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I. ALIGNMENT OF THE DC MAGNETIC FIELD

The alignment method was based on the measurement of the linear longitudinal susceptibility χzz ≡ ∂Mz/∂hz,
i.e. the linear response to an oscillatory excitation magnetic field hz = h0cos(ωt) applied along the easy axis z of

Fe8. This magnitude strongly depends on the orientation of the external dc magnetic field
−→
H with respect to the

anisotropy axes, which we denote by z (easy axis), y (medium axis) and x (hard axis). In thermal equilibrium, the

application of
−→
H along z induces a fast saturation of Mz, which therefore effectively suppresses χzz. By contrast, a

transverse magnetic field (i.e. applied in the xy plane) does not break the degeneracy of spin up and spin down states.
For finite field strengths (µ0H > 0.1 T in the present experiments), the susceptibility becomes therefore minimum

when
−→
H lies closest to the easy axis and maximum, when it is perpendicular to it.

In our experiments, we applied
−→
H with a 9 T × 1 T × 1 T superconducting vector magnet, which enables us to

rotate
−→
H with an accuracy better than 0.001◦. We hereafter denote by Z the axis of the vertical 9 T magnet and

by X and Y the axes of the two horizontal 1 T magnets. The polar coordinates of the magnetic field vector in these
three mutually orthogonal axes are denoted by ΘH and ΦH . A series of experiments were performed by recording
χzz while sweeping either ΦH (at constant ΘH) or ΘH (at constant ΦH). Two representative examples, measured at
T = 4.2 K, that is, well above the blocking temperature, are shown in Fig. 1.
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FIG. 1: Dependence of the in-phase linear susceptibility χ′ of an Fe8 single crystal, measured at T = 4.2 K and ω/2π = 1333 Hz,
on the orientation of an applied magnetic field of magnitude µ0H = 0.1 T. The angles ΘH and ΦH refer to the coordinate axes
of the vector magnet (X, Y and Z, as shown in the insets). (a) χ′ vs ΦH for ΘH = 90 degrees; (b) χ′ vs ΘH for ΦH = 148.35
degrees.

An even more precise alignment of
−→
H can be achieved by measuring the non-equilibrium, that is, the frequency-

dependent susceptibility. This can be done by either increasing frequency, at fixed temperature, or by decreasing
temperature at a given frequency. Figure 2 shows an example of the latter situation. Quantum tunneling and spin-
lattice relaxation rates are strongly sensitive to the presence of a bias magnetic field along z. As a result, χ′ shows
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narrow maxima (marked by labels (a) and (c) in Fig. 2) for those Hz values that set resonant conditions between
spin-down and spin-up states [1]. The largest susceptibility maximum corresponds to the condition Hz = 0. Using

this resonance, it is possible to align
−→
H perpendicular to z within ±0.1 degrees.
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FIG. 2: •, dependence of the in-phase linear susceptibility χ′ of an Fe8 single crystal, measured at T = 2.6 K, on the orientation
of an applied magnetic field of magnitude µ0H = 1 T; the solid line is the equilibrium χzz at the same temperature. The
experiments were performed by varying ΘH while keeping ΦH = 148.35 degrees.

The magnetic field orientations that give χzz maxima are vectors of the xy hard magnetic plane. By recording
maxima obtained in different experiments (i.e. for different fixed ΘH or ΦH values), it is possible to trace the
magnetic anisotropy within this plane. The orientation of the magnetic field was set to maximize χzz, a condition
that corresponds to the medium axis y. However, the experimental uncertainties are comparable to the variations of
the susceptibility maxima. Therefore, we estimate that the magnetic field was aligned close to y, with an uncertainty
close to ±20 degrees.
All field and temperature dependent susceptibility experiments were performed at ΘH = 116.5 deg. and ΦH = 6.9

deg., for which
−→
H lies on the hard magnetic anisotropy plane, close to the medium axis (i.e., θ = 90 deg. and ϕ ≃ 68

deg., as discussed in the main text).
Because of the strong magnetic anisotropy of Fe8, the transverse magnetic field exerts a large torque on the crystal.

In order to prevent it from moving, the crystal was completely covered by a nonmagnetic epoxy. The stability of the
crystal orientation can be checked by comparing the results of angle-dependent experiments performed before and
after the field-dependent measurements. An example is given in Fig. 3. Both experimental curves, separated in time
by more than 10 days in which magnetic field and temperature were repeatedly swept back and forth, show maxima
at ΦH ≃ 6.9 degrees.

