
Planning Human-Computer Improvisation
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ABSTRACT

Improvisation intrinsically carries a dialectic between spon-

taneity/reactivity and long-term planning/organization. This

paper transposes this dialectic to interactive human-computer

improvisation where the computer has to interleave various

generative processes. They require different levels of prior

knowledge, and follow a coarser improvisation plan driven

by real-time interactions with the musicians. We propose

a time-aware extensible architecture allowing the temporal

coordination of different improvisation strategies. It inte-

grates various generative strategies capitalizing on the sys-

tem Improtek into the high-level structure provided by the

language associated to the score follower Antescofo. The

resulting framework manages the musical events, the trig-

gering of generative processes at different time scales and

the declarative specification of improvisation plans driven

by the occurrence of complex events.

1. INTRODUCTION

This article proposes a new framework to conciliate the

need of spontaneity and reactivity with long-term planning

and temporal organization in human-computer improvisa-

tion. This framework enables the temporal coordination

of different improvisation strategies within an improvisa-

tion plan driven by the occurrence of complex musical and

logical events.

Most improvisation styles rely on prior knowledge of the

temporal evolution of the music to produce. This tempo-

ral organization can be an explicit sequence as standard

themes in be-bop improvisations or given melodies in some

traditional folk music. When it is not, the temporal struc-

ture can be specified as a sequential scenario describing a

sequence of constraints that must be satisfied successively

by the improvisation to be played. A standard example

is the harmonic progression used in most current west-

ern musical styles such as rock, blues, jazz or pop mu-

sic. Otherwise, the temporal organization may not take

the form of a sequential structure. In this case it can be

best described as responses to complex events implying

both musical events and logical conditions, as for instance

in soundpainting. These temporal structures exist concur-

rently at different time scale, for example: at short-term,
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the synchronization of the notes of a generated sequence

with current tempo; generation of musical sequences satis-

fying global constraints in mid-term; and at a higher level,

switching from an improvisation part to another, defined

by different sets of prior knowledge, memory, mechanisms

and rules (such as switching from lead to follow, from free

to idiomatic, etc.). The coordination of these temporal

sequences and reactions constitute complex improvisation

plans or dynamic scores.

In [1], Rowe outlines that designing interactive musical

systems pushes up musical composition “to a meta-level

captured in the processes executed by the computer”. The

framework proposed in this paper addresses this “meta-

level” and is aimed at the definition and the implementa-

tion of the temporal structures used to guide or constrain

music generation in reaction to an active listening of the

live musical input. It couples two literatures, generative

model with real-time recognition and reactive systems, usu-

ally considered separately but whose integration makes com-

plete sense in interactive and improvised musical practices.

This architecture has been deployed with the develop-

ment of an experimental prototype capitalizing on the Im-

protek [2] and the Antescofo [3] systems. The former pro-

vides structured and guided musical generation from an

ordered and indexed online or offline memory, while the

latter provides musical synchronization and the possibility

to specify reactions to unordered complex events.

After presenting some background in interactive impro-

visation systems and sequencers in section 2, this paper

gradually describes how improvisation strategies with dif-

ferent degrees of indeterminism can be employed within

the same plan. Section 3 focuses on fixed reactions to a

planned input. Section 4 presents the generation of musical

sequences satisfying long-term constraints and section 5

how reactivity can be injected into these generative pro-

cesses through dynamic calls and parametrization with the

musical context. Finally, section 6 sketches programing

patterns for writing reactions to unordered complex events.

