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Abstract

In this article we analyse the non-local niche model

% =Jxu—u+ f(z,u) in R xRV,

where J is a positive continuous dispersal kernel and f(z,u) is a heterogeneous KPP type non-linearity describing
the growth rate of the population. The ecological niche of the population is assumed to be bounded (i.e. outside
a compact set the environment is assumed to be lethal for the population). For compactly supported dispersal
kernels J, we derive an optimal survival criteria. We prove that the existence of a positive stationary solution
exists if and only if the principal eigenvalue A, of the linear problem

Jxp—@+0:f(2,00+X\p=0 in R,

is negative. In addition, for any continuous non-negative initial data that is bounded or integrable, we establish
the long time behaviour of the solution u(t,z). We also analyse the impact of the size of the support of the
dispersal kernel on the persistence criteria. We exhibit situations where the dispersal strategy has "no impact”
on the survival of the species and situations where the slowest dispersal strategy is not any more an Ecological
Stable Strategy. Some generalisations of the survival criteria are also discussed for fat-tailed kernels.
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1 Introduction

In this article, we are interested in finding survival criteria for a species that has a long range dispersal strategy.
As a model species, we can think of trees whose seed and pollens are disseminated on a long range. In ecology a
commonly used model that integrate such long range dispersal [32] [36, [39] 42} [44] [55] is the following:

%(t,x):J*u(t,:c)—u+f(:c,u(t,z)) in RT xRV, (1.1)
where (¢, z) is the density of the considered population, J is a dispersal kernel, f(z,s) is a KPP type non-linearity
describing the growth rate of the population. The possibility of a long range dispersal is well known in ecology, where
numerous data now available support this assumptions [14} 19, 20, 27, 52} 57]. In this setting the tail of the kernel
can be thought of as a measure of the frequency at which long dispersal events occur. A biological motivation for the
use of ([L2]) to describe the evolution of the population comes from the observation that the intrinsic variability in the
capacity of the individuals to disperse generates, at the scale of a population, a long range dispersal of the population.
The effect of such variability has been investigated in [38, [47] by means of the study of correlated random walks. In
such a framework, all individuals follow a simple random walk where the diffusion coefficient follows a probability law.
It can be checked that then the probability of the density of population will follow an integro-differential equation
[38] 47, [55] where a dispersal kernel J describes the probability to jump from one location to another.

Throughout this paper we will always make the following assumptions on the dispersal kernel J:

(H1) J € C(RY) N L'(RY) is nonnegative, radially symmetric and of unit mass (i.e. [pn J(2)dz =1) .

(H2) J(0) >0

In the present paper, we focus our analysis on species that have a bounded ecological niche. A simple way
to model such a spatial repartition consists in considering that the environment is hostile to the species outside a
bounded set. This fact is translated in our model by assuming that f satisfies:

(H3) f € CL(RN*1) is of KPP type, that is :

f('v 0) =0,
For all x € RV, f(x,5)/s is decreasing with respect to s on (0, +0c0).
There exists S(z) € C(RY) N L= (RY) such that f(x,S(z)) <0 for all x € RV,

(H4) lim sup ;|00 @9 0, uniformlyin s > 0.

S
A typical example of such a nonlinearity is given by f(z,s) := s(a(x) — b(z)s) with b(z) > 0 and a(z) satisfies
lim sup|,| o a(z) < 0.
Our main purpose is to seek conditions on J and f that characterise the persistence of the species modelled by
(CI). In this task, we focus our analysis on the description of the set of positive stationary solution of (ILI). That
is the set of positive solution of the equation below

Jxu(z) —u(x) + flz,u(x)) =0 in RY, (1.2)

This description is expected to provide useful persistence criteria.
In the literature, persistence criteria have been well studied for the reaction diffusion version of (L))

ou

E(t,x) = Au(t,z) + f(z,t,u(t,z)) in RT xQ, (1.3)



where € is a domain of RY, possibly RY itself. Survival criteria have been obtained for various media, ranging from
periodic media to ergodic media [4] 5] 9] [15] 16| 17, B3] [45] [46] 48, 53]. In the context of global warming, survival
criteria have been investigated in [9] B, [10]. For such reaction diffusion equations the survival criteria are often
obtained by looking at the sign of the first eigenvalue of the linear problem obtained by linearising (L3]) around the
0 solution. That is the sign of the first eigenvalue A1 (A + 9, f(x,0),Q) of the spectral problem

Ap(x) + 05 f (2,0)p(x) + Mp(r) =0 Q (1.4)

associated with the proper boundary conditions (if 2 # RY).

In most situations, for KPP— like non-linearities, the existence of a positive stationary solution to (L3 is uniquely
conditioned by the sign of A\;. More precisely, there exists a unique positive stationary solution if and only if A\; < 0.
If such type of criteria seems reasonable in problems defined on bounded set, it is less obvious for problems in
unbounded domains. In particular, in unbounded domains, one of the main difficulty concerns the definition of A;.
As shown in [8 [5], the notion of first eigenvalue in unbounded domain can be ambiguous and several definition of
A1 exists rendering the question of a sharp survival criteria quite involved.

For the non-local equation (2) less is known and to our knowledge survival criteria have been essentially in-
vestigated in some specific situations, periodic media [25] 26, [54] or for a version of the problem ([2) defined in a
bounded domain §2,

%(t,x) = /QJ(.T —yu(t,y)dy —u(t,x) + f(z,u(t,r)) in RT xQ, (1.5)

[T} 211 23] [34], 4], 54]. We also quote [7] for an analysis of a persistence criteria in periodic media for a non-local version
of (L3) involving a fractional diffusion and [51] for survival criteria in time periodic versions of (L3 . Similarly to
the local diffusion case, for K PP like non-linearities, the existence of a positive solution of the non-local equation
(C3) can be characterised by the sign of a spectral quantity A,, called the generalised principal eigenvalue of

/Q (& — )é(y) dy — B(x) + Ouf(2,0)p(x) + Ab(x) =0 i Q. (1.6)

In fact, A, is defined by

Ap ::sup{)\eR|3<p€C(Q),<p>0, so that /QJ(:C—y)go(y)dy—go(:E)+8sf(x,0)<p(x)+)\<p(x)§0 in Q}

Unlike the elliptic PDE case, due to the lack of a regularising effect of the diffusion operator, the above spectral
problem may not have a solution in any reasonable space of functions i.e (L?(€2), C(€2))[25] 24 [41]. As a consequence,
even in bounded domain, simple sharp survival criteria are already quite involved to obtain. Another difficulty
inherent to the study of nonlocal equations (@) in unbounded domain concerns the lack of “reasonable” a priori
estimates for the solution thus making standard approximations difficult to use in most cases.

1.1 Main Results:

Let us now state our main results. We first prove a simple sharp survival criteria assuming that the dispersal kernel
J satisfy an extra assumption.

Theorem 1.1. Assume that J, f satisfy (H1-Hj) and assume further that J is compactly supported. Then, there
exists a unique positive solution to (L2) if and only if A\p(M + 95 f(2,0)) < 0, where
Ap(M 4 0y f(2,0)) :=sup{A € R|Tp € ORYN), ¢ >0 so that M[p] + 05 f(x,0)p + Ap < 0},

where M denotes the continuous operator M[p] = J x o(x) — p(x). Moreover, for any non-negative initial data
up € C(RN) N L>®(RYN) we have the following asymptotic behaviour:

o If \y(M +0sf(2,0)) > 0, then the solution satisfies ||u(t)||co — 0 as t — oo,



o If A\y(M+ 0sf(x,0)) < 0, then the solution |u — Ul (t) — 0 as t — oo, where & = @(x) denotes the unique
positive solution to (L2)

In addition, if the initial data ug € C(RN) N LY(RY), then the convergence u(t,z) — @ holds in L*(RYN).

Next, we aim at understanding the effect of the dispersal kernel on the survival of the species. To this end,
we analyse the behaviour of the survival criteria under some scaling of the dispersal operator. More precisely, let
Je 1= ELNJ (f) and let M, denotes the operator M with the rescaled kernel, then we look at the behaviour of the
solution to (L2) as ¢ — 0 or ¢ — +o00 where the dispersal operator M is replace by a(e) M., with a(e) ~ 5%. These
asymptotics represent two possible strategies that are observed in nature. The terms a(e) refers to a dispersal budget
of the species as defined in [39]. Roughly speaking, for a fixed cost, this budget is a way to measure the differences
between different strategies. For a given dispersal cost function of the order of |y|™, the term a(e) behaves like 52
and in the analysis, the dispersal operator is then given by «a(e)M,.. As explained in [39], the limit as ¢ — 0 can
be associated to a strategy of producing a lot of offspring but with little capacity of movement. Whereas the limit
€ — 400 corresponds to a strategy that aims at maximizing the possibility to explore the environment at the expense
of the number of offspring.

Here, we analyse the cases 0 < m < 2 and ay = 1, the case m = 0 corresponding to understand the impact of the
mean distance on the survival criteria. To simplify the presentation of these asymptotics, we restrict to nonlinearities
f(z,s) of the form f(z,s) = s(a(x) — s). However, the proofs apply more generally.

In this situation, we first obtain

Theorem 1.2. Assume that J and f satisfy (HI-Hj), J is compactly supported and let m = 0. Then there exists
g0 € (0,400] so that for all e < gq there exists a positive solution ue to (L2). Moreover, we have

lim u.(z) = (a(z) — 1),

e—eg
where sT denotes the positive part of s (i.e. st = sup{0,s}). Assuming further that a is smooth, at least C%(RY),

we have

lim ue(z) = v(x) almot everywhere
e—0

where v is a non-negative bounded solution of
v(z)(a(z) —v(z)) =0 in RN,

In addition, when a(x) is radially symmetric non increasing and 9 < +00 then ¢ is sharp, in the sense that for all
€ > e there is no positive solution to (L2).

The ecologically interpretation of this result is that one way of persistence for a species is to match the resource
and not to move much. In some situation, £g = 400 and there is no effect of the dispersal on the survival criteria of
the species. A natural condition that ensure that g = +o0 is

(ala) — 1)* #0.

In this context, the birth rates exceed all death rates and guarantee the persistence of the population no matter
what the dispersal strategy is. In particular, there exists a bounded positive solution to (2] for any positive kernel
J. The uniqueness and the behaviour at infinity of the solution are still open questions for general kernels.

