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RÉSUMÉ. Cette étude s’intéresse à la reconstruction de champs de déformation à partir de me-
sures de champs de déplacements bruités. Deux approches sont étudiées : l’une globale s’ap-
puyant sur des Approximations Éléments Finis (AEF) et l’autre locale s’appuyant sur l’Approxi-
mation Diffuse (AD). Ces deux approches sont comparées sur un cas test considéré comme diffi-
cile (essai de traction sur éprouvette trouée). L’AD donne des résultats plus stables, mais coûte
plus cher en temps de calcul. Finalement, un contrôle localisé de l’effet de filtrage des deux
approaches est proposé en perspectives pour une amélioration prochaine de la reconstruction.

ABSTRACT. In this study, the issue of deriving strain fields from corrupted full-field displacement
data is addressed. Two approaches are proposed, a global one based on Finite Element Ap-
proximation (FEA) and a local one based on Diffuse Approximation (DA). Both approaches are
compared on a case study which is supposed difficult (open-hole tensile test). DA provides more
stable results, but is more computer expensive. Eventually, it is proposed to monitor locally
the filtering effect of both approaches, the prospects being an impending improvement of the
reconstruction for both approaches.

MOTS-CLÉS : mesures de champs, dérivation numérique, incertitude de mesure, identification.

KEYWORDS: full-field measurements, numerical differentiation, measurement uncertainty, identi-
fication.
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1. Introduction

The recent development of digitized full-field displacement measurements opens
new ways of characterizing materials in solid mechanics (Kobayashi, 1993). However,
for most of the users of these techniques the strain fields rather than the displacement
fields provides a real insight in the physics of the material at different scales. There-
fore, except for the techniques which provide directly the displacement derivatives, it
is necessary to differentiate the data. When the gradients of the displacement fields are
relatively low, for example when the materials still behave elastically, the small errors
for measurement values may induce a large error to the computed derivative (Geers et
al., 1996). So the key work is to develop a stable algorithm, in which it is possible to
quantify explicitly the effects induced by noise differentiation.

A large number of algorithms can be found in the literature. A survey of these
methods is briefly presented in (Wei et al., 2006). The most common approach is the
finite difference method (Wei et al., 2006). Simple and effective with precise data, it is
implemented in most of the softwares providing full-field displacement data. However,
when the level of noise is significant, filtering is required.

One widely used way of doing this filtering consists in interpolating or approxima-
ting the data using smooth basis functions. The differentiation of the data is turned into
the differentiation of the basis functions. For a given basis of functions, the regulariza-
tion parameter is tied to the number of functions used in the basis. A good compromise
between the faithfulness of the reconstruction (obtained with a large number of basis
functions) and the efficiency of the low pass filtering (obtained with a small number
of basis functions) has to be found.

However, a good choice of the basis functions is essential (Hickernell et al., 1999).
The approximation can be defined either globally (Lira et al., 2004), or locally
(Cleveland et al., 1995). Previous studies (Pierron et al., 2007) showed that a global
polynomial basis leads to parasitic oscillations in the reconstruction when the degree
of polynomials is too large. Indeed, because of the global aspect of this type of bases,
local artifacts in the data affect the whole reconstruction. Accordingly, it seems that
basis functions that have limited interactions between each other would suit better.

Two approaches fulfilling this requirement have been chosen and this paper is ai-
med at comparing them. The first approach is based on global least-squares mini-
mization using Finite-Element shape functions as the basis functions (FEA) (Feng et
al., 1991). The second approach is based on local weighted least-squares minimization
using a polynomial diffuse approximation (DA) (Nayroles et al., 1991). The regula-
rization/precision parameter is the mesh size for the first approach, the span of the
weighting function in the second one.

