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Limit boundary conditions for finite volume
approximations of some physical problems

Robert Eymard? Thierry GallouétTand Julien Vovelle?
May 30, 2003

Abstract

In the industrial context, Finite Volume schemes are used to compute an approximation of the
solution of a system of equations set on a certain domain. When this domain is bounded, some
numerical boundary conditions have to be implemented in order to complete the computation of
the Finite Volume scheme. This is a tricky step in the elaboration of the scheme, which is still
not mastered. In fact, at a closer sight, it appears that there is a deep interaction between the
understanding of the physical phenomena at the boundary of the domain and the implementation
of the numerical boundary conditions. Unfortunately, this link is not always completely intelligible
and a reason for this lack of clarity is the fact that, whereas the continuous equation satisfied by the
limit of the numerical solution is known, the boundary conditions satisfied by this very limit are not
well-understood. The purpose of this paper is to clarify this point in three industrial situations of
one-dimensional two-phase flows.

Introduction

We consider the case of three problems of multi-phase flow in a one dimensional domain, arising in the oil
engineering setting: the waterflood of a core extracted from an actual oil reservoir, the multi-phase flow
in a pipe, and the separation of phases in a distillation column. In these problems, the one-dimensional
domain can be horizontal, tilted of vertical. For each of these cases, the conservation equations (of mass
and momentum) lead to a coupled system of equations. Under some simplifications in an incompressible
two-phase setting, the engineer can then draw a finite volume scheme whose unknowns are the discrete
values of the volumic ratio of the phase one within the two phases. In particular, the boundary conditions
for the numerical scheme are set in accordance to the physical device. We show in section 5 that, for these
three industrial cases, the resulting finite volume scheme comes down to the following set of equations:

and

h
Z T =]+ G uy) = Gluily,uf) = 0,¥i=2,... . T =1, ¥n €N,

h n+1 n n .n m . m (n+1)k 7
E[ul —ul'] + G(ul,uy) — f" =0, with f =z f(®)dt, Vn € IN,
nk

h n n n n n
E[UIH —ufl + f(u}) — G(uf_q,u}) =0, Vn € N,

1 ih
u?:—/ uo(x)dI,Vi:L...,I,
h Ji-1yn

*Université de Marne-la-Vallée; eymard@math.univ-mlv.fr
TUniversité de Provence, Marseille; gallouet@cmi.univ-mrs.fr
tUniversité de Provence, Marseille; vovelle@cmi.univ-mrs.fr



where the hypotheses on the data and the notations are the following ones:

Hypotheses and notations (HN) :

1.

The one dimensional domain is defined by (0, L) with L > 0, the number of grid blocks is I € IN,,
the space step is h = % and the time step is k > 0.

The function G € C°([0,1] x [0,1],IR) is a Lipschitz continuous function, which is non decreasing
w.r.t. its first argument and non increasing w.r.t. its second argument. In the general case, the
function G which verifies these properties is said to be a monotonous numerical flux, consistent with
the function g € C°([0,1],IR) defined by g(a) = G(a,a) for all a € [0,1].

This function g is assumed to verify the following properties: g(0) =0 and, setting o = g(1), there
exists a, € (0,1] such that g(ax) = «, the function g is nondecreasing on (0, a4) and g(a) > « for
all a € [a,,1].

The function f € C°([0,1],IR ) is Lipschitz continuous, nondecreasing and such that f(0) =0 and
J(1) =

We denote by L a Lipschitz constant either for G and f.
The function ug € L>(0, L) is such that ug(z) € [0,1] for a.e. x € (0,L).
The function f € L=(IRy) is such that f(t) € [0,a] for a.e. t € Ry. We denote by T a (possibly
non uniquely defined) function of L (IR4.) satisfying

g(@) = f(t) and 7u(t) € [0,a,] for ae. t€Ry. (5)
We then denote by up k the numerical solution, defined a.e. in (0,L) x IRy through the scheme

(1)-(4) by

upk(x,t) = up, Vo € ((i — 1)h,ih), Vt € (nk,(n+1)k),Vi=1,...,I, ¥n € N (6)

The figure 1 presents a possible choice for the functions g and f.
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Figure 1: Shape of the functions f and ¢

The equation (2) expresses the fact that the ratio between the two phases is known for the injected fluid
at z = 0.