When m > 0, then the characterisation of the existence of a positive solution changes and a new picture emerges.
In particular, for large ¢ there is always of solution to (LZ) whereas for small ¢ it may happen that no positive
solution exists. Thus, the situation is, in a sense, opposite to the case when m = 0. Non existence for small value of
€ appears only when m > 2. More precisely we prove

Theorem 1.3. Assume that J and [ satisfy (H1-Hj), J is compactly supported and let 0 < m < 2. Then there
exists eg < €1 € (0,400) so that for all e < eg and all € > €1 there exists a positive solution u. to (L2). Moreover,
we have



: - : + _
EEIJPOO [lue — a™|loo =0, hIJ}lOO lue —a™||L2@~y = 0.

In addition, assuming further that a is smooth, at least C%(RY), we have

lim uc(2) = v(x) almot everywhere,
e—0

where v is a non-negative bounded solution of
v(z)(a(z) —v(z)) =0 in RV,

Theorem 1.4. Assume that J and f satisfy (H1-H/), J is compactly supported and let m = 2. Then there exists
g1 € (0,00) so that for all € > * there exists a positive solution u. to (L2). Moreover,

lim u. =a"(z).
e—+00

In addition, we have the following dichotomy

e When A\ Ko Do) A 4 g(z)) < 0, there exists g € (0,00) so that for all € < ¢ there exists a positive solution
2

to (L2) and

Us — U, N LIQOC(RN),

where v 1s the unique bounded non-trivial solution to

Ko nD
%MA’U +o(a(z) —v) =0 in RY,

o When A\ (%DZ(J)A + a(:c)) > 0, then there g9 € (0, 00) so that for all e < g there exists no positive solution
to (L2).

This last result clearly highlights the dependence of the spreading strategy on the cost functions and the structure
of ecological niche. Especially when m = 2, the smaller spreader strategy may not be an optimal strategy, in the sense
that a population adopting such strategy can go extinct. From the view point of Adaptive dynamics [28] 29] [43] 56],
the smaller spreader strategy (SSS) will not be a Ecological Stable Strategy (ESS). The concept of ESS comes from
game’s theory and goes back to the work of Hamilton [37] on the evolution of sex-ratio. Roughly speaking, within
this framework, an Ecological Stable Strategy, is a strategy such that if most of the members of a population adopt
it,there is no "mutant” strategy that would give higher reproductive fitness. In such viewpoint the strategies are
compared using their relative pay-off. Here, following [I8| 30, 39, 41] the strategies can be compared through the
faith of a solution of a competitive system

Ou(t,x) = Mo e, [u] + u(t, z)(a(z) — ul(t, in RY (1.7)
Ov(t, ) = My, co[u] +v(t,z)(a(x) —u(t,z) —v(t,z)) in RN (1.8)

~
|
<
—~
“PF
5
~
N

where u is a population that has adopted the spreading strategy £; and v an another one. The notion of ESS is
then linked to some invasion condition which is related to the stability of the equilibria (u*,0) where u* is a positive
solution of the following problem

Mo o, [u] +u(z)(a(z) —u(z)) =0 in RY.

The stability analysis of this equilibria, leads to consider the sign of a principal eigenvalue of the operator
Mo e +a(x) —u*(z). When A\p(My, o, +a(xz) —u*(x)) is negative then the equilibria (u*, 0) is unstable and a mutant
can invade. Therefore the strategy followed by u will not be an ESS. On the contrary, when A\,(Ms ., +a(z) —u*(x))



is positive the equilibria (u*,0) is stable and a mutant cannot invade, making this strategy a potential candidate for
an ESS.

From our result, we can observe that within the strategy with a quadratic cost function (m = 2), the ubiquity
strategy (¢ = oo) is an ESS. Indeed, for such case, from the above Theorem, we are lead to consider the sign of
Ap(Ma e, + a(z) — a™(x)) which is positive for any ¢ > 0. Whereas, the smallest spreader (¢ = 0) is never an ESS.
Such behaviour stands in contrast with known results on ESS strategy governed by the rate of dispersion [39] [41],
where in such case the slowest rate possible is the best strategy.

Finally, we obtained existence/ non-existence criteria when we relax the compactly supported constraint on the
dispersal kernel J. In this direction, we investigate a class of kernel J that can have a fat tail but still have some
decay at infinity. More precisely, we assume that

(H5) Jan J(2)]2VH! < +o0.

Theorem 1.5. Assume that J, f satisfy (H1-Hj) and assume further that J satisfies (H5) then we have
(i) if \p(M + 0s f(x,0)) > 0 there is no bounded positive solution to (L2).
(i1) if imp oo Ap(L,, + 05 f(2,0)) < 0 where

Lolo] = / J(& — y)ply) dy — (),
Br(0)

then there exists a unique positive solution to (L2l).

1.2 Comments

Before going into the proofs of these results, we would like to make some further comments. Our proofs essentially
rely on the properties of the principal eigenvalue A,(M + a(z)) and more precisely on the relations between the
following spectral quantities:

Ap(M +a(z)) :=sup{\ e R|3p € C(Q),p >0, sothat M[g|(x)+ a(z)e(z) + Ap(x) <0 in Q}.
A, (M +a(x)) :=inf {A € R|Tp € C(Q) NL¥(Q), >0, sothat M[p](z) + a(x)p(z) + Ap(z) >0 in Q}.
WMta@) = inf 2 Jfew sy 1@ —9)lp(@) — W] dudy — fn ale)p® (@) do

peL2(RN),0#0 H@H%

Although these quantities have been introduced in various context see for example [21], 26] 23] [35], [40], the relation
between them have not been fully investigated or only in some particular contexts such as when a(z) is homogeneous
or periodic. Some new results have been recently obtained in [2] allowing now to have a clear description of the
relation between A, /\; and \,. Moreover, [2] provides a description of the asymptotic behaviour of these spectral
quantities with respect to the scaling of the kernel. For the purpose of our analysis, we present a summary of these
results in Section2]

Finally, we also want to stress that although we have a clear description of the existence/non-existence of a
positive solution for small €, the study of the convergence of u. as € — 0 is quite delicate. Indeed, in L>°(RY), the

problem
v(z)(a(z) —v(z)) =0 in RN,

has infinitely many bounded non negative solution ( e.g. for any set @ C R¥| the function a™*(x)xq is a solution)
and owing to the lack of regularising effect of the dispersal operator, we cannot rely on standard compactness result
in the usual manner to obtain a smooth limit. If for the case m = 2 we could rely on the elliptic regularity and the
new description of Sobolev Spaces developed in [12, [T3] [49, 50] to get some compactness, this characterisation does
not allow us to treat the case m < 2. We believe that a new characterisation of Fractional Sobolev space in the spirit
of the work of Bourgain, Brezis and Mironescu [12, [I3] may be helpful to resolve this issue.



The paper is organised as follows. In Section 2 we recall some known results and properties of the principal
eigenvalue A\, (L, + a(z)). We also describe the sharp persistence criteria for problem (LJ]) defined in a bounded
domain 2 that are derived in terms of principal eigenvalues. In Sections Bl and Hl we establish the sharp survival
criteria and prove the long time behaviour of the solution of (L2 (Theorem [[I]). We analyse the dependence of the
persistence criteria (Theorems and [[3) in Section Bl Finally, in the last Section we discuss the extension of the
persistence criteria to non compactly supported kernel.

1.3 Notations

To simplify the presentation of the proofs, we introduce some notations and various linear operator that we will use
along this paper:

e Bpr(xp) will denotes the standard ball of radius R centred at the point xg
e Y will always refer to the characteristic function of Bg(0).
e S(RY) denotes the Schwartz space.

e For a positive integrable function J € S(RY), the constant [y J(2)|z|? dz will refer to

/RN J(2)|2? dz = /RN J(2) <2N: z§> dz

=0

e We denote L, the continuous linear operator

L, CQ) — C(@Q)
(

u = o (19)

z —y)u(y) dy,
where Q C RY.
e L, correspond to the continuous operator £, — Id with Q = Br(0).
e We will use M to denote the operators £, — Id with Q2 = RY .
e Finally, M. will denote the operator M with a rescaled kernel 8%] (f) and M. p, 1= E%Ms

e To simplify the presentation of the proofs, we will also use the notation (x) := 9sf(z,0).

2 Preliminaries

In this section, we recall some known results on the principal eigenvalue of a linear non-local operator £, + a(x) and

on the KPP equation below

0

a—?(t,x) =L [u] + flz,u(t,z)) n RY xQ (2.1)
defined in a bounded domain @ C R¥. For simplicity, we divide this section into two subsections, one devoted to

the principal eigenvalue and the other dedicated to known survival criteria for the problem (Z.T]).



2.1 Principal eigenvalue for non-local operators

In this subsection, we focus on the properties of the spectral problem

Lolol+ax)p+rp=0 in Q. (2.2)

In contrast with elliptic operators, when a(x) # C'ste, neither £, 4+ a(x)+ X nor its inverse are compact operators
and the description of the spectrum of £, + a using the Krein-Rutman Theory fails. However as shown in [21], some
variational formula introduced in [6] to characterise the first eigenvalue of elliptic operators £ := a;;0;;+b;(x)0; +c(x),

A (&) :==sup{A € R|Tp € W?"(Q),¢ >0 so that E[p] + A < 0}, (2.3)
can be transposed to the operator L, + a(z). Namely, the quantity

Ap (L, +a(z)) :=sup{A e R|Tp € C(Q),p >0 sothat L,[¢] + a(xz)p + Ap < 0}. (2.4)

is well defined

As noted also in [2I], the quantity defined by (24]) is not always an eigenvalue of £, 4+ a(x) in a reasonable
Banach space. This means that there is not always a positive continuous eigenfunction associated with \,. However,
as proved in [21} [41], [54], when € is a bounded domain we can find some conditions on the coefficients that guarantee
the existence of a positive continuous eigenfunction. For example , if we assume that the function a(z) satisfies

1

m ¢ Llloc(Q)a

then \, (L, +a(z)) is an eigenvalue of £, +a(z) in the Banach space C(Q) and is associated to a positive continuous
eigenfunction.
Another useful criteria that guarantees the existence of a continuous principal eigenfunction is

Proposition 2.1. Let Q be a bounded domain and let L, be as in (L3) then there exists a positive continuous
eigenfunction associated to A, if and only if A\,(L, + a(x)) < —supg a.