In a first section, the framework and the principle of the proposed approaches are
presented. Then, their efficiency is compared using modelled data. Eventually, the
approaches are applied onto real data for solving a problem of damage detection.
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2. Framework and presentation of the approaches

2.1. Framework and notations

The proposed approaches are aimed at deriving strain fields from a set of full-field
displacement measurements. These measurements are derived from the deformation
of a pattern bonded onto the investigated solid, for instance using digital image corre-
lation (Schreier et al., 2002) or fringe analysis (Surrel, 1994). Let us consider a given
zone Ω. The input data for deriving strain fields across Ω are therefore the displace-
ments in both directions given at the nodes (called pixels) of a regular grid, whose co-
ordinates are denoted xi. In the proposed examples, this grid is made of N = 168×224
pixels. These measurements are denoted as :

ũ(xi) = uex(xi)+δu(xi) , ∀i ∈ [1,N] [1]

where δu represents the measurement error and uex is the exact mechanical field. The
objective is to derive the gradients of uex for obtaining the exact strains.

In the following sections, the data are modelled or measured onto a plate tested in
an open-hole tensile configuration, which is a difficult case with large strains concen-
trated near the hole (Balaco de Morais, 2000). The modelled data are obtained with a
reference calculation (numerical example) in order to evaluate properly the reconstruc-
tion errors. The measured data are obtained on a real test carried out onto a glass/epoxy
composite laminate. In the case of modelled data, uex and δu are known.

Since the reconstruction operator is linear (see 3.2), the reconstructed field uap(x),
at any x, can be split up into three parts as follows :

uap(x) = uex(x)+δuk(x)+δub(x) [2]

where δuk(x) corresponds to the error due to the approximation of the exact field and
δub(x) is the error due to the noise contained in the measurements.

Due to the linearity of the differentiation operator, the reconstructed strains can be
similarly split up in three terms.

2.2. First approach : Global Least Squares / Finite Element approximation

A first group of methods consists in using global least-squares minimization over
the whole measurement zone Ω. The choice of the basis functions on which the mea-
surements will be projected will affect the regularity and the precision of the recons-
truction. FEA (Feng et al., 1991), where the basis functions only have very low inter-
actions between each other, is chosen in this study because it limits reconstruction os-
cillations as the precision increases, contrarily to polynomial basis functions (Pierron
et al., 2007). The regularization parameter is hence the mesh size of the FEA.

The reconstructed displacement field is written like this :

uap(x) = [Φ(x)]U [3]
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where [Φ(x)] is the matrix of the shape functions and U is the vector of the nodal
displacements. In our examples, the elements are triangles with linear shape functions.

U is found as the solution of the following minimization :

min
U

N

∑
i=1

(uap(xi)− ũ(xi))
2 [4]

The minimization problem [4] leads to a linear system to be solved, yielding U .

The strain field is directly derived from uap(x), by differentiating the shape func-
tions. In order to keep an approximated strain field described with the same shape
functions, εap(x) = [Φ(x)]E, the strain field is projected onto the same basis of func-
tions. Its nodal values are the solution of the following global least-squares problem :

min
E

Z

Ω
(εap(x)− [B(x)]U)2 dS [5]

where [B(x)] is the symmetric gradient of [Φ(x)].

2.3. Second approach : Diffuse Approximation / polynomial approximation

A second group of methods is based on the use of local regression (Cleveland et
al., 1995). Here, DA (Nayroles et al., 1991) is chosen with polynomial basis functions,
various degrees being tested. As this approach is based on weighted least-squared, a
key point is the span of the weighting function, denoted R. This parameter can be
tuned to obtain the best regularization/precision compromise. As presented below, the
(diffuse) derivatives are directly derived from the measurements with this approach.

