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Simultaneous-FETI and related block strategies: robust

domain decomposition methods for engineering problems.

Pierre Gosselet ∗– Daniel Rixen †– François-Xavier Roux ‡– Nicole Spillane §

Abstract

Domain Decomposition methods often exhibit very poor performance when applied to en-
gineering problems with large heterogeneities. In particular for heterogeneities along domain
interfaces the iterative techniques to solve the interface problem are lacking an efficient precon-
ditioner. Recently a robust approach, named FETI-Geneo, was proposed where troublesome
modes are precomputed and deflated from the interface problem. The cost of the FETI-Geneo
is however high. We propose in this paper techniques sharing similar ideas with FETI-Geneo
but where no pre-processing is needed and that can be easily and efficiently implemented as
an alternative to standard Domain Decomposition methods. In the block iterative approaches
presented in this paper, the search space at every iteration on the interface problem contains
as many directions as there are domains in the decomposition. Those search directions origi-
nate either from the domain-wise preconditioner (in the Simultaneous FETI method) or from
the block structure of the right-hand side of the interface problem (Block FETI). We show on
2D structural examples that both methods are robust and provide good convergence in the
presence of high heterogeneities, even when the interface is jagged or when the domains have
a bad aspect ratio. The Simultaneous FETI was also efficiently implemented in an optimized
parallel code and exhibited excellent performances compared to the regular FETI method.

keywords Domain decomposition; FETI; BDD; Block Krylov methods; multiple preconditioner;
heterogeneity

1 Introduction

Domain decomposition methods are mature solution techniques to enable computing the solution
of large systems (typically arising from Finite Element models) on parallel computers. In particular
the non-overlapping techniques such as the Finite Element Tearing and Interconnection (FETI)
[1] and its primal counterpart (the Balanced Domain Decomposition or BDD [2]) have been suc-
cessfully applied to solve several challenging mechanical problems (e.g. [3, 4]). The fundamental
idea behind these efficient parallel solvers consists in solving local problems related to each domain
with techniques that perform well sequentially on one processor and applying iterative techniques
to find the interface unknowns connecting domains together, namely the interface forces in the
dual Schur complement approaches (such as FETI) or interface displacements in the primal Schur
complement methods (such as BDD). Several variants of the primal and dual strategies in Domain
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Decomposition have been developed over the years to improve their robustness and efficiency: an
overview can be found for instance in [5].

Nevertheless, for engineering problems where the structure is composed of parts with intricate
shapes and/or made of materials with very different properties, domain decomposition techniques
usually perform very poorly. A typical example one could mention is tires where the bulk is
composed of soft rubber material in which different very stiff and slender components are embedded
(steel cables and thin sheets of fiber reinforced composites). Several improvements have been
proposed over the years to tackle heterogeneous problems in domain decomposition techniques
[6, 7, 8] and to circumvent the poor convergence of the iterations on the interface problems due
to jagged interfaces [9]. Although several variants can handle heterogeneities across the interface
efficiently, the efficiency and robustness of the methods are very poor when several heterogeneities
are found along the interface (as exhibited when decomposing a tire in slices so that the cables cross
over the interface). A remedy could be to decompose these hard problems in such a way that each
domain is nearly homogeneous [3] but this approach most often results in bad load balancing and
in domains with bad aspect ratios, which also poses a challenge for solving the interface problem
iteratively.

As was described in recent publications [10, 11, 12, 13, 14] for the overlapping Additive Schwarz
method and [15, 16] for non-overlapping methods the bad convergence of domain decomposition
strategies in many challenging engineering problems can be traced back to the fact that important
characteristics of the global problem cannot be approximated by the local information typically
used to precondition the iterations on the interface problem. It was shown that the part of the
problem that jeopardizes convergence can be revealed by eigenvalue problems on the interfaces of
each subdomain: the strategy is to generate these problematic modes and apply deflation strategies
(or coarse grid approaches) to guarantee that the iterations are performed only on the part of
the space that can be properly preconditioned. Those methods, given the generic name Geneo
(Generalized Eigenvalues in the Overlaps) in [12, 16, 17], exhibit remarkable robustness, bot in
theory and practice, even for decompositions where the domains have bad aspect ratios and where
large heterogeneities across and along the interface are present. Unfortunately that robustness
comes with a significant computational overhead related to finding the coarse space of ‘bad’ modes
through eigenvalue problems.

In the present contribution, we discuss an idea that was originally proposed in [18] for two sub-
domains and consists in generating several search directions originating from the preconditioning
and using them to solve the interface problem iteratively. A similar paradigm was later used in
[19] to solve problems that include repeated components. Here the method will be generalized for
an arbitrary number of domains: the Simultaneous-FETI (or S-FETI). Since this method can be
seen as a special block iterative strategies, we will also discuss a second block approach in this
paper where several search directions are built considering several right-hand sides of the problem.

In section 2 we give a short summary of the FETI method since it forms the basis of the proposed
strategy. Then, in section 3, the S-FETI is explained. Another block approach is described in
section 4. The methods are tested and evaluated in section 5 for some simple but representative
problems including some comparisons in CPU time between S-FETI and the classical FETI.

Note that, although only the FETI approaches are discussed in this paper, the ideas presented
in this contribution can be extended in a straightforward manner to the other variants of FETI
(such as the FETI-DP method [20, 21]) or to primal Schur complement methods such as BDD.

2 FETI in a nutshell

Here we will shortly summarize the basic FETI strategy that will be used throughout this paper
(see for instance [1, 5] for further details). Let us consider the symmetric positive definite problem
Ku = f associated with the finite element approximation of a linear mechanical problem set on
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domain Ω. Assume a partitioning into N subdomains Ω(s) conforming to the mesh such that the
partitioned problem writes

K(s)u(s) = f (s) +B(s)T t(s)
T

λ
∑

s

B(s)t(s)u(s) = 0
(1)

where t(s) are trace operators, B(s) are signed Boolean assembly operators and λ is the set of
Lagrange multipliers that connect subdomains.

