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Nonlocal heterogeneous KPP equations in R
N

Henri Berestycki ∗, Jérôme Coville †, Hoang-Hung Vo ‡

June 24, 2014

Abstract

In this article we analyse the non-local niche model

∂u

∂t
= J ⋆ u− u+ f(x, u) in R

+
× R

N
,

where J is a positive continuous dispersal kernel and f(x, u) is a heterogeneous KPP type non-linearity describing
the growth rate of the population. The ecological niche of the population is assumed to be bounded (i.e. outside
a compact set the environment is assumed to be lethal for the population). For compactly supported dispersal
kernels J , we derive an optimal survival criteria. We prove that the existence of a positive stationary solution
exists if and only if the principal eigenvalue λp of the linear problem

J ⋆ ϕ− ϕ+ ∂sf(x, 0) + λpϕ = 0 in R
N
,

is negative. In addition, for any continuous non-negative initial data that is bounded or integrable, we establish
the long time behaviour of the solution u(t, x). We also analyse the impact of the size of the support of the
dispersal kernel on the persistence criteria. We exhibit situations where the dispersal strategy has ”no impact”
on the survival of the species and situations where the slowest dispersal strategy is not any more an Ecological
Stable Strategy. Some generalisations of the survival criteria are also discussed for fat-tailed kernels.
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1 Introduction

In this article, we are interested in finding survival criteria for a species that has a long range dispersal strategy.
As a model species, we can think of trees whose seed and pollens are disseminated on a long range. In ecology a
commonly used model that integrate such long range dispersal [32, 36, 39, 42, 44, 55] is the following:

∂u

∂t
(t, x) = J ⋆ u(t, x)− u+ f(x, u(t, x)) in R

+ × R
N , (1.1)

where u(t, x) is the density of the considered population, J is a dispersal kernel, f(x, s) is a KPP type non-linearity
describing the growth rate of the population. The possibility of a long range dispersal is well known in ecology, where
numerous data now available support this assumptions [14, 19, 20, 27, 52, 57]. In this setting the tail of the kernel
can be thought of as a measure of the frequency at which long dispersal events occur. A biological motivation for the
use of (1.2) to describe the evolution of the population comes from the observation that the intrinsic variability in the
capacity of the individuals to disperse generates, at the scale of a population, a long range dispersal of the population.
The effect of such variability has been investigated in [38, 47] by means of the study of correlated random walks. In
such a framework, all individuals follow a simple random walk where the diffusion coefficient follows a probability law.
It can be checked that then the probability of the density of population will follow an integro-differential equation
[38, 47, 55] where a dispersal kernel J describes the probability to jump from one location to another.

Throughout this paper we will always make the following assumptions on the dispersal kernel J :
(H1) J ∈ C(RN ) ∩ L1(RN ) is nonnegative, radially symmetric and of unit mass (i.e.

∫

RN J(z)dz = 1) .
(H2) J(0) > 0
In the present paper, we focus our analysis on species that have a bounded ecological niche. A simple way

to model such a spatial repartition consists in considering that the environment is hostile to the species outside a
bounded set. This fact is translated in our model by assuming that f satisfies:

(H3) f ∈ C1,α(RN+1) is of KPP type, that is :











f(·, 0) ≡ 0,

For all x ∈ R
N , f(x, s)/s is decreasing with respect to s on (0,+∞).

There exists S(x) ∈ C(RN ) ∩ L∞(RN ) such that f(x, S(x)) ≤ 0 for all x ∈ R
N .

(H4) lim sup|x|→∞
f(x,s)

s < 0, uniformly in s ≥ 0.

A typical example of such a nonlinearity is given by f(x, s) := s(a(x) − b(x)s) with b(x) > 0 and a(x) satisfies
lim sup|x|→∞ a(x) < 0.

Our main purpose is to seek conditions on J and f that characterise the persistence of the species modelled by
(1.1). In this task, we focus our analysis on the description of the set of positive stationary solution of (1.1). That
is the set of positive solution of the equation below

J ⋆ u(x)− u(x) + f(x, u(x)) = 0 in R
N . (1.2)

This description is expected to provide useful persistence criteria.
In the literature, persistence criteria have been well studied for the reaction diffusion version of (1.1)

∂u

∂t
(t, x) = ∆u(t, x) + f(x, t, u(t, x)) in R

+ × Ω, (1.3)
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where Ω is a domain of RN , possibly R
N itself. Survival criteria have been obtained for various media, ranging from

periodic media to ergodic media [4, 5, 9, 15, 16, 17, 33, 45, 46, 48, 53]. In the context of global warming, survival
criteria have been investigated in [9, 3, 10]. For such reaction diffusion equations the survival criteria are often
obtained by looking at the sign of the first eigenvalue of the linear problem obtained by linearising (1.3) around the
0 solution. That is the sign of the first eigenvalue λ1(∆ + ∂sf(x, 0),Ω) of the spectral problem

∆ϕ(x) + ∂sf(x, 0)φ(x) + λ1ϕ(x) = 0 Ω (1.4)

associated with the proper boundary conditions (if Ω 6= R
N ).

In most situations, for KPP– like non-linearities, the existence of a positive stationary solution to (1.3) is uniquely
conditioned by the sign of λ1. More precisely, there exists a unique positive stationary solution if and only if λ1 < 0.
If such type of criteria seems reasonable in problems defined on bounded set, it is less obvious for problems in
unbounded domains. In particular, in unbounded domains, one of the main difficulty concerns the definition of λ1.
As shown in [8, 5], the notion of first eigenvalue in unbounded domain can be ambiguous and several definition of
λ1 exists rendering the question of a sharp survival criteria quite involved.

For the non-local equation (1.2) less is known and to our knowledge survival criteria have been essentially in-
vestigated in some specific situations, periodic media [25, 26, 54] or for a version of the problem (1.2) defined in a
bounded domain Ω,

∂u

∂t
(t, x) =

∫

Ω

J(x− y)u(t, y) dy − u(t, x) + f(x, u(t, x)) in R
+ × Ω, (1.5)

[1, 21, 23, 34, 41, 54]. We also quote [7] for an analysis of a persistence criteria in periodic media for a non-local version
of (1.3) involving a fractional diffusion and [51] for survival criteria in time periodic versions of (1.5) . Similarly to
the local diffusion case, for KPP like non-linearities, the existence of a positive solution of the non-local equation
(1.5) can be characterised by the sign of a spectral quantity λp, called the generalised principal eigenvalue of

∫

Ω

J(x− y)φ(y) dy − φ(x) + ∂sf(x, 0)φ(x) + λφ(x) = 0 in Ω. (1.6)

In fact, λp is defined by

λp := sup

{

λ ∈ R | ∃ϕ ∈ C(Ω), ϕ > 0, so that

∫

Ω

J(x− y)ϕ(y) dy − ϕ(x) + ∂sf(x, 0)ϕ(x) + λϕ(x) ≤ 0 in Ω.

}

.

Unlike the elliptic PDE case, due to the lack of a regularising effect of the diffusion operator, the above spectral
problem may not have a solution in any reasonable space of functions i.e (Lp(Ω), C(Ω))[25, 24, 41]. As a consequence,
even in bounded domain, simple sharp survival criteria are already quite involved to obtain. Another difficulty
inherent to the study of nonlocal equations (1.6) in unbounded domain concerns the lack of “reasonable” a priori
estimates for the solution thus making standard approximations difficult to use in most cases.

1.1 Main Results:

Let us now state our main results. We first prove a simple sharp survival criteria assuming that the dispersal kernel
J satisfy an extra assumption.

Theorem 1.1. Assume that J, f satisfy (H1-H4) and assume further that J is compactly supported. Then, there
exists a unique positive solution to (1.2) if and only if λp(M+ ∂sf(x, 0)) < 0, where

λp(M+ ∂uf(x, 0)) := sup{λ ∈ R | ∃ϕ ∈ C(RN ), φ > 0 so that M[ϕ] + ∂sf(x, 0)ϕ+ λϕ ≤ 0},

where M denotes the continuous operator M[ϕ] = J ⋆ ϕ(x) − ϕ(x). Moreover, for any non-negative initial data
u0 ∈ C(RN ) ∩ L∞(RN ) we have the following asymptotic behaviour:

• If λp(M+ ∂sf(x, 0)) ≥ 0, then the solution satisfies ‖u(t)‖∞ → 0 as t→ ∞,
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• If λp(M + ∂sf(x, 0)) < 0, then the solution ‖u − ũ‖∞(t) → 0 as t → ∞, where ũ = ũ(x) denotes the unique
positive solution to (1.2)

In addition, if the initial data u0 ∈ C(RN ) ∩ L1(RN ), then the convergence u(t, x) → ũ holds in L1(RN ).

Next, we aim at understanding the effect of the dispersal kernel on the survival of the species. To this end,
we analyse the behaviour of the survival criteria under some scaling of the dispersal operator. More precisely, let
Jε := 1

εN
J
(

z
ε

)

and let Mε denotes the operator M with the rescaled kernel, then we look at the behaviour of the
solution to (1.2) as ε→ 0 or ε→ +∞ where the dispersal operator M is replace by α(ε)Mε, with α(ε) ∼

α0

εm . These
asymptotics represent two possible strategies that are observed in nature. The terms α(ε) refers to a dispersal budget
of the species as defined in [39]. Roughly speaking, for a fixed cost, this budget is a way to measure the differences
between different strategies. For a given dispersal cost function of the order of |y|m, the term α(ε) behaves like α0

εm

and in the analysis, the dispersal operator is then given by α(ε)Mε. As explained in [39], the limit as ε → 0 can
be associated to a strategy of producing a lot of offspring but with little capacity of movement. Whereas the limit
ε→ +∞ corresponds to a strategy that aims at maximizing the possibility to explore the environment at the expense
of the number of offspring.

Here, we analyse the cases 0 ≤ m ≤ 2 and α0 = 1, the case m = 0 corresponding to understand the impact of the
mean distance on the survival criteria. To simplify the presentation of these asymptotics, we restrict to nonlinearities
f(x, s) of the form f(x, s) = s(a(x) − s). However, the proofs apply more generally.

In this situation, we first obtain

Theorem 1.2. Assume that J and f satisfy (H1-H4), J is compactly supported and let m = 0. Then there exists
ε0 ∈ (0,+∞] so that for all ε ≤ ε0 there exists a positive solution uε to (1.2). Moreover, we have

lim
ε→ε0

uε(x) = (a(x)− 1)+,

where s+ denotes the positive part of s (i.e. s+ = sup{0, s}). Assuming further that a is smooth, at least C0,1(RN ),
we have

lim
ε→0

uε(x) = v(x) almot everywhere

where v is a non-negative bounded solution of

v(x)(a(x) − v(x)) = 0 in R
N .

In addition, when a(x) is radially symmetric non increasing and ε0 < +∞ then ε0 is sharp, in the sense that for all
ε ≥ ε0 there is no positive solution to (1.2).

The ecologically interpretation of this result is that one way of persistence for a species is to match the resource
and not to move much. In some situation, ε0 = +∞ and there is no effect of the dispersal on the survival criteria of
the species. A natural condition that ensure that ε0 = +∞ is

(a(x) − 1)+ 6= 0.

In this context, the birth rates exceed all death rates and guarantee the persistence of the population no matter
what the dispersal strategy is. In particular, there exists a bounded positive solution to (1.2) for any positive kernel
J . The uniqueness and the behaviour at infinity of the solution are still open questions for general kernels.

When m > 0, then the characterisation of the existence of a positive solution changes and a new picture emerges.
In particular, for large ε there is always of solution to (1.2) whereas for small ε it may happen that no positive
solution exists. Thus, the situation is, in a sense, opposite to the case when m = 0. Non existence for small value of
ε appears only when m ≥ 2. More precisely we prove

Theorem 1.3. Assume that J and f satisfy (H1-H4), J is compactly supported and let 0 < m < 2. Then there
exists ε0 ≤ ε1 ∈ (0,+∞) so that for all ε ≤ ε0 and all ε ≥ ε1 there exists a positive solution uε to (1.2). Moreover,
we have
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lim
ε→+∞

‖uε − a+‖∞ = 0, lim
ε→+∞

‖uε − a+‖L2(RN ) = 0.

In addition, assuming further that a is smooth, at least C2(RN ), we have

lim
ε→0

uε(x) = v(x) almot everywhere,

where v is a non-negative bounded solution of

v(x)(a(x) − v(x)) = 0 in R
N .

Theorem 1.4. Assume that J and f satisfy (H1-H4), J is compactly supported and let m = 2. Then there exists
ε1 ∈ (0,∞) so that for all ε ≥ ε∗ there exists a positive solution uε to (1.2). Moreover,

lim
ε→+∞

uε = a+(x).

In addition, we have the following dichotomy

• When λ1

(

K2,ND2(J)
2 ∆+ a(x)

)

< 0, there exists ε0 ∈ (0,∞) so that for all ε ≤ ε0 there exists a positive solution

to (1.2) and
uε → v, in L2

loc(R
N ),

where v is the unique bounded non-trivial solution to

K2,ND2(J)

2
∆v + v(a(x) − v) = 0 in R

N .