2. RELATED WORK

Interactive improvisation systems can be categorized by

their hard-coded inherent strategy to drive the music gener-

ation process. A first category let to an operator-musician

the guidance of the generation process: OMax [4, 5] is

controlled by a user steering the navigation through a rep-

resentation extracted in real-time from the playing of a live

musician. The user is also at the heart of Mimi4x [6] and is

involved in the construction of the performance by choos-
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ing the musical corpus and modifying the generation pa-

rameters. Other systems are driven by an analysis of the

live inputs: SoMax [7] translates the musical stream com-

ing from an improviser into constraints, for example de-

scribed in terms of harmonic background, to filter the pos-

sible paths in a corpus whose internal logic can also be

followed. VirtualBand [8], emphasizes interaction and re-

activity and extracts multimodal observations from the mu-

sician’s playing to retrieve the most appropriate musical

segment in a memory in accordance to previously learned

associations. In the same line, Reflexive Looper [9] uses

in addition harmonic annotations in the search criteria. Fi-

nally, an upstream structure or description can run the gen-

eration process: PyOracle [10] proposes to create behavior

rules or scripts for controlling the generation parameters

of an improvisation session. The concept of control im-

provisation in [11] introduces a control structure to guide

the improvisation by a reference sequence and satisfying

given specifications. The generation process presented in

section 4 also includes an inherent strategy based on long-

term constraints. In the context of improvised mixed mu-

sic, it needs to be integrated in an environment allowing

the specification of temporal developments of musical pro-

cesses in reaction to human performance or controls given

to an operator-musician.

The system Antescofo is chosen for the high-level or-

ganization of the musician-computer interaction because

it combines score following capacity with an expressive

timed and reactive scripting language. In Max/MSP or

PureData [12] which are dataflow graphical languages and

where control and signal processing are statically deter-

mined, it is easy to construct static behaviors, but much

harder to organize and control changing behaviors accord-

ing to a complex scenario. Antescofo, compiled as a Max

or PureData object, is used in these cases to interact with

the external environment. Other dynamic languages en-

counter some success in the interactive music community

such as SuperCollider [13] or Chuck [14]. These are tex-

tual languages facilitating the programming of audio and

algorithmic processes. Their real-time properties make them

ideal tools for ”Live Coding” practices, often improvised,

where the time of composition (in the program) coincides

with that of performance. However, the semantics of these

languages does not allow the direct specification of the

behavior of the external environment. Furthermore, their

models of time is not directly linked with that of the per-

former.

Compared to traditional sequencers such as LogicPro, Pro-

Tools or CuBase, Antescofo is dedicated to more dynamic

situations. Ableton Live with Max4Live adds more pos-

sibilities of interaction compared to the sequencers cited

above, but without providing a flexibility allowing to syn-

chronize the electronic processes to the elastic time of the

musician.

3. FIXED REACTION TO A PLANNED INPUT

An improvised music performance may refer to predefined

melodies, scores, audio materials or more broadly sequences

of actions with their own temporality. The synchroniza-

tion with a musician’s performance of heterogeneous elec-

tronic actions (playing an audio file, triggering of a synthe-

sis sound, or the execution of some analysis processes, etc)

is a common problem of interactive music systems. Many

solutions have emerged to deal with this issue depending

on musical purpose or available technologies, leading to

the score following approach used in the environment de-

scribed in this paper.

The most elementary solution is to launch a predefined

electronic sequence recorded on a fixed support (magnetic

band, classical sequencer). In this case, the musician’s

performance is totally constrained by the time of the con-

cerned support. Another way to make the time of elec-

tronic actions progress is to use a cue-list logic. The elec-

tronic is here defined as a list of successive actions and a

mechanism as a pedal controller activated by the musician

at the right moment triggers corresponding actions to exe-

cute. This approach is more flexible than the previous one

because the time of the performance is under the supervi-

sion of the musician. However it raises the issue of how

to partition the electronic part of the score if it is continu-

ous in the thought of the composer and during the perfor-

mance. Furthermore, giving the control of the electronic

time to the musician can hinder the expressivity during the

performance.