We use the following classical notations:

S(s) = K
(s)
bb −K

(s)
bi K

(s)−1

ii K
(s)
ib ; F(s) = t(s)K(s)+t(s)

T

; R(s) = ker(K(s))

S(s) is the local Schur complement (i stands for internal degrees of freedom and b for boundary
degrees of freedom), F(s) = (S(s))+ is the local Dual Schur complement, R(s) is a basis of rigid
body modes. We also write:

e = −
(

. . . , f (s)
T

R(s), . . .
)T

G =
(

. . . ,B(s)t(s)R(s), . . .
)

F =
∑

B(s)F(s)B(s)T d = −
∑

s

B(s)t(s)K(s)+f (s)
(2)

which leads to the classical FETI system:

(

F G

GT 0

)(

λ

α

)

=

(

d

e

)

. (3)

The constraint GTλ is handled by the introduction of the initial estimate and the projector

λ0 = AG(GTAG)−1e

P = I−AG(GTAG)−1GT
(4)

so that GTλ0 = e and GTP = 0. Matrix A is a symmetric positive definite matrix and can be
taken as being the preconditioner S̃ (see below), identity or a scaling matrix [22].

The unknown λ is sought as λ = λ0 +Pλ̃ where λ̃ is a solution of:

PTFPλ̃ = PT (d− Fλ0) = PT

(

∑

s

B(s)K(s)+(f (s) −B(s)Tλ0)

)

. (5)

This system is solved by an iterative solver, the preconditioner S̃ being

S̃ =
∑

s

B̃(s)S̃(s)B̃(s)T

where B̃(s) are scaled assembling operators such that
∑

s B
(s)B̃(s)T = I, and S̃(s) are the Schur

complements S(s) or an approximation thereof. The scaling used in B̃(s) is typically chosen based on
the diagonal coefficients of the local stiffness matrices on the interface, namely a so-called k-scaling
or super-lumped scaling. As explained in [7] this scaling can be seen as choosing a mechanically
consistent combination of the interface reaction forces arising from the Dirichlet problem in each
subdomain.

It is by now quite standard to augment the resolution by an additional constraint of the form
CT r = 0 where matrix C is a basis of a well-chosen subspace of range(P) and r is the residual
vector. This means that at every iteration the solution is required to solve the problem exactly in
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the subspace spanned by C, or coarse space. When the constraint is implemented with a second
level of initialization and projection, the resulting algorithm is referred to as FETI2 [23, 24]. It is
summarized in Algorithm 1, where we introduced:

λ̃0 = C(CTFC)−1CT (d− Fλ0)

PC = I−C(CTFC)−1CTF.
(6)

Remark 1. In Algorithm 1, a full orthogonalization is employed as it is almost required when
solving real engineering problems. A classical Conjugate Gradient algorithm would correspond to
j = i (instead of 0 6 j 6 i) in the second last line of the loop.

Algorithm 1: FETI2 with full orthogonalization

r0 = PTPC
T (d− Fλ0)

z0 = S̃r, w0 = Pz0, λ̂0 = 0, i = 0

while
√

rTi zi > ǫ do

qi = PC
TFwi

δi = qT
i wi

γi = rTi zi

λ̂i+1 = λ̂i + (γi/δi)wi

ri+1 = ri − (γi/δi)P
Tqi

zi+1 = S̃ri+1

wi+1 = Pzi+1 then for 0 6 j 6 i

{

φi,j = qT
j wi+1

wi+1 ← wi+1 − (φi,j/δj)wj

i← i+ 1

end

λ = λ0 + λ̃0 +PCλ̂i

Since the spectrum of the preconditioned FETI operator is bounded from below by 1 it is well
known that matrix C, should contain the eigenvectors associated with the largest eigenvalues of
the following generalized system:

PT
(

Fv − µS̃−1v
)

= 0, v ∈ range(P) (7)

Various techniques can be employed to approximate these eigenvectors, like recycling of nearby
Krylov subspaces [25]. One important result is provided by [16] where it is proved that these
eigenvectors always originate from local effects so that they can be generated by a family of local
eigenvalue problems:

S(s)v(s) − µ(s)B(s)T S̃B(s)v(s) = 0 (8)

Including the smallest frequency modes resulting from these eigenvalue problems in an auxiliary
coarse grid led to the so-called FETI-Geneo [16]. Unfortunately, the solution to these eigenproblems
followed by an augmented resolution incures a significant computational overhead. Yet fewer
iterations are needed to converge when solving the interface problem and the method is numerically
more stable.

In [17] an algorithm, named frugal-FETI, was proposed in order to capture during the classical
resolution these penalizing local contributions. It is an interesting step in building a robust and
efficient algorithm although it suffers from the fact that it needs to modify the coarse space every
time new “bad” vectors are detected in the iteration.
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The strategy proposed next, generalizing the multi-direction approach discussed in [18], can
be considered as probably the simplest block procedure to build a multi-direction iteration and is
thought to capture “on the fly” the bad modes typically constructed a priori in Geneo approaches.

3 Simultaneous FETI

The Simultaneous FETI (S-FETI) was introduced in [18] on a simple example with two subdo-
mains. It exploits the additive structure of the preconditioner in order to generate as many search
directions as there are subdomains at each step of the Conjugate Gradient (CG) algorithm. We
first present the algorithm in a general case (Algorithm 2) as well as the ideas that led to it. Then
we discuss its connections with two existing algorithms: multipreconditioned CG and FETI Geneo.
Finally we comment on the cost of S-FETI.