Let us detail the issue at stake in Equation (3). It is interesting to notice that two different requirements
can govern the derivation of this equation in the elaboration of the finite volume scheme. Indeed, we will
see that the numerical implementation of the boundary conditions is naturally known (for dictated by



physical arguments) in the examples of two-phase flow in porous media or separation of phases in binary
distillation column. In fact, in those two examples, it is the boundary conditions satisfied by the solution
of the continuous model (obtained by passing to the limit in the equations of the scheme) which are not
so clear. Conversely, in the study of a two-phase flow in a pipe, it appears that the boundary condition
which should be satisfied by the limit solution of the scheme is known and clearly designed. It is the
way to implement it numerically which raises difficulties. The main theorem of this paper (Theorem 1)
helps to predict the boundary conditions satisfied by the solution of the continuous equation from the
numerical boundary conditions satisfied by the solution of the scheme, or the converse operation.
Notice that, under hypotheses and notations (HN), it is always possible to find some values " such
that g(u™) = f™, and such that the values 7" can be used to define a discrete time dependent function,
strongly convergent to the function @w. Furthermore, one can build a monotonous numerical flux Gy
consistent with g such that Go(a, b) = g(a), for all (a,b) € [0,a,] x [0,1]. We can thus replace, in (2), f™
by Go(u",u?), for all n € IN. This lead to the numerical boundary condition:

h
E[urlurl o U?] + G(’LL?, US) o Go(ﬂna u?) = 07 Vn € INa (7)

If, furthermore, we assume that there exist a real value T € [0, 1] and some function Gy such that Gy is
a monotonous numerical flux consistent with g and such that

G[((J,,ﬁ) = f(a‘)a Va € [Oa 1]3 (8)

we can then replace, in (3), the value f(u}) by Gr(u},%). This leads to the numerical boundary condition:

h _
luf T ]+ Gr(uf )~ Gluf g uf) =0, Vn € NN, (9)

The equations (1), (4), (7) and (9) then define a monotonous three-point finite volume scheme in which the
numerical flux depends on the interface. For such a finite volume scheme, with such numerical boundary
conditions, it is proven in [Vov02] that uy i converges as h — 0 and £ — 0, under a CFL condition, to
the weak entropy solution u of a nonlinear scalar hyperbolic problem with boundary conditions, formally
given by:

ug(x,t) + (9(u))g(x,t) =0, for a.e. (z,t) € (0,L) x Ry, (10)
u(z,0) = uo(z), for a.e. z € (0,L), (11)
g(u(0,t)) = f(t), for ae. t € Ry, (12)
and
g(u(L,t)) =1, forae. teR,. (13)

The correct mathematical interpretation of the boundary conditions (12) and (13) is recalled below
(Theorem 1).

However, we stress the fact that, in general, the relation (8) cannot hold for any functions g and f
satisfying hypotheses and notations (HN) (such as those encountered in the industrial cases). Indeed,
the equation (8) implies f(u) = g(w) because of the consistency of G with g (this equality is at least
satisfied by the values 7 = 1 and @ = 0 under hypotheses and notations (HN)), but also f(a) > g(a) for
all a € [,1] and f(a) < g(a) for all a € [0,7] because of the monotonicity of G. An easy counter example
is obtained with g(a) = 3a — 2a%, a, = 1, f(a) =1~ (1 — a)?, with v > 3.

Therefore, a study of the general case (i.e. when no @ and G can be found) has to be led. Using some
estimates proved in section 2, some compactness arguments are derived in section 3 and, obtaining the



convergence to Young measures entropy solutions in section 4, the results of [Vov02] are sufficient to state
the following theorem:

Theorem 1 Let £ € (0,1) be given. Under hypotheses and notations (HN), let us assume that the time
step k > 0 is such that

k< gi. (14)

Then the function uyp, . (defined by (6)) converges in LY, ((0,L)x(0,T)) for allT > 0 and all p € [1,+00),
as h — 0, to the unique entropy weak solution u € L>=((0, L) x IR4) of the problem (10)-(18) withu =1
in (13), in the following sense:

+oco pL L
/0 /0 (ne (u(@, 1) (@, t) + @) (u(x, 1)) pu (2, 1)) dedt + /O N (uo(2)) p(,0) dz

+L /m (na (1)) 0(0,8) +n,. (1) (L, 1)) dt > 0,
Wi € (0,1), Vo € CX(R x R, R, ),

(15)

and

+oo pL L
| Gt onted) + Bkt oala ) dodt + [ nt (o) ola,0) ds
P A A i (16)
+L£ (m @(t)) p(0,) + i (1) (L, 1)) dt > 0,
0
Vi € (0,1), Vo € C*(R x R,IR,),
where, denoting by aTb the maximum value between a and b and by alb the minimum value between
a and b, the entropy pairs of functions (n),®!) and (n-,®L) are defined for all (a,x) € [0,1]% by
{ ni(a) =aTk —k=(a—r)" and{ ni(a) =k —alk=(a—kK)"
o, (a) = g(aTk) — g(x) 0, (a) = g(k) — g(aLk)

We must now comment on the physical meaning of the formal boundary conditions (12) and (13). The
rigorous mathematical meaning of these condition is expressed by the conditions (15) and (16) for general
irregular data uy € L*°(0,L), f € L®(IRy) (see [Ott96], where the existence and uniqueness of the
entropy solution u € L*((0,L) x IR) have been established). If the solution u is “regular” enough
(we have in mind v € BV((0, L) x (0,T)),~ sufficient conditions for that matter are exposed in Section
2.2), then, from the weak formulation (15)-(16) follows the Bardos, LeRoux, Nedelec condition [BIRN79]
which writes

sign(Tou(t) —u(t))(g(Tou(t)) — g(k)) <0 for all k € [u(t) LTou(t),u(t) TTou(t)], for a.e. t € Ry, (17)
and

sign(Tru(t) — 1)(g(Tru(t)) —g(k)) >0, for all k € [Tru(t),1], for a.e. t € R, . (18)

