
U = 0 on ∂Ω,

(4)

where U = (u1, . . . , un)T ∈ R
n, F = (f1, . . . , fn)T . On R

n we shall use the
norm ‖U‖ = max1≤i≤n |ui|. Throughout the paper equalities and inequali-
ties between vectors or matrices will be understood to hold component-wise.
Further, if A and B are two square matrices,

A ≺ B ⇐⇒ ∀U ∈ R
n :

{

BU ≤ AU

U ≥ 0
implies U ≡ 0. (5)

We shall also consider another way of defining the relation ”≺”, namely

A ≺1 B ⇐⇒ B − A is a positive definite matrix. (6)

Note that, geometrically, (5) means that A ≺ B if the (closed) positive
cone generated by the vector-columns of B − A does not meet the negative
hyper-quadrant {U ≤ 0}, except at the origin. It is obvious that B − A has
this property if B − A is positive definite (take a vector U ≥ 0 such that
(B − A)U ≤ 0, and multiply this inequality scalarly by U). So (5) is more
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general than (6) – see the discussion at the end of this section. Finally, we
denote with I the identity matrix.

Next we give our definitions of sublinearity and superlinearity for (P0).

Definition 1 A system of type (P0) is called sublinear provided

(H0) there exist r > 0 and a matrix B ∈ Mn(R) such that

B ≻ λ1I and F (U) ≥ B U if ‖U‖ ≤ r, U ∈ R
n
+.

(H∞) there exist R > 0 and a matrix A ∈ Mn(R) such that

A ≺ λ1I and F (U) ≤ A U if ‖U‖ ≥ R, U ∈ R
n
+.

Definition 2 A system of type (P0) is called superlinear provided

(H0) there exist r > 0 and a matrix B ∈ Mn(R) such that

B ≺ λ1I and F (U) ≤ B U if ‖U‖ ≤ r, U ∈ R
n
+.

(H∞) there exist R > 0 and a matrix A ∈ Mn(R) such that

A ≻ λ1I and F (U) ≥ A U if min{u1, . . . , un} ≥ R.

Remark 1. When n = 1 Definition 1 (resp. Definition 2) reduce to (2)
(resp. (3)).

Remark 2. Note that the condition in (H∞) requires that the inequality
F (U) ≥ AU be satisfied only by the vectors U whose coordinates are all
larger than R, and not by all vectors with ‖U‖ ≥ R.

Remark 3. If F is differentiable at 0 ∈ R
n then (H0) (resp. (H0)) can be

written as
∃B ∈ Mn(R) : F ′(0) ≥ B ≻ λ1I (7)

(resp. F ′(0) ≤ B ≺ λ1I), where F ′(0) is the matrix of the partial derivatives
of fi at the origin. In case (6) is used to define the relation ”≺”, F ′(0) ≻ λ1I

implies (7) but not vice versa. In case (5) is used, these two are equivalent.

With these definitions we can prove, by using index theory, that a sub-
linear system of type (P0) always admits a nontrivial solution, while a su-
perlinear system has such a solution provided (P0) admits a priori estimates.
These facts are well-known for scalar equations, see for example [3], [7]. Un-
der a nontrivial solution of (P0) we shall mean a vector U which satisfies (P0)
in the classical sense and has at least one component which does not vanish
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identically in Ω (and which is then strictly positive in Ω, by the strong max-
imum principle). If we suppose in addition that the system is cooperative
and appropriately coupled (for example, is fully coupled in the sense that it
cannot be split into two subsystems one of which does not depend on the
other), then all components of a nontrivial solution are strictly positive in Ω,
by the strong maximum principle. For a notion of full coupling and a strong
maximum principle for nonlinear elliptic systems we refer to [5].

Here are our main results. The first theorem concerns sublinear systems
and is, to our knowledge, the first existence result for general nonvariational
systems of more than two equations.

Theorem 1 If system (P0) is sublinear according to Definition 1, then (P0)
has a nontrivial solution.

In order to state the result for superlinear systems we need to consider the
auxiliary system (Pt), t ≥ 0, obtained from (P0) by replacing the condition
ui ≥ 0 by ui ≥ t in Ω and the condition ui = 0 by ui = t on ∂Ω.