A proof of this proposition can be found for example in [26] 23]. To have a more complete description of the
properties of A, in bounded domains see [24].
Next, we recall some properties of A, that we constantly use along this paper:

Proposition 2.2. (i) Assume Q1 C Qa, then for the two operators

£, [u] + a(z)u == L J(@ — yyuly)dy + a(z)u

£, [u] + a(z)u == L J(@ — yyuly) dy + a(z)u

respectively defined on C(Q1) and C(Q2) we have
Ap(Lg, +a(x)) 2 Ap(Ly, + a(x)).
(i) Fiz Q and assume that aq(x) > az(x), then
Ap(Lg + az(w)) = Ap(Lg, + a1 (@),

(11i) A\p(Ly, + a(x)) is Lipschitz continuous in a(x). More precisely,

Ap (Lo +a(@)) = Ap(Lo + b(2))] < [la(z) = b(2)] 0o



(iv) We always have the following estimate

—sup (a(:z:) —|—/ J(x —y) dy) < Ap(L, +a) < —supa.
Q Q Q

We refer to |21 23] for the proofs of (i) — (iv). Let us also recall the two following results proved in [2].

Lemma 2.3. Assume that a achieves its mazimum in Q and let L, + a(x) be defined as in [LI) with J satisfying
(H1 — H2). Assume further that J is compactly supported. Let (Qn)ner be a sequence of subset of Q0 so that
lim, o Q, =Q, Q, C Qy41. Then we have

T Ap(Ea, +al@)) = Ap(Lo + a(®))
Lemma 2.4. Assume that a(z) € C(RY) N L>®°(RY). Then for alle > 0 one has
Ap M +a(z)) = Ap(Mc + ac(x)).

where ac(x) := a (f) and Mc[y] = ELN Jan J (””;y) p(y) dy — ().

Finally, we recall some recent results obtained in [2] on the characterisation of the principal eigenvalue A, (Mg, +
a(x)). To this end, we recall some variational quantities of interest. Motivated by the works [8] 5, @] on the generalised
first eigenvalue of an elliptic operators, let us introduce the two definitions :

Definition 2.5. Let £, + a(z) be as in (I9). We define the following quantities:

XLy +a(@)  =inf{A €R|3p 2 0,p € C(Q NL(Q), st Ly[o] + Mg 20 in (2.5)
Mo(Lo +alz)) = «PEin(Ifllf),gozo B - kp](; 6:0(;:)% 2 ? (2.6)
_ o deto @ 9)e@) — o) dedy — [o(a@) — 1+ k()¢ (@) dv (2.7)

PEL?(Q),0#0 ||90||2L2(Q) . .

where k(z) := [, J(y —x)dy and (-,-) denotes the standard scalar product in L*(£2).

In the context of the study of nonlocal operators, these definitions are natural extension of the definitions known
for an elliptic operator. It is worth to mention that those definitions have already been used in the context of the
study of (L2) in several papers [25} 26, 23| [35, 40], but the relation between Ap, A, and A, has never been clarified.

For elliptic operators, it is known that the analogous of these three quantities are equivalent on bounded domain
[6]. This is not necessarily the case for unbounded domains, where examples can be constructed [ [5l 1], showing
that Ay > A|. Since the operator, L, + a(z), shares many properties with elliptic operators, it is suspected that the

three quantities, A, )\; and \,, are not necessarily equal. However, for particular kernel J, we have:

Theorem 2.6 ([2]). Let J be compactly supported satisfying (H1)—(H2). Assume that a(x) € C(RYN) N L>(RY).
Then we have

Ap(Mem +a(@)) = A (Mem + a(2)) = Ay (Mem + a(z)).
Moreover, we have the following asymptotic behaviour:
o When 0 <m <2 lime 400 Ap(Mem, + a(x)) = — suppn a(z)
e When m =0, lime 400 Ap(M: + a(z)) =1 — supgn a(x)

o When 0 <m <2, lime 0 Ap(Me,m + a(z)) = — supgn a(x)



e When m = 2 and a(x) is globally Lipschitz, then

Ko nDo(J
iy (M2 +afi)) = (2222 4 o).
e—0 2
where
Dy (J) '*/ J(2)2%dz, K -1 (c.e )QdU*i
2= ) 2,N = ISV Joni 1 =N
and Yol2(z)d 2001 d
Ko nD
A (Ko nDo(J)A + a(z)) = inf 2. Da(J) Jpx V¢ 2(z) L Jo a(x)ﬂ (@) de
PEH (RN),0£0 2 llell3 llll3
A similar result also holds for the rescaled operator £, _ . := o=L, _ with £, _ denotes the operator £, taken

with the rescaled kernel J.(z). Namely,
Theorem 2.7 ([2]). Assume J satisfies (H1)-(H2) and let a(z) € C(Br(0)). Then we have
Ap(L e +al@)) = Ny (L., +a(@) = Ao(Ly ., + a(2).

Moreover, we have the following asymptotic behaviour:

o When 0 <m <2 lime 400 Ap(Ly ., +a(x)) = —supp,, (o) a(z)

e When m =0, limes 400 Ap(Lp . +a(x)) =1 —supp, (o) a()

o When 0 <m <2, lime—0 Ap(Lp ., +a(z)) = —supg,, o) a(z)

e When m =2 and a(x) is globally Lipschitz, then

Ko nDo(J)

iy Ay (L, ) = 2 (F245

e—0

A+ a(x), BR(O))

2.2 Existence criteria for the KPP-equation (21

Equipped with this notion of principal eigenvalue, it has been shown [I], 21] that on bounded domains, the existence
of a positive stationary solution of (2] is conditioned by the sign of A\, (L, + 9sf(z,0)). That is to say

Theorem 2.8 ([1L 21]). Let 2 be a bounded domain and L, defined as in (L9). Assume that f satisfies (H3). Then
there exists a unique positive continuous function, u, stationary solution of (1)) if and only if \,(L,+0f(x,0)) <
0. Moreover, if A, > 0 then 0 is the only non negative bounded stationary solution of ZI)). In addition, for any
positive continuous solutions of 2 we have the following dynamics :

(i) When A\, >0,

tlim u(t,z) = 0 uniformly in Q,
— o0

(i) When A, <0,

lim u(t,z) = @  uniformly in Q.
t—o00

Remark 1. This existence criteria is similar to those known for the reaction diffusion versions of (21I) [4] 15} [16],

17, 31 [33].
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3 Existence/non existence and uniqueness of a non-trivial solution

In this section we construct a non-trivial solution of (2] and prove the necessary and sufficient condition stated in
Theorem [Tl For convenience the section is split up into three subsections, each of them respectively devoted to the
proofs of existence of a solution, the uniqueness and non-existence.

3.1 Existence of a non-trivial positive solution

The construction follows a basic approximation scheme previously used for example in [3]. To this end we introduce
the following approximated problem :

L.[u]+ f(z,u)=0 in B(0,R) (3.1)

where B(0, R) denotes the ball of radius R centred at the origin. By Theorem 2.8 for any R > 0 the existence of a
unique positive solution of ([B.I)) is conditioned to the sign of A\, (£, + B(z)) where 8(z) := 9, f(z,0). Since

i (£, + B(2)) = (M + 6() <0,

by Lemma 23] there exists Ry > 0 so that
VR = Ro, \p(L + B(x)) <0.

As a consequence, by Theorem 22§ for all R > Ry there exists a unique positive solution of ([B1]) that we denote up.
Moreover, since for all R > 0,supg, o) S (z) is a super-solution of (B, by a standard sweeping argument since the
solution to (I is unique, we get
VR >0,ur < sup S(z) in B(0,R).
Br(0)

On another hand, for any Ry > Rs, the solution ug, is a super-solution to the problem
L, [u]+ f(z,u)=0 in B(0,Ry) (3.2)
So as above by a standard sweeping argument we get
ur, <upg,(z) in B(0,Rs).

Thus the map R +— up is monotone increasing.
The idea is to obtain a positive solution to (IL2) as a limit of the positive solution of [BIl). To this end we
construct a uniform super-solution of the problem (2.

Lemma 3.1. There exists i € Co(RY) N LY(RY), @ > 0 so that @ is a super-solution of the problem (L2).

Proof. Let us fix v > 0 and Ry > 1 so that v < —limsup),_,o, B(x) and B(z) < —% for all |z[ > Ry. Consider now
w(z) = Ce™ ],

where C' and « are to be chosen. By direct computations, for all x € RV \ Bg,(0) we get:

Miul(a) + i) = e ([ ata—gpema D ay 14 5.
< w(z) (/RN J(z)eol gz — 1 — g) .

M[w)(z) + B(z)w(z) < h(e)w(x) i R\ Bg(0), (3.3)

Therefore w satisfies
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where h(«) is defined by
hm)=_1_g.

Since J is compactly supported, thanks to the Lebesgue’s Theorems, we can check that h(-) is a smooth (C?)
convex increasing function of a. Moreover, we have

lim (o) = h(0) = —

v
a—0 2
Therefore, by continuity of h, we can choose « small so that h(a) < 0. For such a, we get
Mw](z) + Blz)w(z) < h(@)w(z) <0 in RN\ Bg,(0). (3.4)
Let M :=supg, . )5 (z) and let us fix C' = 2Me?*Fo. We consider now the continuous function

a(z) = Ce*O"I" in RN\ Bap,(0),
2M in  Bag,(0).

By direct computation we can check that @ is a super-solution of the problem (L2). Indeed, for any = € Bag, (0),
we have @ = 2M > supp, . (o) () which implies that f(z,u) = f(2,2M) < 0 and

Mlu)(z) + f(z,u(x)) < 2M . J(x—y)dy —2M + f(z,2M) < f(z,2M) < 0.

Whereas, for z € RV \ Bag, (0) C RV \ Bg,(0) we have by (4]

Mlal(z) + f(z,u(x)) < Mlu](x) + fz)w(r) < Mwl(z) + B(z)w (),
<

h(a)w(z) < 0.

IAIA

O

We are now in position to construct a positive solution of (L2). By Lemmal[B3d] there exists @ a positive continuous
super-solution of the problem ([2)). Therefore for any R > 0, @ is also a positive continuous super-solution of the
problem ([B.1I). Therefore by using a standard sweeping argument, we can check that for all R > Ry the unique positive
continuous solution of (B.1)) satisfies ur < % in Br(0). By sending now R — oo and observing that ur € C(RY) is
locally uniformly bounded and monotone with respect to R, we get ug — 4 := limg_. ur a non-negative solution
of (L2). @ is non trivial since 0 < u < @ and

ug <@ in B(0,R), for all R > Ry.

Moreover, by adapting the proof in [I] we can show that @ € Co(R™).