• When λ1

(

K2,ND2(J)
2 ∆+ a(x)

)

> 0, then there ε0 ∈ (0,∞) so that for all ε ≤ ε0 there exists no positive solution

to (1.2).

This last result clearly highlights the dependence of the spreading strategy on the cost functions and the structure
of ecological niche. Especially when m = 2, the smaller spreader strategy may not be an optimal strategy, in the sense
that a population adopting such strategy can go extinct. From the view point of Adaptive dynamics [28, 29, 43, 56],
the smaller spreader strategy (SSS) will not be a Ecological Stable Strategy (ESS). The concept of ESS comes from
game’s theory and goes back to the work of Hamilton [37] on the evolution of sex-ratio. Roughly speaking, within
this framework, an Ecological Stable Strategy, is a strategy such that if most of the members of a population adopt
it,there is no ”mutant” strategy that would give higher reproductive fitness. In such viewpoint the strategies are
compared using their relative pay-off. Here, following [18, 30, 39, 41] the strategies can be compared through the
faith of a solution of a competitive system

∂tu(t, x) = Mm,ε1 [u] + u(t, x)(a(x) − u(t, x)− v(t, x)) in R
N (1.7)

∂tv(t, x) = Mm,ε2 [u] + v(t, x)(a(x) − u(t, x)− v(t, x)) in R
N (1.8)

where u is a population that has adopted the spreading strategy ε1 and v an another one. The notion of ESS is
then linked to some invasion condition which is related to the stability of the equilibria (u∗, 0) where u∗ is a positive
solution of the following problem

Mm,ε1 [u] + u(x)(a(x) − u(x)) = 0 in R
N .

The stability analysis of this equilibria, leads to consider the sign of a principal eigenvalue of the operator
Mm,ε2+a(x)−u

∗(x). When λp(Mm,ε2 +a(x)−u
∗(x)) is negative then the equilibria (u∗, 0) is unstable and a mutant

can invade. Therefore the strategy followed by u will not be an ESS. On the contrary, when λp(M2,ε2 +a(x)−u
∗(x))
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is positive the equilibria (u∗, 0) is stable and a mutant cannot invade, making this strategy a potential candidate for
an ESS.

From our result, we can observe that within the strategy with a quadratic cost function (m = 2), the ubiquity
strategy (ε = ∞) is an ESS. Indeed, for such case, from the above Theorem, we are lead to consider the sign of
λp(M2,ε2 + a(x) − a+(x)) which is positive for any ε > 0. Whereas, the smallest spreader (ε = 0) is never an ESS.
Such behaviour stands in contrast with known results on ESS strategy governed by the rate of dispersion [39, 41],
where in such case the slowest rate possible is the best strategy.

Finally, we obtained existence/ non-existence criteria when we relax the compactly supported constraint on the
dispersal kernel J . In this direction, we investigate a class of kernel J that can have a fat tail but still have some
decay at infinity. More precisely, we assume that

(H5)
∫

RN J(z)|z|
N+1 < +∞.

Theorem 1.5. Assume that J, f satisfy (H1-H4) and assume further that J satisfies (H5) then we have

(i) if λp(M+ ∂sf(x, 0)) > 0 there is no bounded positive solution to (1.2).

(ii) if limR→∞ λp(LR
+ ∂sf(x, 0)) < 0 where

L
R
[ϕ] :=

∫

BR(0)

J(x− y)ϕ(y) dy − ϕ(x),

then there exists a unique positive solution to (1.2).

1.2 Comments

Before going into the proofs of these results, we would like to make some further comments. Our proofs essentially
rely on the properties of the principal eigenvalue λp(M + a(x)) and more precisely on the relations between the
following spectral quantities:

λp(M+ a(x)) := sup {λ ∈ R | ∃ϕ ∈ C(Ω), ϕ > 0, so that M[ϕ](x) + a(x)ϕ(x) + λϕ(x) ≤ 0 in Ω} .

λ′p(M+ a(x)) := inf {λ ∈ R | ∃ϕ ∈ C(Ω) ∩ L∞(Ω), ϕ > 0, so that M[ϕ](x) + a(x)ϕ(x) + λϕ(x) ≥ 0 in Ω} .

λv(M+ a(x)) := inf
ϕ∈L2(RN ),ϕ 6≡0

1
2

∫∫

RN×RN J(x− y)[ϕ(x) − ϕ(y)]2 dxdy −
∫

RN a(x)ϕ
2(x) dx

‖ϕ‖22
.

Although these quantities have been introduced in various context see for example [21, 26, 23, 35, 40], the relation
between them have not been fully investigated or only in some particular contexts such as when a(x) is homogeneous
or periodic. Some new results have been recently obtained in [2] allowing now to have a clear description of the
relation between λp, λ

′
p and λv. Moreover, [2] provides a description of the asymptotic behaviour of these spectral

quantities with respect to the scaling of the kernel. For the purpose of our analysis, we present a summary of these
results in Section2.

Finally, we also want to stress that although we have a clear description of the existence/non-existence of a
positive solution for small ε, the study of the convergence of uε as ε → 0 is quite delicate. Indeed, in L∞(RN ), the
problem

v(x)(a(x) − v(x)) = 0 in R
N ,

has infinitely many bounded non negative solution ( e.g. for any set Q ⊂ R
N , the function a+(x)χQ is a solution)

and owing to the lack of regularising effect of the dispersal operator, we cannot rely on standard compactness result
in the usual manner to obtain a smooth limit. If for the case m = 2 we could rely on the elliptic regularity and the
new description of Sobolev Spaces developed in [12, 13, 49, 50] to get some compactness, this characterisation does
not allow us to treat the case m < 2. We believe that a new characterisation of Fractional Sobolev space in the spirit
of the work of Bourgain, Brezis and Mironescu [12, 13] may be helpful to resolve this issue.
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The paper is organised as follows. In Section 2, we recall some known results and properties of the principal
eigenvalue λp(LΩ

+ a(x)). We also describe the sharp persistence criteria for problem (1.5) defined in a bounded
domain Ω that are derived in terms of principal eigenvalues. In Sections 3 and 4, we establish the sharp survival
criteria and prove the long time behaviour of the solution of (1.2) (Theorem 1.1). We analyse the dependence of the
persistence criteria (Theorems 1.2 and 1.3) in Section 5. Finally, in the last Section we discuss the extension of the
persistence criteria to non compactly supported kernel.

1.3 Notations

To simplify the presentation of the proofs, we introduce some notations and various linear operator that we will use
along this paper:

• BR(x0) will denotes the standard ball of radius R centred at the point x0

• χR will always refer to the characteristic function of BR(0).

• S(RN ) denotes the Schwartz space.

• For a positive integrable function J ∈ S(RN ), the constant
∫

RN J(z)|z|
2 dz will refer to

∫

RN

J(z)|z|2 dz :=

∫

RN

J(z)

(

N
∑

i=0

z2i

)

dz

• We denote L
Ω
the continuous linear operator

LΩ : C(Ω̄) → C(Ω̄)
u 7→

∫

Ω
J(x − y)u(y) dy,

(1.9)

where Ω ⊂ R
N .

• L
R
correspond to the continuous operator L

Ω
− Id with Ω = BR(0).

• We will use M to denote the operators L
Ω
− Id with Ω = R

N .

• Finally, Mε will denote the operator M with a rescaled kernel 1
εN J

(

z
ε

)

and Mε,m := 1
εmMε

• To simplify the presentation of the proofs, we will also use the notation β(x) := ∂sf(x, 0).

2 Preliminaries

In this section, we recall some known results on the principal eigenvalue of a linear non-local operator L
Ω
+ a(x) and

on the KPP equation below
∂u

∂t
(t, x) = L

Ω
[u] + f(x, u(t, x)) in R

+ × Ω, (2.1)

defined in a bounded domain Ω ⊂ R
N . For simplicity, we divide this section into two subsections, one devoted to

the principal eigenvalue and the other dedicated to known survival criteria for the problem (2.1).
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2.1 Principal eigenvalue for non-local operators

In this subsection, we focus on the properties of the spectral problem

LΩ [ϕ] + a(x)ϕ+ λϕ = 0 in Ω. (2.2)

In contrast with elliptic operators, when a(x) 6≡ Cste, neither L
Ω
+a(x)+λ nor its inverse are compact operators

and the description of the spectrum of L
Ω
+ a using the Krein-Rutman Theory fails. However as shown in [21], some

variational formula introduced in [6] to characterise the first eigenvalue of elliptic operators E := aij∂ij+bi(x)∂i+c(x),

λ1(E) := sup{λ ∈ R | ∃ϕ ∈W 2,n(Ω), ϕ > 0 so that E [ϕ] + λϕ ≤ 0}, (2.3)

can be transposed to the operator LΩ + a(x). Namely, the quantity

λp(LΩ
+ a(x)) := sup{λ ∈ R | ∃ϕ ∈ C(Ω), ϕ > 0 so that L

Ω
[ϕ] + a(x)ϕ+ λϕ ≤ 0}. (2.4)

is well defined
As noted also in [21], the quantity defined by (2.4) is not always an eigenvalue of L

Ω
+ a(x) in a reasonable

Banach space. This means that there is not always a positive continuous eigenfunction associated with λp. However,
as proved in [21, 41, 54], when Ω is a bounded domain we can find some conditions on the coefficients that guarantee
the existence of a positive continuous eigenfunction. For example , if we assume that the function a(x) satisfies

1

supΩ a− a(x)
6∈ L1

loc(Ω̄),

then λp(LΩ
+a(x)) is an eigenvalue of L

Ω
+a(x) in the Banach space C(Ω̄) and is associated to a positive continuous

eigenfunction.
Another useful criteria that guarantees the existence of a continuous principal eigenfunction is

Proposition 2.1. Let Ω be a bounded domain and let L
Ω

be as in (1.9) then there exists a positive continuous
eigenfunction associated to λp if and only if λp(LΩ + a(x)) < − supΩ a.

A proof of this proposition can be found for example in [26, 23]. To have a more complete description of the
properties of λp in bounded domains see [24].

Next, we recall some properties of λp that we constantly use along this paper:

Proposition 2.2. (i) Assume Ω1 ⊂ Ω2, then for the two operators

L
Ω1
[u] + a(x)u :=

∫

Ω1

J(x − y)u(y) dy + a(x)u

L
Ω2
[u] + a(x)u :=

∫

Ω2

J(x − y)u(y) dy + a(x)u

respectively defined on C(Ω1) and C(Ω2) we have

λp(LΩ1
+ a(x)) ≥ λp(LΩ2

+ a(x)).

(ii) Fix Ω and assume that a1(x) ≥ a2(x), then

λp(LΩ
+ a2(x)) ≥ λp(LΩ

+ a1(x)).

(iii) λp(LΩ
+ a(x)) is Lipschitz continuous in a(x). More precisely,

|λp(LΩ + a(x)) − λp(LΩ + b(x))| ≤ ‖a(x)− b(x)‖∞
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(iv) We always have the following estimate

− sup
Ω

(

a(x) +

∫

Ω

J(x− y) dy

)

≤ λp(LΩ + a) ≤ − sup
Ω
a.

We refer to [21, 23] for the proofs of (i)− (iv). Let us also recall the two following results proved in [2].

Lemma 2.3. Assume that a achieves its maximum in Ω and let L
Ω
+ a(x) be defined as in (1.9) with J satisfying

(H1 − H2). Assume further that J is compactly supported. Let (Ωn)n∈R be a sequence of subset of Ω so that
limn→∞ Ωn = Ω, Ωn ⊂ Ωn+1. Then we have

lim
n→∞

λp(LΩn
+ a(x)) = λp(LΩ

+ a(x))

Lemma 2.4. Assume that a(x) ∈ C(RN ) ∩ L∞(RN ). Then for all ε > 0 one has

λp(M+ a(x)) = λp(Mε + aε(x)).

where aε(x) := a
(

x
ε

)

and Mε[ϕ] :=
1
εN

∫

RN J
(

x−y
ε

)

ϕ(y) dy − ϕ(x).

Finally, we recall some recent results obtained in [2] on the characterisation of the principal eigenvalue λp(Mε,m+
a(x)). To this end, we recall some variational quantities of interest. Motivated by the works [8, 5, 9] on the generalised
first eigenvalue of an elliptic operators, let us introduce the two definitions :

Definition 2.5. Let LΩ + a(x) be as in (1.9). We define the following quantities:

λ′p(LΩ
+ a(x)) := inf{λ ∈ R | ∃ϕ ≥ 0, ϕ ∈ C(Ω) ∩ L∞(Ω), s.t L

Ω
[ϕ] + λϕ ≥ 0 in Ω}, (2.5)

λv(LΩ
+ a(x)) := inf

ϕ∈L2(Ω),ϕ 6≡0
−
〈LΩ [ϕ] + a(x)ϕ, ϕ〉

〈ϕ, ϕ〉
, (2.6)

= inf
ϕ∈L2(Ω),ϕ 6≡0

∫

Ω

∫

Ω J(x− y)(ϕ(x) − ϕ(y))2 dxdy −
∫

Ω(a(x) − 1 + k(x))ϕ2(x) dx

‖ϕ‖2L2(Ω)

. (2.7)

where k(x) :=
∫

Ω
J(y − x) dy and 〈·, ·〉 denotes the standard scalar product in L2(Ω).