DA enables to define a continuous field from a discrete number of data points. Gi-
ven p(x) a vector of basis functions, the following two variable function is introduced :

v(x,y) = p(y− x)T {a(x)} [6]

First a(x) is sought as the solution of a local weighted least-square across the weighted
neighborhood of x, with respect to the y variable :

min
a(x)

1
2

(
P{a}−Ũ

)T
W

(
P{a}−Ũ

)
[7]

where W is the diagonal matrix of the weighting function evaluated at each data point :

W = diag







w(x,x1)
...

w(x,xN)




i∈V (x)


 [8]
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w(x,xi) can be any function defined over a bounded domain. The bounded domain
requirement is aimed at keeping the local character of the reconstruction. Here, the
weighting function is defined as :

w(x,xi) = wre f (
x− xi

Rx
)wre f (

y− yi

Ry
) [9]

where wre f is a dimensionless function whose derivative zeroes at 0 and 1 (this aspect
ensures continuity up the the first derivative of the reconstructed fields) ; here Rx and
Ry are chosen independant of xi but may depend on x.

P and Ũ in [7] concatenate respectively the basis functions and the data for all
y ∈V (x).

Then, the approximate field is defined as : uap = v(x,x), therefore, if the basis is
composed of monomials up to at least degree 1, one has :

a2(x) =
δu
δx

(x) and a3(x) =
δu
δy

(x) [10]

This reconstruction can be applied to each component of the displacement field ũ(xi).
The strain fields can be deduced subsequently from the first order diffuse derivatives.
Let us finally mention that this approach implies the resolution of problem [7] at each
evaluation point. This means that one has to choose the evaluation points. Here, they
are chosen as coincident with the pixels where data are provided. Accordingly, the
reconstruction is evaluated through the discrete grid of the points xi , i ∈ [1,N].

3. Understanding and illustrating the methods with a numerical example

3.1. Numerical data and strain reconstruction

Figure 1. Exact shear strain field to be reconstructed

In this section, the two methods presented in section 2 are applied to data modelled
by a numerical simulation. A FE simulation of the tensile response of an elastic plate
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with a hole is thus performed. The obtained displacement field is then used to create a
grid of data points and a white noise, with a realistic 5% standard deviation, is added
in order to represent the perturbation on the measurements. The strain is reconstructed
from these measurements. At first, the strain reconstruction is illustrated on the shear
strain field εXY . In order to compare visually the quality of the reconstruction, the exact
field is plotted in Figure 1. Figures 2 and 3 show the shear strain field reconstructed
by both approaches for two different regularization parameters (mesh size or span of
the weighting function) in each case. Let us remark that the larger the mesh size or
span of the weighting function, the smoother the results. But the reconstructed field
appears smoother with DA since the FEA first derivative is only C0 at the edges of
the elements, rending almost visible the mesh. In both cases, the approximation error

(a) Mesh size : h = 5pixels (b) Mesh size : h = 12pixels

Figure 2. Reconstructed shear strain field εXY with the FEA approach

δεk remains quite small and is smaller in the DA approach. This will be confirmed in
section 4.1.

(a) Weight span R = 7pixels (b) Weight span R = 18pixels

Figure 3. Reconstructed shear strain field εXY with the DA method
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3.2. Reconstructing operator

As explained in section 2, the two proposed methods leads to the resolution of
linear problems, which means that the reconstruction operators are linear. The first
consequence is that, in the additive decomposition [2], the δuk term corresponds to
the reconstruction of the noise alone and the δub term is related to the reconstruction
of the exact field. One can therefore study them separately.

(a) Finite Elements method (b) Diffuse Approximation method

Figure 4. Green’s function of the first order derivative reconstruction operator

The second point is that one can define the Green’s functions of the reconstructing
operator. The Green’s function at point xi can be obtained as the reconstructed field
with measurements such as : ũ(x j) = δi j , with δi j the Kronecker function. As shown in
Figure 4, the Green’s functions confirm that both approaches only have a local domain
of influence. In the FEA case,the effect of the mesh is visible.

4. Numerical comparison of the methods

4.1. Global reconstruction error

In this section, we propose to compare the two reconstruction approaches from a
quantitative point of view. Consequently, one has to choose a criterium for evaluating
the quality of the reconstruction. Since the reconstruction is applied to modelled data,
this criterium is defined as a quadratic distance between the reconstructed strain field
and the exact one :

eε =

〈√
(εap

XX − εex
XX)2 +2(εap

XY − εex
XY )2 +(εap

YY − εex
YY )2

〉

Ωm

[11]

where 〈•〉Ωm
is the average of the data over region Ωm. Ωm can be either the whole

measurement zone Ω or a smaller zone around the hole where large gradients occur.