3.2 Uniqueness

Having constructed a L'(RY) positive solution to (LZ), the uniqueness of the solutions of ([LZ) is then obtained by
the following argument. Assume by contradiction that v € C(RY) N L (R¥) is another positive solution. Then v
is a supersolution of the problem BI) for any R > 0. Therefore v > up for all R > Ry. Since up is monotone
with respect to R, it follows that v > @ := limp ur(x). By assumption v # @. Recall that the functions v and @ are
verifying:

12



So, multiplying (83) by v and ([E6) by u we get after integration over RV

/RN /RN J(z —y)a(y)v(z) dyde — /RN (z)v(z) do + / (@) f(z,i(x))dz =0, (3.7)

RN

/RN /RN J(z —y)u(z)u(y) dyde — /RN i(z)v(z) da +/ () f(z,v(x))dz = 0. (3.8)

RN

Therefore by subtracting the two above equality, we get the contradiction

o< [ otoya [L2a) S ;g

since & < v and f(x, s)/s is decreasing.

3.3 Non-existence of a solution

In this section, we deal with the non-existence of positive solution when A,(M + §(z)) > 0. To simplify the
presentation of the proofs, we treat the two cases: A,(M + B(x)) > 0 and A\p,(M + S(x)) = 0 separately. The proof
in the second case being more involved, we start by showing the non existence results when A,(M + (z)) > 0.

Case \p(M + B(x)) > 0:

In this situation we argue as follows. Assume by contradiction that a positive bounded solution u exists. By
assumption, u satisfies

M{u](z) + B(x)u(z) > 0. (3.
Therefore u is a test function for A (M + 3(z)) and we get A,,(M+3(x)) < 0. Since by Theorem LG\, (M + 3(z))
A, (M + B(x)) we get a straightforward contradiction.

9)
<

Case \,(M + B(z)) = 0:

In this situation, as above we argue by contradiction. Assume by contradiction that a non-negative, non identically
zero, bounded solution u exists. By a straightforward application of the maximum principle, since u #Z 0 we have
u > 0 in RY. Now let us observe that in this situation, by the above argumentation we have \,(M + (z)) = 0 =
A, (M + B(z)) and by (iv) of Proposition ([Z2) we get the following estimate

sup(fB(z) — 1) <0. (3.10)
RN
Let us denote y(z) := %, then we obviously have
Jxu(r) —u(z) +y(z)u(z) =0 in RN (3.11)

Therefore by definition of A, we have A\ (M + ~(x)) < 0. By construction v(x) < B(x), so by combining B.11]) with
the Proposition 222 the Theorem [Z6] and the definition of A,(M + v(x)) we can infer that

Ap(M 4 y(2)) < Ay (M +7(2)) <0< A (M + B(2)) < Ap(M + ().

Therefore Ap(M +~(x)) = 0. Let us denote € C(RY) a smooth regularisation of x s, (o) the characteristic function
of the unit ball. Since y(z) < B(z) in RY, we can find ey > 0 small so that for all € < g

V(@) < y(@) +en(z) < Blz) i RY.
By (i) of Proposition 22} we then have
0=Ap(M+B) < XM +7y+en) < Ap(M47)=0.

Now we claim that
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Claim 3.2. There exists Ry > 0 and ¢ > 0, ¢» € C(RY) N LY (RY) so that

Jx(z) = (2) + (y(x) +en(2))(z) =0 in RY

Assume for a moment that the claim holds then by arguing as in the subsection [3.2), since 1) € L' we get the
following contradiction

0= —5/ u(z)y(x)n(z) de < 0.
RN
Proof of the Claim. For convenience we denote ¥(z) := v + en. By BI0), since ¥ < § we also have

0 < —sup(y — 1). (3.12)
RN

From the latter inequality, by using Proposition[2.J]l and Lemma[2.3] we see that there exists Ry so that for all R > Ry
there exists a positive eigenfunction ¢r € C(B(0, R)) associated to the principal eigenvalue \,(L, + 7(z)) of the
approximated problem

L.lel+H@)+Ne=0 in B(0,R) (3.13)

Take now the increasing sequence (R, )nen := (Ro + n)nen and let (o, )nen be the sequence of function where
¢n is the positive principal eigenfunction associated to A,(L, 4 (x)). Without loss of generality, we can assume
that for all n, ¢, (0) = 1.

Recall that for all n, ¢, satisfies

Ly, [on] + (3(2) + Xp(Ly, +7(2))pn =0 in Bg,. (3.14)
Let us now define b, (z) := —A, (L, +7(z)) — ¥(x). Then ¢, satisfies

Ly, [¢n] =bu(x)pn in Bg,.

By construction for all n > 0 we have b, (z) > f/\p(ERn0 + (x)) — suppy (¥(x) — 1) > 0, therefore the Harnack

inequality (Theorem 1.4 in [22]) applies to ¢,. Thus for n > 0 fixed and for all compact set w CC Bpg, there exists
a constant C), (w) such that

on(z) < Crw)enly) V z,y€w.

Moreover the constant C,, (w) only depends on | J, ., Br, () and is monotone decreasing with respect to inf,ep,, bn (7).
For all n > 0, the function b, (x) being uniformly bounded from below by a constant independent of n, the constant
C,, is bounded from above independently of n by a constant C(w). Thus we have

on(x) <Clw)en(y) V z,y €w.

From the normalization ¢, (0) = 1, we deduce that the sequence (¢, ),>0 is locally uniformly bounded in RY.
Moreover, from a standard diagonal extraction argument, there exists a subsequence still denoted (¢, ),>0 such that
(¢n)n>0 converges locally uniformly to a continuous function ¢. Furthermore, ¢ is a non-negative non trivial function
and ¢(0) = 1.

Since J is compactly supported, we can pass to the limit in the equation ([BI4]) using the Lebesgue monotone
convergence theorem and get

Mgl + (F(x) + ApM +3(x))p(z) =0 in RN,
Hence, we have

Mlp] +7(x)p=0 in RN, (3.15)

To conclude the proof of this claim, we characterise the behaviour of ¢(z) for |x| >> 1.
Let us denote 0 < v < —limsup),_,, B() and let us fix Ry so that f(z) < —% for [z] > Ry.
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Since by Lemma 3\, (L, + ¥(z)) = A\p(M +F(x)) = 0, we can take Ry larger if necessary to achieve
Aa) + ALy +7(2) < =7 for |z > Ry,

Now let us consider ¢(x) := Ce~ (=111 where C' and a will be chosen later on. By a straightforward compu-
tation, we can see that for all R > R;

Lal0)(&) + G@) + AL +3(2))le) < () ( /
< h(a)(z) for |z| > Ry,

() = </RN J(2)edy — 1 — %) .

J(z)eldz —1 — %) for |x| > Ry,

N

with

Since J is compactly supported, by the Lebesgue Theorem, the function % is continuous and h(0) = —%. By
assumption v > 0, so by continuity of A there exists ag > 0 so that h(ap) < 0. Thus we achieve for a = ayg
Ly [Wl(@) + (V) + M (L +5(2))(x) <0 for  |z] = Ry (3.16)
Recall that by construction, the function ¢,, satisfies
Ly, [on](@) + () + Ap(Ly, +3(2))en(z) =0 in  Bg,(0). (3.17)

Since J is compactly supported and J(0) > 0 there exists positive constants ro > r1; M > m so that
Mxp, () > J(x—y) > mxg,, () forall z,y€ RV,

Therefore for n large enough say n > ng, we have R,, > R; + rp and by the Harnack inequality, for all n > ny we
have

n(2) < C(Brys Ap(Ly, +7(2))pn(y)  forall  z,y € Bg,(0).
with C(Bg,, A\p(Ly, +7(x))) a constant that only depends on UIEBR1

respect to infyep, (5(x) + Ap(Ly, +7(x))). For all n > ng, the function §(x) + A\p,(L,, + ¥(x)) being uniformly
bounded from below by a constant independent of n, the constant C(Bg,, A,(L, + 7(x))) is bounded from above
independently of n by a constant C(Bpg,). Thus we have for all n > ng

on(r) < C(Br,)pn(y) ¥ ,y € Bg,.

B,,(x) and is monotone decreasing with

In particular, we have for all n > ng,
¢on(z) < C(Br,)¢n(0) = C(Br,) V € Bg,.
By choosing C' > C(Bg, ), we achieve
Y(x) > C > C(Bg,) > ¢n(x) V x€ Bpg,.
Set now wy, := 1 — @,, from BI0) and BI1) we get

L Jwn](x) + (F(@) + A\ (L, +7(@)wn(z) <0 for Ry < x| < Ry, (3.18)
wy, >0 for |z| < Ry. (3.19)

By a straightforward application of the Maximum principle, it follows that for all n > ng we have @, (z) < v. Indeed,
since wy, is continuous, wy, achieves a minimum at some point z¢ € Bg,. Assume by contradiction that w,,(z¢) < 0.
Then, thanks to 819) xp €€ Bg, \ Bgr, and at this point by (3.I8) we have the following contradiction
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0> ‘CRn, [wn](wo) + (’7($0) + )\P(‘CRn, + ﬁ(x)))wn (330) > / J(xo - y)wn(y) dy — wn($0) + +%|wn($0)|a

Br,,

> [ 0= )lun(e) = waleo))dy + S funao)] > 0

Hence, for all n > ng ¢, < in Bg, which by sending n — oo leads to ¢ < v in R which conclude the proof of
the Claim. O

4 Long time Behaviour

In this section, we investigate the long-time behaviour of the positive solution (¢, ) of

%(t,x) = Jxu(t,x) —u(t,z) + f(x,u(t,z)) in R' x RY, (4.1)
u(0, ) = uo(z). (4.2)

For any up € C*(RY)NL>® orin C*(RN)NL!(RY) the existence of a solution u(t, z) € C((0, +oo), C™in{LEHRNY)
respectively u(t, z) € C1((0, +o0), C™MLEHRN)NLI(RY)) is a straightforward consequence of the Cauchy-Lipschitz
Theorem and of the K PP structure of the nonlinearity f. Before going to the proof of the asymptotic behaviour,
let us recall some useful results

Lemma 4.1. Assume that ug(x) is a sub-solution to 1)), then the solution u(t, x) is increasing in time. Conversely,
if up(x) is a super-solution to [@I)) then u(t,x) is decreasing in time.

The proof of this Lemma follows from a straightforward used of the parabolic maximum principle and is let to
reader. Let us now prove the asymptotic behaviour of the solution of (&Il) and end the proof of Theorem [[L11

Proof. Let z(t,x) be the solution to

%
ot
Z(Oax) = CHUOHOO (4.4)

=Jxz—z+ f(z,2(t,z)) in RT xRV (4.3)

Since S(x) € L™ by choosing C large enough, the constant Cljugl| is a super-solution to ([@.1]) therefore z(¢,x) is a
decreasing function and by the parabolic maximum principle we have u(t,z) < z(t, ) for all (t,z) € [0, +00) x RV,
leading to

limsup u(t, z) <limsup z(¢t,z) forall zeRY. (4.5)

t—o00 t—o0

Now let us consider the approximated parabolic problem

aU—R(t,gc) = / J(z —y)vr(t,y)dy — vr(t,x) + f(x,vr(t,z)) in RT x Bgr(0), (4.6)
ot Br(0)
UR(Oa :L') - URUO(:C)v (47)

where 7, 1= (%) with n € C(R™) a smooth cut-off function so that 7 > 0,7 =11in [0,1] and n =0 in RT \ [0, 2].

