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Abstract

Avoiding the use of complicated pre-processing steps such as accurate face and body part segmentation or image normalization,

this paper proposes a novel face/person image representation which can properly handle background and illumination variations.

Denoted as gBiCov, this representation relies on the combination of Biologically Inspired Features (BIF) and Covariance descrip-

tors [1]. More precisely, gBiCov is obtained by computing and encoding the difference between BIF features at different scales. The

distance between two persons can then be efficiently measured by computing the Euclidean distance of their signatures, avoiding

some time consuming operations in Riemannian manifold required by the use of Covariance descriptors. In addition, the recently

proposed KISSME framework [2] is adopted to learn a metric adapted to the representation. To show the effectiveness of gBiCov,

experiments are conducted on three person re-identification tasks (VIPeR, i-LIDS and ETHZ) and one face verification task (LFW),

on which competitive results are obtained. As an example, the matching rate at rank 1 on the VIPeR dataset is of 31.11%, improving

the best previously published result by more than 10%.

Keywords: image representation, person re-identification, face verification, biologically inspired features, covariance descriptor.

1. Introduction

The task of person re-identification consists in recognizing

an individual through different cameras in a distributed network

or through the same camera capturing images at different time.

This is a challenging problem that has attracted a lot of atten-

tion in recent years. The key issue of such systems lies in their

ability to measure the similarity between two person-centered

bounding boxes, i.e. to predict if they represent to the same

person, despite changes in illumination, pose, viewpoint, back-

ground, partial occlusions and low resolution. In order to tackle

this problem, the dominant strategy is to combine feature sets

into templates, used as person descriptors, and to measure the

similarity between templates to predict persons’ identities. De-

scriptors adapted to the re-identification of faces are usually

different than those for person re-identification. Indeed, face

verification required to be able to capture smaller details of the

input image, as intra-class and inter-class variations is smaller

that for person re-identification. It is challenging for a descrip-

tor to handle both tasks at the same time. Finally, even if such

person or face descriptors have received a lot of attention during

the last decade, they still need some improvement before they

can be used for real applications. This is the motivation for the

presented work.

Extending the work presented in [3], this paper presents a

novel image representation for person re-identification and face

verification. Specifically, the proposed image representation

allows to measure efficiently the similarity between two per-

sons/faces without any pre-processing step (e.g., precise back-

ground subtraction or body part segmentation). This paper

mainly focuses on person re-identification which has received

less attention than face verification, however we experimentally

demonstrate that the proposed representation also works well

for face verification. In both scenarios, we assume that pedes-

trians/faces have been previously detected and cropped.

The proposed method, denoted as gBiCov, includes three

steps. In the first step, Biologically Inspired Features (BIF) [4]

are extracted. BIFs are based on the study of human visual sys-

tem and have shown excellent performances on several com-

puter vision tasks [5], [6], [7]. In particular, we use the S1 layer

(Gabor filters) and C1 layer (MAX operator) of BIF. While the

Gabor filters can improve robustness to illumination variations,

the MAX operator increases the tolerance to scale changes and

image shifts. In the second step, a Covariance descriptor is used

to compute the similarity of BIF features taken at neighboring

scales. Covariance descriptors can capture shape, location and

color information, and their performance have been shown to be

better than other methods in many situations, as rotations and

illumination changes are absorbed by the covariance matrix [1].

Furthermore, we argue that measuring the similarity of BIF at

neighboring scales decreases the influence of the background

(see Section 3.5 for details). In the third step, BIF and co-

variance descriptors are combined into a single representation.

Finally, we show that the performance of the proposed repre-

sentation can be further enhanced by the use of metric leaning
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(we use the KISSME framework of [2]). Since the resulting

representation is robust to illumination, scale and background

changes, the performance for person re-identification and face

verification can be significantly improved.

In addition to presenting an approach performing well on

real datasets, one interesting contribution of the paper lies in

the use of Covariance descriptors in a novel way. In traditional

covariance-based method, the similarity of two images can be

obtained by comparing their covariance descriptors [8, 9, 10],

which is a time-consuming process. In contrast, in the proposed

approach, the similarities of Covariance descriptors between

consecutive bands of BIF features in the same image are mea-

sured. These similarities are then concatenated to produce im-

age signatures, and the similarity between probe and gallery im-

ages is obtained by simply computing the L2 distance between

their signatures. It avoids the expensive computation of the sim-

ilarity between Covariance descriptors of probe image and each

gallery image, which can be extremely time-consuming when

the gallery is large.

The proposed method is experimentally validated on three

public datasets for person re-identification: VIPeR, i-LIDS and

ETHZ. They are among the most challenging ones, since all the

above-described issues such as pose changes, viewpoint and

lighting variations, and occlusions, are present. As an illus-

tration of the performance, the matching rate at rank 1 (i.e.,

considering only the most similar image of the gallery) is of

31.11% on the VIPeR dataset (10% better than best previously

published result). Knowing that the matching rate at low ranks

is the most important criterion for real-life applications, this

improvement is very significant. The proposed method is also

validated on a face verification dataset, the Labeled Faces in

the Wild (LFW) dataset, and compared to recently published

state-of-the-art approaches.

The remaining of this paper is organized as follows: Sec-

tion 2 reviews the related works on person’s re-identification

and face verification. Section 3 describes the proposed method

in details and discusses its advantages. Experimental valida-

tions are given in Section 4. Finally, Section 5 concludes the

paper.

2. Related Work

Person/face re-identification – which is the task of associ-

ating the same person through different cameras or at differ-

ent time – is a challenging problem as the association has to

be done despite view point, illumination and pose changes. It

has received a lot of attention in the recent literature, reflecting

the interest for the important applications that can be addressed

with these technologies.

More formally, the task of person re-identification can be

defined as finding the correspondences between the images of

a probe set representing a single person and the images of a

gallery set. Depending on the number of available images per

individual (size of the probe set), the scenarios can be defined

as: (a) single-shot [11, 12], if only one frame per individual is

available both in the probe and gallery sets; and (b) multiple-

shot [11, 12], if multiple frames per individual are available

both in the probe and gallery sets.

