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A New Binomial Recurrence Arising in a
Graphical Compression Algorithm

Yongwook Chol, Charles Knessl and Wojciech Szpankowski

1J. Craig Venter Institute, USA
2Department of Mathematics, Statistics & Computer Science, University of lllinois at Chicago, USA
3Department of Computer Science, Purdue University, USA

In a recently proposed graphical compression algorithm lgi @d Szpankowski (2009), the following tree arose in
the course of the analysis. The root contairtsalls that are consequently distributed between two seb®ecording

to a simple rule: In each step, all balls independently mawertto the left subtree (say with probability or the right
subtree (with probability — p). A new node is created as long as there is at least one bakimbde. Furthermore,
a nonnegative integetis given, and at level or greater one ball is removed from the leftmost node befozeblls
move down to the next level. These steps are repeated Utdlbd are removed (i.e., after+ d steps). Observe that
whend = o the above tree can be modeled dsathat stores: independent sequences generated by a memoryless
source with parameter. Therefore, we coin the nanfe, d)-tries for the tree just described, and to which we often
refer simply asi-tries. Parameters of such a tree (e.g., path length, dept), are described by an interesting two-
dimensional recurrence (in termsmofndd) that — to the best of our knowledge — was not analyzed befesstudy

it, and show how much parameters of sudmad)-trie differ from the corresponding parameters of regulfist We
use methods of analytic algorithmics, from Mellin transfigrto analytic poissonization.

Keywords: Digital trees, Mellin transform, poissonization, graphrgaession

1 Introduction

In [1] an algorithm was described to compressdinacture of a (unlabeled) graph. The main idea behind
the algorithm is quite simple: First, a vertex of a graph, sayis selected and theumber of neighbors

of vy is stored in a binary string. Then the remainimg- 1 vertices are partitioned into two sets: the
neighbors ofy; and the non-neighbors of. This process continues by selecting randomly a vertex, say
vg, from the neighbors of; and storing twawumbers: the number of neighbors @b among each of the
above two sets. Then the remaining- 2 vertices are partitioned into four sets: the neighbors @fibo
v1 andwsg, the neighbors of; that are non-neighbors of, the non-neighbors af; that are neighbors of
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Fig. 1: A (6, 1)-trie with six balls andd = 1, in which the deleted ball is shown next to the node where & wa
removed.

vg, and the non-neighbors of both andwv,. This procedure continues until all vertices are processed
the Erd6s-Rényi model, a random graph has any pair ofcesrttonnected by an edge with probability
p. Itis proved in [1] that for large. our algorithm optimally compresses any (unlabeled) gragtegated
by the Erdés-Rényi model (and, in fact, it works well in gieae even for graphs not generated by the
Erd6s-Rényi model). To establish this asymptotic oplitpaesult, an interesting tree was used in the
construction described next.

The root of such a tree containsballs (vertices of the underlying graph) that are consetiyelis-
tributed between two subtrees according to a simple ruleati step, all balls independently move down
to the left subtree (say with probabilipy or the right subtree (with probability — p), and a new node is
created as long as there is at least one ball in that nodellyrimaon-negative integet is given so that
at leveld or greater one ball is removed from the leftmost node betoeebtlls move down to the next
level. These steps are repeated until all balls are remaxeddftern+d steps). Of interest are such tree
parameters as the depth, path length (sum of all depths),ail so forth. This is illustrated in Figure 1
in which the deleted ball is shown next to the node from whienes removed.

The tree just described falls between two digital trees,efginies anddigital search trees[3, 12, 14,
19]. In fact, whend = oo the tree can be modeled atrg that stores: independent sequences generated
by a memoryless source with parameter Hence, we coin the terrtn, d)-trie (or simply d-trie) for
the tree just described. In [1] lower and upper bounds wenequt for parameters of interest, by using
known results for tries and digital search trees [3, 19]. His paper, we establish precise asymptotic
results. In particular, we show by how much the path length®bfrie differs from the path length of the
corresponding regular trie.

Many parameters of @, d)-trie can be described by the following two dimensional reence
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a(n,d) = f(n) + >

k=0
and the boundary equation

<:>pkq”k[a(k,d— D+an—kk+d-1)], d>1, (1)

a(n+1,0)=f(n)+ Y <Z>pkq"_k[a(k, 0) +a(n — k, k)], 2)
k=0

for0 < p < 1,¢ =1 — p, and a known additive terrfi(n). For example, wherf(n) = n, thena(n, d)
represents the path length. Recurrence (2) is equivaléhétfnllowing boundary condition

a(n,1) =a(n +1,0).