By Theorem 2.8 for R large enough the solution vg(t,x) converges to ur(x) the unique positive stationary solution
of ([@6]). By construction since u(t, ) is a super-solution of the problem (8], by the parabolic comparison principle
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we have for all R large enough vr(t,x) < u(t,x) for all (¢,x) € [0, +00) x Br(0). Therefore we have for all R large
enough
1itrginf u(t,z) > up(x) forall x € Bgr(0) (4.8)

By taking the limit as R — oo, in the above inequality we get

lim inf u(t, z) > Rlim ugr(z) =a(x) forall zeRN (4.9)
—00

t—o00

Note that we can reproduce the above arguments with z(¢, z), thus we also get

vr(t,x) < z(t,x) forall (t,z) € [0,+00)x Br(0) (4.10)
liminf 2(t,x) > lim up(r) = a(x) forall =xecRY (4.11)
t—00 R—o0

By (@IO) z(t,z) is locally uniformly bounded from below and since z(t,x) is a decreasing function of ¢ we get
lim; o0 2(t, ) = Z(z) > 0 for all z € RY. Moreover 7 is a bounded stationary solution to ([@J). By uniqueness of
the positive stationary solution, we conclude that Z = w. Thus we have

lim z(t,z) = a(z) forall zeRY (4.12)

t— o0
Hence by collecting ([@35),[E3), @EI2) we get for all x € RV

(x) < liminfu(t,z) <limsupu(t,z) <limsup z(¢t, z) = lim z2(¢,2) = a(x).

t—o0 t—00 t— 00 t—o0

Now, to complete the proof we are left to show that ||[u —@||sc — 0 as ¢ — oo. To this end we follow the argument
in [9]. We argue by contradiction and assume there exists ¢ > 0 and the sequences (t,,) € RT, (z,,) € R such that

lim ¢, = oo, [w(tn, zn) — W(zn)| > &, Vn € N. (4.13)

n—o0

By (1), we already know that u — @ locally uniformly in RY so without loss of generality, we can assume that
|| — oo. From the construction of i, Subsection 3.1} we have lim,|_,o %(z) = 0. Therefore for some Ry > 0, we
have 4(z) < § for all [z| > Ry. The latter combined with (£I2) and [I3) enforces

2(tn, xn) — W(xy) > ulty, z,) — a(x,) > €, vn € N. (4.14)
We claim that

Claim 4.2. For all sequences (¢, )nen, (Tn)nen S0 that lim, o t, = lim, o |2, = 400, then z(¢,, z,) — 0.

Assume for the moment the claim holds true. Then we obtain a straightforward contradiction

0= nhﬂn;o 2(tn, Tpn) — U(xy) > nhﬂn;o U(tn, Tn) — U(zy) > €.

Let us prove the Claim. Again we argue by contradiction and assume there exists ¢ > 0 and sequences
(tn)nen, (Tn)nen satisfying lim, o0 t, = limy, 00 [2,] = oo so that z(t,,x,) > € for all n € N. Let us define
zn(t, z) := z(t,x + x,,) then by definition z, satisfies

%(tﬂz) :/ J(@ = y)en(y) dy — zn(t,z) + f(z + 20, 20(t, ) in R* XRNv
ot A

2n(0,2) = Clluol|oc,

and 0 < z,(t,2) < Cllug|loc- Since for all n, z,(0,z) € C* by the Cauchy Lipschitz Theorem we see that z, €
C'(R*,CY(RY)). Thus, there exists Co > 0 independent of n so that ||z||c11 g+ c@y)) < Co. From these estimates,
the sequence (2, )nen is uniformly bounded in CH1((0,7), C%H(RY)) for any T > 0. By a diagonal extraction, there
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exists a subsequence of (z,)nen that converges locally uniformly to Z(¢, ). Moreover, thanks to lim| ;500 @ <0,
there exists x > 0 so that Z(x,t) satisfies

%(t,x) < /RJ(JU —y)it,y)dy — 2(t,z) — kZ(t,x)) in RT xRN, (4.15)
2(0,2) = Clluo|[oo- (4.16)

In addition, for all t > 0, Z(¢,0) = limy, 00 2 (t,0) > €. Since Z(0,z) is a super-solution of (@IH), by Lemma [A.1]
the function Z(¢, z) is monotone decreasing in time. By sending ¢ — oo, since Z > 0, Z converges locally uniformly to
a non-negative function z that satisfies

/}R J(& - y)2(y)dy — () — h2(2)) 20 i RV,

zZ(0) > e.

Now let consider the function w(x) := £e®®l — z with « to be chosen, then w satisfies

/RJ(:C —yw(y) dy — w(z) — kw(z) < pe®l </R J(z)e# dy —1 - n) in RV,

N

The left hand side of the inequality is well defined and continuous with respect to « since J is compactly supported.
Thanks to fRN J(z)dz = 1, by choosing a small enough, we achieve

/]RJ(.T —yw(y)dy — w(z) — kw(z) <0 in RY,

By construction, since z is bounded lim|,o w(z) = 400 and w achieves a minimum in RY says at zg. Since

w(0) = § — 2(0) < =35, we have w(zo) < 0. Now at this point, we get the following contradiction

0< /RJ(:EO — ) [w(y) — w(zo)] dy — kw(z) <0 in RV,

O

Finally we establish the long time behaviour of the solution u(t, z) starting from an integrable initial datum wg,i.e
up € LYRN) N C(RYN). To do so, we define two auxiliary functions h(t,z) and v(t,r) that are respectively solution
to

9h(t x) = Jxh(t,x) — h(t,z) + f(z,h(t,z)) in RT xRN,

ot

{h(O,x) = sup{i(z), uo(z)}, (4.17)
v (t x) = Jxv(t,x) —v(t,x) + flz,v(t,z)) in R xRN,
ot

s "

By construction, from the comparison principle we deduce that v(t, z) < u(t,z) < h(t,z) for all (t,z) € Rt x RV,
Therefore
lu =@l eyy < sup{[lh — @l Lr@ny, o = all o ew)}-

Thus to prove that ||u — || g~y — 0 it is enough to show that h and v converge to @ in L'(RY).
Let us show that v converges to @ in L'(RY). Since @(z) is a super solution to [@I8) we deduce v(t,x) < i(x)
for all z € RY. Let € > 0 be fixed and choose R so that f]RN\B(O R) t(x)dr < % then we have
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@ — vl 1 mry = /]RN\BR(O) (a(z) —v(t,z)) dx + /BR(O) (a(z) — v(t, z)) de,

u(x) dr u(x) —v(t,x)) dr,
Lo f@des [ @) ot
+/BR(O)(11(:C) —o(t,x)) du.

IA
N

IN
Do ™

Recall that v converges pointwise to @ as ¢ tends to infinity. Therefore, by Lebesgue Theorem for some ¢(g) we get
for all t > t(e) , fBR(O) (a(z) — v(t,z)) de < § which enforces

||ﬂ — 'UHLI(RN) S e.
€ being chosen arbitrary, the latter inequality shows that lim; o || — v|| 1 (gvy = 0 which proves that v converges
to @ in L' (RV).
To obtain that [|h — @1 gy) — 0 we argue as follow. By construction @ is a sub solution to (EIT), thus
a(z) < h(t,z) for all (t,2) € RT xRY. Let us denote w(t, z) := h(t,z)—a(x). Then w satisfies for all (¢, z) € RT xRY:

%—ls(t, x)=Jxw(t,z) —w(t,z)+ (f(:z:, ht, z)) — f(x,g(:n))) h(t,z) + Mw(t, x),

h(t,x) u
< J*xw(t,x) —w(t,x) + Mw(t,x).
U
Now thanks to lim|, e f(i’s) < 0, there exists k > 0 and Ry so that w satisfies
88—1:(15,:0) < Jxw(t,z) —wt,z) — kw(t,z) in RY x RV \ Bg,(0). (4.19)

Fix now € > 0. Recall that h(t,x) converges pointwise to @, then by Lebesgue Theorem there exists to so that

for all t > tg,
/ w(t,z) dr < ke.
Bry (0)

Now let us estimate f]RN\BR ) w(x) dx for t > tg. By integrating (@IJ) over R \ Bg, (0) it yields
0

afRN\BRU(O) w(t,z)dx - /
at - RN\BRO(O)

By using Fubini’s Theorem, the uniform estimate on ||w|/s and the unit mass of the kernel, we can check that for
t > 1o

/ Jxw(t,z)dx = / w(t,y) / J(x —y)dx der/ w(t,y) / J(x —y)dz | dy,
RN\ B, (0) RN\ B, (0) RN\ B, (0) Bry (0) RN\ Br, (0)
<[ wtodyr [ i)
RN\ Bg,(0) Br (0)

< / w(t,y) dy + ke.
RN\ Bg, (0)

Therefore for t > tg, w satisfies

0 w(t,z) dz
S\ B, (0) < re—r / w(t, o) de.
at RN\BRU(O)

J*w(t,z)dz—/

w(t,z)dx — H/ w(t, z) dz.
RN\ Bg, (0) RN\ Bg,, (0)
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From the later differential inequality, there exists t(¢) > ¢y so that for all ¢ > ¢(e) we have

/ w(t,z)dr < 2e.
RN\ Br, (0)

Hence, we have for all ¢ > t(¢)

[wll vy = / w(t, ) de +/ w(t, ) do < (2 + %) e,
RN\ B, (0) Bro (0) |Br, (0)]

As above, ¢ being chosen arbitrary, the latter inequality shows that lim; o ||w|[ 1~y = 0 which proves that h
converges to @ in L'(RY).

5 Some asymptotics

In this section we analyse the qualitative behaviour of the solution of (L2 with respect to the size of the support of
J. For convenience we investigate the particular situation

oUexu— ) ulaz) —u) =0 in RN (P.)

where J.(2) = Z¢J () with supp(J) = B(0,1) and a € C'(RY) so that a™ # 0.
The latter condition on a(-) is necessary to observe the possible existence of a solution. Indeed, if a™ = 0 then
for any positive constant ¢y we have
Meo] + a(z)co <0

therefore A\, (Mco] + a(x)cg) > 0 and for all e there is no solution to ([FZ]) besides 0.