One of the key ingredient of face/person re-identification ap-

proaches lies in the encoding of images into visual signatures

that can be compared more efficiently than raw pixel intensi-

ties. The recent literature abounds with such image descriptors

for person re-identification. They can be based on (i) color,

widely used since the color of clothing constitutes simple but

efficient visual signatures, usually encoded within histograms

of RGB or HSV values [11], (ii) shape, e.g. using HOG based

signature [13, 14], (iii) texture, often represented by Gabor fil-

ters [15, 10, 16], differential filters [15, 16], Haar-like repre-

sentations [17] and Co-occurrence Matrices [14], (iv) interest

points, e.g. SURF [18] and SIFT [19, 20] and (v) image re-

gions [13, 11, 12]. Besides these generic representations, there

are some more specialized representations, e.g. Epitomic Anal-

ysis [21], Spin Images [22, 23], Bag-of-Word-based descrip-

tion [20], Implicit Shape Model (ISM) [19] and Panoramic Map

[24]. Since different elementary features capture different and

complementary aspects of the image, better performance is ob-

tained by combining several signatures. We point this out in the

following section.

Among these methods, those based on representing humans

by a collection of parts have attracted more and more atten-

tion. Part-based methods split the human body into different

parts and encode each part separately. In [11, 12], the authors

use Maximally Stable Color Regions (MSCR) to build a rep-

resentation of human body. MSCR consists in grouping pixels

having similar colors into maximally stable regions during a

clustering process. The regions are subsequently described by

their area, centroid, second moment matrices and average col-

ors. Interestingly, covariance descriptors have also been widely

used for representing regions [8, 9, 10]; the pixels within a re-

gion are represented by a feature vector consisting of intensity,

texture and shape statistics, while the regions are represented

by the covariance matrix of these feature vectors.

As mentioned above, since different elementary features

(color, shape, texture, etc.) capture different and complemen-

tary characteristics of the image, they are often combined to

give a richer signature. For example, [15] combines 8 color

features with 21 texture filters (Gabor and differential filters).

[11] and [12] combine MSCR descriptors with weighted color

histograms, achieving state-of-the-art results on several wildly-

used person re-identification datasets. The Covariance descrip-

tor can be generalized to any type of images (three channel

color images, infrared images, etc. ), and can be used to com-

bined different descriptors. For example, in [10], Gabor fea-

tures and Local Binary Patterns (LBP) are combined with a co-

variance descriptor which handles, to some extent, illumination

and viewpoint changes as well as non-rigid deformations.

Different representations usually require different similarity

measures. For example, representations based on histograms

can be compared with the Bhattacharyya distance [11, 21, 12]

or the Earth Movers Distance (EMD). When the representation

includes two or more different features/channels, the similarity

is usually computed by combining their respective similarities

(late fusion) e.g. using a linear combination [21, 12, 11]. Re-
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garding the methods based on the covariance descriptor, even

if the similarity of two regions is computed by estimating the

distance between two covariance matrices in a pairwise man-

ner, the similarity of human body described themselves by a

set of covariance matrices has to combine several region sim-

ilarities. This combination can be based, for example, on the

mean covariance distance between corresponding regions [25]

or by the minimum difference between corresponding body re-

gions [10]. To capture the correlation between body parts, [17]

uses spatial pyramid matching and designs a new similarity

measure between human signatures. In [9], the authors argue

that the covariance matrices lie in a Riemannian manifold, and

combine the efficiency of the mean Riemannian covariance de-

scriptor with the spatial information carried out by a dense grid

structure. In [8], the authors propose a multi-scale covariance

descriptor which describes an image quadrant through its cor-

responding sub-tree.

In order to improve the performance of these representations

in the context of person re-identification, several papers have

proposed to use discriminative classifiers on top of them: these

classifiers can be based on Adaboost [16, 17], Rank SVM [15],

Partial Least Squares (PLS), multi-feature learning [26] or mul-

tiple instance learning [27, 28].

Different from these classifiers, metric learning can provide a

way to adapt a similarity function to the given task. Simple but

efficient are the metric learning methods based on Mahalanobis-

like distance functions. Approaches such as Large Margin

Nearest Neighbors (LMNN) [29], Information Theoretic Met-

ric Learning (ITML) [30], Logistic Discriminant Metric Learn-

ing (LDML) [31], Pairwise Constrained Component Analysis

(PCCA) [32] and Keep It Simple and Straightforward Metric

Learning (KISSME) [2] have been used successfully in the con-

text of face verification and person re-identification. From the

statistical inference perspective, KISSME [2] computes the co-

variance matrix of similar and dissimilar pairs respectively, and

uses the difference of the inverse covariance matrix as a pro-

jection matrix. It is very simple and efficient, since it does

not involve any iterative optimization procedure. In this paper,

KISSME is used to define a metric between descriptor pairs.

Face verification is also a challenging topic which has been

studied for several decades. Image representation is, here also,

one of the key steps. Compared with person images, the intra-

class variations of face images are much smaller, explaining

why face verification relies more on smaller details of the in-

put images. Most of the recently proposed face descriptors are

built on local descriptors since they allow to capture image de-

tails and are robust to variations like expression, illumination,

aging, etc. The most widely used face descriptors in the lit-

erature include Gabor wavelets, LBP [33] or SIFT/HOG [34]

and their variants. In addition to these low-level descriptors,

the feature pooling methods allowing to produce a global rep-

resentation/signature from local features were also intensively

investigated (such as the Bag-of-Words [35], Fisher Vectors

[36] and Sparse coding [37]). Sparse coding based methods

have achieved great success in face representation and recog-

nition. A set of over-complete dictionary is first learned from

image patches, allowing to represent images as weighted sums

of a small number of code words. This mechanism is, in some

sense, similar to the human vision system since in the visual

cortex only a small number of neurons are activated at the same

time. In parallel, some researchers also tried to build compu-

tational models which directly simulate the human vision pro-

cess [4]. On the classifier side, the nearest neighbor classifier,

SVM, Neural Networks are widely used. Recently, the tradi-

tional Bayesian model was also revisited [38] and impressive

results have been obtained on the challenging LFW dataset.