Ford = oo recurrence (1) becomes a traditional recurrence arisirtaranalysis of tries [19] whose
solutions (exact and asymptotic) are well known. Thus, itatural to study the differencgn, d) :=
a(n,d) —a(n, 00), and that is our objective. In passing, we should point caittcurrence (2) resembles
the one used to analyze another digital search tree, knoadigial search tree. In this paper we prove,
however, that &n, d)-trie more closely resembles a trie, rather than a digi@icetree.

Our main interest lies in solving recurrence (1) for fixed-or graph compression we only nagéé: 0,
and we focus on this case. In particular, fdn) = n (that is, for the path length in é&trie) we prove
that the excess quantiéin, d) becomes asymptotically, as— oo andd = O(1),

@ log?n + % logn + {—% + #gp (7 +1+ ;L—Z + \If(logpn))] logn
where¥ () is the periodic function whelvog p/ log(1 — p) is rational, and: is the entropy rate.

Digital trees such as tries and digital search trees have inéensively studied for the last thirty years
[2,3,5,7, 11, 12, 13, 16, 17, 18, 19]. However, our two-disienal recurrence seems to be new and
harder to analyze. It somewhat resembles the profile rencesfor digital trees, which were studied for
tries in [15] and digital search trees in [4], and which arewn to also be challenging.

The paper is organized as follows. In the Section 2 we priycisemulate our problem and analyze it
for f(n) = n. Some proofs are presented in Section 3, while further ldedaé provided in our journal
version of this paper.

2 Problem Statement

In this section, we first formulate some recurrences desgritn, d)-tries, then summarize our main
results and discuss some extensions.

2.1 Main Results

Let us consider &n, d)-trie with n balls and parametet > 0. First, we analyze the average path length
b(n,d). It satisfies the following recurrence equations

bn+1,0)=n+ i (Z)pkq”_k [b(k,0) 4+ b(n — k, k)], forn > 2, (3)
k=0
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and
b(n,d) —n+z< ) kgn— "“ bk, d—1)+bn—k,k+d—1)], forn>2,d> 1. (4)

Recurrence (3) follows from the fact that starting with- 1 balls in the root node, and removing one ball,
we are left withn balls passing through the root node. The root contributgiace each time a ball moves
down it adddl to the path length. Thoseballs move down to the left or the right subtrees. Let us assum
k balls move down to the left subtree (the other & balls must move down to the right subtree); this
occurs with probabilit)(;‘)pkq”*k. At level one, one ball is removed from thaséalls in the root of the
left subtree. This contributégk, 0). There will be no removal from — & balls in the right subtree until
all & balls in the left subtree are removed. This contribétes— &, k). Similarly, ford > 0 we arrive at
recurrence (4).

Here0 < p < 1 andg = 1 — p, and we also use the boundary conditions

b(0,d) = b(1,d) =0, d>0; b(2,0)=0. (5)

By settingd = 1 in (4) and comparing the result to (3) we can replace (3) bysth®ler boundary
condition
b(n,1) =b(n+1,0), forn > 0. (6)

We are primarily interested in estimatih@n, 0) for largen.
If we letd — oo in (4) and assume tha{n, d) tends to a limit(n, o), then (4) becomes

b(n, 0o —n—i—Z( ) Fqn=k [b(k, 00) + b(n — k, 00)] @)

with 5(0, co) = b(1,00) = 0. This is the same as the recurrence for the mean path lengttrie which
was analyzed, for example, in [12, 19]. One form of the soluis given by the alternating sum

_ g(_ly ()= ®)

and an alternate form is given by the integral [19]

| z
ol e

wherel'(-) is the Gamma functionBr is a vertical Bromwich contour on which2 < #(s) < —1 and
the z-integral is over a small loop about= 0.

The asymptotic expansion of (9) as— oo may be obtained by a combination of singularity analysis
and depoissonization arguments (see [7, 9, 19]) and werpbtai

b(n,o00) = %nlogn + % {7 + ;L—h + @(log, n)] n+ o(n), (10)
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whereh = —plogp — qlogq, ha = plog® p + qlog? q, 7 is the Euler constant, anbl(z) is the periodic

function
= 2kmi :
(I)(,T) _ Z T (_—T‘—W) erﬂ'rm7 (11)
logp
k=—00,k£0

provided thalog p/ log ¢ = r/s is rational, withr ands being integers witlged(r, s) = 1. If log p/ log q

is irrational, then the term witkp is absent from thé(n) term of (10). We shall later use (10) to analyze
the behavior ob(n, d) for n — oo and a fixedi.