In the context of the study of nonlocal operators, these definitions are natural extension of the definitions known
for an elliptic operator. It is worth to mention that those definitions have already been used in the context of the
study of (1.2) in several papers [25, 26, 23, 35, 40], but the relation between λp, λ

′
p and λv has never been clarified.

For elliptic operators, it is known that the analogous of these three quantities are equivalent on bounded domain
[6]. This is not necessarily the case for unbounded domains, where examples can be constructed [8, 5, 11], showing
that λ1 > λ′1. Since the operator, LΩ + a(x), shares many properties with elliptic operators, it is suspected that the
three quantities, λp, λ

′
p and λv, are not necessarily equal. However, for particular kernel J , we have:

Theorem 2.6 ([2]). Let J be compactly supported satisfying (H1)–(H2). Assume that a(x) ∈ C(RN ) ∩ L∞(RN ).
Then we have

λp(Mε,m + a(x)) = λ′p(Mε,m + a(x)) = λv(Mε,m + a(x)).

Moreover, we have the following asymptotic behaviour:

• When 0 < m ≤ 2 limε→+∞ λp(Mε,m + a(x)) = − sup
RN a(x)

• When m = 0, limε→+∞ λp(Mε + a(x)) = 1− sup
RN a(x)

• When 0 ≤ m < 2, limε→0 λp(Mε,m + a(x)) = − sup
RN a(x)
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• When m = 2 and a(x) is globally Lipschitz, then

lim
ε→0

λp(Mε,2 + a(x)) = λ1

(

K2,ND2(J)

2
∆ + a(x)

)

,

where

D2(J) :=

∫

RN

J(z)z2 dz, K2,N :=
1

|SN−1|

∫

SN−1

(σ.e1)
2 dσ =

1

N
,

and

λ1 (K2,ND2(J)∆ + a(x)) := inf
ϕ∈H1

0 (R
N ),ϕ 6≡0

K2,ND2(J)

2

∫

RN |∇ϕ|2(x) dx

‖ϕ‖22
−

∫

RN a(x)ϕ
2(x) dx

‖ϕ‖22
.

A similar result also holds for the rescaled operator L
R,ε,m

:= 1
εmL

R,ε
with L

R,ε
denotes the operator L

R
taken

with the rescaled kernel Jε(z). Namely,

Theorem 2.7 ([2]). Assume J satisfies (H1)–(H2) and let a(x) ∈ C(B̄R(0)). Then we have

λp(LR,ε,m
+ a(x)) = λ′p(LR,ε,m

+ a(x)) = λv(LR,ε,m
+ a(x)).

Moreover, we have the following asymptotic behaviour:

• When 0 < m ≤ 2 limε→+∞ λp(LR,ε,m
+ a(x)) = − supBR(0) a(x)

• When m = 0, limε→+∞ λp(LR,ε
+ a(x)) = 1− supBR(0) a(x)

• When 0 ≤ m < 2, limε→0 λp(LR,ε,m
+ a(x)) = − supBR(0) a(x)

• When m = 2 and a(x) is globally Lipschitz, then

lim
ε→0

λp(LR,ε,2
+ a(x)) = λ1

(

K2,ND2(J)

2
∆ + a(x), BR(0)

)

2.2 Existence criteria for the KPP-equation (2.1)

Equipped with this notion of principal eigenvalue, it has been shown [1, 21] that on bounded domains, the existence
of a positive stationary solution of (2.1) is conditioned by the sign of λp(LΩ + ∂sf(x, 0)). That is to say

Theorem 2.8 ([1, 21]). Let Ω be a bounded domain and L
Ω
defined as in (1.9). Assume that f satisfies (H3). Then

there exists a unique positive continuous function, ū, stationary solution of (2.1) if and only if λp(LΩ
+∂sf(x, 0)) <

0. Moreover, if λp ≥ 0 then 0 is the only non negative bounded stationary solution of (2.1). In addition, for any
positive continuous solutions of (2.1) we have the following dynamics :

(i) When λp ≥ 0,
lim
t→∞

u(t, x) → 0 uniformly in Ω,

(ii) When λp < 0,
lim
t→∞

u(t, x) → ū uniformly in Ω.

Remark 1. This existence criteria is similar to those known for the reaction diffusion versions of (2.1) [4, 15, 16,
17, 31, 33].
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3 Existence/non existence and uniqueness of a non-trivial solution

In this section we construct a non-trivial solution of (1.2) and prove the necessary and sufficient condition stated in
Theorem 1.1. For convenience the section is split up into three subsections, each of them respectively devoted to the
proofs of existence of a solution, the uniqueness and non-existence.

3.1 Existence of a non-trivial positive solution

The construction follows a basic approximation scheme previously used for example in [3]. To this end we introduce
the following approximated problem :

L
R
[u] + f(x, u) = 0 in B̄(0, R) (3.1)

where B(0, R) denotes the ball of radius R centred at the origin. By Theorem 2.8, for any R > 0 the existence of a
unique positive solution of (3.1) is conditioned to the sign of λp(LR

+ β(x)) where β(x) := ∂uf(x, 0). Since

lim
R→+∞

λp(LR
+ β(x)) = λp(M+ β(x)) < 0,

by Lemma 2.3 there exists R0 > 0 so that

∀R ≥ R0, λp(LR
+ β(x)) < 0.

As a consequence, by Theorem 2.8, for all R > R0 there exists a unique positive solution of (3.1) that we denote uR.
Moreover, since for all R > 0, supBR(0) S(x) is a super-solution of (3.1), by a standard sweeping argument since the
solution to (3.1) is unique, we get

∀R > 0, uR ≤ sup
BR(0)

S(x) in B(0, R).

On another hand, for any R1 > R2, the solution uR1 is a super-solution to the problem

L
R2

[u] + f(x, u) = 0 in B̄(0, R2) (3.2)

So as above by a standard sweeping argument we get

uR2 ≤ uR1(x) in B(0, R2).

Thus the map R 7→ uR is monotone increasing.
The idea is to obtain a positive solution to (1.2) as a limit of the positive solution of (3.1). To this end we

construct a uniform super-solution of the problem (1.2).

Lemma 3.1. There exists ū ∈ C0(R
N ) ∩ L1(RN ), ū > 0 so that ū is a super-solution of the problem (1.2).

Proof. Let us fix ν > 0 and R0 > 1 so that ν < − lim sup|x|→∞ β(x) and β(x) ≤ − ν
2 for all |x| ≥ R0. Consider now

w(x) = Ce−α|x|,

where C and α are to be chosen. By direct computations, for all x ∈ R
N \BR0(0) we get:

M[w](x) + β(x)w(x) = Ce−α|x|

(
∫

RN

J(x− y)e−α(|y|−|x|) dy − 1 + β(x)

)

,

≤ w(x)

(
∫

RN

J(z)eα(|z|) dz − 1−
ν

2

)

.

Therefore w satisfies
M[w](x) + β(x)w(x) ≤ h(α)w(x) in R

N \BR0(0), (3.3)
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where h(α) is defined by

h(α) = −1−
ν

2
.

Since J is compactly supported, thanks to the Lebesgue’s Theorems, we can check that h(·) is a smooth (C2)
convex increasing function of α. Moreover, we have

lim
α→0

h(α) = h(0) = −
ν

2
.

Therefore, by continuity of h, we can choose α small so that h(α) < 0. For such α, we get

M[w](x) + β(x)w(x) ≤ h(α)w(x) < 0 in R
N \BR0(0). (3.4)

Let M := supB2R0(0)
S(x) and let us fix C = 2Me2αR0 . We consider now the continuous function

ū(x) :=

{

Ce−α|x| in R
N \B2R0(0),

2M in B2R0(0).

By direct computation we can check that ū is a super-solution of the problem (1.2). Indeed, for any x ∈ B2R0(0),
we have ū = 2M > supB2R0(0)

S(x) which implies that f(x, ū) = f(x, 2M) ≤ 0 and

M[ū](x) + f(x, ū(x)) ≤ 2M

∫

RN

J(x − y) dy − 2M + f(x, 2M) ≤ f(x, 2M) ≤ 0.

Whereas, for x ∈ R
N \B2R0(0) ⊂ R

N \BR0(0) we have by (3.4)

M[ū](x) + f(x, ū(x)) ≤ M[ū](x) + β(x)w(x) ≤ M[w](x) + β(x)w(x),

≤ h(α)w(x) ≤ 0.

We are now in position to construct a positive solution of (1.2). By Lemma 3.1, there exists ū a positive continuous
super-solution of the problem (1.2). Therefore for any R > 0, ū is also a positive continuous super-solution of the
problem (3.1). Therefore by using a standard sweeping argument, we can check that for all R ≥ R0 the unique positive
continuous solution of (3.1) satisfies uR ≤ ū in BR(0). By sending now R → ∞ and observing that uR ∈ C(RN ) is
locally uniformly bounded and monotone with respect to R, we get uR → ũ := limR→∞ uR a non-negative solution
of (1.2). ũ is non trivial since 0 ≤ ũ ≤ ū and

uR ≤ ũ in B(0, R), for all R ≥ R0.

Moreover, by adapting the proof in [1] we can show that ũ ∈ C0(R
N ).

3.2 Uniqueness

Having constructed a L1(RN ) positive solution to (1.2), the uniqueness of the solutions of (1.2) is then obtained by
the following argument. Assume by contradiction that v ∈ C(RN ) ∩ L∞(RN ) is another positive solution. Then v
is a supersolution of the problem (3.1) for any R > 0. Therefore v ≥ uR for all R ≥ R0. Since uR is monotone
with respect to R, it follows that v ≥ ũ := limR uR(x). By assumption v 6≡ ũ. Recall that the functions v and ũ are
verifying:

M[ũ] + f(x, ũ) = 0 in R
N , (3.5)

M[v] + f(x, v) = 0 in R
N . (3.6)
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So, multiplying (3.5) by v and (3.6) by u we get after integration over RN

∫

RN

∫

RN

J(x− y)ũ(y)v(x) dydx −

∫

RN

ũ(x)v(x) dx +

∫

RN

v(x)f(x, ũ(x)) dx = 0, (3.7)

∫

RN

∫

RN

J(x− y)ũ(x)v(y) dydx −

∫

RN

ũ(x)v(x) dx +

∫

RN

ũ(x)f(x, v(x)) dx = 0. (3.8)

Therefore by subtracting the two above equality, we get the contradiction

0 <

∫

RN

v(x)ũ

[

f(x, ũ(x))

ũ(x)
−
f(x, v(x))

v(x)

]

dx = 0,

since ũ ≤ v and f(x, s)/s is decreasing.

3.3 Non-existence of a solution

In this section, we deal with the non-existence of positive solution when λp(M + β(x)) ≥ 0. To simplify the
presentation of the proofs, we treat the two cases: λp(M + β(x)) > 0 and λp(M+ β(x)) = 0 separately. The proof
in the second case being more involved, we start by showing the non existence results when λp(M+ β(x)) > 0.

Case λp(M + β(x)) > 0:

In this situation we argue as follows. Assume by contradiction that a positive bounded solution u exists. By
assumption, u satisfies

M[u](x) + β(x)u(x) ≥ 0. (3.9)

Therefore u is a test function for λ′p(M+β(x)) and we get λ′p(M+β(x)) ≤ 0. Since by Theorem 2.6 λp(M+β(x)) ≤
λ′p(M+ β(x)) we get a straightforward contradiction.

Case λp(M + β(x)) = 0:

In this situation, as above we argue by contradiction. Assume by contradiction that a non-negative, non identically
zero, bounded solution u exists. By a straightforward application of the maximum principle, since u 6≡ 0 we have
u > 0 in R

N . Now let us observe that in this situation, by the above argumentation we have λp(M + β(x)) = 0 =
λ′p(M+ β(x)) and by (iv) of Proposition (2.2) we get the following estimate

sup
RN

(β(x) − 1) ≤ 0. (3.10)

Let us denote γ(x) := f(x,u(x))
u(x) , then we obviously have

J ⋆ u(x)− u(x) + γ(x)u(x) = 0 in R
N (3.11)

Therefore by definition of λ′p we have λ′p(M+ γ(x)) ≤ 0. By construction γ(x) ≤ β(x), so by combining (3.11) with
the Proposition 2.2, the Theorem 2.6 and the definition of λp(M+ γ(x)) we can infer that

λp(M+ γ(x)) ≤ λ′p(M+ γ(x)) ≤ 0 ≤ λp(M+ β(x)) ≤ λp(M + γ(x)).