Theorem 2 If system (P0) is superlinear according to Definition 2, then
(P0) admits a nontrivial solution provided for any t0 ≥ 0 there exists a
constant M = M(t0), depending only on Ω and on the functions fi, such
that

max
1≤i≤n

sup
x∈Ω

ui(x) ≤ M (8)

for any solution (u1, . . . , un) of (Pt), t ∈ [0, t0].

Remark 1. A priori bounds for systems are a very active area of research.
A priori bounds for general systems of type (P0) were obtained by Nussbaum
[14], but they require quite restrictive growth hypotheses on the nonlinear-
ities. We refer also to [17] and to the forthcoming paper [8], where much
sharper a priori estimates for systems of two equations are established.
Remark 2. The condition in Theorem 2 is equivalent to the existence of
a priori estimates for (P0) only, under any of the known hypotheses which
ensure that a system of type (P0) admits a priori estimates – namely, poly-
nomial growth of the functions fi (see the papers quoted in Remark 1, and
the references in these papers). Indeed, (Pt) is equivalent to (P0) with
fi(u1, . . . , un) replaced by fi(u1 + t, . . . , un + t).
Remark 3. All results in the paper hold if we replace the hypothesis that
the nonlinearities fi are nonnegative by

∃ ξi ∈ R : fi(u1, . . . , un) ≥ −ξiui, ∀U ∈ R
n
+.
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In this case one simply has to add ξiui to both sides of the i-th equation in
system (P0).

Index theory and its applications to the search of fixed points of nonlinear
maps were essentially developed by Krasnoselskii, see [11]. We shall use here
an extension of Krasnoselskii’s results, due to Benjamin [4]. For a general
survey on Leray-Schauder degree and its applications to nonlinear differential
equations we refer to Mawhin [13].

Let us now quote the previous works on our subject. A reference for the
use of index theory as a tool for obtaining existence results for sublinear scalar
equations is the paper [3], see also the survey paper [2]. In [14] Nussbaum
considered superlinear systems and essentially proved Theorem 2 under the
additional hypothesis that in (H∞) we have A = (λ1 + ε)I for some ε > 0
and that in (H0) the sum of the entries in each column of B is strictly
smaller than λ1 (this condition easily implies B ≺ λ1I). In [12] Liu gave a
definition of sublinearity, which applies to systems of two equations. Liu’s
definition turns out to be equivalent to (H0) and (H∞) for n = 2, under some
additional hypotheses made in [12]. Finally, in [1] Alves and de Figueiredo
extended Liu’s results, in the framework of systems of two equations as well,
by considering superlinear systems and by giving various hypotheses on the
2×2 matrices from the definitions, under which Theorems 1 and 2 hold. The
present paper unifies and generalizes all these results.

Finally, we give some discussion concerning hypotheses (5) and (6). When
only positive solutions and positive nonlinearities in (P0) are considered, as
in the present paper, the right way to define sublinearity and superlinearity
is in general through (5). For example, the system







−∆u = vp

−∆v = wq

−∆w = ur

(9)

never falls under any of Definitions 1 and 2, if (6) is used in these definitions.
On the other hand, (9) is sublinear for 0 < p, q, r < 1 and superlinear for
p, q, r > 1, if (5) is used in Definitions 1 and 2.

The reason for which we have paid some attention to the possibility of
associating positive definiteness to the notions of sublinearity and superlin-
earity is that we believe this – though of little interest with respect to the
goals of the present paper – will prove to be necessary when dealing with sys-
tems of type (P0) in other contexts, for example when sign changing solutions
are considered or other methods for establishing existence are employed. For
instance, the functional associated with the simple linear system −∆U = AU
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is
∫ (

1

2
|∇U |2 − (AU,U)

)

dx

and clearly a condition of definiteness of A is needed to get some estimates
for the integral.
Remark. More precise results are known for some particular systems which
possess variational structure. For example, the famous Lane-Emden system

{

−∆u = vp

−∆v = uq (10)

has properties of a sublinear (resp. superlinear) system if p, q > 0, pq < 1
(resp. pq > 1). Such a precise result is of course out of hope for general
systems of type (P0).

2 Proofs

The proofs of Theorems 1 and 2 are based on some classical results from
index theory. We use a standard functional setting, as in most of the papers
quoted in the introduction. We describe this setting in Section 2.1.