Next we set

b(n,d) = b(n,d) — b(n, ) (12)

S0 thatB(n, d) measures how the path lengths in theie differs from those in a trie. From (4) and (7),
we then obtain

b(n,d) = Z (Z)pkan [B(k:,d —D+bn—kk+d-1)|, forn>2d>1, (13)
k=0
which unlike (4) is a homogeneous recurrence. Then fromr{@)42) we have the boundary condition
b(n+1,0) — b(n,1) = b(n,00) — b(n +1,00). (14)

From (5) and (7) we also haw€0, d) = b(1,d) = 0 for d > 0.
We further definé..(n, d) to be the solution of

be(n,d) = kz_o (Z)pkq"kb*(k,d —1), forn>2,d>1, (15)
and
bi(n+1,0) — bi(n,1) = b(n,00) — b(n + 1, 00). (16)

Note that (15) differs from (13) in that the former negletis term involvingj;(n —k,k+d—1). We will
show that this term in (13) is asymptotically negligible for- oo with fixedd, so thaf)(n, d) ~ by(n,d).
The recurrence (15) is much easier to solve by transformaastfy, 19] than is (13).

We summarize our main result below. In Section 3 we establiorem 1 along with some other exact
and asymptotic results for (3)-(6) and (13)-(16).

Theorem 1 For n — oo and d = O(1) we have b(n, d) = O(log® n). More precisely

g . 1 2 d 1 h2
b(n,d) = 2hlogp log“n + . logn + [ o7 + oz p (74— 1+ 57 + \I/(logpn)>] logn + O(1),
(17)
where W (-) is the periodic function
S 2kmir 2K\ opmire
U(z)= Y, {1+ 1ng]r( logp)e (18)

k=—00,k#0

and logp/logq = r/tisrational, asin (11). If log p/ log g isirrational, the terminvolving ¥ in (17) is
absent.
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We see thab(n, d) — b(n, c0) = O(log? n), which shows that thén, d)-tries studied in [1] are in some
sense more similar to tries than to digital search trees JDI8T1], it was shown thak(n, 0) was bounded
above by average path lengths in tries and below by averahéguayths in DST's. It was also conjectured
thatb(n, d) — b(n, c0) is O(n), but our result shows that this difference is in fact muchlema

2.2 Related Recurrence Equations

The method presented in the next section allow us to analygtzsa of recurrences of the type (3) with
inhomogeneous terms other thanFor example, suppose we defing:, d) by

a(n, +zn:() Fq R la(k,d—1) + a(n — k,k+d —1)] (19)

=0

wheref(n) is a given sequence that grows algebraically or logarithftyidor n — co. The boundary
condition is again of the type (3), or equivalently,

a(n,1) =a(n+1,0), (20)

and we have:(0,d) = a(1,d) = 0. Also, leta(n, ) satisfy (19) with the second argumentdf, -)
replaced by infinity. This recurrence can be solved by gdimgrdunctions and Mellin transforms, and
we can then establish thatn, d) — a(n, o0) = a(n, d), will satisfy

n

Z()k"k a(k,d—1)+a(n—k,k+d—1)] (21)

=0

and
a(n+1,0) —a(n,1) = a(n,00) —a(n + 1, 00). (22)

The asymptotic behavior @f(n, d) for d = O(1) andn — oo can be obtained in a manner completely
analogous to the cagén) = n, discussed in the next section.
For example, the case

f(n) = Tlog(n +1)]

arose in analyzing the compression algorithm in [1]. In {l§&s shown that(n, co) has the asymptotic
form

ﬁA*(—l)—i-o(n), n— 0o (23)

a(n,o0) = .

where

A (s) = Z wF(kz + s).

k!
k>2

if log p/ log q is irrational. Iflogp/ log ¢ = r/s is rational, the constant..(—1) in (23) must be replaced
by the oscillatory function

2k o
A*(—l) i Z A < 1 FZT) e2]@71'7,7‘ logp n (24)
k=—00,k#0 o8P
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By analyzing (21) and (22) fat — oo we can show that the differene¢n, d) — a(n, o) is O(log n),
and more precisely
Al (-1)

a(n,0) = a(n,0) — a(n,o0) ~ T logp

logn.

Again if log p/ log q is rational we must replacé.(—1) by the Fourier series in (24).

3 Analysis

We first give an intuitive derivation of the asymptoticsiéf, d) for fixedd > 0 andn — oo, and in
particular ofb(n, 0).