Therefore λp(M+ γ(x)) = 0. Let us denote η ∈ C(RN ) a smooth regularisation of χB1(0) the characteristic function
of the unit ball. Since γ(x) < β(x) in R

N , we can find ε0 > 0 small so that for all ε ≤ ε0

γ(x) < γ(x) + εη(x) < β(x) in R
N .

By (i) of Proposition 2.2, we then have

0 = λp(M + β) ≤ λp(M+ γ + εη) ≤ λp(M + γ) = 0.

Now we claim that
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Claim 3.2. There exists R1 > 0 and ψ > 0, ψ ∈ C(RN ) ∩ L1(RN ) so that

J ⋆ ψ(x) − ψ(x) + (γ(x) + εη(x))ψ(x) = 0 in R
N

Assume for a moment that the claim holds then by arguing as in the subsection (3.2), since ψ ∈ L1 we get the
following contradiction

0 = −ε

∫

RN

u(x)ψ(x)η(x) dx < 0.

Proof of the Claim. For convenience we denote γ̃(x) := γ + εη. By (3.10), since γ̃ < β we also have

0 < − sup
RN

(γ̃ − 1). (3.12)

From the latter inequality, by using Proposition 2.1 and Lemma 2.3 we see that there exists R0 so that for all R ≥ R0

there exists a positive eigenfunction ϕR ∈ C(B̄(0, R)) associated to the principal eigenvalue λp(LR
+ γ̃(x)) of the

approximated problem
L

R
[ϕ] + (γ̃(x) + λ)ϕ = 0 in B(0, R) (3.13)

Take now the increasing sequence (Rn)n∈N := (R0 + n)n∈N and let (ϕn)n∈N be the sequence of function where
ϕn is the positive principal eigenfunction associated to λp(LRn

+ γ̃(x)). Without loss of generality, we can assume
that for all n, ϕn(0) = 1.

Recall that for all n, ϕn satisfies

L
Rn

[ϕn] + (γ̃(x) + λp(LRn
+ γ̃(x)))ϕn = 0 in BRn

. (3.14)

Let us now define bn(x) := −λp(LRn
+ γ̃(x)) − γ̃(x). Then ϕn satisfies

L
Rn

[ϕn] = bn(x)ϕn in BRn
.

By construction for all n ≥ 0 we have bn(x) ≥ −λp(LRn0
+ γ̃(x)) − sup

RN (γ̃(x) − 1) > 0, therefore the Harnack

inequality (Theorem 1.4 in [22]) applies to ϕn. Thus for n ≥ 0 fixed and for all compact set ω ⊂⊂ BRn
there exists

a constant Cn(ω) such that
ϕn(x) ≤ Cn(ω)ϕn(y) ∀ x, y ∈ ω.

Moreover the constant Cn(ω) only depends on
⋃

x∈ω Br0(x) and is monotone decreasing with respect to infx∈BRn
bn(x).

For all n ≥ 0, the function bn(x) being uniformly bounded from below by a constant independent of n, the constant
Cn is bounded from above independently of n by a constant C(ω). Thus we have

ϕn(x) ≤ C(ω)ϕn(y) ∀ x, y ∈ ω.

From the normalization ϕn(0) = 1, we deduce that the sequence (ϕn)n≥0 is locally uniformly bounded in R
N .

Moreover, from a standard diagonal extraction argument, there exists a subsequence still denoted (ϕn)n≥0 such that
(ϕn)n≥0 converges locally uniformly to a continuous function ϕ. Furthermore, ϕ is a non-negative non trivial function
and ϕ(0) = 1.

Since J is compactly supported, we can pass to the limit in the equation (3.14) using the Lebesgue monotone
convergence theorem and get

M[ϕ] + (γ̃(x) + λp(M+ γ̃(x)))ϕ(x) = 0 in R
N .

Hence, we have

M[ϕ] + γ̃(x)ϕ = 0 in R
N . (3.15)

To conclude the proof of this claim, we characterise the behaviour of ϕ(x) for |x| >> 1.
Let us denote 0 < ν < − lim sup|x|→∞ β(x) and let us fix R1 so that β(x) ≤ − ν

2 for |x| ≥ R1.
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Since by Lemma 2.3 λp(LR
+ γ̃(x)) → λp(M+ γ̃(x)) = 0, we can take R1 larger if necessary to achieve

γ̃(x) + λp(LR
+ γ̃(x)) ≤ −

ν

4
for |x| ≥ R1.

Now let us consider ψ(x) := Ce−α(|x|−R1) where C and α will be chosen later on. By a straightforward compu-
tation, we can see that for all R > R1

L
R
[ψ](x) + (γ̃(x) + λp(LR

+ γ̃(x)))ψ(x) ≤ ψ(x)

(
∫

RN

J(z)eα|z|dz − 1−
ν

4

)

for |x| ≥ R1,

≤ h(α)ψ(x) for |x| ≥ R1,

with

h(α) :=

(
∫

RN

J(z)eα|z|dz − 1−
ν

4

)

.

Since J is compactly supported, by the Lebesgue Theorem, the function h is continuous and h(0) = − ν
4 . By

assumption ν > 0, so by continuity of h there exists α0 > 0 so that h(α0) < 0. Thus we achieve for α = α0

L
R
[ψ](x) + (γ̃(x) + λp(LR

+ γ̃(x)))ψ(x) ≤ 0 for |x| ≥ R1. (3.16)

Recall that by construction, the function ϕn satisfies

L
Rn

[ϕn](x) + (γ̃(x) + λp(LRn
+ γ̃(x)))ϕn(x) = 0 in BRn

(0). (3.17)

Since J is compactly supported and J(0) > 0 there exists positive constants r0 ≥ r1;M ≥ m so that

MχBr0(x)
≥ J(x− y) ≥ mχBr1(x)

for all x, y ∈ R
N .

Therefore for n large enough say n ≥ n0, we have Rn > R1 + r0 and by the Harnack inequality, for all n ≥ n0 we
have

ϕn(x) ≤ C(BR1 , λp(LRn
+ γ̃(x)))ϕn(y) for all x, y ∈ BR1(0).

with C(BR1 , λp(LRn
+ γ̃(x))) a constant that only depends on

⋃

x∈BR1
Br0(x) and is monotone decreasing with

respect to infx∈BRn
(γ̃(x) + λp(LRn

+ γ̃(x))). For all n ≥ n0, the function γ̃(x) + λp(LRn
+ γ̃(x)) being uniformly

bounded from below by a constant independent of n, the constant C(BR1 , λp(LRn
+ γ̃(x))) is bounded from above

independently of n by a constant C(BR1). Thus we have for all n ≥ n0

ϕn(x) ≤ C(BR1 )ϕn(y) ∀ x, y ∈ BR1 .

In particular, we have for all n ≥ n0,

ϕn(x) ≤ C(BR1)ϕn(0) = C(BR1 ) ∀ x ∈ BR1 .

By choosing C > C(BR1), we achieve

ψ(x) ≥ C > C(BR1) ≥ ϕn(x) ∀ x ∈ BR1 .

Set now wn := ψ − ϕn, from (3.16) and (3.17) we get

L
Rn

[wn](x) + (γ̃(x) + λp(LRn
+ γ̃(x)))wn(x) ≤ 0 for R1 ≤ |x| < Rn, (3.18)

wn > 0 for |x| < R1. (3.19)

By a straightforward application of the Maximum principle, it follows that for all n ≥ n0 we have ϕn(x) ≤ ψ. Indeed,
since wn is continuous, wn achieves a minimum at some point x0 ∈ BRn

. Assume by contradiction that wn(x0) < 0.
Then, thanks to (3.19) x0 ∈∈ BRn

\BR1 and at this point by (3.18) we have the following contradiction
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0 ≥ L
Rn

[wn](x0) + (γ̃(x0) + λp(LRn
+ γ̃(x)))wn(x0) ≥

∫

BRn

J(x0 − y)wn(y) dy − wn(x0) + +
ν

4
|wn(x0)|,

≥

∫

BRn

J(x0 − y)[wn(y)− wn(x0)] dy +
ν

4
|wn(x0)| > 0.

Hence, for all n ≥ n0 ϕn ≤ ψ in BRn
which by sending n → ∞ leads to ϕ ≤ ψ in R

N which conclude the proof of
the Claim.

4 Long time Behaviour

In this section, we investigate the long-time behaviour of the positive solution u(t, x) of

∂u

∂t
(t, x) = J ⋆ u(t, x)− u(t, x) + f(x, u(t, x)) in R

+ × R
N , (4.1)

u(0, x) = u0(x). (4.2)

For any u0 ∈ Ck(RN )∩L∞ or in Ck(RN )∩L1(RN ) the existence of a solution u(t, x) ∈ C1((0,+∞), Cmin{1,k}(RN ))
respectively u(t, x) ∈ C1((0,+∞), Cmin{1,k}(RN )∩L1(RN )) is a straightforward consequence of the Cauchy-Lipschitz
Theorem and of the KPP structure of the nonlinearity f . Before going to the proof of the asymptotic behaviour,
let us recall some useful results

Lemma 4.1. Assume that u0(x) is a sub-solution to (4.1), then the solution u(t, x) is increasing in time. Conversely,
if u0(x) is a super-solution to (4.1) then u(t, x) is decreasing in time.

The proof of this Lemma follows from a straightforward used of the parabolic maximum principle and is let to
reader. Let us now prove the asymptotic behaviour of the solution of (4.1) and end the proof of Theorem 1.1.

Proof. Let z(t, x) be the solution to

∂z

∂t
= J ⋆ z − z + f(x, z(t, x)) in R

+ × R
N (4.3)

z(0, x) = C‖u0‖∞ (4.4)

Since S(x) ∈ L∞ by choosing C large enough, the constant C‖u0‖∞ is a super-solution to (4.1) therefore z(t, x) is a
decreasing function and by the parabolic maximum principle we have u(t, x) ≤ z(t, x) for all (t, x) ∈ [0,+∞)× R

N ,
leading to

lim sup
t→∞

u(t, x) ≤ lim sup
t→∞

z(t, x) for all x ∈ R
N . (4.5)

Now let us consider the approximated parabolic problem

∂vR
∂t

(t, x) =

∫

BR(0)

J(x− y)vR(t, y) dy − vR(t, x) + f(x, vR(t, x)) in R
+ ×BR(0), (4.6)

vR(0, x) = η
R
u0(x), (4.7)

where η
R
:= η

(

|x|
R

)

with η ∈ C(R+) a smooth cut-off function so that η ≥ 0, η ≡ 1 in [0, 1] and η ≡ 0 in R
+ \ [0, 2].

By Theorem 2.8, for R large enough the solution vR(t, x) converges to uR(x) the unique positive stationary solution
of (4.6). By construction since u(t, x) is a super-solution of the problem (4.6), by the parabolic comparison principle
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we have for all R large enough vR(t, x) ≤ u(t, x) for all (t, x) ∈ [0,+∞)× BR(0). Therefore we have for all R large
enough

lim inf
t→∞

u(t, x) ≥ uR(x) for all x ∈ BR(0) (4.8)

By taking the limit as R→ ∞, in the above inequality we get

lim inf
t→∞

u(t, x) ≥ lim
R→∞

uR(x) = ũ(x) for all x ∈ R
N (4.9)

Note that we can reproduce the above arguments with z(t, x), thus we also get

vR(t, x) ≤ z(t, x) for all (t, x) ∈ [0,+∞)×BR(0) (4.10)

lim inf
t→∞

z(t, x) ≥ lim
R→∞

uR(x) = ũ(x) for all x ∈ R
N (4.11)

By (4.10) z(t, x) is locally uniformly bounded from below and since z(t, x) is a decreasing function of t we get
limt→∞ z(t, x) = z̄(x) > 0 for all x ∈ R

N . Moreover z̄ is a bounded stationary solution to (4.1). By uniqueness of
the positive stationary solution, we conclude that z̄ = ũ. Thus we have

lim
t→∞

z(t, x) = ũ(x) for all x ∈ R
N (4.12)

Hence by collecting (4.5),(4.9), (4.12) we get for all x ∈ R
N

ũ(x) ≤ lim inf
t→∞

u(t, x) ≤ lim sup
t→∞

u(t, x) ≤ lim sup
t→∞

z(t, x) = lim
t→∞

z(t, x) = ũ(x).

Now, to complete the proof we are left to show that ‖u− ũ‖∞ → 0 as t→ ∞. To this end we follow the argument
in [9]. We argue by contradiction and assume there exists ε > 0 and the sequences (tn) ∈ R

+, (xn) ∈ R
N such that

lim
n→∞

tn = ∞, |u(tn, xn)− ũ(xn)| > ε, ∀n ∈ N. (4.13)

By (4.12), we already know that u → ũ locally uniformly in R
N , so without loss of generality, we can assume that

|xn| → ∞. From the construction of ũ, Subsection 3.1, we have lim|x|→∞ ũ(x) = 0. Therefore for some R0 > 0, we
have ũ(x) ≤ ε

2 for all |x| ≥ R0. The latter combined with (4.12) and (4.13) enforces

z(tn, xn)− ũ(xn) ≥ u(tn, xn)− ũ(xn) > ε, ∀n ∈ N. (4.14)

We claim that

Claim 4.2. For all sequences (tn)n∈N, (xn)n∈N so that limn→∞ tn = limn→∞ |xn| = +∞, then z(tn, xn) → 0.