Score following is defined as the real-time alignment of

an audio stream played by one or more musicians into a

symbolic musical score. It offers the possibility to auto-

matically synchronize an accompaniment, and thus can be

used for the association of an electronic part to a predefined

instrumental in an improvised music context. Antescofo

is a real-time system for interactive music authoring and

performing. It focuses on high-level musical interaction

between live musicians and a computer, where the tem-

poral development of musical processes depends on ac-

tive listening and complex synchronization strategies [3].

In [15] a novel architecture has been proposed that relies

on the strong coupling of artificial machine listening and a

domain-specific real-time programming language for com-

positional and performative purposes. The user creates

an augmented score whose language integrates both pro-

grammed actions and musical events, allowing a unique

and flexible temporal organization. The augmented score

includes both the instrumental part to recognize and the

electronic parts and the instructions for their real-time co-

ordination during a performance.

The syntax for writing the instrumental part allows the

description (pitches and durations) of events such as notes,

chords, trills, glissandi and improvisation boxes. Actions

are divided into atomic actions, performing an elementary

computation, and compound actions. The atomic actions

can be: messages sent to the external environment (for in-

stance to drive a synthesis module), a variable assignment,

or another specific internal command. The group con-

struction describes several actions logically within a same

block that share common properties of tempo, synchro-

nization and errors handling strategies in order to create

polyphonic phrases. Other constructions such as loops

for iterated actions or curve for continuous specification



are also available.

During performance, the runtime system evaluates the

augmented score and controls processes synchronously with

the musical environment, thanks to data received from the

machine listening. The reactive system dynamically con-

siders the tempo fluctuations and the values of external

variables for the interpretation of accompaniment actions.

The possibility of dating the events and the actions rela-

tively to the tempo, as in a classical score, is one of the pos-

sibility offered by Antescofo. Within the augmented score

language, the user can thus decide to associate actions to

certain events with delays, to group actions together, to

define timing behaviors, to structure groups hierarchically

and to allow groups act in parallel.

Delays and durations are arbitrary expressions and can

be expressed in relative time (in beats) or in physical time

(in seconds). Antescofo provides a predefined dynamic

tempo variable through the system variable $RT TEMPO.

This variable is extracted from the audio stream by the lis-

tening machine, relying on a cognitive model of the be-

havior of a musician [16]. Programmers may introduce

their own frames of reference by specifying a local tempo

for a group using a dedicated attribute. All the tempo-

ral expressions used in the actions within this group are

then computed depending on this frame of reference. As

for other attributes, a local tempo is inherited if groups are

nested. A local tempo is an arbitrary expression involving

any expressions and variables. This expression is evalu-

ated continuously in time for computing dynamically the

associated delays and durations.

4. IMPROVISATION GUIDED BY A SEQUENTIAL

SCENARIO

4.1 Memory and scenario

When the prior knowledge on the structure of the impro-

visation is not as explicit as classical score, a melody or

a theme, it may consist in a sequence of formalized con-

straints for the generation of the improvisation to create.

Examples of such formalized structures can be a chord

progression in blues, rock, or jazz improvisation; the har-

monic progression given by the bass in the baroque basso

continuo; or the precise description of the evolution of the

improvisation in terms of melody, tempo or register in the

indian raga. This section describes an improvisation model

extending that of ImproteK [2] 1 , relying on such a se-

quence of constraints existing before the performance.

This model follows on the work initiated in [17, 18] on

the navigation through a cartography of a musician’s live

playing, partly capturing his musical logic. The applica-

tion of these principles in a real-time improvisation system

led to OMax [4, 5], and long-term constraints and a pri-

ori knowledge were brought in the generation process with

ImproteK by means of an abstract symbolism conveying

different musical notions depending on the applications,

like meter as regards rhythm or chord notation as regards

1 Links to video examples of live performances and work sessions can
be found at http://repmus.ircam.fr/nika

harmony [19], joining previous works on the use of chord

charts in improvisation [20, 21].