3.1 The S-FETI Algorithm

In classical FETI, the preconditioned residual writes z = S̃r =
∑

sB̃
(s)S̃(s)B̃(s)Tr and it is orthog-

onalized with respect to previous search directions to generate the new search direction. The idea
underlying the S-FETI approach consists in letting the minimisation process of the CG algorithm

choose the best combination of local terms B̃(s)S̃(s)B̃(s)T (instead of simply adding them together
to obtain z) hence leading to an optimal, although more costly, choice. In other words, S-FETI,

at a given iteration, uses each local term B̃(s)S̃(s)B̃(s)Tr as a search direction: the residual is min-

imized with respect to the subspace spanned by Z =
(

. . . , B̃(s)S̃(s)B̃(s)T r, . . .
)

. The connexion

between Z and the usual z is of course that z = Z1 where 1 = (1, . . . , 1)T ∈ R
N which explains

why we monitor convergence in a classical way (
√
r⊤z gives a measure of the residual comparable

to the discretization error [26]).
The iteration scheme is given in Algorithm 2. For sake of clarity we give the size of the different

operators (for i, j = 1, . . . , N)

ri, λ̃i, λ, λ0 ∈ R
n; Zi, Wi, Qi ∈ R

n×N ; ∆i, Φi,j ∈ R
N×N ; γi ∈ R

N ;

where n is the number of unknowns and N is, once more, the number of subdomains.
We point out that each iteration requires the inversion of the N ×N matrix ∆i = WT

i FWi.
Since Wi is the concatenation of localized contributions, it is reasonable to expect that ∆i be full-
ranked. If it is not then ∆i is only positive semi definite and pseudo-inversion (denoted by ∆+

i ) is
necessary. Another, equivalent, option would be to eliminate some directions in order to recover a
full rank family of vectors in Wi. Then the next approximate solution would not change but fewer
vectors would need to be saved for future orthogonalization. In any case the right-hand-sides γi

and Φi,j are both in range(WT
i ) = range(∆i) so that the iteration is always well defined.

3.2 S-FETI as a multipreconditioned CG algorithm

The S-FETI algorithm is a multipreconditioned CG algorithm [27]. Indeed, at each iteration,
N preconditioners are applied to generate the N columns in Zi. Then, each of these vectors is
projected and orthogonalized to give a search direction (these are the N columns in Wi). Finally,
λ̃i is updated to λ̃i+1 by adding the linear combination Wi∆

+
i γi of these search directions that

minimizes the error in the operator norm. Since the classical search directionw = W1 ∈ range(W)
the new approximation is obviously always better than what classical CG would have given at that
iteration.

A negative point of the method is that the CG short recurrence is broken and full orthogonal-
ization is required to fully benefit from the method. This is however only a theoretical drawback
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Algorithm 2: Simultaneous FETI

r0 = PT (d− Fλ0)

Z0 =
(

. . . , B̃(s)S̃(s)r0, . . .
)

, W0 = PZ0, λ̃0 = 0, i = 0

while
√
rTZ1 > ǫ do

Qi = FWi

∆i = QT
i Wi

γi = ZT
i ri

λ̃i+1 = λ̃i +Wi∆
+
i γi

ri+1 = ri −PTQi∆
+
i γi

Zi+1 =
(

. . . , B̃(s)S̃(s)B̃(s)T ri+1, . . .
)

Wi+1 = PZi+1 then for 0 6 j 6 i

{

Φi,j = QT
j Wi+1

Wi+1 ←Wi+1 −Wj∆
+
j Φi,j

i← i+ 1
end

λ = λ0 + λ̃i

since, in practice, full orthogonalization is often used in classical FETI. The conjugation is crucial
since it allows to prove the minimization property in the following theorem [27].

Theorem 1. The approximate solution computed by the i-th iteration of S-FETI minimizes the
error λ̃i − P λ̃ in the F-norm (induced by the FETI operator) over all possible

λ̃i ∈
i−1
⊕

j=0

span (Wj) , (9)

where ⊕ indicates a direct sum and Wj is defined in algorithm 2.

The proof can be written in a similar way to the usual proofs for CG [28]. The two properties of
multipreconditioned CG which condition the choice of ∆i, γi and Φi,j are this minimization result,
and the F conjugacy of search directions (W⊤

i FWj = 0, ∀ i 6= j). The main difference with the
block-FETI algorithm introduced in the next section is that the minimization space cannot be
written in terms of Krylov spaces. Indeed, at each iteration the approximate solution is updated
in the direction given by the optimal linear combination of the local preconditioners but, since the
coefficients in the linear combination change from one iteration to the next, there is no Krylov
structure.

Remark 2. Although our numerical results (Section 5) point to the fact that S-FETI performs
perfectly well we mention the more recent multipreconditioned GMRES algorithm [29] where, at
the cost of saving more directions at each iteration, the error can be minimized over the larger
subspace

∑N

s=1KN
i (F,PB̃(s)S(s)r0), with the multi-Krylov subspace defined by

KN
i (F,x) :=

{

p(...,PB̃(s)S(s)B̃(s)TF, ...)x;
p is a polynomial in N variables

of degree at most i− 1

}

,

N being the number of subdomains. In [30] multiply preconditioned GMRES is applied to the
Additive Schwarz domain decomposition technique.
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3.3 Connection to FETI Geneo

As will become apparent in Section 5, the S-FETI algorithm is very efficient on hard problems
for which the classical FETI typically requires many iterations. The convergence behaviour is
comparable to that of the FETI Geneo algorithm [16] where a coarse space is constructed by
solving generalized eigenvalue problems (8) in each subdomain that isolate the part of the solution
on which the preconditioner is not sufficiently efficient for the iterative solver to perform well.

More precisely, the matrices in the pencil of the Geneo eigenproblems are on one hand B(s)T S̃B(s)

and on the other S(s). With words, the vectors that are detected are the ones for which the local

restriction of the (assembled) preconditioner B(s)T S̃B(s) is not a good approximation for the, non
assembled, local component S(s) of the FETI operator.