Assume for the moment the claim holds true. Then we obtain a straightforward contradiction

0 = lim
n→∞

z(tn, xn)− ũ(xn) ≥ lim
n→∞

u(tn, xn)− ũ(xn) > ε.

Let us prove the Claim. Again we argue by contradiction and assume there exists ε > 0 and sequences
(tn)n∈N, (xn)n∈N satisfying limn→∞ tn = limn→∞ |xn| = ∞ so that z(tn, xn) > ε for all n ∈ N. Let us define
zn(t, x) := z(t, x+ xn) then by definition zn satisfies

∂zn
∂t

(t, x) =

∫

R

J(x− y)zn(y) dy − zn(t, x) + f(x+ xn, zn(t, x)) in R
+ × R

N ,

zn(0, x) = C‖u0‖∞,

and 0 < zn(t, x) < C‖u0‖∞. Since for all n, zn(0, x) ∈ C∞ by the Cauchy Lipschitz Theorem we see that zn ∈
C1(R+, C1(RN )). Thus, there exists C0 > 0 independent of n so that ‖zn‖C1,1(R+,C(RN )) < C0. From these estimates,

the sequence (zn)n∈N is uniformly bounded in C1,1((0, T ), C0,1(RN )) for any T > 0. By a diagonal extraction, there
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exists a subsequence of (zn)n∈N that converges locally uniformly to z̃(t, x). Moreover, thanks to lim|x|→∞
f(x,s)

s < 0,
there exists κ > 0 so that z̃(x, t) satisfies

∂z̃

∂t
(t, x) ≤

∫

R

J(x − y)z̃(t, y) dy − z̃(t, x) − κz̃(t, x)) in R
+ × R

N , (4.15)

z̃(0, x) = C‖u0‖∞. (4.16)

In addition, for all t > 0, z̃(t, 0) = limn→∞ zn(t, 0) ≥ ε. Since z̃(0, x) is a super-solution of (4.15), by Lemma 4.1
the function z̃(t, x) is monotone decreasing in time. By sending t→ ∞, since z̃ ≥ 0, z̃ converges locally uniformly to
a non-negative function z̄ that satisfies

∫

R

J(x− y)z̄(y) dy − z̄(x)− κz̄(x)) ≥ 0 in R
N ,

0 ≤ z̄ ≤ C‖u0‖∞,

z̄(0) ≥ ε.

Now let consider the function w(x) := ε
2e

α|x| − z̄ with α to be chosen, then w satisfies

∫

R

J(x− y)w(y) dy − w(x) − κw(x) ≤ ρeα|x|
(
∫

RN

J(z)eα|z| dy − 1− κ

)

in R
N .

The left hand side of the inequality is well defined and continuous with respect to α since J is compactly supported.
Thanks to

∫

RN J(z)dz = 1, by choosing α small enough, we achieve

∫

R

J(x− y)w(y) dy − w(x) − κw(x) < 0 in R
N .

By construction, since z̄ is bounded lim|x|→∞w(x) = +∞ and w achieves a minimum in R
N says at x0. Since

w(0) = ε
2 − z̄(0) ≤ − ε

2 , we have w(x0) < 0. Now at this point, we get the following contradiction

0 <

∫

R

J(x0 − y)[w(y) − w(x0)] dy − κw(x0) < 0 in R
N .

Finally we establish the long time behaviour of the solution u(t, x) starting from an integrable initial datum u0,i.e
u0 ∈ L1(RN ) ∩ C(RN ). To do so, we define two auxiliary functions h(t, x) and v(t, x) that are respectively solution
to

{

∂h
∂t (t, x) = J ⋆ h(t, x) − h(t, x) + f(x, h(t, x)) in R

+ × R
N ,

h(0, x) = sup{ũ(x), u0(x)},
(4.17)

{

∂v
∂t (t, x) = J ⋆ v(t, x)− v(t, x) + f(x, v(t, x)) in R

+ × R
N ,

v(0, x) = inf{ũ(x), u0(x)}.
(4.18)

By construction, from the comparison principle we deduce that v(t, x) ≤ u(t, x) ≤ h(t, x) for all (t, x) ∈ R
+×R

N .
Therefore

‖u− ũ‖L1(RN ) ≤ sup{‖h− ũ‖L1(RN ), ‖v − ũ‖L1(RN )}.

Thus to prove that ‖u− ũ‖L1(RN ) → 0 it is enough to show that h and v converge to ũ in L1(RN ).

Let us show that v converges to ũ in L1(RN ). Since ũ(x) is a super solution to (4.18) we deduce v(t, x) ≤ ũ(x)
for all x ∈ R

N . Let ε > 0 be fixed and choose R so that
∫

RN\B(0,R) ũ(x) dx ≤ ε
4 then we have
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‖ũ− v‖L1(RN ) =

∫

RN\BR(0)

(ũ(x)− v(t, x)) dx +

∫

BR(0)

(ũ(x)− v(t, x)) dx,

≤ 2

∫

RN\BR(0)

ũ(x) dx+

∫

BR(0)

(ũ(x)− v(t, x)) dx,

≤
ε

2
+

∫

BR(0)

(ũ(x) − v(t, x)) dx.

Recall that v converges pointwise to ũ as t tends to infinity. Therefore, by Lebesgue Theorem for some t(ε) we get
for all t ≥ t(ε) ,

∫

BR(0)
(ũ(x) − v(t, x)) dx ≤ ε

2 which enforces

‖ũ− v‖L1(RN ) ≤ ε.

ε being chosen arbitrary, the latter inequality shows that limt→∞ ‖ũ − v‖L1(RN ) = 0 which proves that v converges

to ũ in L1(RN ).
To obtain that ‖h − ũ‖L1(RN ) → 0 we argue as follow. By construction ũ is a sub solution to (4.17), thus

ũ(x) ≤ h(t, x) for all (t, x) ∈ R
+×R

N . Let us denote w(t, x) := h(t, x)−ũ(x). Then w satisfies for all (t, x) ∈ R
+×R

N :

∂w

∂t
(t, x) = J ⋆ w(t, x) − w(t, x) +

(

f(x, h(t, x))

h(t, x)
−
f(x, ũ(x))

ũ

)

h(t, x) +
f(x, ũ(x))

ũ
w(t, x),

≤ J ⋆ w(t, x) − w(t, x) +
f(x, ũ(x))

ũ
w(t, x).

Now thanks to lim|x|→∞
f(x,s)

s < 0, there exists κ > 0 and R0 so that w satisfies

∂w

∂t
(t, x) ≤ J ⋆ w(t, x) − w(t, x) − κw(t, x) in R

+ × R
N \BR0(0). (4.19)

Fix now ε > 0. Recall that h(t, x) converges pointwise to ũ, then by Lebesgue Theorem there exists t0 so that
for all t ≥ t0,

∫

BR0 (0)

w(t, x) dx ≤ κε.

Now let us estimate
∫

RN\BR0 (0)
w(x) dx for t ≥ t0. By integrating (4.19) over RN \BR0(0) it yields

∂
∫

RN\BR0(0)
w(t, x) dx

∂t
≤

∫

RN\BR0(0)

J ⋆ w(t, x) dx −

∫

RN\BR0 (0)

w(t, x) dx − κ

∫

RN\BR0(0)

w(t, x) dx.

By using Fubini’s Theorem, the uniform estimate on ‖w‖∞ and the unit mass of the kernel, we can check that for
t ≥ t0

∫

RN\BR0 (0)

J ⋆ w(t, x) dx =

∫

RN\BR0(0)

w(t, y)

(

∫

RN\BR0(0)

J(x− y) dx

)

dy +

∫

BR0(0)

w(t, y)

(

∫

RN\BR0 (0)

J(x− y) dx

)

dy,

≤

∫

RN\BR0(0)

w(t, y) dy +

∫

BR0 (0)

w(t, y) dy,

≤

∫

RN\BR0(0)

w(t, y) dy + κε.

Therefore for t ≥ t0, w satisfies

∂
∫

RN\BR0(0)
w(t, x) dx

∂t
≤ κε− κ

∫

RN\BR0(0)

w(t, x) dx.
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From the later differential inequality, there exists t(ε) ≥ t0 so that for all t ≥ t(ε) we have

∫

RN\BR0(0)

w(t, x) dx ≤ 2ε.

Hence, we have for all t ≥ t(ε)

‖w‖L1(RN ) =

∫

RN\BR0 (0)

w(t, x) dx +

∫

BR0 (0)

w(t, x) dx ≤

(

2 +
κ

|BR0(0)|

)

ε,

As above, ε being chosen arbitrary, the latter inequality shows that limt→∞ ‖w‖L1(RN ) = 0 which proves that h

converges to ũ in L1(RN ).

5 Some asymptotics

In this section we analyse the qualitative behaviour of the solution of (1.2) with respect to the size of the support of
J . For convenience we investigate the particular situation

1

εm
(Jε ⋆ u− u) + u(a(x)− u) = 0 in R

N (Pε)

where Jε(z) =
1
εN J

(

z
ε

)

with supp(J) = B(0, 1) and a ∈ C1(RN ) so that a+ 6≡ 0.
The latter condition on a(·) is necessary to observe the possible existence of a solution. Indeed, if a+ ≡ 0 then

for any positive constant c0 we have
M[c0] + a(x)c0 ≤ 0

therefore λp(M[c0] + a(x)c0) ≥ 0 and for all ε there is no solution to (Pε) besides 0.
We analyse the behaviour of uε when ε→ 0 and → +∞ and try to understand the influence of m on the resulting

limits.
We start by showing some a priori estimate for the solution uε.

Lemma 5.1. There exist positive constants C1, C2, C3 so that we have for any positive bounded solution uε of (Pε)

(i) ‖uε‖L2(RN ) ≤ C1, ‖uε‖∞ < C3,

(ii)
∫

RN

∫

RN Jε(x− y)(uε(x)− uε(y))
2 dxdy ≤ C2ε

m

(iii) For all x ∈ supp(a+), there exists ρ, supsupp(a+) uε ≥ −λp(Mε,m+a(x))
2 .

(iv) uε ≥ (a(x) − 1
εm )+,

Proof. Since by construction the solution is unique and uε ∈ L1(RN ) ∩L∞. Moreover by (Pε) uε ≤M = ‖a‖∞. We
obtain (i) by integrating (Pε) over R

N . Indeed, we get

∫

RN

u2ε(x) dx =

∫

RN

a(x)uε(x) dx ≤

∫

RN

a+(x)uε(x) dx ≤M

∫

RN

a+(x)dx =: C1.

To obtain (ii), let us multiply (Pε) by uε and integrate over RN , then we get

1

2εm

∫

RN

∫

RN

J(x− y)(uε(x) − uε(y))
2 dxdy =

∫

RN

u2ε(x)(a(x) − uε(x)) dx

Since uε and a(x) are uniformly bounded independently, (ii) holds true with C2 := 4C1M . Observe that (a(x)− 1
εm )+

is always a sub-solution to (Pε), so by a standard sweeping principle uε ≥ (a(x)− 1
εm )+ and (iv) holds true. Finally

to obtain (iii) we argue as follows.
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Since uε is a positive bounded solution of (Pε) by Theorem 1.1 we have λp(Mε,m + a(x)) < 0. Now since
λp(Mε,m + a(x)) < 0 and J is compactly supported, by regularising a if necessary, we can find (see the proof of
Lemma ?? in [2]) ϕε ∈ Cc(R

N ) so that

Mε,m[ϕε] + a(x) +
λp
2
ϕε ≥ 0 in R

N .

Moreover, we can normalised ϕε so that ‖ϕε‖∞ = 1. Plugging θϕε with in (Pε) it follows that

Mε,m[θϕε] + θϕε(a(x)− θϕε) ≥ θϕε(−
λp
2

− θϕε).

Therefore for 0 < θ ≤ −λp

2 , the function θϕε is a sub-solution to (Pε). By a standard sweeping argument, we get

−
λp
2
ϕε ≤ uε and sup

RN

uε ≥ −
λp
2
.

Since uε ∈ L1(RN ), uε achieves its maximum at some point, says x0. At this point from (Pε) we have

0 ≥ Mε,m[uε](x0) = −uε(x0)(a(x0)− uε(x0)).

Thus x0 ∈ supp(a+) and ‖uε‖∞ = supsupp(a+) uε which proves (iii).

Next we obtain derive some useful super-solution for large ε.