Section 2.2 is devoted to the proof of Theorem 1. We propose two different
proofs of this result. In one of these proofs we first assume that the relation
”≺” in Definition 1 is defined through (6) — we have explained at the end
of the introduction why we find it important to understand this case. After
we obtain a proof of Theorem 1 we explain how, under our hypotheses, an
algebraic proposition permits to extend the argument to the more general
situation when (5) is used. In the second proof we also use properties of the
relation ”≺”, together with a bootstrap argument.

Next, in Section 2.3 we give a proof of Theorem 2. The proof is relatively
simple, which is natural since – as is well known – the difficulty in obtaining
existence results for superlinear equations via topological methods lies in
finding a priori bounds.

Finally, in Section 2.4 we prove two algebraic propositions which are used
in the proof of Theorem 1.

2.1 The Setting

Here we briefly recall the results that we shall use. Let C be a closed cone
in a Banach space, and let Br = {x ∈ C : ‖x‖ < r}. We are going to use
the following theorem (see Proposition 2.1 and Remark 2.1 in [7]).
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Theorem 3 Let T : Br → C be a compact mapping. Let σ, ρ ∈ (0, r), σ 6= ρ

be such that

(i) Tx 6= tx for all x ∈ ∂Bσ and all t ≥ 1 ;

and there exists a mapping H : Bρ × [0,∞) → C such that

(ii) H(x, 0) = Tx for all x ∈ ∂Bρ ;

(iii) H(x, t) 6= x for all x ∈ ∂Bρ, and all t ≥ 0 ;

(iv) ∃ t0 ∈ R+ : H(x, t) 6= x for all x ∈ Bρ, and all t ≥ t0.

Then there exists a fixed point x of T (i.e. Tx = x), such that ‖x‖ is between
σ and ρ.

Note that (i) implies that iC(T, Bσ) = 1, while (ii),(iii), and (iv) imply
iC(T, Bρ) = 0, so Theorem 3 follows from the excision property of the index.

We denote with X the space
(

C0(Ω)
)n

and introduce the linear mapping
S : X → X, such that for any Ψ = (ψ1, . . . , ψn)T ,W = (w1, . . . , wn)T ∈ X,

S(Ψ) = W ⇐⇒

{

−∆wi = ψi in Ω, i = 1, . . . , n
wi = 0 on ∂Ω, i = 1, . . . , n.

We set T (U) = S(F (U)) and note that T maps compactly X into itself, by
standard regularity and imbedding theorems. With this notation, solving
(P0) clearly amounts to finding a fixed point of T in the cone

C = {U ∈ X : ui ≥ 0, i = 1, . . . , n}.

Of course T maps C into itself, by the maximum principle.
Consequently, finding a nontrivial fixed point of T in C will be our task

in the following sections.

2.2 Sublinear Systems. Proof of Theorem 1

For any U ∈ X and any t ∈ [0,∞) we define

H(U, t) = T (U) +
t

λ1

Φ1,

where Φ1 = (ϕ1, . . . , ϕ1)
T and ϕ1 denotes the positive eigenfunction of the

Laplacian in Ω (corresponding to λ1).
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We are going to show that the hypotheses of Theorem 3 are satisfied by
the mappings T and H. Note that H(U, t) = S(F (U) + tΦ1), hence

H(U, t) = U ⇐⇒































−∆u1 = f1(u1, . . . , un) + tϕ1 in Ω
−∆u2 = f2(u1, . . . , un) + tϕ1 in Ω

· · ·
−∆un = fn(u1, . . . , un) + tϕ1 in Ω

ui ≥ 0, i = 1, . . . , n, in Ω
ui = 0, i = 1, . . . , n, on ∂Ω

(11)

First of all, hypothesis (ii) in Theorem 3 is clearly verified by H. Let us now
show that hypotheses (iii) and (iv) in Theorem 3 hold with ρ = r, where r

is the number which appears in (H0).
Suppose that H(U, t) = U for some U ∈ C, ‖U‖ ≤ R, and some t ∈

[0,∞). We multiply each equation in (11) by ϕ1 and integrate over Ω. After
integration by parts we obtain, by (H0),



















































λ1

∫

Ω

u1ϕ1 dx ≥

n
∑

j=1

b1j

∫

Ω

ujϕ1 dx + t

∫

Ω

ϕ2
1 dx

· · ·

λ1

∫

Ω

unϕ1 dx ≥

n
∑

j=1

bnj

∫

Ω

ujϕ1 dx + t

∫

Ω

ϕ2
1 dx,

provided ‖U‖ ≤ r. In other words, setting

V =

















∫

Ω

u1ϕ1 dx

...
∫

Ω

unϕ1 dx

















, a =

∫

Ω

ϕ2
1 dx > 0, ~1 =







1
...
1






, (12)

we have V ≥ 0 and
(B − λ1I)V ≤ −a t ~1 ≤ 0.