We analyse the behaviour of u. when ¢ — 0 and — 400 and try to understand the influence of m on the resulting
limits.

We start by showing some a priori estimate for the solution wu..

Lemma 5.1. There exist positive constants Cy1,Co,C3 so that we have for any positive bounded solution u. of (P
(1) lluell2@yy < C1, luelloo < Cs,
(i) fRN f]RN Je(x —y)(ue(z) — Us(y))2 drdy < Cae™

. Ap(Mem+
(ii) For all x € supp(a™), there exists p, SUD gy pp(a+) Ye = —w.

(iv) ue > (a(z) — )",

Proof. Since by construction the solution is unique and u. € L*(RY) N L>. Moreover by (P u. < M = ||al/cc. We
obtain (i) by integrating (P) over RY. Indeed, we get

/ u?(z) dx = / a(x)ue(z) de < / at(z)us(z)de < M at(z)dr =: Cy.
RN RN RN RN
To obtain (i), let us multiply (P)) by u. and integrate over RV, then we get
1
o [ [ e uele) — uw)Pdody = [ @)(a(o) - uele)) do
e RN JRN RN

Since u. and a(x) are uniformly bounded independently, (ii) holds true with Cy := 4C1 M. Observe that (a(z)——=)"

is always a sub-solution to (), so by a standard sweeping principle ue > (a(z) — Z=)" and (iv) holds true. Finally
to obtain (iii) we argue as follows.
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Since u. is a positive bounded solution of (F]) by Theorem Il we have \,(M. , + a(z)) < 0. Now since
Ap(Mem + a(z)) < 0 and J is compactly supported, by regularising a if necessary, we can find (see the proof of
Lemma ?? in [2]) ¢. € C.(R") so that

A
M mlpe] + alx) + 7%5 >0 in RY.

Moreover, we can normalised o, so that ||p:||c = 1. Plugging 6. with in (P it follows that

A
Mem[0pe] + Op:(a(z) — Op:) > 9@5(—7;0 —0pe).
Therefore for 0 < 6 < —)‘—2”, the function Ay, is a sub-solution to (P). By a standard sweeping argument, we get

A
— Py, <u. and supu. > —-L2.
2 RN 2

Since ue € LY(RY), u. achieves its maximum at some point, says zg. At this point from () we have
0= Mem[ue](wo) = —ue(zo)(alzo) — ue(20)).
Thus 2o € supp(a™) and [Juclloo = SUDypp(q+) te Which proves (idi). O
Next we obtain derive some useful super-solution for large €.

Lemma 5.2. There exists eg > 0 so that for all m > 0 and € > €y any positive bounded solution u. of () satisfies

1
ue < at(z) +

o™
w2

Proof. Let § € (0, 5) and consider the function (.(z) := —¢— + a*(z). We will show that (. is a super-solution to

() when e >> 1.
Indeed, we have

M., G (@) + (@) (al@) - C(2) < !ﬂi’i /R

where we use in the last inequality that

1 1
< N_§ + a*(z)) |:0,(:C) T TnN_5 a+($):| < *m for all T € RN,
g2 £72
Thus for € >> 1, we achieve

MIGe) + Ga)(ole) — o) < 1= [ aryay - s <0,

Therefore for € >> 1, by a sweeping argument we get u. < (.. We end the proof by taking § = %.

Remark 2. When m = 0 and (a(x)—1)* # 0, the above computation holds as well with (.(z) := —— +(a(z)—1)*.
2
Thus in this case we have for large ¢

us(x) < + (a(z) = 1)T.

™
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Next, we prove some continuity of A,(L, . + a(z)) with respect to €.
Lemma 5.3. Let R, e be fized and positive then for all n > 0 there exists § > 0 so that
(L + 0:(2)) = AplLyy + aursl@))] <,
where a.(x) := a(ex).
Let us prove now the continuity of A\,(L,, + a(z)).
Proof of the Claim. Let e > 0 and R > 0 be fixed. We observe that for all |§| < ¢ we have for all z € RY [ a.,s(z) =

Qe (%z) therefore
Sl
ac(z) — ae x| -
€

”as - aerSHoo,R = sup
B(0,R)

Since a. is a Lipschitz in RY, we have

e+0

a:(x) — ae (

where K (¢) is the Lipschitz constant of a.. Thus

)| < K@zl

lae — etslloo,r < K (g)Re0.
Hence, by (ii) of Proposition 2.2] we get
IAp(Ly + ac(x)) = Ap(Ly, + acqs(x))| < K(e)Reo.

O
Finally, we establish a useful identity.
Proposition 5.4. Let p € C(RYN) be a radial function, then for all u € L>(RN), p € C(RYN) we have
1
[ et - w@le@dde =3 [ pu@lee+ ) - 200 + plo - 2)) dade
RN xRN RN xRN
Proof. Thanks to the symmetry of p, using standard changes variables we have
1 1
J[. et —u@letw) =5 [[ sl - u@le@ + 5 [ ol 2) - ul@)pta),
RN xRN 2 RN xRN 2 RN xRN
1 1
—5 [ @) —u@le@ g [[ s - e+ )+,
2 J Jrw xry 2 JJrw <y

1
-5 //]RNXRN p(2)u(z + z) —u(z)][p(z + 2) — p(x)],

_% / /R o PEEp() — e = 2]+ % / /R oo PRI+ 2) = )

% //RNX]RN p(z)u(x)[e(x + 2) — 2p(x) + p(z — 2)].

From the Proposition, for all u € L2(RY), ¢ € C°(RY) we straightforwardly get the following identity

o EQ_WDQ(J) pa(z)
[ M @gtayde = =22 [[ B @)ipta +2) - 200 + pla - D)dedz ()

2
where p.(z) = 7ENDZ(J)J (g) |Z—|2
Equipped with all these apriori estimates, we can now analyse the asymptotic behaviour of u..
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5.1 The case m =0
In this situation, from Theorem we know that

lsg A, (M. + 0(2) =~ supa(z) (5.2)
liIJP Ap(Me +a(z)) =1 —supa(x) (5.3)
e—+00 RN

As a consequence for ¢ small enough we have A, (M. +a(x)) < —M;(z) < 0 and by Theorem (I1]) there exists
a solution to (). Moreover the following quantity is well defined

*

e*:=sup{e > 0| for all &’ < ¢, there exists a positive solution to (P./)}.
In view of (B3] €* € (0, +o0] and e* < +oo if and only if (a(z) —1)" £ 0.

Let us now deal with the limit of u. as ¢ — 0 and € — 400 and let us start by proving that

lim uc(x) = v(x) a.e. (5.4)
e—0
where v is a non negative bounded solution of
v(z)(a(z) —v(z)) =0 in RV, (5.5)
Let we := a(x) — ue, then from (P), w. satisfy
— Je *we + we + u(z)we(z) = a(z) — Je * a(x). (5.6)

Multiplying the above equation by w} and integrating over RY it follows that

Lo e o) = el @) dedy+ [ weo)d o) = [ wf @) de

RN

with g.(z) := a(z) — J: x a(z).
Let us now estimate the above integrals. First we observe that the double integral is positive. Indeed, since
w(y) = w*(y) — w (z) we get

S =@ vt oy = [ e = @) — v o) ey

RN xRN

Thus

o e =) — s @)dady = 5 [ e (@) @) - w ) dody

RN xRN

" //RNXRN J(x — y)w (y)wS (x) dedy

Let us denote Q := supp(a™). Since u. is positive and uniformly bounded, we have supp(w™) C Q and

|, vt @@y da

<o /Q 1ge(2) d.
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Since a is Lipschitz, by using a Taylor expansion, we can see that |g.(z)| < eDy(J)||Val|s. Therefore

/RN wl (z)g:(7) dz| < C|Qle. (5.8)
Collecting ([B.7),([E.8), we get
3 /[ i@ ey [ e pur e @ dedy + [ wee? P de < ce
Thus

and uewZ (z) — 0 almost everywhere in Q.
Recall that

/ uswe(x) de =0
RN

then from above estimates we conclude that

/]RN\Q ue(a(z) —ue) = /Qus(a(x) —u:) —» 0 when &—0.

Since uc(a(x) —ue) <0 in RY \ @, from the above inequality it follows that u.(z)w.(z) — 0 almost everywhere
in RV \ Q. Since u. > 0 and w. = (a(x) — u.(z)) <0, it follows that u.(z) — 0 almost everywhere in R \ Q. Thus
ue converges pointwise almost everywhere to a bounded non-neqative solution of (B.1]).

Remark 3. Note that the above proof can be easily adapted to M. ,,, for m < 2 as soon as the function a is smooth
enough. Indeed, for a € C?(RY), following the above arguments, we get by using the Taylor expansion up to order
2of a

/ ug(w:)Q(x) de < Ce?2™™,
]RN

with C' a constant depending on || V?u| «. When a is only Lipschitz, the above argument holds only for M. ,, with
m < 1.

Finally, to complete our analysis, we need to check that

lim u. = (a(z) —1)". (5.9)

e—e*

We treat separately the following two cases: (i) £* < 400, (i7) €* = co. The latter arise when supgw~ (a(z)—1) > 0.
In this situation, there exists Ro > 0 so that the continuous function ¢ = (a(z) — 1) # 0 in Bz(0) for R > Ry and
we can check that ¢ is a sub-solution to the approximated problem:

/ Je(z — y)u(y) dy — u(x) + u(z)(a(z) —u) =0 in  Bgr(0). (5.10)
Br(0)

Since large constants are super-solutions of (&I0) for any € > 0, R > Ry there exists a unique solution ¢ < us p < M.
By sending R — oo and by the uniqueness of the solution to (P) we have ¢ < u. < M in RV,

Case ¢* = +o00:

Thanks to Lemma [5.1] and Remark B for all z € RY for large £ we have

(a(z) = )T < ue(@) < (alz) —1)7 +

m
szl F

Hence, u. converge uniformly to (a(z) — 1)7.
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Case ¢* < +oc:

In this situation, the function (a(x) —1)T =0 in R and we are reduce to prove that
lim u.(z) =0 forall xRV,
e—e*

Note that by definition of £* we must have A\,(M.- + a(z)) > 0. Indeed, if not then A\,(M.- + a(z)) < 0 and
by Lemma 24 \,(M + a.-(x)) < 0. Therefore for some R we have A\, (L, + a.«(z)) < 0. By continuity of
Ap (L, + ae+(z)) with respect to €, (Lemma [E3) we get for some 6y > 0, A\(L, + ae-4s(x)) < 0 for any § < do.
Hence, \p(Me+p5+a(x)) = A\p(M+az-15(x)) < 0 for any 6 < dp and by Theorem [[T] there exists a positive solution
to () for all € < &* + §y contradicting the definition of £*.