This paper extends [3] in two directions: (i) in contrast with

[3], the proposed image representation combines covariance

similarity with biologically inspired features. It results in a sig-

nificant performance improvement, as the match rate at rank

1 of this new representation is significantly improved (+3%).

The mean accuracy on LFW is also improved from 74.03% to

84.48%. (ii) A metric learning stage (relying on the KISSME

algorithm) is used to learn a similarity function adapted to

the gBiCov representation, giving better results (on VIPeR the

matching rate at rank 1 is improved up to more than 31%).

3. Covariance Descriptor based on Bio-inspired Features

This section presents the proposed novel image representa-

tion: the Covariance descriptor based on Bio-inspired Features

(gBiCov for short). There are three steps in this representation:

(i) Biologically Inspired Features (BIF) are first extracted, (ii)

BIF are then encoded by comparing their Covariance descrip-

tors at different scales, and, (iii) BIF are combined with Covari-

ance descriptors. The flowchart of the two first steps of gBiCov

is given in Fig. 1. In the following, we first present these three

steps then introduce some extensions, and, finally outline the

advantages of this representation.

3.1. Low-Level Biologically Inspired Features (BIF)

BIF [4], based on the study of the human visual system, have

been proposed to address several computer vision tasks such

as object category recognition [5], face recognition [6], age es-

timation [7] and scene classification [39], on which they have

obtained excellent performance.

Our representation builds on these prior works. More specif-

ically, for an image I(z) where z = (x, y), we compute its con-

volution with the Gabor filter ψ(z) accordingly to the following

equation [40]:

G(µ, ν) = I(z) ∗ ψµ,ν(z) (1)

where:

ψµ,ν(z) =

∥

∥

∥kµ,ν
∥

∥

∥

2

σ2
e(
−‖kµ,ν‖

2
‖z‖2

2σ2 )
[

eikµ,νz − e
−σ2

2

]

, (2)

kµ,ν = kνe
iφµ , kν = 2−

ν+2
2 π, φµ = µ

π

8
, (3)

and where µ and ν are scale and orientation parameters respec-

tively. In our work, µ is quantized into 24 scales while ν is

quantized into 8 orientations. Gabor filters are inspired by the

human visual system and their kernels are very similar to the
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Figure 1: Flowchart of the gBiCov representation. Color images are first split into 3 color channels (HSV). These input images are convolved with Gabor filters

at different scales, and the neighboring scales are grouped into bands. BIF Magnitude Images are obtained by using the max operator within the same band of

the Gabor features. BIF Magnitude Images are then divided into small regions, represented by covariance descriptors. We compute the difference of covariance

descriptors between the corresponding regions of the different bands. These differences are then concatenated to form the final representation of the image.

2-D receptive field profiles of the mammalian cortical simple

cells.

In practice, we have observed that for the person re-

identification task, the image representations G(µ, ν) for dif-

ferent orientations can be averaged without significant loss of

performance. Thus, we replace ψµ,ν(z) in Eq. 1 by ψµ(z):

ψµ(z) =
1

8

8
∑

ν=1

ψµ,ν(z) (4)

This simplification makes the computations of G(µ) – which is

the average of G(µ, ν) over all orientations – more efficient.

In practice, the number of scales is fixed to 24 and two con-

secutive scales are grouped into one band (we therefore have

12 different bands). The size of the Gabor filters for the differ-

ent bands are shown in Tab. 1. We then apply a max-pooling

over two consecutive scales (within the same orientation if the

orientations are not merged):

Bi = max(G(2i − 1),G(2i)) (5)

Max-pooling increases the tolerance to small scale changes

which often appears in person and face images since they are

only roughly aligned. We call Bi i ∈ [1, . . . , 12] as BIF magni-

tude images. Fig. 2 shows a pair of images of the same person

and its respective BIF magnitude images. The image in the first

column is the input image while the second column shows its

three HSV channels. The images from the 3rd column to the

8th column are BIF magnitude images corresponding to the 6

different bands.

3.2. Covariance descriptors in the gBiCov Descriptor

During this step, each BIF magnitude image is divided into

small overlapping regions. In this way, the spatial information

of the images is kept. Then, each region is represented by a

covariance descriptor [1]. Covariance descriptors can capture

shape, location and color information, and their performance

have been shown to be better than other methods in many situa-

tions, as rotations and illuminations changes are partly absorbed

by the covariance matrix [1].

For each pixel of the BIF magnitude image Bi, a 7-

dimensional feature vector is computed to capture the intensity,

texture and shape statistics:

fi(x, y) = [x, y, Bi, Bix
, Biy , Bixx

, Biyy
] (6)

where x and y are the pixel coordinates, Bi is the raw pixel in-

tensity at position (x, y), Bix
and Biy are the derivatives of image

Bi with respect to x and y, Bixx
and Biyy

are the second order

derivatives of image Bi with respect to x and y. The input im-

age region is mapped to the covariance region represented by a

7×7 matrix.

After that, we compute the covariance descriptor for each one

of the small overlapping regions previously introduced:

Ci,r =
1

n − 1

∑

(x,y)∈r

( fi(x, y) − f̄i)( fi(x, y) − f̄i)
T (7)
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Table 1: Scales of Gabor filters for the different bands.

Band B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

filter sizes 3×3 7×7 11×11 15×15 19×19 23×23 27×27 31×31 35×35 39×39 43×43 47×47

filter sizes 5×5 9×9 13×13 17×17 21×21 25×25 29×29 33×33 37×37 41×41 45×45 49×49

Figure 2: A pair of images representing the same person, and their BIF magnitude images. The images in the first and second column are the input images and their

three channels in H, S and V channel, respectively. The images from the 3th column to the 8th column are the BIF Magnitude Images for the different bands.

where f̄i is the mean of fi(x, y) over the region r and n is the

size of region r (in pixels).