The improvisation process is here modeled as the artic-

ulation between a scenario to follow and a structured and

indexed memory in which musical fragments are retrieved,

transformed and reordered to create new improvisations:

• the scenario is a symbolic sequence guiding the im-

provisation and defined over an appropriate alphabet

for the musical context,

• the memory is a sequence of contents labeled with a

symbolic sequence defined over this same alphabet.

In this framework, “improvising” means going through

the memory to concatenate some contiguous or discon-

nected blocks satisfying the sequence of temporal constraints

given by the scenario. These blocks are chained in a way

comparable to an improviser who is able to develop an im-

provisation by using motifs he eared or played himself in

different contexts, described here with different scenarios.

The improvisation process searches for the continuity of

the musical discourse as well as the ability to grow apart

from the original material. It relies on the indexation of

some similar patterns in the scenario and the memory, and

the self-similarities in both sequences.

4.2 Overview of the model

The scenario and the sequence describing the musical mem-

ory are represented as words defined over a same alphabet.

This alphabet describes the equivalence classes chosen to

compare the musical contents of the online or offline mem-

ory. After choosing a temporal unit for the segmentation,

the letter at index T of the scenario S of length s is noted

S[T ] and corresponds to the required equivalence class for

the time T of the improvisation. In the same way, the let-

ter M [P ] gives the equivalent class labeling the musical

fragment corresponding to the date P in the memory M

of length m. In what follows, each musical content in the

memory will be assimilated to the letter M [P ] indexing it,

and by extension the whole memory will be assimilated to

the word M . The scenario gives access to a prior knowl-

edge of the temporal structure of the improvisation to play.

It enables to take into account the required classes for fu-

ture dates T + 1, T + 2,... to generate improvisation at

time T . The current scenario, noted ST , corresponds to

the suffix of the original scenario beginning at the letter at

index T : S[T ]...S[s − 1]. At each time T , the improvisa-

tion goes on from the last state read in the memory at time

T−1, searching to match the sequence of constraints given

by the current scenario.

The proposed improvisation model undertakes successive

navigation phases 2 through the musical memory, which

rely on searches of prefixes of the current scenario in the

memory. The length of these prefixes is one of the control

parameters of the process. Figure 1 illustrates two consec-

utive generation phases.

2 These navigation phases are successive steps in the algorithmic pro-
cess producing the improvisation, but they do not correspond in general
to distinct musical ”phrases”.
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Figure 1. Improvising by articulating an indexed memory

and a scenario: two navigation phases (1-2 and 3-4).

The first phase (steps 1-2) aims to generate the improvi-

sation from the date T by satisfying the current scenario

ST =S[T ]...S[s − 1], suffix of S. At the end of this first

phase, the prefix S[T ]...S[T ′ − 1] of the suffix ST of S

has been processed. A new research phase over the suffix

ST ′=S[T ′]...S[s − 1] of S has to be launched at step 3 to

complete the improvisation up to T ′′ − 1 (steps 3-4). Each

of these phases through the memory is constituted by two

consecutive steps:

1. Search for a prefix providing a starting point in the

memory (steps 1 or 3 in figure 1), detailed in 4.3,

2. Follow a linear or non-linear path matching the sce-

nario (steps 2 or 4 in figure 1), detailed in 4.4.

They respectively take advantage of the prior knowledge

on the structure of the scenario and the memory, and ad-

dress the concerns of musical continuity and transforma-

tion of the original material. Each of these two steps de-

scribed in the following part of this section introduces a

parameter whose value influences the musical result: cf
representing the continuity regarding the future of the sce-

nario, and cp quantifying the continuity regarding the past

of the memory.