But B − λ1I ≺ 0 by (H0), so (5) and the last inequality imply V = 0, t = 0.
Since U is nonnegative V = 0 implies U ≡ 0.

Next we are going to show that hypothesis (i) of Theorem 3 is satisfied
by T , which will conclude the proof of Theorem 1. Suppose for contradiction
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that (i) does not hold, that is, for any σ > ρ we can find a vector U and a
number t ≥ 1 such that ‖U‖ ≥ σ and































−∆u1 = t−1 f1(u1, . . . , un) in Ω
−∆u2 = t−1 f2(u1, . . . , un) in Ω

· · ·
−∆un = t−1 fn(u1, . . . , un) in Ω

ui ≥ 0, i = 1, . . . , n, in Ω
ui = 0, i = 1, . . . , n, on ∂Ω

(13)

By (H∞) and the continuity of F we have

F (U) ≤ AU + k~1 for all U ∈ C, (14)

where k is a constant.
As we explained above, we are going to exhibit two ways to reach a

contradiction with (13). First, suppose that (H∞) holds with, in addition,
A ≺1 λ1I (see (6)).

By multiplying the i-th inequality in (13) by ui and by integrating over
Ω we obtain

∫

Ω

|∇ui|
2 dx ≤

1

t

n
∑

j=1

∫

Ω

aijuiuj dx +
k

t

∫

Ω

ui dx, i = 1, . . . , n, (15)

after an integration by parts and a use of (14). By using the Poincaré in-
equality and by summing the n inequalities in (15) we get

λ1

∫

Ω

|U |2 dx ≤

∫

Ω

(AU,U) dx + k

∫

Ω

(

n
∑

i=1

ui

)

dx (16)

(recall that t ≥ 1) ; here |·| denotes the l2-norm on R
n. We now fix ε > 0 such

that A ≺1 (λ1 − ε)I (clearly this is possible), hence (AU,U) ≤ (λ1 − ε)|U |2.
Therefore (16) implies

ε

∫

Ω

|U |2 dx ≤ k

∫

Ω

(

n
∑

i=1

ui

)

dx

≤ k
√

|Ω|

n
∑

i=1

‖ui‖L2(Ω)

≤ k
√

n|Ω|





∫

Ω

|U |2 dx





1

2

,
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hence
‖U‖L2(Ω) ≤ C1.

Going back to (15) we obtain

‖U‖H1

0
(Ω) ≤ C2.

Finally, through a straightforward bootstrap argument in

0 ≤ −∆U ≤ AU + k~1

we get
‖U‖L∞(Ω) ≤ C3,

which is a contradiction, since we can take σ > C3.
It turns out that the additional condition A ≺1 λ1I is actually not a

restriction under our hypotheses. To prove this, observe that

0 ≤ F (U) ≤ AU for all U ∈ R
n
+, ‖U‖ ≥ R,

implies that all entries of A are nonnegative. Hence all off-diagonal entries
of λ1I − A are nonpositive and we can use the following proposition.

Proposition 2.1 If D = (dij) ∈ Mn(R) is such that dij ≤ 0 for i 6= j then
D is positive definite if and only if D satisfies

∀ U ∈ R
n :

{

DU ≤ 0
U ≥ 0

implies U = 0. (17)

We give the elementary algebraic proof of Proposition 2.1 in Section 2.4.
This finishes the proof of Theorem 1. ✷

We shall next give an alternative proof of the fact that (13) cannot hold
for vectors with arbitrarily large norm. We multiply (13) by the first eigen-
function of the Laplacian in a domain Ω̂ slightly larger than Ω, such that
Ω ⊂⊂ Ω̂ and λ1(−∆, Ω̂) > λ1(−∆, Ω)−ε, for some ε > 0 to be chosen. After
integration over Ω and use of the Green identity (note that the U = 0 on ∂Ω

and U ≥ 0 in Ω imply
∂U

∂ν
≤ 0, where ν is the exterior normal to ∂Ω) and

(14) we get
(λ1I − A − εI)V ≤ K, (18)

where K is a constant vector and

V =





∫

Ω

u1ϕ̂1 dx, . . . ,

∫

Ω

unϕ̂1 dx





T

.

