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1 Introduction

Collision detection is a well-studied and still active re-
search field in which the main problem is to determine
how and if one or more objects collide or will collide
in a virtual environment. Many fields are concerned
by collision detection, including physical-based simu-
lation, computer animation, robotics, mechanical sim-
ulations (medical, biology, cars industry...), haptic ap-
plications and video games. In these applications, re-
altime performance, efficiency and robustness are key
issues. In the field of Virtual Reality, physical virtual
environments in digital mock-ups and industrial appli-
cations are now commonplace, and are of increasingly
complexity. The expected level of real time perfor-
mance is becoming harder to ensure in such largescale
virtual environments. Unsurprisingly, collision detec-
tion has been an integral part of virtual reality bottle-
necks for over thirty years. Recent years have seen
impressive advances in collision detection algorithms.
However, most algorithms remain unprepared for the
new hardware architecture (multi-core, multiproces-
sor, multi-GPU, etc.). The use of parallel process-
ing has become necessary to take advantage of recent
gains of Moores Law. During several years, proces-
sors specialists were able to provide clock frequency
increases and parallelism improvements in instruction
sets. In that way, single threaded applications ran
much faster on a new generation of processors without
any modification. Now, to have a better management
of the power consumption, they promote multi-core ar-
chitectures. It is no longer possible to rely on the evo-
lution of processing power to overcome the problem
of real-time collision detection. The impressive power
evolution of graphics hardware and multi-GPU plat-
form is also an important way of algorithm improve-

ments and speed-ups. With these major upheavals in
computer architecture it is now essential to take into
account run-time architectures to improve collision de-
tection performance. In this paper, we propose new
models of collision detection algorithms able to run on
new hardware architecture. We focus on three differ-
ent kind of architecture: multi-core, GPU and multi-
GPU.We have developed three new broad phase-based
algorithm that take into account the run-time architec-
ture. The rest of our paper is organized as follows: in
Section 2 we present the evolution of CPU and GPU
these last years. In Section 3 we report related work on
collision detection and focus on the multi-core an and
GPU-based collision detection algorithms in the par-
allel programming. Section 4 presents our new multi-
core algorithm followed by the Multi-GPU one in Sec-
tion 5. Both sections show the model and techniques
we used to develop the algorithm and also present per-
formances results. We cross results of our new algo-
rithms in Section 6 in order to reveal the limits and
differences between them. We then conclude and open
on future works in Section 7.

2 Related Work

We present here the collision detection field following
by the evolution of CPU and GPU processors. We then
present how this evolution has let the setting up of par-
allel solutions for collision detection to speed-up the
computation time.

2.1 Collision Detection

Last decade have seen an impressive evolution of vir-
tual reality applications and more precisely of col-
lision detection algorithms in term of computational
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Figure 1: Collision detection pipeline.

bottleneck. Collision detection is a wide field dealing
with, apparently, an easy problem: determining if two
(or several) objects collide. It is used in several do-
mains namely physically-based simulation, computer
animation, robotics, mechanical simulations (medi-
cal, biology, cars industry), haptics applications and
video games. All these applications have different
constraints (real-time performance, efficiency and ro-
bustness ). It has generated a wide range of problems:
convex or non-convex objects, 2-Body or N-Body sim-
ulations, rigid or deformable objects, continual or dis-
crete methods. Algorithms are also dependent of the
geometric model formalism (polygonal, Constructive
Solid Geometry (CSG), implicit or parametric func-
tions). All of these problems reveal the diversity of
this field of study. For more details we refer to surveys
on the topic [LG98, JTT01, TKH+05, KHI+07].

Given n moving objects in a virtual environment,
testing all objects pairs tend to perform n2 pairwise
checks. When n is large it becomes a computational
bottleneck. Collision detection is represented and built
as a pipeline (cf Figure 1) [Hub95]. It is composed by
two main parts: broad-phase and narrow-phase. The
goal of this pipeline is to apply successive filters in or-
der to break down the O(n2) complexity. These filters
provide an increasing efficiency and robustness dur-
ing the pipeline traversal. In the following, we present
these parts of the pipeline, broad-phase in section 2.1.1
and narrow-phase in section 2.1.1.