In the inequalities (17)-(18), the values Tou(t) and Tru(t) respectively denote the traces on = 0 and
x = L of the function u € BV((0,L) x (0,T)), for a.e. t € [0,T]. Under the hypotheses and notations
(HN), the relation (17) is equivalent to

g(Tou(t)) = f(t), for a.e. t € Ry, (19)

and the relation (18) is equivalent to

g(Tru(t)) <a, for ae. t € Ry. (20)



We then remark that the condition (19) was expected from the physical point of view (the nature of the
injected fluid is imposed). On the contrary, the condition (20) is more surprising from the engineering
point of view:

e the function f has no influence on the limit problem inside the domain, and its numerical role is
only to determine the value of the discrete unknown in the cell I,

e the condition (20) expresses the fundamental physical condition at z = L: the outwards flux of
phase one is lower than the total outwards flux, which means that the flux of phase two is outwards
as well.

The discussion of the consequences of the above remark in the three industrial cases is reported to

section 5.

2 Estimates on the approximate solution

2.1 L estimate

We first establish the following L°° estimate, which is necessary from the physical point of view, since
the discrete values u!' are meant to verify u € [0, 1].

Lemma 1 Under hypotheses and notations (HN), let (u})i=1, .. 1,new be defined by the scheme (1)-(4).
Let us assume that the CFL condition

h
k< — 21
<37 (21)
is satisfied. Then the following inequalities hold:
0<wu<1,Vi=1,...,I,VneN. (22)
Proof of Lemma 1: Using (4), one has 0 < u <1 foralli =1,...,I. Let n € IN. Let us assume by
induction that 0 < ul <1, for all i =1,...,I. The scheme (1) can be rewritten as
ul ™ = H(u ululyg), Vi=2,...,1 —1,Yn € N, (23)
with

H: 0,1 —R

(a,b,¢) — b+ % (G(a,b) — G(b, o). (24)

Under the CFL condition (21), the function H is nondecreasing with respect to each of its arguments

(see [EGHO0] or [Vov02]) and satisfies H(a,a,a) = a. This enforces the relation min(uj_;, uf, u,;) <

ul! ™ < max(ul 1, ul,ul, ;). In the case i = 1, the scheme (2) writes

up ™ = H(f",uy, uy), Vo € N, (25)
with

H: [g(0),9(1)] x [0,1] — R

(s,a,b) — a+ % [s — G(a,b)].

Since H is nondecreasing with respect to each of its arguments under the CFL condition (21) and verifies
H(g(0),0,0) = 0 and H(g(1),1,1) = 1, one gets 0 < u™" < 1. In the case i = I, the scheme (3) gives

(26)



uptt = H(u}_y,uf), ¥n € N, (27)
with

S|

0,1 — R

(.0) = b+ & [Ga, )~ FO) (28)

Since H is nondecreasing with respect to each of its arguments under the CFL condition (21), and satisfies

ﬁ(0,0) =0and H(1,1) = 1, one gets 0 < u}”rl < 1. This proves that 0 < u?“ <l,foralli=1,...,1,
and concludes the proof of (22).
2.2 Strong BV inequality

The following estimate is not a necessary argument for the proof of convergence which is given in this
paper, and it demands stronger hypotheses. It is however useful to give sufficient conditions on the data
in order to obtain the BV regularity for the limit problem (as mentioned in the introduction to this

paper).
Lemma 2 One assumes hypotheses and notations (HN) and the following additional hypotheses:

1. the function g is strictly increasing on (0,a4) and the reciprocal function of g on (0,ay) is Lipschitz
continuous with constant L,.,

2. for all (a,b) € [0,a,] x (0,1), G(a,b) = g(a),
3. ug € BV(0, L),
4. f € BVige(IRy).
Let (ul*)i=1,....1,new be defined by the scheme (1)-(4), assuming that (21) holds.
Then, for all T > 0, there exists C1 > 0, which only depends on T, L,uq, f,G, f, L, L, such that
-1
S0 > (ks =l + blur T =) < Cu. (29)
nelN;nk<T i=1

Remark 1 1. Lemma 2 could be used to derive the convergence in L*((0,L) x (0,T)) of the approz-
imate solution wup to a function uw € L*((0,L) x (0,T)) N BV((0,L) x (0,T)), but it demands

more reqularity hypotheses on the data ug, f and g than those which are included in hypotheses and
notations (HN).