In S-FETI the solution space results from successive applications of the local, non assembled,

components B̃(s)S(s)B̃(s)T and the assembled F so the block of search directions spans a space
where local effects are not gummed out. It thus bears similarities with the deflated space in which
the Geneo iterations take place and for this reason convergence is expected to be very quick.

3.4 Cost of S-FETI

An iteration of S-FETI does not require too much extra computational cost compared to classical
FETI (for the discussion regarding parallelism we assume there is a bijection between the N
subdomains and processors), for the following reasons

• Exchanges are as frequent. Neighbor communications are identical although global reduction
operations (due to scalar products) involve more data (N ×N matrices ∆ and Φ, N vector
γ).

• Dense, but usually small N×N symmetric positive matrices ∆ need to be (pseudo)-inverted.

• Sequences of N -blocks of vectorsWi andQi need to be stored instead of sequences of vectors.

• The most costly parts of the FETI algorithm are the local Neumann and Dirichlet solves
in each subdomain. Compared to a classical FETI iteration, an S-FETI iteration requires
the same cost for the preconditioning but the operator F must now be applied to each of
the N columns in Wi. Nevertheless the computation of FWi can be performed efficiently.
First one has to remember that block operations are often proportionally much less expensive
than single vector operations because the computation time is driven by the memory access.
Moreover it is possible to cleverly use the locality of data by noting that Zi+1 is a sparse
matrix (it only gets values from its neighbors and itself) whereas Wi+1 is not because of
projection and orthogonalization. Further one observes that

Qi+1 = FWi+1 = FPZi+1 −
i
∑

j=0

Qj∆
+
j Φi,j

=
(

FZi+1 − FAG(GTAG)−1GTZi+1

)

−
i
∑

j=0

Qj∆
+
j Φi,j

(10)

where the product FAG is sparse (only neighbors of neighbors contribute to it) and can
be computed once and for all during the initialization. This way only localized Neumann
problems FZi+1 need to be solved and the computational efficiency of S-FETI is significantly
improved.
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In the end, the extra-cost per iteration is expected to remain very limited for a not too large
number of subdomains N .1 It should also be noted that part of the additional cost is alleviated by
the fact that the multiple Neumann problems to be solved by each domain at an iteration can be
solved simultaneously as a block. The extra costs have to be put in balance with our expectancy
to divide the number of iterations to solve critical problems by a term of the order of N . More
details on the practical implementation of S-FETI are given in Section 5.6.

4 Block FETI

The sole flaw of Simultaneous FETI is that it breaks the short recurence by requiring full or-
thogonalization. The block FETI technique is a classical block Conjugate Gradient (block CG)
[31] where a block of right-hand sides is generated in order to activate the local effects. We first
introduce the block FETI algorithm. Then we give the minimization property that is satisfied at
each iteration and discuss its initialization as well as why it is expected that it converge fast (in a
way comparable to S-FETI and FETI Geneo). Finally we comment on the cost of block FETI.

4.1 The block FETI algorithm

The original block CG algorithm was designed to simultaneously solve the same problem for a
number of different right hand sides. Here we solve for a unique right hand side but we can rewrite
the dual interface problem (3) by considering separately the contribution of each subdomain to

the right-hand d: the N -block of multiple right-hand sides is
(

. . . ,B(s)K(s)+f (s), . . .
)

. Then, for

an initial guess λ00, the initial residual for the classical and for the block FETI respectively write

r0 = PT

(

∑

s

B(s)K(s)+
(

f (s) −B(s)T (λ0 +Pλ00)
)

)

R0 = PT
(

. . . ,B(s)K(s)+
(

f (s) −B(s)T (λ0 +Pλ00)
)

, . . .
)

.

(11)

With this setup we solve the system PTFPΛ̃ = R0 using block CG. This is the block FETI
algorithm presented in Algorithm 3. For sake of clarity we give the size of the different operators

λ, λ0, λ00 ∈ R
n; Λ̃i,Zi, Wi, Qi ∈ R

n×N ; Γi, ∆i, Φi,j ∈ R
N×N ;

where again n is the number of unknowns and N is the number of subdomains.
Since the block system is connected to the original system by the relations λ̃ = Λ̃1 and

r0 = R01 (once more with 1 = (1, . . . , 1)T ∈ R
N ) we can monitor the convergence of the original

system within the block CG.
As in the S-FETI case, in each iteration we invert an N × N matrix ∆i. In the algorithm

we use the notation + to refer to the pseudo inverse of ∆i. Once more, these pseudo inversions
are well defined since all Γi and Φi,j are in range(∆i). The possibility that ∆i may be singular,
or equivalently, that there be some linear dependencies between the residuals is a well identified
problem in block CG. It corresponds to the case where the problem has been solved on a linear
combination of the initial residuals. The solution is to deflate this residual as is proposed in [32].
This deflation step is crucial to the efficiency of block CG since, the presence of a linear dependency
means that all the work done on one direction is not contributing to convergence anymore.

1Note that in the case of two subdomains it was shown in [18] that the cost of one S-FETI iteration is nearly
equal to an iteration of the classical FETI.
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Algorithm 3: Block FETI with full orthogonalization

R0 = PT
(

. . . ,B(s)(d(s) − F(s)B(s)T (λ0 +Pλ00)), . . .
)

Z0 = S̃R0, W0 = PZ0, Λ̃0 = 0, i = 0

while
√

1TRT
i Zi1 > ǫ do

Qi = FWi

∆i = QT
i Wi

Γi = RT
i Zi

Λ̃i+1 = Λ̃i +Wi∆
+
i Γi

Ri+1 = Ri −PTQi∆
+
i Γi

Zi+1 = S̃Ri+1

Wi+1 = PZi+1 then for 0 6 j 6 i

{

Φi,j = QT
j Wi+1

Wi+1 ←Wi+1 −Wj∆
+
j Φi,j

i← i+ 1
end

λ = λ0 +Pλ00 + Λ̃1

4.2 Minimization property

The block FETI algorithm belongs to the class of block CG algorithms [31]. The following theorem
gives the minimization property that is satisfied at each iteration.