We use the fact that for algebraically or logarithmicallywiag smoothf (k) (for k¥ — oo) we have
(see [6, 10] for rigorous proofs)

5 ()pta" 10 = Flop) + Ol s ), . 25)

k=0

Starting from (13) we argue that the second sum is negliddsle — co. Then ifB(n, d) varies weakly
with n, we use (25) to approximate the first sum, which will be asyripto B(np, d — 1) so that (13)
becomes

b(n,d) ~ b(np,d — 1), n — oo (26)

and, in particular,

b(n,1) ~ b(np,0), n = o (27)
which when added to (14) leads to

b(n 4 1,0) — b(np,0) ~ b(n,00) — b(n + 1, 00). (28)

The right side of (28) may be estimated from (10) or by (9).nd<{9) we can show that term by term
differentiating of the asymptotic series in (10) is perrtiks and thus (28) becomes, for— oo,

- ~ 1 1 h 1
b(n +1,0) — b(np,0) = ~ logn — 7 <7 +1+ ﬁ) - Ew(logp n) + o(1), (29)

wherey(-) is the periodic function

¥(z) = Z 14 2kmir r _ 2kmir (2hmira (30)
ki=—00,k#£0 logp logp

where we note that, in view of (11)(z) = ®(x) + (logp)~'®'(x).
Now (29) suggests thatn, 0) admits an asymptotic expansion of the form

b(n,0) = Alog>n + Blogn+ C +o(1), n — oo (31)

and then ) }
b(n +1,0) — b(np,0) = —2A(logp)logn — Alog®p — Blogp + o(1). (32)
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Comparing (29) to (32) we conclude that= (2hlogp)~! and then

1 1 ho
B__%—i_hlogp 7+1+—+w(logpn) . (33)

We have thus formally derived the result in Theorem 1bfar, 0). For any fixed! > 0 we can extend this
argument by asymptotically solving (26) by an expansiorhefform

b(n,d) = A(d)log>n + B(d)logn + O(1) (34)

to find from (26) thatd(d) = A(d — 1) andB(d) = B(d —1) + 2logpA(d — 1). Then using (34) in (28)
or (29) we find thatd(d) = A(0) = (2hlogp)~t andB(d) — B(d — 1) = 2logpA(d — 1) = h~! so that
B(d) = B(0) + h~'d, whereB(0) = Bis as in (33).

We proceed to provide a more rigorous derivation of the theorWe first inductively establish the
bound

b(n,d) < Agn* T (p* + ¢*)% n>2,d>0 (35)

wherev = log(p? + ¢2)/ log(p), and this holds for alt > 0. Whenn = 2 we have (exactlyp(2, d) =
(2= L)(»* + ¢%)%* s0 (35) clearly holds.

Assuming that (35) holds for &IV, D) with N + D < n + d, we can estimate the first sum in (13) by

n—k71 _ < n k n—k vte( 2 2\d—1
z() bhd—1) < Z(k>pq Ak (0 + ¢2)
k=0 k=0
< Ao(mp) TP + BT = Ao Tt (p® + 7).

Using the inductive assumption in (35) we then estimate ¢cersd sum in (13) by

Z ( ) n— kb TL —kk+d— 1) < AOZ(” _ k)V—l—s(pQ + q2)k+d—lpkqn—k (Z)
k_

= k=0

< A l/+€p_|_q dlZ() p_|_q)] qn—k

= A"+ ) g+ p(® +d)]"

which is smaller than the first sum, by an exponentially siiaaiior.

Combining these estimates and recalling thatin be made arbitrarily small leads to the conclusion
that (35) holds by induction.

By subtracting (15) from (13) and using the estimate in (8%)dund the second sum in the right side
of (13), we conclude tha}(n, d) — b.«(n,d) = O(1) for n — oo. We proceed to analyze (15), with (16),
and thus re-establish Theorem 1.

Introducing the exponential generating function

_ Zb*(n,d)% — " Ay(2), (36)
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whereb, (n, d) is defined from (15), we find that
Bj(z) = Bj_1(pz)e’

or, sincedy(z) = Bj(z)e™ 7,
Aa(z) = Ag—1(p2).

This can be solved by iteration to yield
Aq(z) = Ao(pz).

Then setting

and noting that

o0 77, d
2:: «(n+1,0)— = — B (2),
(16) leads to

ding(z) ~ Bi(2) = Gu(2) — G.(2).

37)

(38)

(39)

(40)

(41)

(42)

If G.(2) = e*G(z), from the integral representation in (9) we conclude thatitellin transform ofG(z)

is

s _ I(s+1)
G(2)z*"tdz = _—
/0 =) l—p=—q®

Using (37), (39), and the definitions df;(-) andG(-), (42) becomes
Ap(2) + Ao(2) = Ao(p2) = =G'(2).