2. Hypotheses 1, 2. in Lemma 2 are satisfied in the example of multi-phase flow in porous media.
Proof of Lemma 2: For n € IN, let uj be defined by

g(ud) = f*, ¥n € IN. (30)

Then, for all n € IN, one has 0 < ug < a,. The additional hypotheses 2. above ensures that G(a,b) does
not depend on b for a € [0, a,] and that G(uf,u}) = g(ul) = f™. Therefore (2) can be rewritten in

k
ul ™ —uf + 2 (G ) = Glugup)] = 0, ¥n € I, (51)
which entails
WP = (gl uly), Vi= 1. T =1, Yn €N, (32)



Let n € IN with nk < T. Using the monotonicity properties of the function H, one gets

Tl < H(uf Tul uf Tuly g ufy Tuly,), Vi=1,...,1 -2, (33)
and similarly
wl Ll > By Ll ul L g ufy Laly,), Vi=1,... 1 — 2. (34)

Subtracting (34) from (33), then yields

‘ur_z-&-l n+1| < |U _ U 1| k (G( ) TuH»l’ z+1—|—u ) G(u?J_u?+1,u;’+1J_u?+2))—
' Hit1 o (Guiy Tuf, ”Tum) Guiy Luf, uf Luf, ) T(35)
Vi=1,...,1—2.

One now deals with the boundary conditions. The following proof could be slightly simplified using
G(ufy,ul) = G(uy,uy), but the argument here which remains valid in more general cases. One has,

setting rf = ug ™ —uf + F(G(ug, ut) — Gug, uf)),
ug‘H = H(uf,ugy,uy)+rg.
It leads to
ug ™ < H(ug,ug Tuf, uy Tug) + (rg) ™, (36)
and
Wt > H (g Ll L) — (1) (37)

Using again the monotonicity of H, one gets

up T Tt < H(ul, ud Tult, ulb Tul) + (rg) F, (38)
and

up "t Luy ™ > H (ug, ug Lud uf Luy) = (r5) (39)
Subtracting (39) from (38) gives

k1 (GlugTuf, up Tuy) — G(ug Luy, uf Lug))—
h (G(UOauoT%) G(ug,ugJ_u’f)) (4O>
+|ry |-

|un+1 ?H‘ <fug —uf| -

Since the function G is decreasing with respect to its second argument, one has

G(ug,ug Tul') = G(ug, ugLut) = —|G(ug, ut) — G(ug, ug)|.
Using |rg| < [uf ™ —ul| + h]G(uo,ul) G(ug,uy)|, (40) gives

™ < ] B (G Tup up Tug) — Gl Luf, uf Lug)) "
+ud Tt —up). (41)
One now turns to the study of the case ¢ = I. Using (27), one gets
k
U?H SupTup_y— E(f(u?—ru?—l) — G(uy_ Tuf_g,uf Tuy_y)), (42)

and



n n n k n n n n n n
uftt > Luf_y — E[f(“] Luf_y) = Glup_y Luf_s,uf Luf_q)]. (43)

Using (23) and (42), one gets

E [ min(f(ufTu? ), Gu}  Tub,ufT1))— ]
n+1 n+1 n n I I—1) I—1 I %I
uy 7 Tu <wuy Tuy — - ‘ , 44
i =T [ Gluyp_oTuf_y,ui Tugly) ] (44)
and similarly, using (43),
k[ max(f(upLu} |),G(up Luf, upl1))— ]
n+1 n+1 n n __ v I I-1)» I—1 I %I
ittt 2t — 3 | God e ()
One has, for all a,b, G(a,b) > f(a). Therefore, subtracting (45) from (44) gives
k| (f(ulTu} ) —Gu}_{Lul,ul))—
un+17un+l < uni —uy| — — |: In Iﬁ%z n 1711 rod n n n n 46
i Pl Jupey ] h | (Guf pTup g ui Tuy) = Glup pLuy g, uf Lujlyy)) (46)

In the case u} < u} ,, one has

k n n n n n
—(G(uy_qLuy,uy) — fuf Tur_y)) <

; (Glafoy,uf) = f(uf).

>

since G is increasing w.r.t. its first argument and f is increasing. Since uj™ —u} = ¥(G(u}_,,u}) —
f(u})), one has in both cases (u} < u}_; or uf_; < uf)
k

(Guf_y Luf, uf) = f(uf Tuf ) <up™ —up,

Introducing the previous inequality in (46) gives

k , ,
gty — g <ty ] 4 [ Gluf o Tuf o up Tudyy) — Glup o luf g ufLulyy) | (47)
+ulf Tt -l

Adding (35) for i =1,...,1 —1, (41) and (47) gives
I-1 I—-1
Dol =T <Y Ty = gt = ug] gt - (48)
=0 i=0

Adding (48) for n =0,...,m — 1 gives
I-1 I-1 m—1
Doluy —u <Y fud g =l Y fug T - ]+ . (49)
=0 =0 n=0

Using the definition (4), one gets

1 L—h
E/ o ( + B — o (x)|dz
0

luoll Bv((0,L))5

)
g
e
|
o
IA

IN

and using (21), (2) and the additional hypothesis on the Lipschitz continuity of the reciprocal function
of g, one gets



m—1 r T _ B
S gt gl <5 e - o
n=0 P
< Lol fllBvo,r+k)-
Therefore, one has

I-1

ST D kg —u| < (T + E)(luoll pvo,zy) + Lell fll v 0,141))- (50)
n€EN;nk<T i=0

Using the scheme (1), one obtains, for i =1,...,1 —1
Rl — | < kC(ul y —ul| + |ul —ul'y|), Vi=1,..., 1 —1,

which gives (29).