Theorem 2. The approximate solution computed by the i-th iteration of block FETI minimizes
the error λ̃i − P λ̃ in the F-norm (induced by the FETI operator) over all possible

λ̃i ∈
i−1
⊕

j=0

span (Wj) =

N
⊕

s=1

Ki(S̃,F,R
(s)
0 ), (12)

where ⊕ indicates a direct sum, R
(s)
0 is the s-th column in the initial residual and Ki(S̃,F,R

(s)
0 )

is the associated Krylov subspace at iteration i:

Ki(S̃,F,R
(s)
0 ) = span{S̃R(s)

0 , . . . , (S̃F)i−1S̃R
(s)
0 }.

The proof of convergence for block CG can be written in a similar way to the usual proof of
convergence for CG [28]. The two main properties of block CG (which condition the choice of
∆i, Γi and Φi,j) are this minimization result and F conjugacy of search directions (W⊤

i FWj =
0, ∀ i 6= j). Moreover, in exact arithmetic Φi,j = 0 for all i < j which is the short recurrence
property.

Remark 3. An important difference with the S-FETI minimization result (Theorem 1) is that this
time the space over which we minimize can be written as a sum of Krylov subspaces.

4.3 Random initialization and connexion with Geneo

A particular initialization λ00 is required in cases where the local right hand sidesB(s)K(s)+
(

f (s) −B(s)Tλ0

)

do not excite all subdomains. As can be seen from definitions (4) and (2), this can happen when
not all domains are loaded and/or when not enough subdomains have rigid body modes.

Therefore, at initialization, a random starting vector λ00 is generated for λ̃ and, in our applica-
tions, it was scaled to represent 1% of the forces (f (s)). The reason to choose a random initialization
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Figure 1: Heterogeneous beam, 3 stiff (orange, or dark) fibers are embedded in a soft (green)
material, 9-subdomain band decomposition.

is for all the columns in the initial residual to be linearly independent and also for all the vectors in
the solution space to be represented. This is somewhat similar to the random initialization of the
bootstrap adaptive multigrid algorithm [33]. In particular we can count on a contribution to the
initial residual from every vector that slows down convergence (according to the Geneo theory [16],
see also section 2, it is a good strategy to look for them locally). Finally the theory of block CG
[31] states that the main advantage of this algorithm is that, instead of catching one bad eigenvalue
per iteration, it can catch as many as there are blocks. In our case it is not only expected that
the block CG algorithm find the isolated eigenvalues first (as any CG algorithm) but also that
it find isolated eigenvalues corresponding to different subdomains simultaneously. For this reason
convergence should be very fast and comparable both to S-FETI and FETI Geneo.

4.4 Cost of Block-FETI

One iteration of Block-FETI is more expensive than Simultaneous-FETI. The principal extra cost
is due to the fact that both F and S̃ need to be applied to N -blocks of vectors. The advantage is
that the full reorthogonalization is no more an obligation, although necessary for most practical
applications.

5 Assessments

We first compare the different techniques for various academic problems known to trigger conver-
gence difficulties with an octave implementation, then we present first results for S-FETI on a
realistic fortran-mpi implementation which allows for time measurements.

5.1 High heterogeneity

These test cases are inspired by [12, 16]. Structures where heterogeneities are aligned with the
interface are known to cause convergence difficulties since classical scaling strategies are inefficient
and only dedicated (Geneo) coarse problems can restore fast convergence.

Figure 1 presents one typical case of the 2D representation of a horizontal beam clamped on
its left side and submitted to given shear and traction on its right side; the ratio between the
length and the thickness is 9. The beam is constituted by the stacking of 7 layers of linear elastic
materials with the same Poisson coefficient and Young moduli alternating between two values
Estiff and Esoft. This design aims at representing a soft material reinforced by stiff fibers. A
band domain decomposition of 9 square subdomains is employed, so that each subdomain has at
most 2 neighbours and the material is identical on either side of each interface. Each subdomain
is meshed by 434 first-order triangular elements leading to a complete problem of 3628 degrees of
freedom of which 240 belong to the interface.

In table 1, we present the number of CG iterations needed to decrease the residual by a 106

factor, for Classical FETI, Simultaneous FETI and Block FETI, each of them equipped either with
the cheaper (PI) or optimal projector (P

S̃
), for material contrasts ranging from 1 to 106.

We observe that even the optimized projector cannot prevent classical FETI from experiencing
a degradation of its performance when heterogeneity increases (for the highest heterogeneity, FETI
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with P
S̃
needs 7 times as many iterations than in the homogeneous case). On the other hand,

Simultaneous and Block FETIs are much more stable, since at worse they need twice as many
iterations as in the homogeneous case. Figure 2-a presents one classical evolution of the residual
throughout the CG iterations, Figure 2-b was obtained with a refined mesh (7 times as many degrees
of freedom), illustrating the independence of the performance with respect to the discretization.

At the bottom of table 1 we have also included the number of iterations needed for FETI Geneo
(Algorithm 1 with the coarse space described at the end of Section 2) to converge. In the first case
we have chosen the coarse space size to be 54: we select in each subdomain the six eigenvectors
from (8) associated with the smallest non zero eigenvalues. It is known by experience [16] that
this choice catches all the bad eigenvectors and indeed we observe that the number of iterations
needed to converge is not influenced by the material heterogeneity. In the second case we have let
the method select automatically the size of the coarse space by selecting all eigenvectors from (8)
such that 0 < µ(s) < 0.15 which guarantees [16] that the condition number of the preconditioned
operator is below 3/0.15 = 20. We observe that when the material is not very heterogeneous the
method does not construct a coarse space and the number of iterations increases slightly from
6, when Estiff = Esoft, to 9, when Estiff = 100Esoft. After that the size of the coarse space
increases with the heterogeneity (never exceeding 47) and the number of iterations remains below
14.