In traditional covariance-based methods, covariance matrices

computed by Eq. 7 are considered as the image representation.

Differently, in this paper, we compute for each region the differ-

ence of covariance descriptors between two consecutive bands:

di,r = d(C2i−1,r,C2i,r) =

√

√

√ P
∑

p=1

ln2 λp(C2i−1,r,C2i,r) (8)

where λp(C2i−1,r,C2i,r) is the p−th generalized eigenvalues of

C2i−1,r and C2i,r, i = 1, . . . , 6.

3.3. BIF in the gBiCov Descriptor

Though we can take di,r as the representation of gBiCov di-

rectly, considering the success of BIF magnitude features in

many areas, we also combine the BIF magnitude features in

the gBiCov descriptor. BIF magnitude features can be seen as

appearance-based features while the covariance matrices can be

seen as a description of feature properties. To a certain extent,

BIF magnitude features and covariance matrices are two differ-

ent levels of the entire representation.

By denoting B̄2i−1,r and B̄2i,r the mean of BIF magnitude fea-

tures of region r under band 2i−1 and 2i, respectively, we com-

pute bi,r as the average of the BIF magnitude features of these

two bands:

bi,r =
B̄2i−1,r + B̄2i,r

2
(9)

We simply concatenate BIF features bi,r with covariance fea-

ture di,r, after normalizing them:

d̂i,r =

√

|di,r |
√

∑M
i=0

∑R
r=0 d2

i,r

(10)

b̂i,r =

√

|bi,r |
√

∑M
i=0

∑R
r=0 b2

i,r

(11)

where R and M are the number of regions and bands, respec-

tively.

Finally, they are concatenated to form the image representa-

tion D:

D = (d̂1,1, · · · , d̂M,R, b̂1,1, · · · , b̂M,R) (12)

It is worth pointing out that color images are processed by

splitting the image into 3 color channels (HSV), extracting gBi-

Cov descriptors on each channel separately and finally concate-

nating the 3 descriptors into a single signature.

The resulting feature D lies in a high dimensional space.

Here we show that simple dimensionality reduction method

such as Principal Component Analysis (PCA) [41] is a good

option for compressing the features. PCA is a linear transform

technique, which reduces the dimensionality of features while

preserving most of their variance. The projection matrix Wpca

is made of the orthogonal eigenvectors of the covariance matrix.

The experiment section shows that the drop in performance is

small, even when the dimensionality reduction is significant. In

some cases, the low-dimensional features even perform better,

which can be interpreted over-fitting reduction.
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Finally, the distance between two images Ii and I j is ob-

tained by computing the Euclidean distance between their low-

dimensional representations Di and D j:

d(Ii, I j) = ||Wpca × Di −Wpca × D j|| (13)

3.4. gBiCov Extensions

3.4.1. eBiCov: combining gBiCov with additional image fea-

tures

As mentioned in Section 2, especially in the context of per-

son re-identification, the performance is usually improved by

combining different types of image descriptors. In this paper,

we follow the same methodology and combine the gBiCov de-

scriptor with other two representations: (i) Weighted Color His-

tograms (wHSV) and (ii) MSCR as defined in [11]. For no-

tational simplicity, we denote this combination as eBiCov (for

enriched gBiCov). While SDALF, which is the current state-of-

the-art approach for unsupervised person re-identification, uses

a combination of wHSV, MSCR and Recurrent High-Structured

Patches (RHSP), [12] has observed that RHSP can be removed

without significant loss in performance. Consequently, eBi-

Cov can be seen as the combination of SDALF and gBiCov.

In eBiCov, the difference between two image signatures D
′

1
=

(HA1,MS CR1, gBiCov1) and D
′

2
= (HA2,MS CR2, gBiCov2) is

computed as:

deBiCov(D
′

1,D
′

2) =
1

3
dwHS V (HA1,HA2) +

1

3
dMS CR

(MS CR1,MS CR2) +
1

3
dBiCov(gBiCov1, gBiCov2)

(14)

Improvements might be obtained by optimizing the weights

based on additional information, e.g. class labels, other priors

and cross validation. However, to show the intrinsic quality of

the descriptor, we have simply used this simple fixed-weights

combination. Regarding the definition of dwHS V and dMS CR, we

use the ones given in [11].

3.4.2. kBiCov: comparing gBiCov signatures using learnt met-

rics

In addition to the simple Euclidean distance (Eq. 13), we

have also investigated how a learnt metric could improve per-

formance, assuming a training set is available.

More precisely, we focused our investigations on the class of

Mahalanobis-like distance functions, which has gained consid-

erable interest in the recent computer vision literature (see Sec-

tion 2). In this paper, considering its great success in face recog-

nition and person re-identification, we build on the KISSME

framework [2] as a general metric learning approach.

As stated by the authors of [2], the main advantage of

KISSME is the simplicity and efficiency of the learning pro-

cess, as it only requires the computation of two small-sized co-

variance matrices, one for the positive class (pairs of vectors

of the same class) and the other for the negative class (pairs

of vectors from different classes). The similarity is based on

a likelihood-ratio test applied to the difference of the two vec-

tors to be compared, computing plausibility that the difference

belongs to either the positive or the negative class.

More precisely, the matrix M is computed by the following

equations:

M = Σ−1
yi j=1 − Σ

−1
yi j=0 (15)

where

Σyi j=1 =
∑

yi j=1

(xi − x j)(xi − x j)
T (16)

Σyi j=0 =
∑

yi j=0

(xi − x j)(xi − x j)
T (17)

where yi is the label of sample xi. yi j = 1 means similar pairs,

i.e., if the samples share the same class label (yi = y j) and yi j =

0 otherwise.

In practice, using a projection matrix is more convenient than

using M directly. We therefore compute the corresponding pro-

jection metric using Cholesky factorization:

M =WT
kiss ×Wkiss (18)

At this stage, no dimensionality reduction is performed.