2.1.1 Broad-phase

The first part of the pipeline, called the broad-phase,
is in charge of a quick and efficient removal of the
objects pairs that are not in collision. Broad-phase
algorithms are classified into four main families
[KHI+07]:

Brute force approach is based on the comparison
of the overall bounding volumes of objects to de-
termine if they are in collision or not. This test is
very exhaustive because of its n2 pairwise checks.

A lot of bounding volume have been proposed such
as sphere, Axis-Aligned-Bounding-Box (AABB)
[Ber97], Oriented-Bounding-Box (OBB) [GLM96]
and many others.

Spatial partitioning method is based on the
principle that if two objects are situated in distant
space sides, they have no chance to collide during the
next time step. Several methods have been proposed
to divide space into unit cells: regular grid, octree
[BT95], quad-tree, Binary Space Partitioning (BSP),
k-d tree structure [BF79] or voxels.

Topological methods are based on the positions of
objects in relation to others. A couple of objects that
are too far one to the other is deleted. Sweep and prune
is also known as sort and sweep [Eri05] being called
that way at David Baraff Ph. D thesis in 1992 [Bar92].
Later works like the 1995 paper about I-COLLIDE by
Cohen et al. [CLMP95] refer to this algorithm. It
is one of the most used methods in the broad-phase
algorithms because it provides an efficient and quick
pairs removal and it does not depend on the objects
complexity. The sequential algorithm of ”Sweep and
Prune” takes in input the overall objects of the envi-
ronment and feeds in output a collided objects pairs
list. The algorithm is divided in two principal parts.
The first one is in charge of the bounding volume up-
date of each active virtual objects. Most of time, the
bounding volumes used are AABBs that are aligned
on the environment axis (cf. Figure 2). The second
part is in charge of the detection of overlapping be-
tween objects. To do that a projection of higher and
upper bounds on the three axis of coordinates of each
AABBs is made. Then, we obtain three lists with over-
laps pairs on each axis (x, y and z). We can notice two
related but different concepts on the way the Sweep
and Prune operates internally: by starting from scratch
each time or by updating internal structures. To differ-
entiate them a name was given to each method, the first
type is called brute-force and the second type persis-
tent. A Pair that is still alive after this test mean that
its objects are considered as in potential collision. This
pair is then transmitted to the narrow-phase.

2.1.2 Narrow-phase

Colliding objects pairs are then given to the narrow-
phase that perform an exact collision detection. We
can classify narrow-phase algorithms into four main
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Figure 2: ”Sweep and Prune” algorithm on x and y
axis with a non-overlapping condition (left) and an
overlapping one (right).

families [KHI+07]:
Feature-based algorithms work on objects primi-
tives: faces (triangle-triangle test [LAM01]), edges
and vertices. This family appears in 1991 with the
Lin-Canny approach [LC91] or Voronoı̈ Marching that
proposed to divide space around objects in Voronoı̈ re-
gions that enable to detect closest features pairs be-
tween polyhedrons.
Simplex-based algorithms of whom the most fa-
mous one is the GJK algorithm [GJK88] that uses
Minkowski difference on polyhedrons. Two convex
objects collide if and only if their Minkowski differ-
ence contains the origin.
Image space-based algorithms work using image-
space occlusions queries that are suitable to be used
on graphics hardware (GPU). They rasterise objects to
perform either 2D or 2.5D overlap test in screen space
[BW04]. We further develop this part in the parallel
section.
Bounding volume-based algorithms are used in most
of strategies to perform collision tests and it highly im-
proves performances. Bounding volume hierarchies
(BVH) allow arranging bounding volume into a tree
hierarchy (binary tree, quad tree...) in order to re-
duce the number of tests to perform. A description
on these BVH and a comparison between their per-
formance can be found in [Eri05]. Deformable objects
are very challenging for BVH because hierarchy struc-
tures have to be updated when an object deforms itself
[Ber97, TKH+05].