2.3 Weak BV inequality

The following result provides an estimate which is necessary in the course of the convergence proof when
the additional hypotheses on ug, f and G given in Lemma 2 are not satisfied; it does not yield any
compactness property for the approximate solution.

Lemma 3 Let & € (0,1) and let us assume that (ul)i=1... 1. nen are defined by the scheme (1)-(4) within

IEEEEE ]

the hypotheses and notations (HN) and the condition (14).

Then, for all T > 0, there exists Co > 0, which only depends on T, L,uq, f,G, f, L and & such that

I 02
n+l n
> Shmtw< % 651)

n€N,nk<T i=1 vh
and
I
S Yk max (|G(c, d) — G(c, )| + |G(e.d) — G(d, d)|) <4 (52)
(e.d)eC(uy,ury,) Vh

nelN,nk<T i=1
where, for all (a,b) € [0,1]%, C(a,b) denotes the set C(a,b) = {(c,d) € [aLb,aTb]?; (b—a)(d—c) > 0}.

The proof of Lemma 3 is obtained by multiplying the scheme (1) by kul, summing over ¢ and n, and
then following the method described in [EGHO00] and [Vov02].

2.4 Approximate entropy inequalities

One now establishes discrete entropy inequalities which are used in the next section to get continuous
entropy inequalities with an error term.

Lemma 4 let us assume that (ul)i=1.. 1 new are defined by the scheme (1)-(4) within the hypotheses

geeaydy

and notations (HN) and the condition (21).
Then

et " E | (GulTr,ul1Tk) —g(k)
(™ = k)" = (i = R)T h —(G(u?_lTntu?Tn) —g(r)) =0, (53)

Ve €1[0,1],Vi=2,...,] —1,Vn € NN,



(ui™ = R)" = (uf —R) T+

Vi € [0,1], Vn € IN,

k { (G(u} Tr,us Tk) — g(k))
h | —(f"Tg(k)—g(x))

} <0,
Nty — g k| (GufTr, k) Lf(u}Tr) - g(k))

(ul+ )+ ( 1 )+ + h |: —(G(u}LlTKJ,u?TH) _ g(li)) :| S 07

Vk € [0,1], Vn € IN,

_ _ k| (g(k) = Gul Lk, ul 1 LK))
n+l (" — - ) » P41
(u; ) (uf = k)" + h [ (k) — G(ul 1Lk, u} Lk)) =0,
Vke0,1,Vi=2,....]1—1,vn

(W™ = r)" = (uf —K)” +

Vk € [0,1], Vn € IN,

S
(9(k) — G(ul L, u L)
{ “lgle) — FrLg(e)) ] =0,

and

<0

— )

a1 _ n _ k| (9(k) — Gu} Lk, k)T f(u}LK))
I Rl B e i il
Vk € [0,1], Vn € IN.

Proof of Lemma 4: The proof of (53) is a consequence of
k< H(KTug 1 kTug, kTugy )

and
n+1 n n n
up < H(kTui g, kTug, KTug ).

The proof of (54) is obtained, writing

u?“ < H(f"ul Tk, ulTk),

k< H(k,kTul, kTul)

and G(k, kTul) < g(k).
One gets (55), writing o

upt™t <H(RTuf_y, 6Tu}),
and

k< H(KTup_q,kTul, k).

Inequalities (56), (57) and (58) are obtained following a similar method.

(56)

(57)

3 Continuous entropy inequalities for the approximate solution

The discrete entropy inequalities (53) - (58) are used to derive continuous entropy inequalities. These

inequalities are shown to include an error term which vanishes as h — 0.

Lemma 5 Let £ € (0,1) and let us assume that the function upk is defined within the hypotheses and

notations (HN) and the condition (14).

Then for all ¢ € C(IR. x R, IR, there exists a function £(h) which depends on L, ¢, uq, f,G, f, L and

& such that

10



+oco pL L
/ / (0 uan i (2, 1)) 2 (2, 8) + B (up (2, ) 0 (2, ) dr it + / 0l (o (2)) @(z, 0) da
0 4900 0

L [ @) 0.0+ 1l (1) oL, 0) i 2 (1 (59)
Vi € [0,1],
+oo pL L
/0 / (1 Can (1)) e (2, ) + @ (e (1)) (1)) o i+ / i (o () (i, 0) d
400
e [ (@) pl0,0) de = (0 (60)
VK EO[O, 1].
and
;lllg%) g(h) = 0.