Lemma 5.2. There exists ε0 > 0 so that for all m ≥ 0 and ε ≥ ε0 any positive bounded solution uε of (Pε) satisfies

uε ≤ a+(x) +
1

ε
N
4

Proof. Let δ ∈ (0, N2 ) and consider the function ζε(x) :=
1

ε
N
2

−δ
+ a+(x). We will show that ζε is a super-solution to

(Pε) when ε >> 1.
Indeed, we have

M
ε,m

[ζε](x) + ζε(x)(a(x) − ζε(x)) ≤
‖J‖∞
εN+m

∫

RN

a+(y) dy +

(

1

ε
N
2 −δ

+ a+(x)

)[

a(x) −
1

ε
N
2 −δ

− a+(x)

]

≤
‖J‖∞
εN+m

∫

RN

a+(y) dy −
1

εN−2δ
.

where we use in the last inequality that

(

1

ε
N
2 −δ

+ a+(x)

)[

a(x)−
1

ε
N
2 −δ

− a+(x)

]

≤ −
1

εN−2δ
for all x ∈ R

N .

Thus for ε >> 1, we achieve

M[ζε](x) + ζε(x)(a(x) − ζε(x)) ≤
‖J‖∞
εN+m

∫

RN

a+(y) dy −
1

εN−2δ
< 0.

Therefore for ε >> 1, by a sweeping argument we get uε ≤ ζε. We end the proof by taking δ = N
4 .

Remark 2. When m = 0 and (a(x)−1)+ 6≡ 0, the above computation holds as well with ζε(x) :=
1

ε
N
2

−δ
+(a(x)−1)+.

Thus in this case we have for large ε

uε(x) ≤
1

ε
N
4

+ (a(x)− 1)+.
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Next, we prove some continuity of λp(LR,ε
+ a(x)) with respect to ε.

Lemma 5.3. Let R, ε be fixed and positive then for all η > 0 there exists δ > 0 so that

|λp(LR
+ aε(x)) − λp(LR

+ aε+δ(x))| ≤ η,

where aε(x) := a(εx).

Let us prove now the continuity of λp(LR
+ aε(x)).

Proof of the Claim. Let ε > 0 and R > 0 be fixed. We observe that for all |δ| < ε we have for all x ∈ R
N , aε+δ(x) =

aε
(

ε+δ
ε x
)

therefore

‖aε − aε+δ‖∞,R = sup
B(0,R)

∥

∥

∥

∥

aε(x)− aε

(

ε+ δ

ε
x

)
∥

∥

∥

∥

.

Since aε is a Lipschitz in R
N , we have

∥

∥

∥

∥

aε(x) − aε

(

ε+ δ

ε
x

)∥

∥

∥

∥

≤ K(ε)εδ‖x‖,

where K(ε) is the Lipschitz constant of aε. Thus

‖aε − aε+δ‖∞,R ≤ K(ε)Rεδ.

Hence, by (ii) of Proposition 2.2 we get

|λp(LR
+ aε(x))− λp(LR

+ aε+δ(x))| ≤ K(ε)Rεδ.

Finally, we establish a useful identity.

Proposition 5.4. Let ρ ∈ C∞
c (RN ) be a radial function, then for all u ∈ L2(RN ), ϕ ∈ C∞

c (RN ) we have
∫∫

RN×RN

ρ(z)[u(x+ z)− u(x)]ϕ(x) dzdx =
1

2

∫∫

RN×RN

ρ(z)u(x)[ϕ(x+ z)− 2ϕ(x) + ϕ(x− z)] dzdx.

Proof. Thanks to the symmetry of ρ, using standard changes variables we have
∫∫

RN×RN

ρ(z)[u(x+ z)− u(x)]ϕ(x) =
1

2

∫∫

RN×RN

ρ(z)[u(x+ z)− u(x)]ϕ(x) +
1

2

∫∫

RN×RN

ρ(−z)[u(x− z)− u(x)]ϕ(x),

=
1

2

∫∫

RN×RN

ρ(z)[u(x+ z)− u(x)]ϕ(x) +
1

2

∫∫

RN×RN

ρ(z)[u(x)− u(x+ z)]ϕ(x+ z),

= −
1

2

∫∫

RN×RN

ρ(z)[u(x+ z)− u(x)][ϕ(x + z)− ϕ(x)],

= −
1

2

∫∫

RN×RN

ρ(z)u(x)[ϕ(x) − ϕ(x − z)] +
1

2

∫∫

RN×RN

ρ(z)u(x)[ϕ(x + z)− ϕ(x)],

=
1

2

∫∫

RN×RN

ρ(z)u(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x− z)].

From the Proposition, for all u ∈ L2(RN ), ϕ ∈ C∞
c (RN ) we straightforwardly get the following identity

∫

RN

M
ε,m

[u](x)ϕ(x) dx =
ε2−mD2(J)

2

∫∫

RN×RN

ρε(z)

|z|2
uε(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x − z)] dxdz (5.1)

where ρε(z) =
1

εND2(J)
J
(

z
ε

) |z|2

ε2 .

Equipped with all these apriori estimates, we can now analyse the asymptotic behaviour of uε.

22



5.1 The case m = 0

In this situation, from Theorem 2.6 we know that

lim
ε→0

λp(Mε + a(x)) = − sup
RN

a(x) (5.2)

lim
ε→+∞

λp(Mε + a(x)) = 1− sup
RN

a(x) (5.3)

As a consequence for ε small enough we have λp(Mε+a(x)) ≤ −
sup

RN
a(x)

2 < 0 and by Theorem (1.1) there exists
a solution to (Pε). Moreover the following quantity is well defined

ε∗ := sup{ε > 0 | for all ε′ < ε, there exists a positive solution to (Pε′ )}.

In view of (5.3) ε∗ ∈ (0,+∞] and ε∗ < +∞ if and only if (a(x) − 1)+ 6≡ 0.

Let us now deal with the limit of uε as ε→ 0 and ε→ +∞ and let us start by proving that

lim
ε→0

uε(x) = v(x) a.e. (5.4)

where v is a non negative bounded solution of

v(x)(a(x) − v(x)) = 0 in R
N . (5.5)

Let wε := a(x) − uε, then from (Pε), wε satisfy

− Jε ⋆ wε + wε + uε(x)wε(x) = a(x) − Jε ⋆ a(x). (5.6)

Multiplying the above equation by w+
ε and integrating over RN , it follows that

∫∫

RN×RN

Jε(x− y)((w+
ε )

2(x)− wε(y)w
+
ε (x)) dxdy +

∫

RN

uε(x)(w
+
ε )

2(x) =

∫

RN

w+
ε (x)gε(x) dx

with gε(x) := a(x)− Jε ⋆ a(x).
Let us now estimate the above integrals. First we observe that the double integral is positive. Indeed, since

w(y) = w+(y)− w−(x) we get

∫∫

RN×RN

Jε(x − y)((w+
ε )

2(x)− wε(y)w
+
ε (x)) dxdy =

∫∫

RN×RN

Jε(x− y)((w+
ε )

2(x) − w+
ε (y)w

+
ε (x)) dxdy

+

∫∫

RN×RN

Jε(x− y)w−
ε (y)w

+
ε (x) dxdy

Thus
∫∫

RN×RN

Jε(x− y)((w+
ε )

2(x)− wε(y)w
+
ε (x)) dxdy =

1

2

∫∫

RN×RN

Jε(x− y)((w+
ε )(x) − w+

ε (y))
2 dxdy

+

∫∫

RN×RN

Jε(x− y)w−
ε (y)w

+
ε (x) dxdy

(5.7)

Let us denote Q := supp(a+). Since uε is positive and uniformly bounded, we have supp(w+) ⊂ Q and

∣

∣

∣

∣

∫

RN

w+
ε (x)gε(x) dx

∣

∣

∣

∣

≤ C

∫

Q

|gε|(x) dx.
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Since a is Lipschitz, by using a Taylor expansion, we can see that |gε(x)| ≤ εD2(J)‖∇a‖∞. Therefore
∣

∣

∣

∣

∫

RN

w+
ε (x)gε(x) dx

∣

∣

∣

∣

≤ C|Q|ε. (5.8)

Collecting (5.7),(5.8), we get

1

2

∫∫

RN×RN

Jε(x− y)((w+
ε )(x) − w+

ε (y))
2 dxdy +

∫∫

RN×RN

Jε(x− y)w−
ε (y)w

+
ε (x) dxdy +

∫

RN

uε(w
+
ε )

2(x) dx ≤ Cε.

Thus
∫

RN

uε(w
+
ε )

2(x) dx ≤ Cε

and uεw
+
ε (x) → 0 almost everywhere in Q.

Recall that
∫

RN

uεwε(x) dx = 0

then from above estimates we conclude that

∫

RN\Q

uε(a(x) − uε) =

∫

Q

uε(a(x)− uε) → 0 when ε→ 0.

Since uε(a(x) − uε) ≤ 0 in R
N \Q, from the above inequality it follows that uε(x)wε(x) → 0 almost everywhere

in R
N \Q. Since uε > 0 and wε = (a(x)− uε(x)) ≤ 0, it follows that uε(x) → 0 almost everywhere in R

N \Q. Thus
uε converges pointwise almost everywhere to a bounded non-neqative solution of (5.5).

Remark 3. Note that the above proof can be easily adapted to Mε,m for m < 2 as soon as the function a is smooth
enough. Indeed, for a ∈ C2(RN ), following the above arguments, we get by using the Taylor expansion up to order
2 of a

∫

RN

uε(w
+
ε )

2(x) dx ≤ Cε2−m,

with C a constant depending on ‖∇2u‖∞. When a is only Lipschitz, the above argument holds only for Mε,m with
m < 1.

Finally, to complete our analysis, we need to check that

lim
ε→ε∗

uε = (a(x)− 1)+. (5.9)

We treat separately the following two cases : (i) ε∗ < +∞, (ii) ε∗ = ∞. The latter arise when supRN (a(x)−1) > 0.
In this situation, there exists R0 > 0 so that the continuous function ϕ = (a(x)− 1)

+ 6≡ 0 in BR(0) for R ≥ R0 and
we can check that ϕ is a sub-solution to the approximated problem:

∫

BR(0)

Jε(x− y)u(y) dy − u(x) + u(x)(a(x) − u) = 0 in BR(0). (5.10)

Since large constants are super-solutions of (5.10) for any ε ≥ 0, R > R0 there exists a unique solution ϕ ≤ uε,R ≤M .
By sending R→ ∞ and by the uniqueness of the solution to (Pε) we have ϕ ≤ uε ≤M in R

N .

Case ε∗ = +∞:

Thanks to Lemma 5.1 and Remark 2, for all x ∈ R
N for large ε we have

(a(x) − 1)+ ≤ uε(x) ≤ (a(x) − 1)+ +
1

ε
N
4

.

Hence, uε converge uniformly to (a(x)− 1)+.
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Case ε∗ < +∞:

In this situation, the function (a(x) − 1)+ ≡ 0 in R
N and we are reduce to prove that

lim
ε→ε∗

uε(x) = 0 for all x ∈ R
N .

Note that by definition of ε∗ we must have λp(Mε∗ + a(x)) ≥ 0. Indeed, if not then λp(Mε∗ + a(x)) < 0 and
by Lemma 2.4 λp(M + aε∗(x)) < 0. Therefore for some R we have λp(LR

+ aε∗(x)) < 0. By continuity of
λp(LR

+ aε∗(x)) with respect to ε, (Lemma 5.3) we get for some δ0 > 0, λp(LR
+ aε∗+δ(x)) < 0 for any δ ≤ δ0.

Hence, λp(Mε∗+δ+a(x)) = λp(M+aε∗+δ(x)) < 0 for any δ ≤ δ0 and by Theorem 1.1 there exists a positive solution
to (Pε) for all ε ≤ ε∗ + δ0 contradicting the definition of ε∗.

Note also that since ε∗ < +∞, the construction of the supersolution in Section 3 holds for any ε ∈ [ ε
∗

2 , ε
∗], thus

uε is uniformly bounded in L1(RN ).
Let g(x, s) := s(a(x) − 1− s) then for all ε we have

Jε ⋆ uε = −g(x, uε(x)) in R
N .

Now since J is C1 and ε∗ then for ε ∈ [ 12ε
∗, ε∗), we have

|g(x, uε(x)) − g(z, uε(z))| =

∣

∣

∣

∣

∫

RN

[Jε(x − y)− J(z − y)]uε(y) dy

∣

∣

∣

∣

,

≤ |x− z|

∫

RN

|Jε(x− y)− J(z − y)|

|x− z|
uε(y) dy,

≤ C(ε∗)|x− z|.

Therefore, we get

C(ε∗)|x− z| ≥ |[1− a(x) + uε(x) + uε(z)][uε(x) − uε(z)] + [a(z)− a(x)]uε(x)|,

≥ |[1− a(x) + uε(x) + uε(z)]||uε(x) − uε(z)| − |x− z|
|a(z)− a(x)|

|x− z|
M,

and for any x ∈ Q := {y ∈ R
N | a(y) < 1} uε is uniformly Lipschitz in x with a constant independent of ε. Thus

(uε)ε∈[ 12 ε
∗,ε∗) is uniformly bounded in C

0, 12
loc (Q). If Qc = ∅, then (uε)ε∈[ 12 ε

∗,ε∗) is uniformly bounded in C
0, 12
loc (R

N ).