3 Architecture Evolution

We briefly present in this section, the evolution of CPU
and GPU these last years. We first describe the emer-
gence and spread of multi-core processors, followed

in a second step by the impressive evolution of GPU
in term of computation power and ease of use.

3.1 From Sequential CPU to Multi-core Ar-
chitecture

Compared to actual outlook, it seems clear that Gor-
don Moore was a lucky man. Since 1965, he predicts
a duplication of the number of transistors on a mi-
croprocessor each two years. During more than forty
years, this guesswork seems exact but we know now
that physical limits (power and heat) prevent this du-
plication. What is the solution to keep alive Moore
law? You make more cores. Nowadays trend tends
to be duplication of cores in computers and parallel
architecture. The first personal computer with a core-
duo arrived in 2005 with AMD1 followed by Intel2.
In 2006 Sun presented its new octo-core called Nia-
gara2. Intel presents last year a 32 in order x86 cores
[SCS+08] called ”Larrabee” and Sun recently presents
80 cores computer and it seems that new trends are not
only at the multi-core but also at the many-core. Dif-
ference between these types of cores is the start and
stop notion on the way, if you need n cores to work,
computer will only starts n cores. Many-core is very
useful because when people need not the entire power
of cores, computer turns off some of them. Until now,
3D objects and virtual environments grew up parallel
to processor power, so researchers were continuously
looking for an improvement of the collision detection
algorithms in order to increase their precision and ro-
bustness. A lot of articles still continue to improve
collision detection algorithms these last recent years.
But now, processors power stay the same while virtual
environments are more and more sized, so new trends
are not only in the algorithms improvement but also in
the algorithms architecture modification. As we can
not hope a continual evolution of processors we have
now to study how it is possible to use multi-core in col-
lision detection algorithms. Nowadays it is impossible
to present CPU without dealing with central memory
handling; on a multi or many cores there is a very com-
plex cache handling between cores and this handling
is continually improved to increase computer perfor-
mance. Cache and memory handling is another point
that cannot be ignored in the optimization of the colli-
sion detection performance.

1www.amd.com
2www.intel.com

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

3.2 From Graphic Processor to GPGPU

Recent years have seen the evolution of graphics hard-
ware from fixed function units toward an increasingly
programmable graphics pipeline. Contrary to CPU,
Graphics Processing Unit (GPU) has a very impor-
tant power evolution since few years. This impres-
sive evolution can be explain by the way that in one
hand, CPU is a generalist processor which deals with
ordinary data which are often dependent, several of
its components are in charge of the data stream con-
trol and its memory latency period is hidden by data
caching. In the other hand GPU provides processor
well-suited to highly parallelizable computations, it
deals with independent data so it needs not a sophis-
ticated data stream control and its memory latency
period is hidden by computations. General-purpose
Processing on Graphics Processing Unit is the tech-
nique allowing graphics hardware (GPU) to perform
computations traditionally reserved to CPU. A survey
has been published [OLG+07] on GPGPU focusing
on a simple presentation of GPGPU applications. Us-
ing graphics cards in order to increase mathematical
computations is not recent. During the nineties, some
researchers use rasterizer and Z-Buffer of the graph-
ics cards to accelerate path, for instance, path finding
or Vorono printing. But revolution appears in 2003
with evolved shaders allowing matrix computations on
graphics cards. From this year, a SIGGRAPH section
is dedicated to this new computation technique. To
handle GPU in 2003, OpenGL or Direct3D were es-
sential. Brook was the first C language extension that
allowed using GPU as a co-processor for parallel com-
putations. In 2007, Nvidia3 developed a language and
a software called CUDA (Compute Unified Device Ar-
chitecture) exploiting GPUs power, using principles of
parallel programming with threads. This API can be
seen as a C language extension and its assembly lan-
guage is PTX. ATI/AMD develops its own language
for graphics cards, called Brook+. Runtime uses CAL
for the GPU backend. Even if AMD technology is
as efficient as Nvidias (or even more), Brook+ is less
used than CUDA, due to a lack of documentation on it
and to a higher difficulty to code solution.