Estiff

Esoft
1 10 100 103 104 105 106

# iterations FETI PI 6 8 16 29 44 57 63
# iterations FETI P

S̃
6 6 9 18 31 41 43

# iterations S-FETI PI 5 6 8 10 11 10 10
# iterations S-FETI P

S̃
5 6 8 9 9 9 8

# iterations B-FETIPI 5 6 7 8 9 9 9
# iterations B-FETI P

S̃
5 6 6 10 12 11 11

# iterations FETI Geneo P
S̃

4 5 6 5 5 5 5
(Fixed coarse space size:) (54) (54) (54) (54) (54) (54) (54)

# iterations FETI Geneo P
S̃

6 6 9 14 12 6 5
(0 < µ(s) < 0.15 ⇒ variable coarse space size:) (0) (0) (0) (13) (32) (44) (47)

Table 1: Number of FETI iterations to decrease the initial residual by a 106 factor depending on
the level of heterogeneity

Of course the number of iterations is only one indication of how a method performs. Since this
is the most costly part of the FETI algorithms we now compare the number of local solves. We
use notation N for the number of subdomains and N for the largest number of neighbours of a
subdomain including itself:

• Within the classical FETI algorithm two local solves (one Dirichlet and one Neumann) are
performed per subdomain.

• Each iteration of S-FETI requires in each subdomain N Neumann solves (as explained in the
last item in the discussion on the cost of S-FETI in Subsection 3.4) and 1 Dirichlet solve.

• Within Block FETI, once all blocks of vectors have complete fill-in, each iteration requires
N Dirichlet solves and N Neumann solves per subdomain.

• Within FETI-2 with the Geneo coarse space no extra local solve is required in the iteration
process but we need to consider the overhead cost of solving the Geneo eigenproblem. We
assume that it is solved approximately by an, iterative, Lanczos method and that the com-
putation of each eigenvector requires three Lanczos iterations and hence three applications of
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the operator S(s)−1
B(s)T S̃B(s)v(s) which means 3 Neumann solves and 3N Dirichlet solves.

In order to build the coarse space we also need to apply the preconditioner to the eigenvector
meaning N extra Dirichlet solves. In conclusion the cost of computing one vector for the
coarse space is 3 + 4N .

In the test case at hand we have N = 9 and N = 3 so each S-FETI iteration requires twice as many
local solves as a classical FETI iteration, each Block FETI iteration requires 9 times as many local
solves as a classical FETI iteration and FETI GenEO iterations are as costly as classical FETI
iterations but the computation of each eigenvectors requires approximately 15 local solves.
With this and the results from Table 1 we conclude that Block FETI increases the number of local
solves while S-FETI and FETI-GenEO increase it for the easier problems and reduce it for the
harder problems. The best improvements are observed with S-FETI.
In defense of the Block FETI method we recall that it does not require full reorthogonalization
and that applying the same operator to N columns of a vector is a lot less expensive than applying
the same operator N times. We also recall that FETI-GenEO is at this time the only algorithm
for which convergence in few iterations is guaranteed theoretically.

Remark 4. In this discussion we have left out two important parameters: the cost of orthogonal-
ization (including for the coarse space) and the number of applications of the projector. In fact,
as usual, the only way to truly compare the performance of our solver is to compare CPU times
which we do in Subsection 5.6 for FETI and S-FETI.
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Figure 2: Heterogeneous beam in flexion, 105-heterogeneity, PI

5.2 Bad aspect-ratio

Another cause for bad convergence is the bad aspect-ratio of subdomains. To activate this problem,
we dilate the previous problem in the transverse directions: thickness now ranges between 1/5 and
10 while the length of subdomains remains 1. The aspect ratio is defined as the thickness divided
by the length. The connectivity of the mesh (and thus the number of nodes) is unchanged, elements
are distorted when aspect ratio is far from 1.

Table 2 presents the number of CG iterations required to decrease the residual by a 106 factor.
We observe that classical FETI converges more slowly when the interfaces are proportionally
closer (aspect ratio > 1): 3 times as many iterations for an aspect ratio of 5 and 5 times as many
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Figure 3: Homogeneous beam with irregular interfaces

iterations when aspect ratio is 10. Simultaneous and Block FETI are in the worst case twice as
slow.

Aspect ratio 1/5 1 5 10
# iterations FETI PI 5 6 17 29
# iterations S-FETI PI 5 5 9 11
# iterations B-FETI PI 5 5 8 10

Table 2: Number of FETI iterations to decrease the initial residual by a 106 factor depending on
the aspect ratio

5.3 Irregular interfaces

The shape of interfaces is known to have a strong influence on the convergence of the solver [9]:
roughly, the straighter the better. The irregular decomposition of the beam shown in Figure 3 was
obtained by an automatic graph partitioner (Metis [34]). Performances are presented in Table 3.
We observe that the Simultaneous and Block FETI are less impacted by the irregularity of the
interfaces than classical FETI. This will also be illustrated in the next example.

Decomposition straight irregular
# iterations FETI PI 6 12
# iterations FETI P

S̃
6 11

# iterations S-FETI PI 5 8
# iterations B-FETI PI 5 8

Table 3: Number of FETI iterations to decrease the initial residual by a 106 factor depending on
the decomposition

5.4 Decomposition with cross-points

Cross-points, namely interface nodes that belong to more than two domains, often appear in
decomposed problems and are known to sometimes be the cause of bad convergence in the case of
heterogeneous structures [7].