4.3 Step 1: searching for a section of the current

scenario in the memory

The first step when going through the memory to produce

the improvisation is to search for a pattern matching a sec-

tion of the current scenario in the memory, that is to say a

prefix M [i]...M [i′] of ST =S[T ]...S[s − 1] in M . The first

element of this pattern, M [i], gives a starting point for the

navigation phase. The trivial solution is then to copy the

whole pattern M [i]...M [i′] (the other options are described

in the following paragraph 4.4). The set SP (T ) of possi-

ble starting points for the generation of the improvisation

from a date T is defined by:

SP (T ) = {i ∈ N | ∃cf ≥ 0,

M [i]...M [i+ cf ] ∈ Prefixes(ST )}

where cf measures the duration of the sequence in the

memory starting at the chosen index i, matching a part of

the current scenario ST , and which can be literally cloned.

The choice of an actual starting point among the elements

in SP (T ) is made in accordance with the current state of

the constraints imposed on it. For example, imposing the

maximum value for cf will lead to a maximal length pre-

fix and will provide a homogeneous and continuous mu-

sical result throughout its duration. Conversely, a small

value will lead to extractions of short segments in poten-

tially different zones of the memory. Depending on the

musical situations, one can successively prefer a state pro-

viding the coherence of the musical discourse in the long

term and very close to a section of a learned sequence, or a

more fragmented musical result. Constraints on others pa-

rameters also influence the choice of an element in SP (T ),
among them the location of the pattern in the memory or

the preference for a segment offering the best progression

regarding the end of the segment produced by the previous

phase. The control on these parameters can be given to an

operator-musician and/or integrated in a higher level of the

improvisation planning (see 6.5).

The prefix indexing algorithm used to obtain the set SP (T )
(detailed in an upcoming paper) uses the “failure func-

tion” of the Morris and Pratt algorithm [22] to process self-

similarities in ST in a preliminary analysis phase (as it is

used in [23] to get the tables of prefixes and borders). This

result is then used in the search phase to index the prefixes

of the current scenario ST in the memory M .

4.4 Step 2: following a non-linear path matching the

current scenario

For each generation phase, the improvisation process starts

from the chosen starting point and runs through the mem-

ory collecting a sequence of states whose labels match the

scenario, and this mechanism goes on until the research of

a new starting point is necessary. After a starting point is

chosen in the memory at the indexing step (4.3), the first

solution is to literally clone the prefix beginning by this

state (step 2, figure 1). Yet, in particular when ST and

M are very close, the set of possible paths has to offer

more than a simple copy to create new material. The nav-

igation process exploits therefore an analysis of the self-

similarities in the structure of the memory to generate a

continuous musical discourse while widening the scope.

The possible progressions matching the scenario from a

given state M [k0] is thus defined as the set of the states in

the memory sharing a common past with M [k0], and satis-

fying the next label S[T ] imposed by the scenario. The set

P (T, k0) of indexes k of the states in the memory match-

ing the time T of S and being a candidate for the next

progression from the previous state M [k0] is defined by:

P (T , k0) = {k ∈ N | ∃ cp ∈ [1, k],

M [k − cp]...M [k − 1] ∈ Suffixes(M [0]...M [k0]), and

M [k] = S[T ]}

The similar pattern in M and ST can be linearly followed

by choosing in P (T, k0) the consecutive state in the mem-

ory M [k] = M [k0 + 1]. Assuming that jumps between

two segments in the memory sharing a common past pre-

serve a certain musical homogeneity, non-linear paths are



also considered, as in the step 4 (4a then 4b) in figure 1,

to avoid a simple copy of the learnt sequence. Such jumps

are authorized when the factors ending at the origin and at

the destination of these jumps share a common suffix. The

length of this common suffix cp measures the length of the

shared musical past and therefore quantifies the “quality”

of these jumps.

The automaton structure chosen to learn the musical mem-

ory is the Factor Oracle [24, 25]. The progression process

of this second step of the generation extends the mech-

anism for improvisation, harmonization and arrangement

proposed in [2] based on the navigation [26, 27] in this au-

tomaton for musical applications. This automaton presents

links locating repeated patterns within the sequence and

providing the existence of a common suffix between the

elements that they connect, giving then the successive sets

P (T, k0). The common suffix is seen as a common mu-

sical past in the context of this application. The postulate

at the heart of the musical models using the Factor Ora-

cle [4, 5, 7, 10, 6, 11] is indeed that such non-linear paths

in a musical memory thus mapped enable to create musi-

cal phrases proposing new evolutions while preserving the

continuity of the musical discourse.