3.3 Parallel Collision Detection

The parallel solution of collision detection algorithms
is a recent field in high performance computing. We
can distinguish three different families of algorithms,
namely: GPU-based, CPU-based and hybrid-based.

3.3.1 GPU-based algorithms

The GPU-based family is used to perform collision de-
tection for few years using typical GPU solutions but it
becomes more and more used to perform non-common
GPU solutions. We call ”typical GPU solutions”, the
algorithms that are based on the image-space. Image
space-based algorithms work using image-space oc-
clusions queries that are suitable to be used on graph-
ics hardware. They rasterize objects to perform either
2D or 2.5D overlap test in screen space [BW04]. Non-
common GPU solutions are more recent ones gener-
ally developed with CUDA and not using image space
to detect collisions.

Cinder [KP03] is an algorithm exploiting GPU to
implement a ray-casting method to detect static in-
terference between solid polyhedral objects. The al-
gorithm is linear in relation to the number of objects
and number of polygons in the environment. It also
requires no preprocessing or special data structures.
Other methods have been proposed using ray-casting,
Hermann et al. [HFR08] use it to detect collision and
to create contact forces. GPU-based algorithms for
self-collision and cloth animation have also been in-
troduced by Govindaraju et al. [GLM05a, GLM05b].
Juarez-Comboni et al. [JMJC05] describe the use of
several GPUs during collision detection process. One
GPU is in charge of the collision detection process us-
ing a simple boundary volume collision query. The
other one is in charge of the rendering operations. An
algorithm using Layered Depth Images (LDI) to detect
collision and create physical reaction, has been pro-
posed [FBAF08]. It has been developed to run on a
single GPU. An LDI is a representation and rendering
method for objects. Similar to a two-dimensional im-
age, the LDI consists of an array of pixels. Contrary to
a 2D image, an LDI pixel has depth information and
there are multiple layers at a pixel location. LDI algo-
rithm has been introduced by Shade & al [SGwHS98]
to represent multiple geometric layers from one view-
point. Heidelberger et al. [HTG03, HTG04] have ex-
tended the model of LDI to build geometrical models
of volume intersections. A solution using image-space
visibility queries has been proposed for the broad
phase [GRLM03].

A recent work uses thread and data parallelism on a
single GPU to perform fast hierarchy construction, up-
dating, and traversal using tight-fitting bounding vol-
umes such as oriented bounding boxes (OBB) and
rectangular swept spheres (RSS) [LMM10].

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

3.3.2 CPU-based algorithms

The pipeline has never been parallelized but Zach-
mann [Zac01] made an evaluation of the performance
of a theoretical parallelized back-end of the pipeline
and showed that if the environment density is large
compared to the number of processors, then good
speed-ups can be noticed. Multi-processor machines
are also used to perform collision detection [KS95].
Depth-first traversal of bounding volumes tree traver-
sal (BVTT) and parallel cloth simulation [SSIF09]
are good instances of this kind of work. Few papers
also presented multi-threading use on single processor
(Lewis et al. [LM06] propose a multi-threaded algo-
rithm to simulate planetary rings). Broad phase has
also been developed on a Field-Programmable Gate
Array (FPGA) [WDM07].

Few papers appeared dealing with new parallel col-
lision detection algorithms using multi-core architec-
ture. A new task splitting approach for implicit time
integration and collision handling on a multi-core ar-
chitecture has been proposed [TPB08]. Tang et al.
[TMT08] propose to use a hierarchical representation
to accelerate collision detection queries and an incre-
mental algorithm exploiting temporal coherence. The
overall is distributed among multiple cores. They ob-
tained a 4X-6X speed-up on a 8-core processor based
on several deformable models. Kim et al [KHeY08]
propose to use a feature-based bounding volume hi-
erarchy (BVH) to improve performances of continu-
ous collision detection. They also propose novel task
decomposition methods for their BVH-based collision
detection and dynamic task assignment methods. They
obtained a 7X-8X speed-up using a 8-core architecture
compared to a single-core. Hermann et al. [HRF09]
propose a parallelization of interactive physical simu-
lations. They obtain a 14X-16X speed-up on a 16-core
architecture compared to a single-core.