Note also that since e* < 400, the construction of the supersolution in Section [3] holds for any e € [%, £*], thus
e is uniformly bounded in L'(RY).

Let g(x,s) := s(a(x) — 1 — s) then for all £ we have

Joxue = —g(x,u-(x)) in RV,

Now since J is C! and &* then for ¢ € [$e*,*), we have

oo uc(e)) = o) = | [ 1o =)= I = plucts) o]

[Je(x —y) = J(z = y)|
RN |z — 2|
< C(e)|z — =l

< |'T_Z| ua(y) dy,

Therefore, we get
CeM)lr —z[ 2 |[1 — a(@) + ue(2) + ue(2)][ue (x) — ue(2)] + [a(2) — a(a)]ue(z)],
)=o),

> [[1 = a(@) + ue () + ue(2)]||ue () — ue(2)] — |z - |z — 2|

)

and for any # € Q := {y € RY |a(y) < 1} u. is uniformly Lipschitz in = with a constant independent of ¢. Thus
1 1
(Ue)eg[1e vy is uniformly bounded in Cloo’c2 (Q). If Q° =0, then (u-).c[iox ) is uniformly bounded in Cloo’c2 (RM).

Otherwise, Q¢ # () and on Q¢ a(z) = 1. Therefore u?(x) = J. * ue and the CO’%(QC) norm of u. is bounded
independently of €. Hence,

(Ue)eg(ier e=y s uniformly bounded in CO’%(Q) N C’O’%(QC). (5.11)

loc

In both case, since a(z) < 0 for |z| >> 1, Q° is a compact set and |Q N Q°| = 0. From (&II]), for all sequence
en — " by a diagonal extraction procedure there exists a subsequence still denoted (ue, Jnen that converges locally
uniformly in RY \ (Q N Q°) to some non-negative function v. By passing to the limit in (ZJ) we can see that v is a
bounded non negative solution of

Joe % 0(@) — o) +v(@)(a(x) —v(@) =0 i RY\ (QNQO).
Since Q N Q° is of zero measure v is a solution to

Lo v [0+ (@) a@) —v(@) =0 i RY\(QNQ°).

Since 0 < Ap(Mex +a(x)) < \p(L ,+ a(x)), we deduce that v = 0 which proves the limit.

< RN\(QNQ°
Remark 4. When a(x) is a radially symmetric non-increasing function we remark that £* is a sharp threshold.
That is for all € > &* then (PJ) does not have any positive solutions. Indeed in this situation the function a.(x) is
monotone non increasing with respect to e. Thus by (i) of Proposition 2] for all ¢ > ¢* we have

0=X M+ ae(2)) < Ap(M + a-(2)).
Hence, by Theorem [Tl 0 is the unique non negative solution to (B for € > ¢*.
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(5.12)
(5.13)

< 0. Therefore by

_ supyw a(z)

5.2 The case 0 <m < 2
In this situation, from Theorem we know that
lim Ay (Me 0 + () =
lim Ap(M. +a(z)) = —supa(z)
RN
2

e—+o0

As a consequence for e small enough and for large e we have \,(M. + a(z)) <
Theorem (L)) there exists a solution to (B for small and large e.
The limit of u. when € — oo is easy to obtain. Indeed it is a straightforward consequence of (iv) of Lemma [5.1]

and Lemma since we have for ¢ large
Em
To obtain the limits in L2, we just observe that since by Lemma u, is uniformly bounded in L? and converges

pointwise to at, we get u. — at in L2. Moreover by Fatou’s Lemma, we have
(a™)?(z) dz < lim inf/ u?(z) dx
E— OO RN

/.

On another hand, by integrating (P over R we get for all &
/ u?(z)dr = / a(z)ue(x) de < / at(z)u. () do
RN RN RN

Thus by the Cauchy-Schwartz inequality, for all &
1/2 1/2
</ u?(z) dz> < </ (a™)?(z) dz>
RN RN
(a®)?(x) dz

(a™)?(z)dx < liminf/ u?(z) de < limsup/ u?(z) da §/
g0 JrN e—=+oo JRN RN

and we have
L
Hence, ||uc|l2 — ||a*]||2 and by the parallelogram identity u. — a* in L?(RY) since u. converges weakly to a* in L2.
As already mentioned in Remark Bl the limit of u. when ¢ — 0 can be obtained using a similar arguments as

li =
lim we v(x)

soon as a is smooth enough. So
(5.14)

with v is a non-negative bounded solution to (&5
(5.15)

5.3 The case m =2
In this situation, from Theorem we have
li (M + a(o)) = 0 (222
lim A,(M. +a(z)) = —supa(z)
RN

e—+o0
As a consequence for large ¢ we have \,(M. + a(z)) < —Sup‘*gia(m) < 0 and by Theorem (I there exists a

solution to () for large e. Whereas the existence of a positive solution for £ small is conditioned to the sign of
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Al(%wA + a(z)). When Al(l(z’NfDZ(J)A +a(z)) > 0 then for £ small there exists no positive solution to (F).
The limit of u. when € — 400 can be obtain as in the case 2 > m > 0 so we focus only on the limit when ¢ — 0.
Assume for the moment that Al(%MA + a(z)) < 0, we will show that u. — v where v is the positive

solution to
Ko nDo(J)

2

Let (en)nen be a sequence of positive number converging to 0 and let u,, denote u.,. By Lemma BTl ||uy,]|2 is
bounded uniformly and after simple algebraic computation

RN xRN |2|

with C' independent of €. Therefore for any R > 0, we have

// pe(2) (unl@ +2) ; tn(@)” daxdz < C.
BrxBr |z

For R > 0 fixed, since ||u,||2 is uniformly there exists a subsequence u,, — v in L?(Bg) and from the characterisation
of Sobolev Space [50} [49], we have u,, — v in L?(Bg).

By a standard diagonal extraction argument, from the sequence (u,)nen We can then extract a subsequence still
denoted (up)neny which converges to some v in L7 _(RY). Moreover by Lemma 5.1l u,, is uniformly bounded and
there exists 6(A1) > 0 independent of ¢ so that maxpp(a+)(Un) > 0.

Multiplying (P2 by ¢ € C°(RY) and integrating we get

Av+ov(a(z) —v)=0 in RN,

un( e +2) = 2¢(x) + (2 — 2)] dedz + / p(a)un(z)(a(z) = un(z)) dz =0,

RN xRN |Z|2 RN

where we use (5.) to compute [x M_, [un](2)p(x) dz. Thus we get

DQT(J) //]RNxRN pﬁ—ﬁ?u“m)%V%@(m)z dzdz —|—/ o(x)up (z)(a(x) — up(x)) da

D
- - // 2 u"( )p(x + 2) — 20(x) + p(z — 2) — 2V2p(x)z] dzdz,
RN xRN |Z|
where V2¢(x) := (9i;¢(x)):,;. Since p,(z) is radial, we can see that

DQ(‘]) pn(z) t 2 _ DQ(J)KQJV u (x o) dae
5 //]RNX]RN BE un () 2V2p(x)z dedz = — / n(@)Ap(z)d

RN

and we get

Dy(J)Ka N

- / (@A) dr + [ @ (@)(a(e) — un(@)) do

~ Do(
= //RN |z|2 un (2)[@(x + 2) — 2p0(z) + p(z — 2) — '2V3p(z)2] dzdz, (5.16)
Note that since u,, converges to v in L? (RY) we have

/RN p(@)un(z)(a(z) —un(z)) de — | pz)v(z)(a(z) —v(z))de (5.17)

RN
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Recall now that ¢ € C°(RY), so there exists C(p) and R(p) so that

lo(z + 2) — 20(x) + p(z — 2) — "2V30(x)2| < C(9)|2[*X By, (7).

Therefore since u,, is bounded uniformly,

DD [[ i @lioto +2)— 2600) + oo = 2) = '5Vp(a):] dade < COG) [ pa(alel 50, (519

Passing to the limit ¢ — 0 in (&I0), thanks to (B17) and (BIR) we get

Dy(J) Ko /
2 BN

being true for an € C2° this implies that v satisfies
g y e P p

v(x)Ap(x) de + /RN o(@)v(z)(a(x) —v(x))dx = 0. (5.19)

Ko nDa(J)
2

Since v is bounded, by elliptic regularity v is smooth. To conclude we need to prove that v is non trivial. To do
so we claim that

Av+v(a(z) —v) =0 ae. in RY.

Claim 5.5. There exists Ry, 7 and g( positive constants so that for all ¢ < g9 we have u. > 7 almost everywhere in
Bpg, (0).

From the above claim, we deduce that v > 7 > 0 a.e.
and therefore v = u, the unique smooth non-trivial solution of

Ko nDo(J)

5 Au+ula(r) —u)=0 in RY.

(RM).
Similarly, if we assume now that )q(%DZ(J)A +a(z)) = 0 and there exists a sequence (€, )nen, €n — 0 of non

trivial solution of (IZ). The above argumentation then holds true and we get u,, — v in L7 (R™) with v a smooth
solution to

The sequence (g,,),, being arbitrary, it follows that u. — u in L3,

Ko nDa(J)

5 Av+v(a(z) —v)=0 in RV,

Since )q(%DZ(J)A +a(x)) =0, v =0 is the only solution and we get u,, — 0 in L?

loc (RN>
Let us complete our proof and establish the claim.

Proof. Let us denote L, _, the operator

1

Ly ,lel = = [/B o Je(z —y)p(y) dy — o(x)] -

Since supg~a(x) is achieve in RV we regularise a by a, independently of ¢, so that for all £ and R > R; the principal
eigenvalue \p(L, ., +aq(x)) is associated to a continuous principal eigenfunction ¢, . and

(Lo +00(2) = Ap(Ly ., + a(2))] < lao(2) = a(2)]| o < Ko,

with x the Lipschitz constant of a.

By the Lipschitz continuity of A; (%WA + a(z)) with respect to a, we can choose o small enough so that

1
2

) <K27ND2(J)
! 2

2 A+aa(fﬂ)> <\ <M

A+ a(x)) < 0.
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Recall that

lim )\1
R—o0

(LNSQ(J)A tao (@), BR) Y (LN?(‘]) A+ ag(x)) ,

So we can choose Ry large so that

) <K27ND2(J)
! 2

A+ aq(2), BRU) < %Al (I{Q*NfDQ(J)A + a(x)) .