However, for the reasons given in the previous section, reduc-

ing the dimensionality is generally useful. We here again use

PCA, combined with the KISSME metric, giving the following

projection matrix:

DK =Wkiss ×Wpca × D (19)

Finally, the similarity between two vectors is computed by

projecting them using Wkiss×Wpca (the projection matrix com-

bining PCA and KISSME) and by computing the Euclidean dis-

tance between their projected vectors.

This variant is denoted as kissme-gBiCov (kBiCov for short)

in the experiments.

3.5. Advantages of gBiCoV

First, combining Gabor filters with covariance descriptors

makes gBiCov very robust to illumination variations. On one

hand, Gabor filters are known to be robust to illumination

changes; on the other hand the covariance descriptor also ab-

sorbs illuminations changes [1]. As being the combination of

Gabor filters and covariance descriptor, gBiCov can be shown

to be even more robust to illumination variations.

Second, gBiCov is also more robust to background varia-

tions, i.e., it can achieve good performance without any accu-

rate foreground/background segmentation or body parts detec-

tion, which are often even more difficult tasks. Roughly speak-

ing, background regions are usually less textured, which makes

their Gabor features (and hence their covariance descriptors) at

different neighboring scales very similar. Since the gBiCov de-

scriptor is based on the difference of covariance descriptors at

different scales, the gBiCov descriptors extracted from back-

ground regions are small and do not impact the similarity be-

tween descriptors a lot.

Third, the way of using the covariance descriptor in this pa-

per is very different than what is usually done. Indeed, to mea-

sure the distance between two images, the traditional way is

6



Figure 3: VIPeR dataset: sample images showing the same subjects from dif-

ferent viewpoints.

to compute the difference between their covariance descriptors.

Since finding the eigenvalues (required for comparing the co-

variance descriptors) is very time-consuming, it is computa-

tionally prohibitive when the gallery set is large. In contrast,

gBiCov computes the similarity of covariance descriptors of

consecutive scales, and these similarities are concatenated to

obtain the image signature. In other words, covariance de-

scriptors are used to capture self-similarities, and not exploited

to perform matching between different signatures. Therefore,

the time needed to calculate distances between covariances are

solely used during the building of the signature. The matching

holds in a Euclidean space, which makes it very fast.

4. Experiments

This section presents the experimental validation of the pro-

posed gBiCov representation. The validation is done on three

datasets for person re-identification (namely VIPeR [42], i-

LIDS [20] and ETHZ [43, 14]) and one for face verification

(namely LFW [34]).

4.1. Pedestrian re-identification on the VIPeR Dataset

The Viewpoint Invariant Pedestrian Recognition (VIPeR)

dataset – as indicated by its name – has been designed for

viewpoint-invariant pedestrian re-identification. It contains

1264 images of 632 pedestrians. There are exactly two views

per pedestrian, taken from two different viewpoints. All images

are resized to 128×48 pixels. Most of the examples contain a

viewpoint change of 90 degrees and strong illumination varia-

tion, as it can be seen in Fig. 3. This dataset has been widely

used and is considered to be one of the benchmarks of reference

for pedestrian re-identification.

Measuring the performance of person re-identification is usu-

ally done with the Cumulative Matching Characteristic (CMC)

curve [44] and the normalized Area Under Curve (nAUC).

CMC curves treat re-identification as a ranking problem by rep-

resenting the probability of finding the correct match over the

first k ranks. In other words, CMC(k) can be seen as the re-

call at k. In contrast, the Synthetic Reacquisition Rate (SRR)

curve [42] measures the probability that any of the k best

matches is correct. The nAUC is the area under the CMC curve,

which is the scalar appraisal of CMC curves and can be used to
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Figure 4: VIPeR dataset: CMC and SRR curves.

summarize the overall performance. The higher the nAUC is,

the better the performance is.

4.1.1. Comparing gBicov with other methods

Fig. 4 shows the CMC and SSR curves obtained with the

eBicov representation (extended gBicov), as well as the one

given by the state-of-the-art person re-identification algorithm,

namely SDALF [11]. Since the matching rates at small ranks

are very important in real-life applications, Tab. 2 also shows

the matching rates at ranks 1, 5, 10, 20 and 50. We follow the

same experimental protocol as [11] and report the average per-

formance over 10 different random sets of 316 pedestrians. To

show the performance of the descriptor alone, we also report

the performance of the 3 components of the eBicov individ-

ually (i.e., gBiCov, wHSV and MSCR, as defined in Section

3). Since the performance of the third component in SDALF is

much worse than those of wHSV and MSCR, the combination

of wHSV and MSCR can be seen as a good approximation of

SDALF. To emphasize the improvement of gBiCov over BiCov

[3], we report both in the aforementioned table and figure.

From the abovementioned figure and table, we can see that

eBiCov consistently outperforms SDALF. For example, the

matching rate at rank 1 of eBiCov is 24.34% while the one of

SDALF is 19.84%. The good performance of eBiCov is ex-

plained by the good performance of gBiCov: its matching rate

at ranks 1, 10 and 50 are of 17.01%, 46.84% and 80.24% re-

spectively, while those of wHSV are of 13.49%, 37.36% and

76.17% respectively. When comparing the performance of one

single component (MSCR, wHSV) with gBiCov, the advan-
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Table 2: VIPeR dataset: Top ranked matching rates (%).

Method r=1 r=5 r=10 r=20 r=50

wHSV 13.49 27.41 37.36 53.24 76.17

MSCR 9.88 21.46 31.41 43.13 63.36

BiCov 9.01 23.59 33.59 45.95 69.37

gBiCov 17.01 33.67 46.84 58.72 80.24

SDALF 19.87 38.89 49.37 65.73 83.07

eBiCov 24.34 46.75 58.48 71.17 88.18

tage of the proposed gBiCov descriptor is even more obvious.