3.3.3 Hybrid-based algorithms

More and more papers appear dealing with new hy-
brid solutions that run on multi-core and multi-GPU
architecture. Kim et al. [KHH+09] have presented an
hybrid parallel continuous collision detection method
HPCCD based on a bounding volume hierarchy. Re-
cently, Pabst et al. [PKS10] have presented a new hy-
brid CPU/GPU method for rigid and deformable ob-
jects based on spatial subdivision. Broad and narrow
phases are both executed on a multi-GPU architecture.

Figure 3: Our parallel broad-phase algorithm. Paral-
lelization of the update AABB part and the calculate
overlapping pair one with a synchronization point be-
tween them.

3.4 Positioning

Related work lets appear that many studies have been
made to improve efficiency and performance of colli-
sion detection algorithms. The use of parallelism is be-
coming commonplace to address the problem of real-
time collision detection [AGA09]. Thus, only fine-
grain parallelizations have been done on algorithms
and, for the moment, there is no work on a global par-
allelization of the pipeline stages and on its adaptation
on any number of cores.

4 Multi-Core Broad Phase

The architecture of collision detection algorithms
needs to be improved to face real-time interaction. In
this way, we focus on an essential step of the collision
detection pipeline: the broad-phase. More precisely,
our algorithm is an implementation of the ”Sweep
and Prune”[CLMP95] on a multi-core architecture
[AGA10].

4.1 Multi-Threaded Algorithm

Multi-core architecture enable to separate collision de-
tection computations on available cores. But compu-
tations can not be separated on the way without a spe-
cial data structure. To fully exploit multi-core archi-
tecture, critical sections, threads idling and cores syn-
chronization have to be taken account and minimized
or avoided. To parallelize the algorithm we have de-
cided to use OpenMP3 because of the directives that
allow to keep the same code (with few algorithmic
modifications on the data structure) and to focus on
the directives. Even if IntelTBB provides better per-
formances, it is more complex to program with and

3OpenMP - http://openmp.org/wp/
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it generates specific code, enable to work without In-
telTBB libraries.

A simplified scheme of our model is in Figure 3.
We can notice parallelization of the two principal parts
of the algorithm with a synchronization between both.
Number of threads that are created depends on the
number of available cores. As a thread is only in
charge of geometric computations and does not wait
for anything, create more than one thread per core will
increase computation time. In the first step of the al-
gorithm, each thread works on n

c objects where n is
the number of objects in the environment and c the
number of cores. It is possible to divide objects per
threads because AABB update computation does not
depend of the object complexity, time spent per object
by a thread is almost homogeneous. Compared to the
sequential algorithm where new computed bounding
volume is written on the way in a data structure, we
can not use the same scheme without avoiding criti-
cal writing section between threads. That is why we
introduce a new smallest data storage used by each
thread to put new computed bounding volume. This
new structure is an array dynamically allocated in rela-
tion to the number of cores and objects. Synchroniza-
tion between this two steps is compulsory to merge all
the new bounding volumes in the same data structure.
We only merge threads array pointers to reduce syn-
chronization time.

In the second part of the algorithm, each thread
works on (n2−n)

2 /c pairs of objects where c is still the
number of cores. Like in the first part, each computa-
tion made by a thread is an overlapping test between
objects coordinates so it does not depend on the object
complexity. To avoid critical section between threads
we use a similar technique where each thread is fitted
with its own data storage to put objects pairs with over-
lapped coordinates. All pairs of objects in collision are
merged at the end of the overall computation to create
the pair list of objects in collision. Then, this new pairs
list is given to the narrow-phase that performs an ex-
act collision detection test. This kind of broad phase
algorithm is well-suited to the parallelization because
there is no dependency between computations. They
can be distributed among 2, 4, 8 or more cores without
disturbing results.