5. INTRODUCING REACTIVITY INTO THE

IMPROVISATION MODEL

5.1 From static to dynamic generation

The improvisation model guided by a scenario can be used

in live performance to generate autonomous sequences sat-

isfying given specifications or in an offline process, for in-

stance composition. This section introduces scheduling of

dynamic calls to this model in order to bring reactivity and

adapt to the generation process to the improvisation envi-

ronment. This way, the generation can react to changes of

control parameters (given to an operator-musician and/or

mapped to the live musical input) or to dynamically modi-

fied scenarios while being coherent with the past and keep-

ing its long-term horizon.

Musical inputs

Controls

Synchronised 
improvisation

Scenario (S)

Memory (M)

Generation

Date T → Current
position in the scenario

d b c a

c

... c a

...

Beat

Segmenting et 
labeling Scheduling

Learning

Q
u

e
ry

P
la

y

Buffer (B)

Figure 2. The generation process within a real-time archi-

tecture.

Listening to a source of beats gives the current date T ,

and also the associated label S[T ] in the scenario used in

different concurrent processes. The three main aspects of

the integration of the improvisation model into a real-time

environment are presented in figure 2: 1) learning the mu-

sical material from the musicians playing with the system,

2) generating and 3) playing the new improvised phrases

synchronously with the running improvisation session. For

this end, a buffer is added to the two main elements in the

model (scenario and memory). It contains the short-term

anticipated playing “intentions”, which are refined over

time.

5.2 Scheduling the navigation phases: anticipations

and rewritings

The implementation of this architecture involves parallel

processes listening and reacting to the environment, the el-

ements produced by the model, and the instructions given

by the operator or a higher scale improvisation plan.

Algorithm 1. Scheduling the reactions to the environment

Initial state:
Buffer (storing the musical elements to play) = ∅
E (index of the first empty position in the buffer) = 0
CurrentTimePlayed = false

1 Whenever T updated do

2 Learn inputs from [T-1,T[ labeled by S[T-1] in M

3 CurrentTimePlayed← false

4 if Buffer[T] then
5 Play(Buffer[T])

6 CurrentTimePlayed← true

7 Whenever E - T < minimum imposed anticipation do

8 T’← max(T, E)
9 Generate(T’, ST’)

10 Whenever modif. of parameters or S affecting date T’ ≥ T do

11 Generate(T’, ST’)

12 Whenever RecvdElem = (Idx,Content) received do

13 if (Idx = T) & (¬ CurrentTimePlayed) then
14 Delay← Date(update T) - Date(RecvdElem)
15 Play(Content, Delay)

16 CurrentTimePlayed← true

17 Buffer[Idx]← Content

18 E← max(Idx+1, E)

These processes correspond to the three blocks building

the generic dynamic score given in algorithm 1. It contains

the scheduling of the calls to the model described in 4, and

the sequence triggering:

1. Listening to update of current date orchestrates la-

beling and learning of musical material, and playing

of anticipated events stored in the buffer (lines 1-6
in algorithm 1).

2. When a new element generated by the model is re-

ceived (lines 12-18 in algorithm 1), it is stored in the

buffer or immediately played managing potential de-

lays.



3. A query to generate a segment of improvisation start-

ing at date T ′ ≥ T associated to suffix a ST ′ of the

scenario can be sent if it is required.

S[T] ...

Scenario

Buffer

B[T] ... ∅

T

... ...S[T']

B[T']...

... ...

...