Proof of Lemma 5: One defines, for all i =1,..., 1 and n € IN,
1 Dk DR
L —— t,x)dx dt.
(pl hk nk /»L'h (10( 7"1“) €x

Multiplying inequality (53) by he!* for i = 2,...,I—1, (54) by he?, (55) by he?, summing the obtained
inequalities on n € IN yields

T+ T +T, + T/ <0, (61)
with
I-1
T =3 bl = k)T — (uff — )T e},
nelN i=1
I—-1
T =Y k(G Tr,uly Tr) — g(k)] (@ — @),
nelN i=1
Ty ==Y k[f"Tg(k) — (k)] ot
nelN
and

T = Z kE[GuiTr, k) Lf(ufTr) — g(k)| ©F.
nelN

Using the weak BV inequalities (51) and (52), one gets (see [Vov02])

+oc pL
Ty = - / / 0 (un 1)) e, £) da di — / n (wo(@)) (e, 0)dz + <] (62)
0 0 (0,L1)
and
+oc pL
T, :f/ / D! (up (1)) pu(z,t) dedt + &, (63)
0 0

with lim e; =0 and lim e; = 0. One has
h—0 h—0

11



9(k) = G(up Th, k) Lf(uf Tr) < g(k) — g(r)Lf (k) = g(k) — f(K),
and g(k) — f(k) < L(1 — k), since L is a Lipschitz constant for g — f. It leads to
7 > c/ T (1) (L. t)dt <] (64)
with ilbin% EIT = 0. Using the definition of f, one gets

T = - / FOTg(k) — 9(s)] (0, 1) dit + <7

with I{ir% EJ = 0 (note that this convergence result is obtained, remarking that the approximation of

f converges to f; this would not be true on approximations of u). Since for a.e. t € IR, one has
f(t) = g(u(t)) and u(t) € [0, a,], one gets 0 < g(u(t)) Tg(k) — g(k) < L(u(t) — x)* and therefore

T > E/ T () (0, 1) dt + g - (65)

Inequalities (62)-(65) lead to (60). Similarly, one has

T+ Ti + T3 + Tf <0, (66)
with
-1
T =33 Rl =) = (u = R) )6,
n€lN i=1
T2 - Z Z k ’LL il uz+1J-K/)] (907 - (10?+1)7
nelN i=1
To=— Y klg(k) — f"Lg(w)] @7,
nelN
and
TI = Z klg(k) — Guf Lk, k)T f(uf LK) ¢
nelN

Using again the weak BV inequalities (51) and (52), one gets

+oc pL
== [ [ s e ded - [ ghu@)od st 60)
0 0 (0,L)
and
+oo
Ty = / / (un.k(2,1)) o (2, t) de dt + 5. (68)

with flLiH}J e =0 and }llinb ey = 0.
Since f is nondecreasing, one gets G(u} Lk, k)T f(upLk) < G(u} Lk, k)T f(k).
Using f < g, one gets G(u} Lk, k)T f(k) < G(u}Lk,k)Tg(x). Using the fact that G is nondecreasing
w.r.t. its first argument, one gets

T > 0. (69)
One has
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T = - / l9(k) — g(s) LF(1)] (0, ) dit + <¢-

with ,ILH%EOL = 0. Since for a.e. t € IRy one has f(t) = g(u(t)) and u(t) € [0,a,], one gets 0 <

g(k) —g(k)Lg(u(t)) < L(u(t) — ). It leads to

T > c/ mE (@) (0, 1) dt + e (70)

Inequalities (67)-(70) yield (60).

4 Convergence of the scheme

We let h — 0 in Lemma 5, which implies & — 0 under CFL condition (14). We thus get, up to
a subsequence, the convergence of uy  in the nonlinear weak * sense to an entropy process solution
u € L*((0,L) x Ry x (0,1)) of problem (10)-(13) (see [EGHO00] or [Vov02]). Indeed, this nonlinear weak

* limit u verifies

“+oo L
/ / / i (ula @) @u(o.0) + 0] (o, .0) oo 0) dadi it + [ 0] (uola) o(a.0)da

(n. (@(t)) 0(0,1) +n,! (1) (L, t)) dt > 0,

VK € (07 ), Vo € C°(R x R, IR4),
(71)
and

foo pL 1 L
/0 /0 ; (ni(u(m, t,a)) iz, t) + OL (u(z, t,a)) 0.z, t)) dadx dt + /0 n (uo(z)) ¢(x,0) da

e[ (@) pl0.0) 4 () p(L0) de 20,
0
Vi € (0,1), Vo € C°(R x R, IR,),
(72)
using 77;-(1) = 0 for all x € (0,1). The uniqueness theorem of such a solution (see [Vov02]) concludes the
proof of the convergence theorem 1.