4.2 Results

In this section we present main results of computation
time speed-up. Those tests were performed through

Figure 4: Benchmarks: We used several benchmark
models to measure collision detection time: 10K balls
of 2K polygons each falling in simple environment of
600 polygons (= 1.1M polygons), 20K cubes of 12
polygons each fallen on complex environment of 300K
(= 420K polygons) and 3.5K concave shapes (skittles
of 20K each) falling on a plan. We only performed test
on n-body simulation of rigid bodies using AABB as
bounding volume.

Cubes Balls Skittles
1 core 8,89ms 4,45ms 1,6ms
2 cores 4,96ms 2,48ms 0,9ms
4 cores 2,76ms 1,4ms 0,5ms
8 cores 1,52ms 0,74ms 0,27ms

Figure 5: Time spent for updating AABB for each
benchmark model from 1 core to 8 cores.

several benchmark models (cf Figure. 4). We only
performed test on n-body simulation of rigid bodies
using AABB as bounding volume. To obtain homoge-
neous results, we have only worked on a 8-cores com-
puter using 1, 2, 4 or 8 cores. We work on Windows
XP Professional x64 Edition Version 2003 with Intel
Xeon (2*Quad) CPU X5482 of 3.20 GHz and with 64
GB of RAM.

We present here time results for all used benchmark
models (Cubes, Balls and Skittles). Numerical results
for the first part of the algorithm is presented in tab
5. The reduction of the overall running time is shown
on the graphic in Figure 6. We can see a percent-
age of time reduction for the first part of the algo-
rithm concerning the AABB update. For one scenario
four blocks show time spent from 1 to 8 cores and
we can notice that time decreases when the number

urn:nbn:de:0009-6-348, ISSN 1860-2037



Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

Figure 6: The AABB update execution time in relation
to the number of cores. The overall computation time
is reduced by 17.03% by using 8 cores on this bench-
mark.

Cubes Balls Skittles
1 core 53,339ms 26,7ms 10,71ms
2 cores 31,65ms 15,748ms 6,35ms
4 cores 18,76ms 9,51ms 3,742ms
8 cores 11,43ms 5,82ms 2,314ms

Figure 7: Time spent to calculate overlapping pairs for
each benchmark model from 1 core to 8 cores.

of cores goes up. The overall running time is reduced
by 56.04% by using 2 cores, 31.49% for 4 cores and
17,03% for 8-cores. Numerical results for the second
part of the algorithm is presented in tab 7. This second
part of the algorithm is shown in the graphic Figure 8
and we notice the same gain of time than the first part.
The overall running time is reduced by 59.2% by using
2 cores, 35.34% for 4 cores and 21.56% for 8-cores.

The general speed-up of our parallel algorithm is
shown in Figure 9, on this graphics our work is repre-
sented by the pink line bounded by the blue one which
is the optimal speed-up for a parallel execution whose
we wanted to get closer. We have also performed
measures on the computation time spent by t threads
shared on c cores and the assumption made at the be-
ginning on using more than one thread per core seems
to be exact. Time spent by 3 threads on 2 cores is
slower than 2 threads but better than 1. So using more
than one thread per core is not justified and appears to
be less efficient.

4.3 Positioning Key

We have presented a new way to parallelize the
”Sweep and Prune” algorithm on a multi-core archi-

Figure 8: The execution time of the overlapping pairs
checks in relation to the number of cores. The over-
all computation time is reduced by 21.56% by using 8
cores on this benchmark.

Figure 9: The overall gain of the execution. A speed-
up of 5,1 is obtained on a 8-cores computer.

tecture. Results show that our solution enables to re-
duce computation time by almost 5X-6X on a 8-cores
architecture. The persistent method that updates an in-
ternal structure is still more interesting compared to
the brute force one parallelized on 2 or 4 cores but be-
comes longer compared to the 8-cores parallelization.
As processors will soon have more and more cores, us-
ing the brute force broad phase algorithm will become
a necessity to take full advantage of these highly par-
allelizable architecture. GPU is also subjected to an
impressive evolution of its number of cores.