For example, the matching rate at rank 1 is only of 13.49%

and 9.88% for wHSV and MSCR, while that of gBiCov is of

17.01%. In addition, the performance of gBiCov is much better

than that of BiCov. This demonstrates the advantage of com-

bining BIF features with covariance descriptors. This improve-

ment can be attributed to the different complementary levels

that BIF features and covariance descriptor brings to the image

representation.

Compared with wHSV and MSCR, the advantage of gBiCov

comes from two factors: on one hand, most of the false posi-

tives are due to severe lighting changes. In gBiCov, the com-

bination of Gabor filters and Covariance descriptors strongly

alleviates this effect. On the other hand, since many people

tend to dress in very similar ways, it is important to capture as

fine image details as possible to overcome the ambiguity intro-

duced by similar clothing. This is where BIF does well. In addi-

tion, it is worth noting that for these experiments the orientation

of Gabor filters is not used (see Sec. 3), allowing reducing the

computational cost. We have experimentally observed that the

performance is almost as good as when including orientations.

4.1.2. Analysis of the parameters (region size and overlap)

In gBiCov, there are two important parameters: the size of

the regions and their overlap. To show the influence of these pa-

rameters, we experimented with different region sizes and with

different overlaps. The width of the region is ranged from 4 to

12 pixels while the height is from 8 to 24 pixels. The overlap

is set to 25%, 50% or 100% of the region size. The nAUCs of

gBiCov with different region and overlapping sizes are shown

in Tab. 3. In the table, we also show the dimensionality of the

whole representation since it varies greatly under different re-

gion and overlapping sizes. The main conclusion is that the

performance is not influenced a lot by any of the two parame-

ters. However, one can also see that the performance is as better

as the overlap is important and, in general, better for larger re-

gions. However, when the overlap is important, more regions

are necessary to cover the image, increasing the dimensionality

of the representation. A tradeoff between the performance and

the computational cost has therefore to be made. In practice,

we set the region size to 16 × 16 and the overlap to 4 × 4 in all

of our experiments.

4.2. Pedestrian re-identification on the ETHZ dataset

In addition to the previous experiments, we have also exper-

imented the gBiCov representation on the ETHZ database.

The ETHZ dataset contains three video sequences of

crowded street scenes captured by two moving cameras

mounted on a chariot. The three sequences have: 4, 857 im-

ages of 83 pedestrians for SEQ. #1, 1, 961 images of 35 pedes-

trians for SEQ. #2, and 1, 762 images of 28 pedestrians for

SEQ. #3. The most challenging aspects of ETHZ are illumina-

tion changes and occlusions. We follow the evaluation frame-

work proposed by [11] to perform the experiments. Besides the

single-shot case, we also tested gBiCov in the multi-shot case.

Fig. 5 shows the CMC curves for the three sequences, for

both single (N = 1) and multiple shots (N = 2, 5, 10). In

case of single shot, we can see that the performance of gBi-

Cov alone is already much better than that of SDALF, for the

three sequences. After adding MSCR and wHSV to gBicov

(giving the so called eBiCov representation), the performance

is greatly improved. In particular, on SEQ. #1, eBiCov is 9%

better than SDALF for ranks between 1 and 7. On SEQ. #2,

the matching rate at rank 1 around 76% for eBiCov and 64%

for SDALF. Compared with the improvements observed on the

VIPeR dataset, improvements on the ETHZ dataset are even

more obvious. The reason seems to be that the images of the

same person come from video sequences, which makes the task

of person re-identification much easier for all the methods.

In case of multi-shots, as in [11], N is set to 2, 5 and 10. From

Fig. 5, it can be seen that on SEQs. #1 and #3, the proposed eBi-

CoV obtains much better results than SDALF. It is even more

obvious on SEQ. #3 for which our method’s CMC is 100% for

N = 5, 10, which experimentally validates the effectiveness of

our descriptor for person re-identification.

4.3. Person re-identification on the i-LIDS dataset

The i-LIDS MCTS dataset has been captured by multiple

non-overlapping cameras at a busy airport arrival hall. There

are 119 pedestrians with total 476 images. All the images are

normalized to the size of 128 × 64 pixels. Many of these im-

ages undergo quite large illumination changes and occlusions

(see Fig. 6).

We tested the proposed descriptors in the single-shot sce-

nario. We follow the same experimental settings of [11, 12].

Considering there are 4 images on average for each pedestrian,

we randomly select one image for each pedestrian to build the

gallery set, while the rest (357 images) form the probe set.

We repeat this procedure 10 times and compute the average

CMC and nAUC. On the i-LIDS dataset, the best single-shot

published performance is obtained by a covariance-based tech-

nique (SCR) [45]. Fig. 7 shows the CMC curves given by

gBiCov, SCR [45], Custom Pictorial Structures (PS) [12] and

SDALF [11].

Fig. 7 shows that gBiCov outperforms SDALF on this

dataset, obtaining results which are comparable to the PS and

SCR approaches. However, contrarily to PS and SCR, gBiCov

does not need any body detection stage nor any background

elimination pre-processing algorithm. This is significant advan-

tage, knowing that body segmentation is still an open problem

under real conditions.
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Table 3: VIPeR dataset: nAUCs of gBiCov with different region size and different overlaps.

Region Size 4 × 8 4 × 8 8 × 8 8 × 8 8 × 8 8 × 8 8 × 16 8 × 16 8 × 16

Overlapping Size 2 × 4 4 × 8 2 × 4 4 × 4 4 × 8 8 × 8 2 × 4 4 × 8 8 × 8

Dim 25668 6912 23436 12276 6336 3456 21924 5960 3240

nAUC 89.32 88.90 89.87 89.72 89.54 89.04 90.37 90.11 89.68

Region Size 8 × 16 16 × 16 16 × 16 16 × 16 16 × 16 12 × 24 12 × 24 12 × 24 12 × 24

Overlapping Size 8 × 16 2 × 4 4 × 4 4 × 8 8 × 8 2 × 4 4 × 8 8 × 8 6 × 12

Dim 1728 17748 9396 4860 2700 18468 5040 2520 2268

nAUC 89.15 90.68 90.67 90.59 90.38 90.59 90.45 90.36 90.00

4.4. Person re-identification using metric learning

In this section we experimentally validate the combination

of the proposed descriptor with the metric learning approach

described in section 3.4.2. We compare our kBiCov (kBiCov

= gBiCov + metric learning) approach with recent approaches

based on metric learning, on the VIPeR and i-LIDS datasets.