In Figure 5, error [11] is compared in various cases, for noisy and noiseless data,
from strain fields reconstructed with the FEA approach and the DA approach. Within
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Figure 5. Reconstruction error with respect to the characteristic size

the latter, degrees of the polynomial basis, ranging from 1 to 3, are also compared. As
expected, the perturbation error decreases as the mesh size or span of the weighting
function increases, whereas the approximation error increases. One can notice that the
FEA approach has a larger filtering effect than DA, but induces larger approximation
errors, even when the basis functions of DA are of the same degree (degree 1). This can
be explained by the larger size of the domain of influence of the FEA reconstruction
operator.

In the considered example, the average of the approximation error obtained with
DA remains small. The error at the vicinity of the hole for various degrees of the func-
tion basis used in DA is shown in Figure 5(b). One observes that the approximation
decreases as the degree increases, and the perturbation error increases. Nevertheless,
degree 2 in our case is a good trade off between the filtering effect and the faithful-
ness of the reconstruction. From the curves plotted in Figure 5(b), it should also be
emphasized that the approximation error depends on the zone. Therefore, it would be
interesting to use mesh sizes or spans of the weighting function that vary spatially,
depending on the zones. In order to do that, one has to define a criterium controlling
the local mesh sizes or spans of the weighting function, for example a criterion based
on the signal to noise ratio. Implementation of this feature is currently on-going.

4.2. VFM-based stiffness identification using the reconstructed strains

According to the basic equations of the Virtual Fields Method (VFM) (Grédiac et
al., 2006), the Poisson’s ratio of the material should verify the following equation :

ν = −

Z

Ω
(εxxε∗xx + εyyε∗yy +2εxyε∗xy)dS

Z

Ω
(εxxε∗yy + εyyε∗xx −2εxyε∗xy)dS

[12]
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where ε∗ is the strain field derived from a virtual displacement field u∗ chosen across Ω
in such a way that u∗ = 0 on ∂Ω. The components εxx, εyy and εxy are the experimental
strain fields reconstructed from the data. Because of data corruption, equation [12]
is not satisfied in practice. Errors exist, but they can be minimized by choosing an
optimal virtual field, denoted u∗∗, according to the principles presented in (Avril et
al., 2007).

When ε∗∗ is used instead of ε∗ in equation [12], the remaining error can be used
to quantify the quality of the experimental strain reconstruction from the data. The
reference value for ν is 0.286.

The obtained values of ν for different types of reconstruction (FEA with different
mesh sizes, AD with different spans of the weighting function), using noiseless data,
are shown in Figure 6(a). It can be noticed that :

– the error increases when the mesh size or the span of the weighting function
increases, due to the worsening faithfulness of the reconstruction ;

– the curve for DA is smoother than the curve for FEA. Indeed, for a given span
of the weighting function, the reconstruction obtained with DA is unique, and so is
the identified Poisson’s ratio. But for FEA, as many different meshes give as many
different reconstruction, hence as many identified Poisson’s ratio. This is why the
curve for FEA in Figure 6(a) has this serrated aspect.
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Figure 6. Identified ν as a function of the characteristic size

Identification results obtained with noisy data are shown in Figure 6(b), in terms
of mean value and error bar of plus and minus the standard deviation value of the
identified Poisson’s ratio, deduced from the use of 150 samples of white noise. The
average of the identified Poisson’s ratio on the samples converges to the noiseless
case with the number of samples. First, one can remark that the larger the mesh size
or the span of the weighting function, the smaller the standard deviation. For DA,
the systematic error illustrated figure 6(a) remains small with respect to the standard
deviation and therefore the increase of the span of the weighting function improves the
identification accuracy within the studied range. Furthermore, when using the FEA,
the main effect is still the large variations of the average value from one mesh size
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to another when using FEA and the dispersion due to the mesh dependence of the
reconstruction is of the same range as the one due to the noise, the use of a larger mesh
size does not improve the identification results much. In all cases, the identification
error remains small. The drawback related to the meshing dependency of the FEA is
hence emphasized by the fact that the identification errors remain small.