5 Multi-GPU Broad Phase

We continue by presenting a new way to parallelize the
broad phase algorithm on a multi-GPU architecture.
First, we describe the existing algorithm we used and
then our new model running on a multi-core and multi-
GPU architecture.
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Figure 10: ”Sweep and Prune” algorithm on a sin-
gle GPU. Each pair of the biggest tab is handled by
a thread that looks for similar pair in the other input
tab.

5.1 GPU ”Sweep and Prune”

We have started the development with a first imple-
mentation of this broad phase algorithm on a single
GPU. The algorithm is divided in three parts which
two of them are executed by the GPU. The first part
is in charge of determining which pairs of object are
in overlapping. On the CPU we maintain three sorted
lists of starts (lower bound) and ends (upper bound)
of objects bounding volume which we extract over-
lapping pairs. GPU is in charge of extracting pairs
common to all three lists (cf Figure 10). This work
is done by a CUDA algorithm that assigns to each
GPU threads a kernel function in charge of extract-
ing pairs in a smaller dataset. We first compare X
and Y axis creating a tab results in the GPU memory
that corresponds to pairs that are in both input axis.
To optimize performances we check before separating
data between threads which axis is the ”fullest” one,
in other ways which tab is the biggest one. A thread is
created for each pair of this axis, and each thread is in
charge of determining if there is a similar pair in the
other input axis. Then we compare the Z axis with the
previous tab results.

5.2 Spatial Subdivision for Multi-GPU

After adapting the ”Sweep and Prune” algorithm on
a GPU architecture, we now present how it is possi-
ble to adapt it on a multi-GPU architecture. Differ-
ence between these two versions is in the genericity of
the second one because it is able to work on a n-GPU
platform. To separate computations between GPU de-
vices during the broad phase process we use dynamic

Figure 11: Example of spatial subdivision used for
multi-GPU ”Sweep and Prune” algorithm. We seek
the axis with the largest number of overlapping pairs
and subdivide this axis. We then create a CPU thread
by area in charge of one GPU device to perform the
algorithm in its area.

spatial subdivision and more precisely we divide space
by the number of GPUs. The subdivision technique is
not a regular one as are grids or octrees but depends
on the density distribution of objects in the environ-
ment. As the computational complexity of the algo-
rithm only depends on the number of objects in the
scene, we can decompose the environment from the
density of objects. This repartition enables to balance
GPU’s computation time and obtain an homogeneous
one between GPUs. Figure 11 presents the technique
we used to subdivide environment and distribute com-
putations between GPU devices. We check among axis
which one has more overlapping pairs, then we divide
it by the number of GPUs in order to separate homo-
geneously number of overlapping pairs between them.
Each GPU is now in charge of looking for overlap-
ping pairs in its own data set. As we mentioned in
the overview each GPU is managed by a CPU core
to provide a global parallelization on multi-GPU and
multi-core. This is done by using OpenMP, which is a
parallelization standard allowing to parallelize the ex-
ecution on several cores by using compiler directives.
Each thread on a core is in charge of a part of the global
environment and of its GPU that executes the broad
phase algorithm.

At the end we synchronise every GPU results to cre-
ate the list of object pairs to transmit to the narrow
phase.

5.3 Results

We tested our new collision detection pipeline with
different simulation scenarios, going from similar ob-
jects that are completely independent to heterogeneous
scenes of colliding objects (cubes, balls, torus and
alphabet letters) (cf Figure 12 and 13). Tests were
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Figure 12: Benchmark: Four virtual environments used during simulation tests - (a) Cubes - (b) Torus - (c)
Spheres - (d) Alphabet letters.

Figure 13: Geometric and numerical properties of our
four benchmark environments.

performed on a 4 * Quadro FX 4600 with Intel(R)
Xeon(R) CPU X5482 @ 3.20 Ghz (Octo-core) on
Windows XP(v64) with 64GB of RAM.