5 Industrial examples of one-dimensional two-phase flow prob-
lems

5.1 Two-phase flow in porous media

We consider waterflood experiments on a core extracted from an oil reservoir, made with the purpose to
fit the reservoir data. The process can be roughly described as follows: the fit is achieved using a lab
simulator, based on a coupled finite volume scheme for the two conservation equations of water and oil
using Darcy’s law and a phase-by-phase upstream weighting. It can be shown ([Pfe87] or [BJ91]) that,
after elimination of the discrete pressures, this scheme yields (1)-(4) with the following interpretation of
the data:

e The ratio u between the two phases is in this case the saturation of the water phase in the porous
medium.
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e The volumic flux of water, injected at x = 0, is defined by f(t) = a > 0 for all t € IR ;.

e The function G(a,b) is given by

o Mu@G M)
e Gt By e (73)
G(a,b) = }”Mz (aa T ("b) if —a+ BMy(a) >0,

where the function M, is a non decreasing function with M,,(0) = 0 and the function M, is a non
increasing function with M,(1) = 0, and the real positive value /3 results from the difference of
density between water and oil.

e The function f(a) which computes the outwards flux of water is given by

My (a)a
MwL(a) + MoL(a) ’

fla) = (74)
where the function M, is a non decreasing function with M, (0) = 0 and the function M,y is
a non increasing function with M, (1) = 0. These functions can a priori differ from M, and M,,
because of specific physical phenomena occuring at the end = = L of the core.

The theorem 1 shows that at the limit A~ — 0, neither the saturation inside the core nor the values of the
outwards fluxes of water and oil as functions of the time variable depend on the choice of the function f.
Some numerical results give indications of the physical phenomena involved here. We consider the case
My (a) = a, My(a) =1—a, « =0.2, =1 and f(a) = ac (this is an example where gravity effects are
important in front of the flows imposed at the boundary). The numerical parameters are L =1, I = 200
and k = 0.0001. The following figures present the results obtained at different times (¢t = 0.2, 0.4, 0.6,
0.8, 1.0, 1.2 and 2.0): the left figure corresponds to the case ug = 0 and the right figure to the case
ug = 0.5.

1 1
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02 - —smm e
0 . . . e . )

0.2 L n
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

The problem solved in the case ug = 0 is a Riemann problem yielding a unique rarefaction wave: oil and
water phases flows are both positive. One observes in that case that the value of the saturation in the
last control volume I is not used for computing the flow with I — 1. On the contrary, with the initial
data ug = .5, oil flow is negative when water flow is positive until the time at which the injected fluid
imposes its composition. After this time, both flows become positive.

5.2 Two-phase flow in a pipe

The general problem of two-phase (liquid and gas) flow in a pipe is quite complex. In the physico-
mathematical description of the various phenomena are taken into account the equations of conservation
of the masses of the liquid and the gas, the equation of conservation of the total impulsion, thermodynamic
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laws for the phase transitions and a hydrodynamical law describing the fluid mechanics involved by this
flow. We refer to [PT96] for an overview on the simulation of a two-phase flow in a pipe.

It has recently been shown in [BFT02] that a simplified scalar model can be used in order to understand
with more accuracy some of the physical phenomena due to the transport features of the problem and,
in particular, the numerical treatment of the boundary conditions. In [BFT02], the geometry of the pipe
is characterized by its length L, its diameter D and its angle with the horizontal 6 (see Fig.2).

\D

\e

Figure 2: The pipe geometry

The flow of two species, one in the liquid phase, one in the gas phase is considered and the following
equivalence between hypotheses and notations (HN) holds:

e We denote by u the fractional superficial mass of gas in the pipe.
e The value « is the total superfical speed of the fluids.

e The function ¢ is defined by g(u) = [(1 + p)a + vju — (ua + v)u?, where p and v are defined
by u = 0.2sinf, v = 0.35y/yDsinf, o = ﬁﬁ with 8 = 0.5 and the gravity acceleration is
v = 9.81m/s?. We have represented in figure 3 the case D = 0.144m, 0 = 7/4.

U/
U

max

Figure 3: The function g

e The function G is defined by G(a,b) = 3 (g(a) + g(b)) + 3[(1 + p)a + v](a — b).

e In (2), the imposed flux f™ is replaced by the standard boundary condition G(@, u}), corresponding
to an imposed fractional superficial mass of gas w at = 0.

The heart of the problem is the choice of the numerical boundary condition at the last control volume
of the mesh (at z = L). For engineers, physical considerations lead to the following expression of
the boundary condition: the superficial speed of water at the outward of the pipe is non-negative.
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Notice that this is a boundary condition which is expressed via the unknown of the continuous equation
us + (g(u))e = 0: this fact hampered the determining of the accurate numerical boundary conditions
for a long time, because making the link between the boundary condition of the continuous problem
and the numerical boundary conditions of the associated scheme is not straighforward. Now, with the
notations designed by (HN), the condition “the superficial speed of water at the outward of the pipe is
non-negative” is equivalent to the condition g(u)(L,T) < «. Therefore, in view of Theorem 1, it appears
that a convenient choice for the numerical boundary condition is Eq. (3) where the function f is non-
decreasing and such that f(0) = 0 and f(1) = «. In fact, the numerical boundary condition that has
been selected by petroleum engineers is Eq. (3) with the function f(a) = min(g(a), ). The theorem 1
thus ensures that it is an accurate choice.