Otherwise, Qc 6= ∅ and on Qc a(x) ≡ 1. Therefore u2ε(x) = Jε ⋆ uε and the C0, 12 (Qc) norm of uε is bounded
independently of ε. Hence,

(uε)ε∈[ 12 ε
∗,ε∗) is uniformly bounded in C

0, 12
loc (Q) ∩ C0, 12 (Qc). (5.11)

In both case, since a(x) < 0 for |x| >> 1, Qc is a compact set and |Q̄ ∩ Qc| = 0. From (5.11), for all sequence
εn → ε∗ by a diagonal extraction procedure there exists a subsequence still denoted (uεn)n∈N that converges locally
uniformly in R

N \ (Q̄ ∩Qc) to some non-negative function v. By passing to the limit in (Pε) we can see that v is a
bounded non negative solution of

Jε∗ ⋆ v(x) − v(x) + v(x)(a(x) − v(x)) = 0 in R
N \ (Q̄ ∩Qc).

Since Q̄ ∩Qc is of zero measure v is a solution to

L
ε∗,RN\(Q̄∩Qc)

[v] + v(x)(a(x) − v(x)) = 0 in R
N \ (Q̄ ∩Qc).

Since 0 ≤ λp(Mε∗ + a(x)) ≤ λp(L
ε∗,RN \(Q̄∩Qc)

+ a(x)), we deduce that v ≡ 0 which proves the limit.

Remark 4. When a(x) is a radially symmetric non-increasing function we remark that ε∗ is a sharp threshold.
That is for all ε ≥ ε∗ then (Pε) does not have any positive solutions. Indeed in this situation the function aε(x) is
monotone non increasing with respect to ε. Thus by (i) of Proposition 2.2, for all ε ≥ ε∗ we have

0 = λp(M+ aε∗(x)) ≤ λp(M + aε(x)).

Hence, by Theorem 1.1, 0 is the unique non negative solution to (Pε) for ε ≥ ε∗.
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5.2 The case 0 < m < 2

In this situation, from Theorem 2.6 we know that

lim
ε→0

λp(Mε,m + a(x)) = − sup
RN

a(x) (5.12)

lim
ε→+∞

λp(Mε + a(x)) = − sup
RN

a(x) (5.13)

As a consequence for ε small enough and for large ε we have λp(Mε + a(x)) ≤ −
sup

RN
a(x)

2 < 0. Therefore by
Theorem (1.1) there exists a solution to (Pε) for small and large ε.

The limit of uε when ε → ∞ is easy to obtain. Indeed it is a straightforward consequence of (iv) of Lemma 5.1
and Lemma 5.2 since we have for ε large

(a(x)−
1

εm
)+ ≤ uε ≤ a+(x) +

1

ε
N
4

.

To obtain the limits in L2, we just observe that since by Lemma uε is uniformly bounded in L2 and converges
pointwise to a+, we get uε ⇀ a+ in L2. Moreover by Fatou’s Lemma, we have

∫

RN

(a+)2(x) dx ≤ lim inf
ε→∞

∫

RN

u2ε(x) dx.

On another hand, by integrating (Pε) over R
N we get for all ε

∫

RN

u2ε(x) dx =

∫

RN

a(x)uε(x) dx ≤

∫

RN

a+(x)uε(x) dx.

Thus by the Cauchy-Schwartz inequality, for all ε

(
∫

RN

u2ε(x) dx

)1/2

≤

(
∫

RN

(a+)2(x) dx

)1/2

and we have
∫

RN

(a+)2(x) dx ≤ lim inf
ε→∞

∫

RN

u2ε(x) dx ≤ lim sup
ε→+∞

∫

RN

u2ε(x) dx ≤

∫

RN

(a+)2(x) dx

Hence, ‖uε‖2 → ‖a+‖2 and by the parallelogram identity uε → a+ in L2(RN ) since uε converges weakly to a+ in L2.
As already mentioned in Remark 3, the limit of uε when ε → 0 can be obtained using a similar arguments as

soon as a is smooth enough. So
lim
ε→0

uε = v(x)

with v is a non-negative bounded solution to (5.5).

5.3 The case m = 2

In this situation, from Theorem 2.6 we have

lim
ε→0

λp(Mε,m + a(x)) = λ1

(

K2,ND2(J)

2
∆ + a(x)

)

(5.14)

lim
ε→+∞

λp(Mε + a(x)) = − sup
RN

a(x) (5.15)

As a consequence for large ε we have λp(Mε + a(x)) ≤ −
sup

RN
a(x)

2 < 0 and by Theorem (1.1) there exists a
solution to (Pε) for large ε. Whereas the existence of a positive solution for ε small is conditioned to the sign of
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λ1(
K2,ND2(J)

2 ∆+ a(x)). When λ1(
K2,ND2(J)

2 ∆+ a(x)) > 0 then for ε small there exists no positive solution to (Pε).
The limit of uε when ε→ +∞ can be obtain as in the case 2 > m > 0 so we focus only on the limit when ε→ 0.

Assume for the moment that λ1(
K2,ND2(J)

2 ∆ + a(x)) < 0, we will show that uε → v where v is the positive
solution to

K2,ND2(J)

2
∆v + v(a(x) − v) = 0 in R

N .

Let (εn)n∈N be a sequence of positive number converging to 0 and let un denote uεn . By Lemma 5.1, ‖un‖2 is
bounded uniformly and after simple algebraic computation

∫∫

RN×RN

ρn(z)
(un(x+ z)− un(x))

2

|z|2
dxdz < C,

with C independent of ε. Therefore for any R > 0, we have

∫∫

BR×BR

ρε(z)
(un(x+ z)− un(x))

2

|z|2
dxdz < C.

For R > 0 fixed, since ‖un‖2 is uniformly there exists a subsequence un ⇀ v in L2(BR) and from the characterisation
of Sobolev Space [50, 49], we have un → v in L2(BR).

By a standard diagonal extraction argument, from the sequence (un)n∈N we can then extract a subsequence still
denoted (un)n∈N which converges to some v in L2

loc(R
N ). Moreover by Lemma 5.1 un is uniformly bounded and

there exists δ(λ1) > 0 independent of ε so that maxsupp(a+)(un) > δ.

Multiplying (Pε) by ϕ ∈ C∞
c (RN ) and integrating we get

D2(J)

2

∫∫

RN×RN

ρn(z)

|z|2
un(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x − z)] dxdz +

∫

RN

ϕ(x)un(x)(a(x) − un(x)) dx = 0,

where we use (5.1) to compute
∫

RN M
ε,2
[un](x)ϕ(x) dx. Thus we get

D2(J)

2

∫∫

RN×RN

ρn(z)

|z|2
un(x)

tz∇2ϕ(x)z dxdz +

∫

RN

ϕ(x)un(x)(a(x) − un(x)) dx

= −
D2(J)

2

∫∫

RN×RN

ρn(z)

|z|2
un(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x − z)− tz∇2ϕ(x)z] dxdz,

where ∇2ϕ(x) := (∂ijϕ(x))i,j . Since ρn(z) is radial, we can see that

D2(J)

2

∫∫

RN×RN

ρn(z)

|z|2
un(x)

tz∇2ϕ(x)z dxdz =
D2(J)K2,N

2

∫

RN

un(x)∆ϕ(x) dx

and we get

D2(J)K2,N

2

∫

RN

un(x)∆ϕ(x) dx +

∫

RN

ϕ(x)un(x)(a(x) − un(x)) dx

= −
D2(J)

2

∫∫

RN

ρn(z)

|z|2
un(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x − z)− tz∇2ϕ(x)z] dxdz, (5.16)

Note that since un converges to v in L2
loc(R

N ) we have

∫

RN

ϕ(x)un(x)(a(x) − un(x)) dx →

∫

RN

ϕ(x)v(x)(a(x) − v(x)) dx (5.17)
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Recall now that ϕ ∈ C∞
c (RN ), so there exists C(ϕ) and R(ϕ) so that

|ϕ(x+ z)− 2ϕ(x) + ϕ(x− z)− tz∇2ϕ(x)z| < C(ϕ)|z|3χBR(ϕ)
(x).

Therefore since un is bounded uniformly,

D2(J)

2

∫∫

RN

ρε(z)

|z|2
un(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x− z)− tz∇2ϕ(x)z] dxdz ≤ CC(ϕ)

∫

RN

ρn(z)|z| → 0. (5.18)

Passing to the limit ε→ 0 in (5.16), thanks to (5.17) and (5.18) we get

D2(J)K2,N

2

∫

RN

v(x)∆ϕ(x) dx +

∫

RN

ϕ(x)v(x)(a(x) − v(x)) dx = 0. (5.19)

(5.19) being true for any ϕ ∈ C∞
c this implies that v satisfies

K2,ND2(J)

2
∆v + v(a(x) − v) = 0 a.e. in R

N .

Since v is bounded, by elliptic regularity v is smooth. To conclude we need to prove that v is non trivial. To do
so we claim that

Claim 5.5. There exists R0, τ and ε0 positive constants so that for all ε ≤ ε0 we have uε ≥ τ almost everywhere in
BR0(0).

From the above claim, we deduce that v ≥ τ > 0 a.e.
and therefore v ≡ u, the unique smooth non-trivial solution of

K2,ND2(J)

2
∆u + u(a(x)− u) = 0 in R

N .

The sequence (εn)n being arbitrary, it follows that uε → u in L2
loc(R

N ).

Similarly, if we assume now that λ1(
K2,ND2(J)

2 ∆+ a(x)) = 0 and there exists a sequence (εn)n∈N, εn → 0 of non
trivial solution of (Pε). The above argumentation then holds true and we get un → v in L2

loc(R
N ) with v a smooth

solution to
K2,ND2(J)

2
∆v + v(a(x) − v) = 0 in R

N .

Since λ1(
K2,ND2(J)

2 ∆+ a(x)) = 0, v ≡ 0 is the only solution and we get un → 0 in L2
loc(R

N ).
Let us complete our proof and establish the claim.

Proof. Let us denote L
R,ε,2

the operator

L
R,ε,2 [ϕ] :=

1

ε2

[

∫

BR(0)

Jε(x− y)ϕ(y) dy − ϕ(x)

]

.

Since supRNa(x) is achieve in R
N we regularise a by aσ independently of ε, so that for all ε and R ≥ R1 the principal

eigenvalue λp(LR,ε,2
+ aσ(x)) is associated to a continuous principal eigenfunction ϕp,ε and

|λp(LR,ε,2
+ aσ(x))− λp(LR,ε,2

+ a(x))| ≤ ‖aσ(x)− a(x)‖∞ ≤ κσ,

with κ the Lipschitz constant of a.

By the Lipschitz continuity of λ1

(

K2,ND2(J)
2 ∆+ a(x)

)

with respect to a, we can choose σ small enough so that

λ1

(

K2,ND2(J)

2
∆ + aσ(x)

)

≤
1

2
λ1

(

K2,ND2(J)

2
∆ + a(x)

)

< 0.
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Recall that

lim
R→∞

λ1

(

K2,ND2(J)

2
∆ + aσ(x), BR

)

= λ1

(

K2,ND2(J)

2
∆ + aσ(x)

)

,

So we can choose R0 large so that

λ1

(

K2,ND2(J)

2
∆ + aσ(x), BR0

)

≤
1

4
λ1

(

K2,ND2(J)

2
∆ + a(x)

)

.

Thanks to Theorem 2.7, we have limε→0 λp(LR,ε,2
+ aσ(x)) = λ1

(

K2,ND2(J)
2 ∆+ aσ(x), BR

)

so for ε small,say

ε ≤ ε0 by choosing σ smaller if necessary, we achieve

λp(LR,ε,2
+ aσ(x)) ≤

1

8
λ1

(

K2,ND2(J)

2
∆ + a(x)

)

for all ε ≤ ε0.

Let ϕp,ε be the principal eigenfunction associated with L
R0,ε,2

+ aσ(x), then we have

L
R0,ε,2

[ϕp,ε](x) + a(x)ϕp,ε(x) ≥

[

−
1

8
λ1

(

K2,ND2(J)

2
∆ + a(x)

)

− κσ

]

ϕp,ε(x) for all ε ≤ ε0.

By choosing σ smaller if necessary,

[

−
1

8
λ1

(

K2,ND2(J)

2
∆ + a(x)

)

− κσ

]

≥ −
1

16
λ1

(

K2,ND2(J)

2
∆ + a(x)

)

and we achieve

L
R0,ε,2

[ϕp,ε](x) + a(x)ϕp,ε(x) ≥ −
1

16
λ1

(

K2,ND2(J)

2
∆ + a(x)

)

ϕp,ε(x) for all ε ≤ ε0. (5.20)

To conclude our proof, it is then enough to show that for some well chosen normalisation of ϕp,ε we have

ϕp,ε(x) → ϕ1(x), a.e. in BR0 (5.21)

ϕ1 is a positive principal eigenfunction associated with λ1

(

K2,ND2(J)
2 ∆+ aσ(x), BR0

)

. Indeed, assume for the

moment that (5.21) holds true. Then there exists α > 0 so that

αϕp,ε(x) → αϕ1(x) <
1

2
a.e. in BR0 .