We introduce the Mellin transform ofy(z)
:/ Ao(2)z*dz
0

and use (44) to obtain the functional equation

(5= M5 — 1)+ (1 p)M(s) = — DI

Next we set

with which (46) becomes

(43)

(44)

(45)

(46)

(47)

(48)
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To solve (48) we let

1 — pkt2
N(s) = H [1_7;5} Ni(s) (49)
k=0
and then (48) becomes
= 1 —pk_s s—1
N1(S)—N1(S—1)= [ :| s p (50)
]}1 1_pk+1 1_p1 _ql

Now, for s — —oo the right side of (50) behaves &s— 1) [~ (1 — p*1)~1, with an exponentially
small error. Letting

Nl(s) — 8(82— 1) H (1 _;kJrl) +N2(S) (51)

k=1
the equation foV (-) becomes

Na(s) = Na(s —1) = = 18(1_—1pk+1) [1 — pli i kl_[(l —ph) — 1] (52)
= =1

whose right hand side is, unlike that of (50), exponentisithall fors — —oco. The solution to (52) is

(53)

N() +Z|:Hk11_ks+z) ~1 s—1-

1+i—s _q1+z s :| Hk ( k+1)

Note thatV,(—oo) exists, since the summand in (53) decays uniformly expaalgnin i ass — —oo.
From (36) we see that,(z) = O(z?) asz — 0 so thatM(s) in (45) must be analytic at = —1.
From (47) we then conclude thaf(—1) = 0. From (49) we havéV;(—1) = 0 and from (51) and (53)

we thus obtain an expression &% (—oco):

() ee} o] _ kt+i+1
R | e R W e

=0

We have thus obtained the final expressionfdts) in (47) as

) — T'(s) s(s—1) 0 o HZO:1(1 _ pkestiy -
M(s) = o — ot ( 5 +ﬂ+;( 1) L e R 1]) (55)

oo

B = Na(—o0) [T(1 - ")

k=1
can be computed from (54). Inverting the transforms in (3@) @5) we obtain

n! e? 1 s
be(n,d) = 2mj'éW [% /Br(pdz) M(s)ds| dz. (56)
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The final step is to expanig (n, d) (~ b(n,d)) for n — oo with d fixed. The integral ovetr can be
asymptotically evaluated by a standard depoissonizatigumaent, which corresponds to replacindy
n in the inners-integral. The functionM (s) in (55) has a triple pole at = 0, and there are other double
poles on the imaginary-axis if 1 — p!=* — ¢'~* has zeros there, which occurs onlyiék p/ log q is
rational, sayr/t wherer andt are integers [8] (cf. also [3, 19]). First we compute the dbation from
s = 0. Using the expansiofi(s) = [1 — vs + O(s?)]/s ass — 0, with + being the Euler constant, (55)
becomes

1 o0
M(s) = —[l=7s+ 01 -p) " [T -p")7
L=1
s—1 r k—sy _ (o _ s(s —1)
X(Wg(l—p )—(s—1)+ 5 +8
00 . HZO: (1 _ pkferi)

+;(S —i—1) L 2 p11+i—s " 1) )

Now
l—p™" =slogp— %82(10%)2 +0(s%)

and

h
1—p' ™ —¢' ™ = —hs — 7252 +0(s%).

Also, using the expression in (54) to compgte- 1 the expansion of (57) for — 0 becomes

1 1—9s S 9 1—s ho 9 9
M(s) = & Togp [1—|— 2logp—|—0(s )] { - {1 2hs—|—0(s )| +O(s%)
11 1 ~ 1 he\ 1 1
- o | 14 22) = 2). 58
33h10gp+32 { hlogp hlogp< +2h)+2h} O<s> (58)

It follows that the integrang—9*z=*M(s) in (56) has the residue

1 log? d
Ress—o {p~ "2 7" M(s)} = o8 * [

1 h 1

= 3hlogp + Elogz—l—logz Togp (% + 2—;2) - ﬁ} +0O(1) (59)
where theO(1) refers to terms that ar®(1) for = — oo, and these can be evaluated by explicitly
computing the)(s~1) term(s) in (58). Then the expansionigf, d) ~ b, (n, d) follows by setting: = n
in (59), and we have thus regained the formula in (17)odfp/ log ¢ is rational we must also compute
the contribution from the double poles along the imaginadig at such pointy~° = ¢~° = 1 and
p'=* + ¢!~ = 1. These poles lead to the oscillatory terms in (17), as carebe by computing their
residues from (55).

We have thus established (17) more rigorously, though thative derivation in (26)—(34) is much

simpler, and more revealing of the basic asymptotic streatfithe equations (13) and (14).
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