Graphic 14 presents computation time during the
broad phase process on our four benchmark tests. We
measured time spent by four algorithms (from sequen-
tial CPU to four GPUs). We can notice a significant
difference between CPU and GPU and also between
using 1, 2 or 4 GPUs. For large-scale virtual envi-
ronment speed-up is very significant whereas results
show that using 4 GPUs to perform a small scale en-
vironment brings a loss of time. For example with
the first benchmark (20.000 Cubes) using one GPU re-
duces time by 4,2 in relation to the CPU computation
time. Time spent by the algorithm on CPU is here to
compare with GPU measures but it is a non perfor-
mant time because of the brute force method. Using
this CPU algorithm during the broad phase process if
you only have a sequential CPU is highly not recom-
mended. We use it because this is the most paralleliz-
able broad phase algorithm. The use of 2 GPUs re-
duces time by 1,79 in relation to the use of one single
GPU and 4 GPUs reduces it by more than 3,5.

On the contrary in the last benchmark (Alphabet),
CPU time is the best one because there is only few
objects and the broad phase algorithm is linear with
number of object and does not take into account ob-
ject complexity. Results show that using one GPU al-
low to significantly reduce computation time during

Figure 14: The execution time (compared in % to the
CPU time) of the broad phase process in relation to
the run-time architecture.

the broad phase process into large scale environment.
Results also show that multi-GPU solution is perfectly
suited for this kind of highly parallelizable algorithm
and allow to divide computation time on 2 and 4 GPUs
architecture. Results has also shown that using the
largest number of available GPU might not insure you
the best performances when using small scale environ-
ment.

Graphic 15 shows performance measurements of
the broad phase process during the ”balls” simulation.
We did four time the same simulation but with four dif-
ferent algorithms from sequential CPU to 4 GPUs. We
can see on this graphic that algorithms has the same
computations time changes all along the simulation,
these changes are related to the simulation evolution.
The horizontal line at the beginning of each curve rep-
resents the fall of balls before dropping on to the floor.
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Figure 15: Test made with the ”balls” environment to
compare algorithms behaviors throughout the simula-
tion. Tests were performed from sequential CPU to 4
GPUs during the broad phase process.

6 Conclusion

We have presented several contributions on the colli-
sion detection optimization centered on hardware per-
formance. We focus on the first step (Broad-phase)
and propose three new ways of parallelization of the
well-known Sweep and Prune algorithm. We first
developed a multi-core model takes into account the
number of available cores. Multi-core architecture en-
ables us to distribute geometric computations with use
of multi-threading. Critical writing section and threads
idling have been minimized by introducing new data
structures for each thread. Programming with direc-
tives, like OpenMP, appears to be a good compro-
mise for code portability. We then proposed a new
GPU-based algorithm also based on the ”Sweep and
Prune” that has been adapted to multi-GPU architec-
tures. Our technique is based on a spatial subdivision
method used to distribute computations among GPUs.
Results show that significant speed-up can be obtained
by passing from 1 to 4 GPUs in a large-scale environ-
ment.

Results suggest a multitude of future directions. It
could be interesting to focus on repartition techniques
that can be used to distribute data and tasks between
GPUs to determine which one is the most suitable for
a multi-GPU platform. Specifically, there is still room
for improvement in the field of data division during
the exact collision detection step (narrow phase). The
Sweep and Prune algorithm can also be parallelized
in many ways by proceeding to a different division of
axis. We saw that using 4 GPUs in a small scale en-

vironment brings a loss of time. Another way of op-
timization could be an evaluation of the most suitable
number of GPU to use to obtain best performances, as
using all available GPUs during physical simulations
might not insure best performance. Multi-GPU tech-
nique is going to be a key component of parallel colli-
sion detection algorithm. The design of such systems
requires a detailed analysis of task and data repartition
techniques to optimize the performance of these com-
plex runtime architectures.
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