Here we use the following proposition.
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Proposition 2.2 If D = (dij) ∈ Mn(R) is a matrix such that

∀ U ∈ R
n :

{

DU ≤ 0
U ≥ 0

implies U = 0, (19)

then

(a) there exists ε > 0 such that D − εI has the same property (19).

(b) D has the property

∀ U ∈ R
n :

{

DU ≤ K

U ≥ 0
implies U ≤ C,

where C = C(K, D) is a constant vector, independent of U .

We give the proof of this proposition in Section 2.4. It follows from (18),
(H∞), and Proposition 2.2 that V ≤ C(K,A). Since the restriction of ϕ̂1 to
Ω is bounded below by a positive constant, it follows that U is bounded in
L1(Ω). Multiplying

0 ≤ −∆U ≤ AU + k~1 (20)

scalarly by U and integrating yields

‖U‖2
H1

0

≤ |A|‖U‖L1‖U‖L∞ + K‖U‖L1 ≤ c ‖U‖L∞ + c, (21)

where c is a constant which depends only on F and Ω and may change from
line to line. On the other hand a standard bootstrap argument in (20) yields

‖U‖L∞ ≤ c ‖U‖L2 + c. (22)

Combining the last two inequalities we infer that

‖U‖2
H1

0

≤ c ‖U‖H1

0
+ c,

so U is bounded in H1
0 (Ω). By (22) U is bounded in L∞(Ω), which is what

we need to finish the proof of Theorem 1. ✷

2.3 Superlinear Systems. Proof of Theorem 2

We are going to use Theorem 3 again. First we show that (H0) permits us to
verify hypothesis (i). Suppose U is a solution of TU = tU with t ≥ 1, that
is, (13) holds. By (H0) we have

−∆U ≤ BU, provided ‖U‖ ≤ r. (23)
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As before we multiply the i-th equation in (23) by ϕ1 and integrate by parts,
to obtain

λ1V ≤ BV

V ≥ 0,

where

V =





∫

Ω

u1ϕ1 dx, . . . ,

∫

Ω

unϕ1 dx





T

and ‖U‖ ≤ r. (24)

This implies V = 0 and hence U ≡ 0. Therefore (i) is satisfied for any
σ ∈ (0, r).

We now turn to the remaining three conditions required for Theorem 3
to hold. Here we define

H(U, t) = T (U + t~1 ).

Note that now

H(U, t) = U ⇐⇒































−∆u1 = f1(u1 + t, . . . , un + t) in Ω
−∆u2 = f2(u1 + t, . . . , un + t) in Ω

· · ·
−∆un = fn(u1 + t, . . . , un + t) in Ω

ui ≥ 0, i = 1, . . . , n, in Ω
ui = 0, i = 1, . . . , n, on ∂Ω

(25)

Hypothesis (ii) of Theorem 3 is again trivially satisfied by H. Let us show
that the equation H(U, t) = U does not have solutions in C for t ≥ R, where
R is the number that appears in (H∞). Indeed, if t ≥ R, then (H∞) and
(25) yield

−∆U ≥ A(U + t~1 ) in Ω. (26)

By multiplying each inequality in (26) by ϕ1 and by an integration over Ω
we obtain

λ1V ≥ AV + a tA~1 in Ω,

where a = ‖ϕ1‖L1(Ω) > 0, and V ≥ 0 is defined in (24). This is equivalent to

(A − λ1I)(V + a t~1) ≤ −λ1a t~1 < 0.

By (H∞) this implies V + t~1 = 0, which contradicts t ≥ R. Thus we have
proved that (iii) for t ≥ R and (iv) are verified.

Finally, the validity of hypothesis (iii) for t < R is a consequence of the
a priori estimates for (Pt), which we assume in Theorem 2 (see also Remark
2 after this theorem). So we have verified the hypotheses of Theorem 3 with
ρ = max{σ0,M(R)} + 1. ✷
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2.4 Auxiliary results

This Section contains the proofs of Propositions 2.1 and 2.2. Though ele-
mentary, these proofs are included for completeness.