S
T'

Memory

T' ≥ T

S[T]

Output played at 

time T

Labeling

musical input [T, T+1[ 

Learning

Rewriting anticipations

E

New query

Trace

Update

Figure 3. Processes launched at time T of the perfor-

mance, reaction to a modification affecting time T ′ ≥ T .

The model is called to generate the improvisation phase

(see 4.2) after phase, anticipating the performance time. A

query launching a new generation phase is thus sent if the

minimum anticipation delay between the current time T

and the first date with no element previously generated and

stored in the buffer E is reached (lines 7-9 in algorithm 1).

Figure 3 gives an overview of different processes running

at a given time T of performance. In reaction to modifi-

cation of a parameter or an update of scenario affecting a

date T ′ ≥ T , a query launching a new generation phase

is sent (lines 10-11 in algorithm 1). If this query over-

laps with a previous one, the associated anticipated part

of the improvisation is rewritten. This scheduling archi-

tecture combines anticipation and reactive controls. The

short-term intentions stored in the buffer evolve and are

refined as the performance goes. A trace records history

of paths in the memory and constraints of last navigation

phases so that coherence between successive phases asso-

ciated to overlapping suffixes of the scenario is maintained.

This way for example, constraints can be imposed in real-

time, and short-term memory can immediately be injected

while keeping up with the scenario. A ”reaction” is not

seen here as a spontaneous instant response, but as a revi-

sion of the short-term intentions matching the scenario in

the light of new events from the environment.

6. CHAINING REACTIONS TO UNORDERED

COMPLEX EVENTS

6.1 From scheduling to logical planning

The generative model introduced in section 4 was imple-

mented as a Common Lisp library using the OpenMusic

environment [28]. The memory and the navigation meth-

ods are called in this interaction context through a producer-

consumer system which involves parallel processes shar-

ing accesses to the memory and the information received

from the dynamic score (algorithm 1). This structure con-

taining the scheduling of the calls to the model, the buffer,

and the triggering of the playing of the computed sequences

is implemented using Antescofo language. The correspond-

ing program is generic enough to be independent of impro-

visation situations and of types of scenario. The improvisa-

tions generated by the model are then played in synchrony

with the musical environment, following the fluctuation of

the tempo. The synchronization strategies to manage the

delays (lines 13-16 algorithm 1) associated to anticipation

are used to maintain musical coherence despite real-time

modifications of generation parameters.

Beyond scheduling aspects detailed in the previous para-

graph, this section presents Antescofo features allowing

specification of high-level temporal structures of this model

and also more generally of different kind of processes that

can be involved in an improvised interactive music per-

formance. Recent developments of the language integrate

handling of dynamic duration, complex events specifica-

tion and dynamic processes. This generalizes the notion of

score following beyond triggering of an action or recog-

nition of causal events. The score is no longer subject

to linear rigidity of classical scores. It can be seen more

as an interactive system where events, actions, durations,

tempi and all the temporal structures can change dynami-

cally. Such features make it an adequate environment for

the temporal coordination of the processes that can be in-

volved in Human-Computer Improvisation.

6.2 The whenever statement

The whenever statement launches actions conditionally

on the occurrence of a signal.

whenever (predicate)

{

actions-list

} until (expression)

predicate is an arbitrary expression. Each time the

variables of predicate are updated, the expression is

re-evaluated. The whenever statement is a way to re-

duce and simplify the specification of the score particu-

larly when actions have to be executed each time an event

is detected. It also escapes the sequential nature of tra-

ditional scores. Actions of a whenever statement are not

statically associated to an event of the performer but to

the dynamic satisfaction of some predicate. They can be

triggered as a result of a complex calculation, launched by

external events, or any combinations of the above.