Eventually, due to the averaging effect of integration in equation [12], it can be
concluded that the error about the Poisson’s ratio which is identified with the VFM
does not constitute a relevant criterion for qualifying the reconstruction approaches.
Other criteria based on local errors may be used instead.

5. Real test data : detection of non-linearities

In this section, the two reconstruction approaches are applied to data obtained
from an open-hole tensile test carried out onto a glass/epoxy laminated plate having
a quasi-isotropic stacking sequence : [−454,904,454,04]s. In such tests, fracture of
the 90◦ underlying plies occurs quite early. An objective of full-field displacement
fields is to detect the onset and spatial location of this fracture. Thirty frames of the
displacement fields were measured with the grid methods in a region around the hole
of the specimen, for tensile loads ranging from 0 to 13.3kN. It has been proposed
in (Pierron et al., 2007) to characterize the fracture process by detecting local non
linearities of the response. A first estimation of these non-linearities is obtained by
computing the discrepancy between the real strain field and the strain field resulting
from the extrapolation of the linear response. One has therefore to determine the latter.

The linear response is estimated from the first ten frames as the slope of the res-
ponse of each pixel :

min
εlin

Nlin

∑
i

(Fiεlin − ε(x,Fi))
2 with, Nlin = 10 [13]

Then, it is possible to define the non-linear part of the strain field for a given load F :

∆ε(x,F) = Fεlin(x)− ε(x,F) [14]

The ∆ε fields reconstructed by the two approaches are shown for three different
loads in Figure 7 and 8. The detection of the non-linearities around the hole gives bet-
ter results than the previous method used in (Pierron et al., 2007), with a sharper zone
providing a more precise localization. Both methods yield similar results, even if the
FEA approach remains sensitive to the underlying mesh. Nevertheless, the perturba-
tions on the measurements are more severe than in the numerical case and one would
have to input more a priori information on the fields to get better results. This leads
us to regularization approaches, which are considered as one of the major prospects
of this study.
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(a) Load 7.5kN (b) Load 9.7kN (c) Load 13.3kN

Figure 7. Non-linear part of the displacement field - Finite Elements Approximation

(a) Load 7.5kN (b) Load 9.7kN (c) Load 13.3kN

Figure 8. Non-linear part of the displacement field - Diffuse Approximation

6. Conclusion

This paper has presented two methods for reconstructing strain fields from full-
field displacement data. The aim of the methods is to handle measurement perturba-
tions and control their filtering. In both methods, the regularization and the precision
of the reconstructed fields are controlled by only one parameter, the mesh size or the
span of the weighting function. The results on the examples are satisfactory. The FEA
approach has a lower computational cost, but provides larger errors in the reconstruc-
ted field. Another disadvantage is the multiplicity of the reconstructions for a given
mesh size, as two different meshes provide two different reconstructed fields. The DA
approach does not have this drawback and offers a richer way of reconstructing the
fields, by easing the choice of parameters controlling the errors and letting the possi-
bility of any enrichment of the basis.

It has been shown on a first example that the choice of the mesh size (FEA) or
the span of the weighting function (DA) can improve the reconstruction quality. The-
refore, it would be interesting to establish a criterium for choosing them as point de-
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pendent functions, leading to size maps for the reconstruction process. Studies about
the choice of a relevant criterium are still on-going.

Finally, once the choice of the parameters controlling the errors will be optimized
in both approaches, implementation of regularization techniques, such as Tikhonov
ones, will be investigated for further improvements.
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