Now thanks to (5.20), we can now adapt the proof the proof of (iii) of Lemma 5.1 to get for ε small, says ε ≤ ε1,

uε(x) ≥ −
α

32
λ1

(

K2,ND2(J)

2
∆ + a(x)

)

ϕp,ε(x) a.e. in BR0 , (5.22)

which combined with (5.21) enforces

uε(x) ≥ γϕ1(x) a.e. in BR0 , for all ε ≤ ε2,

for some γ, ε2 > 0.
Since ϕ1 > 0 in BR0 , the claim holds true in any smaller ball BR.
To prove (5.21), let us normalise ϕp,ε by ‖ϕp,ε‖L2(BR0)

= 1. Let kε be the function

kε(x) :=
1

ε2

∫

RN\BR0

Jε(x− y) dy,
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then by multiplying by ϕp,ε the equation satisfied by ϕp,ε and integrating it over BR0 , we get

D2(J)

2

∫∫

BR0×BR0

ρε(x− y)
|ϕp,ε(y)− ϕp,ε(x)|2

|x− y|2
dxdy =

∫

BR0

(aσ(x) + λp,ε)ϕ
2
p,ε(x) dx −

∫

BR0

kε(x)ϕ
2
p,ε(x) dx,

≤ C.

Therefore by the characterisation of Sobolev space [50, 49], along a sequence we have ϕp,ε → ψ in L2(BR0) with
‖ψ‖L2(BR0)

= 1. Moreover by extending ϕp,ε and ϕ by 0 outside BR0 and by arguing as above for any ϕ ∈ C2
c (BR0)

we have

D2(J)

2

∫∫

BR0×RN

ρε(z)

|z|2
ϕp,ε(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x− z)] dxdz = −

∫

BR0

ϕ(x)ϕp,ε(a(x) + λp,ε) dx

+

∫

BR0

kε(x)ϕp,ε(x)ϕ(x) dx

Since ϕ ∈ C2
c (BR0) we get for ε small enough supp(kε)∩ supp(ϕ) = ∅. Thus passing to the limit along a sequence

in the above equation yields

D2(J)K2,N

2

∫

BR0

ψ(x)∆ϕ(x) dx +

∫

BR0

ϕ(x)ψ(x)(a(x) + λ1) dx = 0. (5.23)

(5.23) being true for any ϕ, it follows that ψ is the smooth positive eigenfunction associated to λ1 normalised
by ‖ψ‖L2(BR0)

= 1. ψ being uniquely defined, we get ϕp,ε → ψ in L2(BR0) when ε → 0. Thus along any sequence
ϕp,ε(x) → ϕ1(x) almost everywhere in BR0 .

6 Extension to non-compactly supported kernels

In this section, we discuss the extension of our survival criteria to more general dispersal kernel J and prove Theorem
1.5. Observe that the construction of positive solution only required that λp(LR

+ β(x)) < 0 for some R, no matter
the dispersal kernel J is. Therefore as soon as limR→∞ λp(LR

+ β(x)) < 0 there exists a positive solution to (1.2)
with no restriction on the decay of the kernel. Similarly, when λp(M + β(x)) > 0 the proof of the non-existence of
positive bounded solution essentially relies on the inequality between λp(M+ β(x)) and λ′p(M+ β(x)) which holds
for quite general kernels including those satisfying the assumption H5 as proved in [2].Concerning the proof of the
uniqueness of the positive solution, it relies on the construction of a integrable uniform super-solution of (1.2) which
guarantes the existence of a positive L1 solution to (1.2). Such super-solution still exists for kernels J that satisfies
the decay assumption H5. Indeed, we can show

Lemma 6.1. Assume that J satisfies H5 and there exists a periodic function µ(x) : RN → R such that

lim sup
|x|→∞

(β(x) − µ(x)) ≤ 0 and λp(M + µ(x)) > 0.

Then there exists ū ∈ C0(R
N ) ∩ L1(RN ), ū > 0 so that ū is a super-solution to (1.2).

Observe that the construction of the super-solution covers a larger class of nonlinearity f(x, u) than those that
satisfy H4. As a immediate consequence, the survival criteria obtained in Theorem 1.1 is still true for nonlinearity
that satisfies:

(H7) There exists µ(x) ∈ Cp(R
N ) so that :

{

λp(M + µ(x)) > 0,

lim sup|x|→∞

(

f(x,s)
s − µ(x)

)

≤ 0 uniformly in s.
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From the ecological point of view, such nonlinearity allows to consider a more complex niche structure for the
species. In particular, we can consider ecological niches that are the superposition of a compact niche structure with
a periodic structure. The condition being that on the periodic structure alone, the species could not survive. The
perspective offers by this approach are quite promising and we believe that it may be applied to investigate a climate
change version of (1.2).

Proof. The construction of the super-solution in this situation follows the same scheme as for a compactly supported
kernel. By assumption since lim sup|x|→∞(β(x) − µ(x)) ≤ 0, for any δ > 0 there exists Rδ > 1 such that

β(x) ≤ µ(x) + δ |x| ≥ Rδ.

Fix δ < λp(M+µ(x)) and observe that by definition of λp(M+µ(x)) there exists a constant δ < λ < λp(M+µ(x))
and a positive periodic function ϕ so that

M[ϕ](x) + (µ(x) + λ)ϕ(x) ≤ 0 for all x ∈ R
N . (6.1)

Let w = C ϕ(x)
1+τ |x|N+1 with C, τ to be chosen.

M[w] + (µ(x) + δ)w(x) = C(1 + τ |x|N+1)−1

(
∫

RN

J(x− y)
(1 + τ |x|N+1)

(1 + τ |y|N+1)
ϕ(y) dy − ϕ(x) + (µ(x) + δ)ϕ(x)

)

,

≤ C(1 + τ |x|N+1)−1

(
∫

RN

J(z)

[

(1 + τ |x|N+1)

(1 + τ |x + z|N+1)
− 1

]

ϕ(x+ z) dz + (δ − λ)ϕ(x)

)

,

≤ C(1 + τ |x|N+1)−1

(

τ

∫

RN

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x + z|N+1)

]

ϕ(x + z) dz + (δ − λ)ϕ(x)

)

,

≤ w(x)

(

τ

∫

RN

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x + z|N+1)

]

ϕ(x+ z)

ϕ(x)
dz + δ − λ

)

,

where we use (6.1) and infRNϕ > 0.
Set

h(τ, x) = τ

∫

RN

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

ϕ(x + z)

ϕ(x)
dz + δ − λ.

Thanks to ϕ ∈ L∞(RN ), infRN ϕ > 0 there exists a positive constant C0 so that

ϕ(x + z)

ϕ(x)
≤ C0 for all x, z ∈ R

N .

Thus for all x ∈ R
N , we have

h(τ, x) ≤ C0τ

∫

RN

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x + z|N+1)

]

dz + δ − λ. (6.2)

Let

I := C0τ

∫

RN

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x + z|N+1)

]

dz,

then we have

I = C0τ

∫

{|x|≤2|z|}

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x + z|N+1)

]

dz + C0τ

∫

{|x|>2|z|}

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x + z|N+1)

]

dz.

Let us estimate the first integral. Since |x| ≤ 2|z| we have

C0τ

∫

{|x|≤2|z|}

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

dz ≤ C0τ2
N+1

∫

RN

J(z)|z|N+1 dz. (6.3)
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Let us now estimate second term. Since |x+ z|N+1 ≥ (|x| − |z|)N+1, we have

C0τ

∫

{|x|>2|z|}

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x + z|N+1)

]

dz ≤ C0

N+1
∑

i=1

(

N + 1

i

)
∫

{|x|>2|z|}

J(z)(−1)i+1|z|i
[

τ |x|N+1−i

(1 + τ |x + z|N+1)

]

dz,

≤ C0

N+1
∑

i=1

(

N + 1

i

)
∫

{|x|>2|z|}

J(z)|z|i
[

τ |x|N+1−i

(1 + τ |x+ z|N+1)

]

dz.

Since |x| > 2|z|, we have
1

1 + τ |x + z|N+1
≤

2N+1

2N+1 + τ |x|N+1

and for |x| ≥ R0 > 1

C0τ

∫

{|x|>2|z|}

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x + z|N+1)

]

dz ≤ C02
N+1

N+1
∑

i=1

(

N + 1

i

)
∫

{|x|>2|z|}

J(z)
|z|i

|x|i

[

τ |x|N+1

(2N+1 + τ |x|N+1)

]

dz

≤
C02

N+1

R0

N+1
∑

i=1

(

N + 1

i

)
∫

RN

J(z)|z|i
[

τ |x|N+1

2N+1 + τ |x|N+1

]

dz.

Since for all |x|,
[

τ |x|N+1

2N+1 + τ |x|N+1

]

< 1,

we achieve for |x| ≥ R0

C0τ

∫

{|x|>2|z|}

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x + z|N+1)

]

dz ≤
C02

N+1

R0

N+1
∑

i=1

(

N + 1

i

)
∫

RN

J(z)|z|i dz. (6.4)

Combining (6.3), (6.4) and (6.2), we get for |x| > R0

h(x, τ) ≤
C02

N+1

R0

N+1
∑

i=1

(

N + 1

i

)
∫

RN

J(z)|z|i dz + C0τ2
N+1

∫

RN

J(z)|z|N+1 dz + δ − λ.

Thanks to (H5), for τ small enough, says τ ≤ τ1 and R0 large enough we achieve h(x, τ) ≤ δ−λ
2 < 0,

Hence, for all τ ≤ τ1, we have

M[w] + (µ(x) + δ)w(x) ≤ w(x)h(x, τ) ≤ w(x)
δ − λ

2
< 0 for all x ∈ R

N \BR0 . (6.5)

Fix now τ ≤ τ1 and fix R0 > Rδ so that h(x, τ) < 0 in R
N \BR0(0).

Let κ0 := supRN\BR0 (0)
ϕ(x)

1+τ |x|N+α . Let 0 < κ < κ0 and consider the set

Ωκ :=

{

x ∈ R
N |

ϕ(x)

1 + τ |x|N+α
≤ κ

}

.

By construction since ϕ > 0 in R
N we can choose κ small so that

Ωκ ⊂ R
N \BR0(0).

Moreover, RN \ Ωκ is a bounded domain and M := supRN\Ωκ
S(x) is well defined. Choose now C so that C = 2M

κ
and consider the continuous function

ū(x) :=

{

C ϕ(x)
1+τ |x|N+α in Ωκ,

Cκ in R
N \ Ωκ.
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By direct computation we can check that ū is a super-solution to (1.2). Indeed, for any x ∈ R
N \ Ωκ, we have

ū = Cκ = 2M > supRN\Ωκ
S(x) which implies that f(x,Cκ) ≤ 0 and

M[ū](x) + f(x, ū(x)) ≤

∫

RN

J(x− y)ū(y) dy − Cκ+ f(x,Cκ) ≤ f(x,Cκ) ≤ 0.

Whereas, for x ∈ Ωκ we have

M[ū](x) + f(x, ū(x)) ≤ M[ū](x) + β(x)w(x) ≤ M[w] + (µ(x) + δ)w(x),

≤ h(x, τ)w(x) ≤ 0.
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[35] J. Garćıa-Melián and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, Journal of
Differential Equations 246 (2009), no. 1, 21 – 38.

[36] M. Grinfeld, G. Hines, V. Hutson, K. Mischaikow, and G. T. Vickers, Non-local dispersal, Differential Integral
Equations 18 (2005), no. 11, 1299–1320. MR MR2174822 (2006m:35033)

[37] W. D. Hamilton, Extraordinary sex ratios, Science 156 (1967), no. 3774, 477–488.

[38] S. Hapca, J. W. Crawford, and I. M. Young, Anomalous diffusion of heterogeneous populations characterized by
normal diffusion at the individual level, Journal of The Royal Society Interface 6 (2009), no. 30, 111–122.

[39] V. Hutson, S. Martinez, K. Mischaikow, and G. T. Vickers, The evolution of dispersal, J. Math. Biol. 47 (2003),
no. 6, 483–517. MR MR2028048 (2004j:92074)

[40] L. Ignat, J.D. Rossi, and A. San Antolin, Lower and upper bounds for the first eigenvalue of nonlocal diffusion
problems in the whole space, Journal of Differential Equations 252 (2012), no. 12, 6429 – 6447.

[41] C-Y. Kao, Y. Lou, and W. Shen, Random dispersal vs. nonlocal dispersal, Discrete and Continuous Dynamical
Systems 26 (2010), no. 2, 551–596.

[42] F. Lutscher, E. Pachepsky, and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev.
47 (2005), no. 4, 749–772 (electronic). MR MR2212398 (2006k:92082)
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