6.3 Patterns

The whenever structure is relevant when the user wants

to define a reaction conditionally to the occurrence of an

event. A logical event is specified thanks to a combination

of variables. Complex events corresponding to a combina-

tion of atomic events with particular temporal constraints

are however tedious to specify. Antescofo patterns make

the definition of this kind of events concise and easy. A

pattern is made of punctual events (EVENT) and of events

with some duration (STATE). The example below shows

how to define the complex event pattern::P, matching

the following configuration: the variable $x is greater than



a threshold equal to 10 during 0.5s. Then the variable is up-

dated to 1 before one second is elapsed. This pattern can

then be used in the specification of a whenever condition

to assign a reaction to this event.

@pattern_def pattern::P

{

STATE $x where($x>10) during 0.5s

before 1s

EVENT $y where($y=1)

}

whenever(pattern::P)

{

actions...

}

6.4 Processes

Processes are groups of actions dynamically instantiated.

Unlike the other actions, the runtime structure associated

to a process is not created during the loading of the score

but at the time of the call, in accordance with its defini-

tion. Then, all the expressions involved in the process (du-

rations, command names, attributes, etc.) may depend on

parameters of the performance.

@proc_def ::delay($pitch, $d)

{

$d/3 loop $d/3

{

play $pitch

}during [2#]

}

NOTE C4 2.

::delay("C4", 2.)

NOTE D3 1

::delay("D3", 1)

In the previous example, the process ::delay repeats

twice the note that triggered it during the duration of this

note. Processes are first-class values: for example, a pro-

cess can be passed as an argument to a function or an other

process. It can be recursively defined and various instances

of a same process can be executed in parallel. Processes are

quite adapted to the context of improvised music, and can

be used for example as a library of parametrized musical

phrases that are instantiated following the musical context.

6.5 Writing improvisation plans

The set of tools presented in this section enables to write

improvisation plans defining different kinds of interactions.

The schematic example in figure 4 shows an generic exam-

ple of such a plan. In this context, the score of the musi-

cian is not completely defined and the inputs of the reac-

tive module are not only extracted from Antescofo listening

machine but can also be provided by external modules.

Each state corresponds to an interaction mode between

the performer and the system. Satisfaction of temporal

patterns p1, p2 or p3 allows to switch between the dif-

ferent states s0, s1, s2 and s3. These patterns can for

example be defined as temporal evolutions of some audio

descriptors. s0 is associated to a classical phase of inter-

action of a score following system with electronic actions

adapting to a sequence of predefined events. Reaching the

end of the sequence leads to the beginning of the next part

(s1) where the musician improvises with the generation

model guided by a scenario chosen as a given harmonic

s0 s1 s3

Score following

Synchronize 

predefined sequences 

Improvisation guided by a scenario 

S = given harmonic progression, 

M = chosen offline corpus

s2

End of 

the score 

Satisfaction of 

pattern p1 Satisfaction of 

pattern p2

Satisfaction of 

pattern p3

Improvisation guided by a scenario 

S unchanged, 

M learned online, initialized with inputs learned in s1

Logical reactions

Triggering actions in 

reaction to unordered 

complex events

Figure 4. Schematic example of an improvisation plan.

progression, and a musical memory initialized with a cho-

sen corpus. The part corresponding to s2 continues with

the same scenario using the memory learned from the mu-

sician’s performance during s1. Finally, s3 is a combina-

tion of predefined interactive mechanisms associating elec-

tronic reactions to unordered events.

7. CONCLUSION

This paper sketches an environment allowing the tempo-

ral management of human-computer improvisation. In this

approach, improvisation plans with different kinds of in-

teractions at multiple time-scales were considered ranging

from completely determined to unordered events and re-

actions. The proposed environment integrates a model of

generation for the improvisation in the high-level structure

provided by a language for the specification and coordi-

nation of electronic actions depending on defined events.

This coupling of high-level dynamic language with an im-

provisation model (generative processes), which is at the

core of the prototype presented in this paper, enhances the

coupling between interactive computer music and impro-

vised practices. Researches on those lines could address

complex problems with simple and elegant solutions useful

for both music planning and improvised live performance.
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