4.4.1. kBiCov on VIPeR

To make comparisons fair, we follow the standard protocol

for this dataset. We randomly take 316 persons out of the 632

for the test set, the remaining persons being in the train set.

Like in [32], one negative pair is produced for each person, by

randomly selecting one image of another person. We produce

10 times more negative pairs than positive ones. The process is

repeated 100 times and the results are reported as the mean/std

values over the 100 runs.

To face the increase of computational complexity due to the

metric learning stage, MSCR is discarded and wHSV is re-

placed by a simple histogram. We use color histograms ex-

tracted from 8 × 24 rectangular regions to represent images.

The rectangular regions are densely collected from a regular

grid with 4 pixel spacing in vertical direction and 12 pixel spac-

ing in horizontal direction. This step size is equal to half the

width and length of the rectangles.

We compare kBiCov with four different approaches using

metric learning: PRDC [46], LMNN [46], PCCA [32] and

KISSME [2]. For PRDC and LMNN, the image representation

is the combination of RGB, YCbCr and HSV color features and

two texture features extracted by local derivatives and Gabor

filters on 6 horizontal strips. For PCCA, the feature descriptor

is a 16-bin color histograms in 3 different color spaces (RGB,

HSV and YCrCb) as well as texture histograms based on Lo-

cal Binary Patterns (LBP) computed on 6 non-overlapping hor-

izontal strips. PCCA [32] reports the state-of-the-art results for

person re-identification, improving over Maximally Collapsing

Classes [47], ITML [30] or LMNN-R [48]. For KISSME, the

representation includes two components: HSV and Lab his-

tograms on overlapping blocks of size 8 × 16 and stride of 8

× 8, and texture information captured by LBPs. The concate-

nated descriptors are projected into a 34 dimensional subspace

by PCA.

Fig. 8 shows CMC curves of the different methods while

Tab. 4 shows the nAUCs at ranks 1, 5, 10 and 20. The re-

sults of PRDC, LMNN and PCCA are taken from their original

Table 4: VIPeR dataset: Top ranked matching rates (%) with 316 persons.

Method r=1 r=5 r=10 r=20

PRDC [46] 15.66 38.42 53.86 70.09

MCC[46] 15.19 41.77 57.59 73.39

ITML[46] 11.61 31.39 45.76 63.86

LMNN[46] 6.23 19.65 32.63 52.25

CPS [12] 21.00 45.00 57.00 71.00

PRSVM [15] 13.00 37.00 51.00 68.00

ELF [16] 12.00 31.00 41.00 58.00

PCCA-sqrt [32] 17.28 42.41 56.68 74.53

PCCA-rbf [32] 19.27 48.89 64.91 80.28

KISSME [2] 19.60 - 62.60 -

kBiCov 31.11 58.33 70.71 82.44

papers. From the figure and the table, we can see that kBi-

Cov performs much better than any of the other approaches.

For example, the matching rates for ranks 1, 10 and 20 are of

31.11%, 70.71% and 82.44% for kBiCov while those of PCCA

are of 19.27%, 64.91% and 80.28%. Compared with the re-

sults of KISSME [2], the 1-rank matching rate is improved from

19.60% to 31.11%, validating the proposed representation. In-

deed, the only difference between kBiCov and [2] is the image

representation.

Interestingly, the advantage of kBiCov over other approaches

is obvious at low ranks. For example, the best matching rate

at rank 1 among state of the art methods is of 21.00% while

for kBiCov the matching rate is of 31.11%, which means that

the improvement is nearly of 50%. This improvement is very

significant for real world applications where it can effectively

decrease the need of human intervention and make the search

of a specific person easier.

In kBiCov, one important parameter is the dimensionality of

the projected space (after PCA). The nAUCs for different di-

mensionalities are given Tab. 5. It can be seen from this table

that the nAUCs are almost the same, until it reaches 80. For

higher dimensionalities, the performance drops, probably be-

cause of over-fitting. In practice and in all of our experiments,

the size of the low-dimensional space is set to 60, which is a

good tradeoff between accuracy and efficiency.

4.4.2. kBiCov on i-LIDS

We also experimented with the supervised setting of the i-

LIDS dataset. For making the comparison fair, we follow the

experimental setting of [49] by randomly selecting the images
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Table 5: VIPeR dataset: nAUCs with different dimensions.

Dimension 10 20 30 40 50 60 70 80 90 100

nAUC 92.40 94.89 95.82 96.25 96.42 96.48 96.50 96.57 96.46 96.39

Table 6: i-LIDS dataset: Top ranked matching rates (%) with 30 persons in the

gallery set.

Method r =1 r =5 r =10 r =20

PRDC [49] 44.05 72.74 84.69 96.29

Adaboost [49] 35.58 66.43 79.88 93.22

LMNN [49] 33.68 63.88 78.17 92.64

ITM [49] 36.37 67.99 83.11 95.55

MCC [49] 40.24 73.64 85.87 96.65

Xing’s [49] 31.8 62.62 77.29 90.63

PLS [49] 25.76 57.36 73.57 90.31

L1-norm [49] 35.31 64.62 77.37 91.35

Bhat. [49] 31.77 61.43 74.19 89.53

kBiCov 39.17 68.19 82.10 95.26

of 30 persons for the test set while the remaining ones are at-

tributed to the train set. In the test set, there is one image of each

person which is randomly selected as a gallery image while

other images constitute the probe set. The training set has 10

times more negative pairs than positive pairs.