Figure 4 presents the heterogeneous domain with two decompositions (regular and automatic).
The square is clamped on its bottom side and submitted to traction and shear on its top side. The
discretization leads to about 2 800 degrees of freedom; in the regular case the dimension of the
interface is 300, in the automatic case it is 350. Table 4 summarizes the performance in the case of
homogeneous or heterogeneous square (105 heterogeneity) with regular or automatic decomposition
into 9 subdomains. As previously, we observe that the Simultaneous and Block FETI are much
less influenced than the classical FETI by the irregular decomposition and the high heterogeneity
in the presence of cross-points.
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(a) Heterogeneous square (green = soft mate-
rial, orange or dark = stiff material), regular
decomposition (black lines)

(b) Automatic decomposition

Figure 4: Heterogeneous square

Heterogeneity ratio 1 1 105 105

Decomposition regular automatic regular automatic
# iterations FETI PI 12 17 44 93
# iterations FETI P

S̃
12 19 46 93

# iterations S-FETI PI 8 8 12 16
# iterations B-FETI PI 7 7 9 11

Table 4: Number of FETI iterations to decrease the initial residual by a 106 factor for the square
problem.

5.5 Incompressibility

Incompressibility is also a known factor for convergence difficulties. A classical remedy is to add a
coarse problem related to the conservation of the volume of the subdomains [35].

We consider the geometry of the beam, Figure 2, with homogeneous linear elastic material in
plane strain. The bottom and top faces are clamped and a pressure is imposed on the left side
whereas the right side is free. Table 5 gives the number of iterations to converge for various Poisson
coefficients close to the incompressible limit ν ≃ 0.5.

We observe how block strategies enable to limit the degradation of the convergence rate: when
(0.5 − ν) goes from 10−5 to 10−6, classical FETI needs twice as many iterations whereas block
strategies only need 25% more iterations. Although this is interesting, it is clear that when the
incompressibility limit is approached, an additional coarse grid as proposed in [35] is needed.

1/2− ν = 10−1 1/2− ν = 10−5 1/2− ν = 10−6

# iterations FETI 5 31 63
# iterations S-FETI 5 18 23
# iterations B-FETI 5 18 22

Table 5: Number of FETI iterations to decrease the initial residual by a 106 factor for the quasi-
incompressible problem.
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5.6 Optimized implementation and time measurement for S-FETI

The implementation of the S-FETI method can be optimized in several ways (refer to Algorithm 2):

Simultaneous forward-backward substitutions By definition the s-th column of Zi is non
zero only on the interface of subdomain Ω(s) and so, given a column in Zi, its product by
F requires solving a Neumann problem only in the subdomain itself and its neighbours.
Conversely, given one subdomain Ω(s), the work load associated with the computation of
FZi is N Neumann solves F(s) (once more N is the number of neighbours of a subdomain
including itself). In particular this is much fewer than the rank of Zi which is equal to
the number of subdomains. These multiple local solutions can be computed much more
efficiently on a multi-core machine as a single solution. Indeed, in both cases the number of
memory accesses is almost equal to the number of non zero entries in the factorized matrix,
whereas the arithmetic complexity is multiplied by the number of simultaneous right-hand-
sides with the result that multiple forward-backward substitutions do not present the same
memory bottleneck issue than a single one. For instance, for a finite element sparse matrix
of dimension 200 000 on a 12-core Intel Nehalem processor, the time for a single forward-
backward substitution on a single core is 0.7 s with the Intel Pardiso solver whereas the time
for 12 simultaneous forward-backward substitutions on 12 cores is only 1 s. For a single
right-hand-side, multi-core parallelization only decreases the time by 30% at best. Finally,
if several single forward-substitutions for different matrices are performed at the same time,
the memory bottleneck causes the time for each one to increase dramatically.

Parallel implementation of P with low rank corrections Within S-FETI, the columns of
Wi are built from the projected vectors PZi and these are not local. Fortunately, the FETI
projection P only performs a low rank correction so PZi can be computed at only a small
extra cost. This cost is even further reduced with the simple PI projector (i.e. when A = I,
see section 2), which we have chosen to use in our tests. It operates as follows:

PIZi = Zi −Gβi where βi solves G
TGβi = GTZi.

As usual this guarantees that GTPIZi = 0. Note that by construction G has the same

sparse pattern as Zi meaning that, given a column Z
(s)
i of Zi, GTZ

(s)
i is computed by

applying only dot products by the columns of G corresponding to Ω(s) and its neighbours.
For this reason and because (GTG) was factorized during the initialization phase of FETI,

βi can be computed in parallel. Each subdomain is in charge of computing one column β
(s)
i

of βi by solving, via a forward-backward substitution one system (GTG)β
(s)
i = −GTZ

(s)
i .

Of course, βi is a dense matrix, whose number of rows is equal to the rank of G and number
of columns is equal to the number of subdomains (also the rank of Zi), but nevertheless,
once βi has been computed, computing PZi = Zi −Gβi requires just a low rank correction
of Zi in each subdomain since only a few columns of G are non zero in each subdomain.

Preservation of locality in computing FWi As already explained in the last item of the dis-
cussion in Subsection 3.4, the costly part in computing FWi comes down to the computation
of FPZi = FZi − FGβi and this can again be obtained with local low rank corrections of
FZi using (FG) that has been computed at the initialization phase of S-FETI.

Optimization of the orthogonalization procedure Once a set of vectors PZi has been com-
puted, it must be F-orthogonalized to compute the new set of search directions Wi. Instead
of using a modified Gram-Schmidt procedure that requires many MPI reductions of dimension
1, (PZi)

TFPZi can be computed by computing the local contribution of each subdomain,
using BLAS3 kernels, and only one MPI reduction to compute all the entries at once. Then
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Figure 5: Three test cases on which we measure CPU times

we use a Choleski factorization of PZT
i FPZi to compute the new set of F-orthonormal search

directions Wi. The complete F-orthogonalization with the previous search direction vectors
can be performed by block as well, with the same kind of optimization using local BLAS3
kernels and reducing the number of reduction operations compared to the standard modified
Gram-Schmidt method.