Thanks to Theorem L7 we have lim. 0 A\p(Ly ., + as(x)) = M1 (Kz’NfDQ(‘])A + ag(x),BR) so for & small,say

e < &g by choosing o smaller if necessary, we achieve

Ko nDo(J)

1
Ml taole)) < g0 (F225

A+ a(z)) for all ¢ <ey.

Let ¢pc be the principal eigenfunction associated with £, _, + a, (), then we have

1 <K2,ND2(J)
8

Lapalindl@) +ateope(o) = |gh (B2 A b a0)) o] gpele) foral 2 <o

By choosing o smaller if necessary,

s (K22 DDy ) | 2 o, (KD o)

and we achieve

amﬂwwum+auww@az—A1—4——&9A+mm>%mu> forall c<e.  (5.20)

To conclude our proof, it is then enough to show that for some well chosen normalisation of ¢, . we have
¢pe() = ¢1(x), ae in  Bg, (5.21)

1 is a positive principal eigenfunction associated with \; (KL%DZ('])A +ag(x),BRO). Indeed, assume for the
moment that (B2I]) holds true. Then there exists a > 0 so that

1
appe () = apr(z) < 5 & in  Bg,.

Now thanks to ([.20]), we can now adapt the proof the proof of (iii) of Lemma [Bdlto get for £ small, says e < &1,

! <K27ND2(J)

5 A+a(z)> vpe(z) ae. in  Bpg,, (5.22)

which combined with (B.21]) enforces

ue(z) > vp1(x) ae. in  Bp,, forall e<ey,

for some 7,9 > 0.
Since @1 > 0 in Bp,, the claim holds true in any smaller ball Bp.
To prove ([B.ZI)), let us normalise ¢y e by [[¢p.cll2(r,) = 1. Let ke be the function

1
m@w:—/’ Jo(@ —y)dy,
RN\ Bg,

2
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then by multiplying by ¢, . the equation satisfied by ¢, . and integrating it over Bg,, we get

Do(J _ 212
22( ) // Ps(»’C o y) |<)0p,€(y) 50}7218( >| d:Cdy - / (ag(x) + )\p75)(,012778($) dr — / ks(x)wi,a(x) dSC,
Bry X Br, |z — y| B, .

<C.
Therefore by the characterisation of Sobolev space [50, 49], along a sequence we have ¢, . — 1 in L?(Bpg,) with

||’L/JHL2(BRU) = 1. Moreover by extending ¢, - and ¢ by 0 outside B, and by arguing as above for any ¢ € C?(Bg,)
we have

PO @lete+2) — 200e) + oo - D dede = [ p@hppelale) + Ao do

2 xRN |22 77 Bry

+L%m@mw@muMz

Since ¢ € C?(Bg,) we get for & small enough supp(k.) N supp(p) = 0. Thus passing to the limit along a sequence
in the above equation yields

Dold) Mo ¢@m%@ﬂ+/ ) (@) (a(z) + A1) dz = 0. (5:23)

BRU BRU

(E23) being true for any ¢, it follows that 1 is the smooth positive eigenfunction associated to A; normalised
by ||’L/JHL2(BRU) = 1. ¢ being uniquely defined, we get ¢, . — ¢ in L?(Bpg,) when € — 0. Thus along any sequence
pe(x) = p1(z) almost everywhere in Bp,.

O

6 Extension to non-compactly supported kernels

In this section, we discuss the extension of our survival criteria to more general dispersal kernel J and prove Theorem
Observe that the construction of positive solution only required that A\,(L, + 8(z)) < 0 for some R, no matter
the dispersal kernel J is. Therefore as soon as limg_oo Ap(L,, + B(2)) < 0 there exists a positive solution to (L2
with no restriction on the decay of the kernel. Similarly, when \,(M + §(z)) > 0 the proof of the non-existence of
positive bounded solution essentially relies on the inequality between A\, (M + B(z)) and A,(M + B(x)) which holds
for quite general kernels including those satisfying the assumption H5 as proved in [2].Concerning the proof of the
uniqueness of the positive solution, it relies on the construction of a integrable uniform super-solution of (L2]) which
guarantes the existence of a positive L' solution to (LZ). Such super-solution still exists for kernels J that satisfies
the decay assumption H5. Indeed, we can show

Lemma 6.1. Assume that J satisfies H5 and there exists a periodic function u(z) : RN — R such that

limsup(S(z) — p(x)) <0 and Ap(M + p(x)) > 0.

|| =00
Then there exists u € Co(RN) N LY(RY), 4 > 0 so that 4 is a super-solution to (L2).

Observe that the construction of the super-solution covers a larger class of nonlinearity f(z,u) than those that
satisfy H4. As a immediate consequence, the survival criteria obtained in Theorem [[L]is still true for nonlinearity
that satisfies:

H7 Th ist € C,(RY that :
( ) ere exists ,u'(x) P( ) S0 a lim Suplzl_ﬂ)o (M — /’L(‘T)) S 0 uniformly in s.

S

{ Ap(M + p(x)) >0,
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From the ecological point of view, such nonlinearity allows to consider a more complex niche structure for the
species. In particular, we can consider ecological niches that are the superposition of a compact niche structure with
a periodic structure. The condition being that on the periodic structure alone, the species could not survive. The
perspective offers by this approach are quite promising and we believe that it may be applied to investigate a climate
change version of (L2]).

Proof. The construction of the super-solution in this situation follows the same scheme as for a compactly supported
kernel. By assumption since limsupy, (B(x) — pu(x)) <0, for any § > 0 there exists Rs > 1 such that

Bla) <plx)+6  |a| = Rs.

Fix § < A\p(M+p(x)) and observe that by definition of A, (M4 pu(x)) there exists a constant 6 < A < A\p(M+pu(x))
and a positive periodic function ¢ so that

Migl(z) + (u(z) + Np(z) <0 forall z e RV, (6.1)

| =00

Let w = C’% with C, 7 to be chosen.

Miul + (ut) + 8Jute) = -+l ([ e =) T o)y = pt0) + (o) +(0))

(1+T|y|N“)

i
< O+ rlz|N+1)- (/RNJ [ A+ rlal™) ) —1} pla+2) dz+(6—A)so<w)),
7L

1+ 7|z 4 2|N+1

2| N+1 T4 z|N+1
[| (|1 +T|z|+ JzFINl“) ] pleraderon )\)(p(x)) |

<uiw) (-, ”[mw leNH} ),

(14 7]z + 2|Vt

T

where we use ([G.]) and in frrve > 0.
Set

dz+6 — A\

) o ] gl )
h(T,.’L‘)—T/]RN J(Z)[ (1 + 7|z + 2|N+1) ] o()

Thanks to ¢ € L (RY),infg~ ¢ > 0 there exists a positive constant Cy so that

PEF2) o foral ozeRY
o(x)

Thus for all 2 € RV, we have

||V — |z 4 2|+

(1+ 7]z + 2|Vt

hr,z) < COT/ J(2) [ ] dz 46—\ (6.2)

RN

Let

|]C|N+1 |]c Z|l\/+1
I :=C J d

then we have

N+1 _ N+1 N+1 _ N+1
PG| s [EIER) o e
{lz|<2|=]} (I + 7|z + 2|N+1) {lz|>2]2]} (1 + 7|z + 2|[N+1)
Let us estimate the first integral. Since |z| < 2|z| we have
N+1 _ N+1
COT/ J(2) [|z| [ +;|+1 ] dz < COTQNH/ J(2)|z|V 1 dz. (6.3)
{lz|<2|2} (1 + 7]z + 2|[N+1) RN
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N+1

Let us now estimate second term. Since |z + 2|V > (Jz| — |2])V 1, we have

N+1 Nt
|| VL — |z + 2|V N+1 . Tl
C’OT/ J(2) [ dz < Cy , J(2)(=1)" )z dz,
{J2|>2]2(} (14 7|z + 2[¥*) 2 : {|2]>2/2]} (1 + 7]z + 2|N+1)

i=1

N+1 ) N+1—1
<oy (N—.i_l) / J(2)|z[" [ Tl N+l } dz.
g {Jo]>2]2[} (L4 7]z + 2[N+1)

i=1

(]

Since |z| > 2|z|, we have
1 2N+1

<
14 7|+ 2N+ = 2N+ 4 7|z N+1

and for |z| > Ry > 1

N+1 ; N+1
|2V — o 4 2V N+1 N+1 |2]* 7lz|M
C()T/ J(2) [ dz < C2M T E , J(z)— dz
{lz|>2]2[} (1 + 7|z + 2|[N+1) i {lz|>2]=]} |zt [(2NFL + 7]z |NH)

i=1

Co2N+1 K (N +1 TN
< o | dz.
R R e

=1

Since for all |z,

7|z N1 .
ONHT | 7|z |N+1 <5

we achieve for |z| > Ry

N+1
2 Y — Je + Z|N“} Co2N+! (N + > / _
CT/ Jz{ dz < ) J(2)|z|" dz. 6.4
0 (elsol) (2) (14 7]z 4 2[N+1) Ro ; i x (2)lz] (6.4)

Combining ([63), ([64) and ([6.2), we get for || > Ry

Co2N+1 T /N .
0 ( N )/ J(z)|z|ldz+0072N+1/ J(2)| 2N+ dz 46 — A,
Ry RN RN

h(z, ) <
i
i=1

Thanks to (H5), for 7 small enough, says 7 < 71 and Ry large enough we achieve h(z,7) < 252 <0,
g y g g 3

Hence, for all 7 < 7, we have

Mw] + (p(z) + 0)w(z) < w(x)h(z,7) < w(zx) <0 forall zeRYN \ Bg,- (6.5)

Fix now 7 < 7 and fix Ry > Rs so that h(z,7) < 0 in RN \ Bg,(0).
Let Ko := Supg~\ g, (0) %. Let 0 < k < ko and consider the set

anz{xemﬂﬂ@i}.

1+ 7|z|Nte —
By construction since ¢ > 0 in RY we can choose x small so that
Q. C RV \ Bg,(0).

Moreover, RY \ Q, is a bounded domain and M := supgn\ o, S(z) is well defined. Choose now C' so that C' = Q—’Iy
and consider the continuous function

o(x) :

Ck in RN\Q,.
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By direct computation we can check that @ is a super-solution to (L2). Indeed, for any x € RY \ Q,, we have
u = Ck = 2M > supgn\ o, S(z) which implies that f(z,Cr) < 0 and

Mial@) + flz,a(e)) < [ (e = paty)dy - O+ f(2.Cx) < Fla,Cr) <0,

RN

Whereas, for z € ,; we have

Mul(z) + f(x, a(x)) < Mlu](z) + fz)w(z) < Mlw] + (u(x) + S)w(z),
0

<
< h(z,m)w(x) <
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