Tab. 6 shows the matching rates of the different methods

investigated. From the table, we can see that the matching rates

of kBiCov are significantly better than those of other methods,

except PRDC and MCC.

4.5. Face verification in uncontrolled environments

Besides person re-identification, we also experimented gBi-

Cov for face verification on the LFW dataset [34]. LFW con-

sists of 13,233 images of 5,749 people which are originally

gathered from news articles on the web. Face verification on

the LFW dataset is a challenging problem due to the variations

in facial poses, illumination or expressions. Fig. 9 shows typi-

cal images of the LFW dataset.

We tested the proposed descriptor on the View 2 of the LFW,

following the protocol described in [34]. In View 2, the dataset

is split into 10 disjoint folds. Each fold contains 600 pairs of

images: 300 positive pairs (i.e., two images of the same per-

son) and 300 negative ones (pairs of different persons). The

task is to verify if a test pair represents the same individual or

not. In detail, two images are predicted to be the same per-

son if the distance between face signatures is smaller than a

threshold. Otherwise the pair is supposed to contain different

persons. The verification performance is reported as the mean

recognition rate and the corresponding standard deviation over

10-folds. The training and testing splits are defined on the LFW

website1, from which we also obtained the aligned version of

the face images (80 × 150 images).

1http://vis-www.cs.umass.edu/lfw/index.html

Table 7: Mean classification accuracy (%) and standard deviation on the LFW

dataset, unrestricted setting.

Method m ±σ

SD-MATCHES, 125x12512 [51], aligned 64.10±0.62

H-XS-40, 81x15012 [51], aligned 69.45±0.48

GJD-BC-100, 122x22512 [51], aligned 68.47±0.65

LARK unsupervised20 [52], aligned 72.23±0.49

POEM [53], aligned 82.71±0.59

G-LQP [50], aligned 82.10±0.26

I-LQP [50], aligned 86.20±0.46

gBiCov, aligned 84.48±0.70

Experiments on face verification are different from the ones

on person re-identification in several ways. First, for person

re-identification, the orientation information of Gabor filters is

discarded for improving the computational efficiency, without

significant loss in accuracy. However, in face verification, ori-

entations should be taken into account to preserve fine details.

Here, we compute one BIF image per orientation. As we have 8

different orientations, the size of the descriptor is 8 times bigger

than the descriptors used for person re-identification.

Second, in this set of experiments, we have evaluated the per-

formance of gBiCov and kBiCov, but not the one of eBiCov.

Indeed, the information needed for person re-identification and

face verification are quite different. For example, wHSV and

MSCR perform well on person re-identification, but they are

not suitable for face verification. In fact, it is one of the ad-

vantages of the proposed gBiCov that it can be applied on both

person re-identification and face verification.

Finally, the image representation D is projected into a lower

space using whiten PCA. Whitening the data essentially means

rotating them into a space of principal components, dividing

each dimension by square root of variance in that direction, and

rotating back to pixel space. The dimension of the whiten PCA

space is set to 60. This normalization has been reported to be

very useful in this context [50].

Tab. 7 reports the performance of gBiCov, as well the per-

formance of state-of-the-art methods. These results are taken

from the LFW website which keeps track of any published re-

sults on this dataset. By giving a mean classification accuracy

of 84.48%, the performance of the proposed gBiCov descriptor

is comparable to that of the state-of-the-art such as I-LQP. How-

ever, compared with I-LQP, gBiCov does not need any training

images, which is a big advantage for real world applications. In

addition, gBiCov is more computationally efficient than I-LQP,

since I-LQP needs to learn the codebook of 316 = 43 million

distinct codes.

Besides the unrestricted setting, we also tested kBiCov under

the image restricted training setting. In this setting, we just
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Figure 5: ETHZ dataset: CMC curves.

know that a training pair is either positive or negative pair; we

do not know the identity of the persons. In kBiCov, the feature

of gBiCov are reduced to 60 dimensions by PCA first, and then

we use KISSME to learn the projection. State-of-the-art under

this setting can be also found on the LFW website. Tab. 8 shows

the accuracy of kBiCov and compare it to the state-of-the-art

results.

Tab. 8 shows that Fisher vectors perform best on LFW, with

a mean accuracy of 87.47%. However, the mean accuracy ob-

tained by kBiCov is of 86.80%, which is comparable to the

Fisher vectors and much better than those of any other methods.

It must be pointed out that the Fisher vectors method requires

a huge amount of time to learn the GMM model in the feature

extraction stage, while kBiCov does not need any feature learn-

ing stage. On the whole, the results obtained with both gBiCov

and kBiCov show the good performance of the proposed image

representations on the face verification task.

Figure 6: Some images in the i-LIDS MCTS dataset. The images in the same

column are belonging to the same person.

5 10 15 20 25

30

35

40

45

50

55

60

65

70

75

80

Rank score

R
e

c
o

g
n

it
io

n
 p

e
rc

e
n

ta
g

e

Cumulative Matching Characteristic (CMC)

 

 

PS

SCR

SDALF

gBiCov

Figure 7: i-LIDS dataset: CMC curves of the different methods in the single

shot scenario.

5. Conclusions

This paper proposes a novel image representation – referred

as the gBiCov representation – which combines Biologically

Inspired Features (BIF) and the Covariance descriptor. gBi-

Cov is robust to illumination, scale and background variations,

which makes it suitable for both person re-identification and

face verification tasks. Furthermore, the paper shows that the

discriminative ability of gBiCov can be improved by the use

of metric learning. Experiments on three pedestrian datasets

(VIPeR, i-LIDS and ETHZ) and one face dataset (LFW) show

that the proposed gBiCoV achieves the state-of-the-art perfor-

mances in both unsupervised setting and supervised setting,

while being at the same time efficient and robust, in the sense

that it is fast to compute and quite insensitive to parameter tun-

ing.
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Figure 8: VIPeR dataset: CMC curves with 316 persons.

Figure 9: Example images of LFW dataset. The two images on the same col-

umn belong to the same subject.
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