In order to evaluate the method, we consider three test cases of 2D linear elasticity on a square
domain clamped on one side and with imposed displacements on the opposite side. They are
presented in Figure 5. We use either a regular checkerboard decomposition into 5 × 5 regular
square subdomains each containing 80 000 degrees of freedom (the global problem is then 2M
degrees of freedom large) or a decomposition into slices with 50 subdomains containing 200 000
degrees of freedom each (the global problem is then 10M degrees of freedom large). The subdomains
are always homogeneous, but there exists a global heterogeneity pattern, with a maximal ratio of
104 in the Young modulus and constant Poisson ratio. This consists either of alternating layers of
materials or of a random distribution where each subdomain is randomly affected a Young modulus
of 1, 10, 102, 103 or 104. Note that this type of heterogeneous problems where the decomposition is
chosen such that domains are homogeneous are usually well handled by the classical FETI methods
[3] so these test case are not designed to be particularly favorable to our methods.

The tests are conducted on a cluster of 2.6 GHz 8-core Xeon processors connected by a gigabit
ethernet network. Each subdomain is allocated to 4 cores (2 subdomains per processor). Intel
fortran compiler and MKL-pardiso solver are used with a degree of parallelism of 4.

The FETI iterations are performed until both the relative error ‖ui − ui−1‖/‖ui‖ and the
relative residual ‖(Kui − f)‖/‖f‖ for the global problem are smaller than 10−6.

Decomp. Hete. Solver #iterations #search
directions

Max #local
resolutions

Time (s)

Checker Layers
FETI 105 105 210 24
S-FETI 39 975 273 24

Checker Random
FETI 386 386 772 112
S-FETI 102 2550 714 68

Slices Layers
FETI 107 107 214 70
S-FETI 2 100 10 3

Table 6: CPU performance of FETI and S-FETI for a 2D elasticity problem

Table 6 presents the results for the different test cases. For FETI and S-FETI, we compare
the number of iterations needed to achieve convergence, the number of generated search directions
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(which is equal to the number of iterations for FETI and to the number of iterations multiplied
by the number of subdomains for S-FETI), the maximal number of local (Dirichlet or Neumann)
resolutions on the subdomains, and the wallclock time.

In the first case (checkerboard decomposition and alternating layers of material) S-FETI does
not reduce the total time, but the effect of better efficiency with a block approach can already be
seen since the global arithmetic complexity is higher but not the global time. Note also that the
standard FETI requires as many Dirichlet and Neumann solutions whereas S-FETI requires much
more Neumann than Dirichlet solutions, Neumann resolutions being slightly more expensive.

In the second case (checkerboard decomposition and random distribution of materials) which is
more ill conditioned, the total number of solutions required by the S-FETI method is 10% smaller
than with standard FETI, but the time is reduced by a factor of almost 2, thanks to better parallel
efficiency, both of global MPI data transfers and at the local multi-core level.

In the last case (decomposition into slices and alternating layers of material), the S-FETI
method performs extremely well. Note that the total number of search directions is almost the
same for both methods but S-FETI requires much fewer local solutions. In this case the efficiency
of the local solutions due to multiple forward-backward substitution is low because there are at
most three local solutions to be performed at the same time.

To conclude, these first quantitative assessments show that S-FETI performs at least as well
as the usual FETI method in terms of CPU time and in some cases significant performance im-
provements can be obtained (up to 23 times faster). Note that even better performance can be
expected in 3D where the multiple forward-backward substitution is even more efficient.

6 Conclusion

A well-known problem when applying Domain Decomposition techniques to real engineering prob-
lems is the presence of heterogeneities along the interfaces. Classical preconditioning techniques
perform very poorly in such cases. The FETI-Geneo was proposed lately to ensure robustness
in those cases, by precomputing troublesome interface modes and including them in an auxiliary
coarse-grid. That method however requires costly pre-processing.

In this paper we proposed and analyzed two block strategies with the purpose of enriching the
search space at every iteration on the interface problem. The methods were discussed and tested
for the FETI method. Nevertheless applying the same concepts to other non-overlapping methods
(e.g. BDD, FETIDP or BDDC) is straightforward.

The first method, Simultaneous-FETI (or S-FETI), exploits the additive structure of the pre-
conditioner to generate a family of search directions and let the solver choose the best way to
combine them instead of just summing them. The extra cost of the method is limited because
sparsity can be exploited when searching the solution in the multiple directions. One drawback of
the S-FETI method is that it is no longer a genuine Conjugate Gradient method and full orthog-
onalisation of the search directions is necessary. This drawback is however a non-issue in practice
since full orthogonalisation is required even for Conjugate Gradient.

The second method, Block-FETI, exploits the additive structure of the problem to generate a
family of right-hand-sides to be solved by a block-conjugate gradient. Full reorthogonalization is
no more mandatory, but this method requires many more local Dirichlet and Neumann solves than
the classical FETI.

Both methods have very good computational properties since one iteration involves as many
exchanges as classical FETI (but with larger amount of data) and they rely on block resolutions.

The assessments showed that both methods are much more robust than classical FETI for
highly heterogeneous problems, for decompositions with jagged interfaces and for subdomains
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with bad aspect ratio. CPU time assessments of the S-FETI method showed that it can lead to
very significant gains compared to standard FETI methods.

The methods need to be assessed on larger class of problems in particular in the cases where
the decomposition involves a very large number of subdomains. It is expected that, since they
imply highly optimized operations conducted on blocks of vectors, the proposed methods should be
interesting default strategies for people concerned by the robustness of their Domain Decomposition
solvers.
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