Proof of Proposition 2.1. We already explained in the introduction that
if D is positive definite then D satisfies (17). We are going to prove the
converse.

Given a matrix D, we denote with Dij the minor of D obtained by re-
moving its ith line and jth column. We denote with Dij,kl the minor obtained
by removing the kth line and lth column of Dij.

Lemma 2.1 Let D = (dij) ∈ Mn(R) be such that dij ≤ 0 for i 6= j and let
D satisfy (17). Then

(a) the matrix Dii, 1 ≤ i ≤ n, satisfies (17) for vectors U ∈ R
N−1.

(b) we have (−1)i+j det Dij ≥ 0, for all i 6= j.

(c) the matrix D is positive definite.

Proof. To prove (a) let for instance i = n and suppose for contradiction
that there exists U ′ ∈ R

n−1 \ {0}, such that U ≥ 0 and DnnU ≤ 0. Then the
vector U = (U ′, 0) violates (17).

We are going to prove (b) and (c) through an induction with respect to n.
First, let n = 2. Then d11 > 0, d22 > 0 (by (a)) and d12 ≤ 0, d21 ≤ 0, by
hypothesis, so (b) holds. If (c) is false then det D ≤ 0, so the nonnegative
vector U = (d22,−d21) violates (17).

Suppose now (b) and (c) hold for matrices with dimension n − 1, in
particular, (b) and (c) hold for D replaced by Dii, i = 1, . . . , n.

We first prove (b) for D. To this end, for each k 6= j we set

lij =

{

j if j < i

j − 1 if j > i
, mij =

{

i if i < j

i − 1 if i > j
,

and

θj k =

{

k if k < j

k − 1 if k > j
.

Then, by developing det Dij with respect to the jth line of Dij,

det Dij =
∑

k 6=j

djk(−1)lij+θjk det Dij,jk.

13



However, it is easy to check that Dij,jk is also the minor of D obtained by
removing the mij-th line and the θjk-th column of Djj. Since the induction
hypothesis applies to Djj, we have

(−1)mij+θjk det Dij,jk ≥ 0.

This follows from (b) if mij 6= θjk, and from (c) if mij = θjk.
Note that lij + mij = i + j − 1, so

(−1)i+j det Dij =
∑

k 6=j

djk(−1)lij+mij+1+lij+θjk det Dij,jk

=
∑

k 6=j

(−djk)(−1)mij+θjk det Dij,jk ≥ 0,

and (b) is proved.
Finally, to prove (c) we note that (a) and the induction hypothesis imply

that all proper principal minors of D are positive definite. So if D itself is
not positive definite we have det D ≤ 0. We then set

U =
(

det D11,− det D12, . . . , (−1)n+1 det D1n

)

.

This vector is nonnegative, by (b), which we already proved. It is known that
DU = (det D, 0, . . . , 0), so by (17) U ≡ 0, which contradicts det D11 > 0, the
induction hypothesis. ✷

Proof of Proposition 2.2. Let d1, . . . , dn ∈ R
n denote the columns of

D and δ1, . . . , δn ∈ R
n denote the columns of I. In order to prove (a) we

suppose for contradiction that there exist a sequence εm → 0 and a sequence
Um ∈ R

n, Um = (um
1 , . . . , um

n ) such that Um ≥ 0, Um 6= 0 and

(D − εmI)Um ≤ 0, that is
n

∑

i=1

um
i (di − εmδi) ≤ 0

Without restricting the generality we can suppose that

um
1 = max{um

1 , . . . , um
n } > 0.

So, dividing by um
1 we get

(d1 − εmδ1) + νm
2 (d2 − εmδ2) + . . . + νm

n (dn − εmδn) ≤ 0, (27)

where the sequences νm
i ∈ [0, 1], so up to a subsequence νm

i → νi ≥ 0, for all
i = 2, . . . , n. Then, passing to the limit m → ∞ in (27), we obtain DV ≤ 0,
with V = (1, ν2, . . . , νn) ≥ 0, which contradicts (19).

To prove (b), we use the same reasoning. The only difference is that now

um
1 → ∞ as m → ∞ and we have

k

um
1

in the right-hand side of (27). ✷
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