5.3 Separation of phases in binary distillation columns

In this section, we study the boundary conditions which must be applied to the study of a binary
distillation column. We refer to [LR91] and [Rou90] for precise descriptions of the physical background
and references. A binary column is a distillation column used to separate two components. At the top of
the column is produced the light component (vapor) together with few of the heavy component (liquid).
At the bottom of the column, it is the converse: the heavy component is released out together with few of
the light component. For control purposes, a semi-discrete model is introduced, the Lewis model. Since
the fluids are introduced between the top and the bottom of the column, two one-dimensional problems
can be developped. Keeping in view the fact that we are interested in the interpretation of the boundary
conditions at the top and the bottom of the column, the models which are considered can be described
as follows.

The first one is (1), (3) and (4) where

e [ is the distance between the top of the column and the introduction point,

e the liquid molar fraction is represented by u,

e the function G is defined by G(a,b) = Vk(b) — Ma, with 0 < M < V and the thermodynamical
equilibrium function & is smooth, convex, increasing and such that k(0) = 0 and k(1) = 1. The
function ¢ is defined by g(a) = Vk(a) — Ma and a = 0,

e the function f is defined by f(a) = aa.
The second one is (1), (3) and (4) where
e L is the distance between the top of the column and the introduction point,

e the liquid molar fraction is represented by 1,

e the function G is defined by G(a,b) = (L+ M)a— Vk(b), with 0 < M < V < L+ M. The function
g is defined by g(a) = (L+ M)a—Vk(a) anda =L+ M -V,

e the function f is defined by f(a) = aa.

For the sake of simplicity, the numerical boundary condition at the first control volume is supposed to
be classical. That is to say: the equation (2) is replaced, for the first model, by

h

E[u?+l - u?] + G(u?’ug) o G(ﬂ"’ uyll) = 07 Vn € Na (75)
and for the second model by

h ~ ~ ~n

E[a;l“ — a7+ G(ay, ) — G(u ,at) =0,Yn € IN. (76)
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Study at the bottom of the column

we make the distinction between two cases (see Fig.5.3): indeed, the function § : v — (M + F)u—Vk(u)
is concave (because the function k is convex) and satisfies §(0) = 0 < M + F — V = §(1), therefore it
reaches its maximum at a point w,, which is either 1 or in [0,1):

- CASE A: the function § reaches its maximum at u,, € [0, 1),

- CASE B: the function g reaches its maximum at w,, = 1.

M+F-V

M+F-V

-1

CASE A CASE B

In the case B, the flux function § is non-increasing, therefore the boundary {z = f/} is not active: no
boundary condition is needed (to define properly the solution of the problem) and one can prove that the
scheme converges to the solution of the (well-posed) problem

Uy(z,t) + (§(1))z(z,t) = 0 0<z<L,t>0
J(@)(0.t) = g, )
w(z,0) = do(z) 0<z<L.

In the case A, Theorem 1 applies, to prove that the scheme converges to the solution of the problem

ez, t) + (§(0))g(z,t) = 0 0<z<L,t>0
g (L.ty < a_  t>0,
9(a)(0,t) = g(m)(t) t>0,
a(x,0) = dap(z) O0<z<L.

Here, we have written the boundary condition in accordance with the notations of Theorem 1.

Notice that, in both cases, the boundary condition on {z = L} can be written §(@)(L,t) < & (this make
sense from the physical point of view).

Study at the top of the column

Here, we lead a study very similar to the precedent one, and draw the same conclusions: again, we make
the distinction between two cases (see Fig.5.3): indeed, the function ¢ : w — Vk(u) — Lu is convex
(because the function k is convex) and satisfies g(0) = 0 < V — M = g¢(1), therefore it reaches its
minimum at a point u,, which is either 0 or in (0, 1]:

- CASE A: the function g reaches its minimum at w,, € (0, 1),
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- CASE B: the function ¢ reaches its minimum at u,, = 0.

CASE A CAsE B
In the case B, the flux function g is non-increasing, therefore the boundary {x = L} is not active:
no boundary condition is needed and one can prove that the scheme converges to the solution of the
(well-posed) problem

ut(z, ) + (g(u))z(z,t) = 0 0<z<L,t>0
g(u)(0,t) = g(@)(t) t>0
u(z,0) = w(z) x<0.

In the case A, Theorem 1 (slightly adapted) applies, to prove that the scheme converges to the solution
of the problem

ug(z, t) + (g(u))g(z,t) = 0 0<z<L,t>0
g(w)(0,t) > 0 t>0,
J0.1) = @) >0
u(z,0) = wug(r) x<0.

Here, we have written the boundary condition in accordance with the notations of Theorem 1.

Notice that, in both cases, the boundary condition on {z = L} can be written g(u)(L,t) > 0 (this make
sense from the physical point of view).
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