II. EFFECT OF QUANTUM FLUCTUATIONS ON THE PARAMAGNETIC SUSCEPTIBILITY

Figure 1 of the main text shows that the paramagnetic susceptibility, that is, above Tc, decreases by increasing H⊥.
As we argue next, this decrease results from the perturbation of the energy eigenstates |n⟩ of Fe8 by the transverse
field. The Hamiltonian of an isolated Fe8 cluster reads as follows

H0 = −DS2
z + E

(
S2
x − S2

y

)
− gµB [H⊥(Sx cosϕ+ Sy sinϕ) +HzSz] (1)

with S = 10, D/kB = 0.294 K, E/kB = 0.046 K, and g = 2. Here, angle ϕ refers to the magnetic field orientation
with respect to the local magnetic axes (x and y) of Fe8. The susceptibility χzz can be calculated then as the sum of
two terms
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FIG. 3: Dependence of the in-phase linear susceptibility χ′ of an Fe8 single crystal on the orientation of the applied magnetic
field. In these experiments, ΦH was scanned and ΘH = 116.5 deg. The maximum susceptibility, at ΦH = 6.9 deg., occurs when
the magnetic field lies on the hard magnetic anisotropy plane, close to the medium axis (ϕ ≃ 68 deg., as discussed in the main
text). Top panel: measurements performed at T = 0.11 K and for µ0H = 2.75 T. Bottom panel: measurements performed at
T = 0.76 K and for µ0H = 1.7 T. The former experiments were carried out ten days after the latter. Between these two, all
the field-dependent experiments shown in Figs. 1-3 of the main text were performed at a fixed ΦH = 6.9 deg. (vertical dotted
line).

χzz = χth + χvv (2)

The first of these arises from thermal fluctuations of Sz. The latter is the van Vleck susceptibility, which reflects
changes in the energy wavefunctions ⟨m|n⟩ induced by the excitation magnetic field hz. Here, {|m⟩} denotes the basis
of eigenstates of Sz, with eigenvalues −S 6 m 6 +S. χth and χvv can be easily calculated using the eigenstates |n⟩
and eigenvalues En of the spin Hamiltonian, as follows:



4

χth = NA
(gµB)

2

kBT

(
⟨S2

z ⟩T − ⟨Sz⟩2T
)

(3)

where

⟨S2
z ⟩T =

1

Z

∑
n

⟨n|Sz|n⟩2 exp (−En/kBT ) , (4)

and

⟨Sz⟩T =
1

Z

∑
n

⟨n|Sz|n⟩ exp (−En/kBT ) , (5)

while

χvv ≃ NA
2(gµB)

2

Z

∑
n

∑
n′ ̸=n

| ⟨n|Sz|n′⟩ |2

En′ − En

 exp (−En/kBT ) (6)

and Z is the partition function. In thermal equilibrium, χth becomes the dominant contribution to χzz.
In the paramagnetic phase, dipolar interactions between Fe8 spins in the crystal give rise to a nearly Gaussian

distribution of bias magnetic fieldsHz [2]. A typical dipolarHz can be estimated using the condition 2gµBHzS ≃ kBTc,
where Tc = 0.6 K is the Curie temperature. This gives Hz ≃ 200 Oe. For H⊥ = 0, the tunnel splitting of the ground
state ∆S/kB ∼ 10−7 K, that is, much smaller than the typical dipolar bias (∼ kBTc). Under these conditions, the two
low-lying eigenstates of Fe8 (with n = 1 and 2) are approximate eigenstates of Sz, with eigenvalues m = ±S. The
average ⟨S2

z ⟩T attains then its maximum value (≃ S2), which according to Eqs. (2), (3), and (4) is directly reflected
in the paramagnetic χzz.
When H⊥ ̸= 0, the second and third terms in (1) mix |m⟩ and |m ± 1⟩ states. As a result, the wavefunctions

describing the states of the ground state doublet tend to delocalize in Sz. Therefore, ⟨S2
z ⟩T must decrease with

increasing H⊥. This effect is indeed confirmed by calculations of the dynamical susceptibility, results of which are
shown in Fig. 4. The equilibrium susceptibility was calculated numerically using Eqs. (2), (3), (4), (5), and (6).
The frequency-dependent susceptibility was calculated by numerically solving a Pauli master equation that governs
the time-dependent populations of energy eigenstates |n⟩ of (1). Further details on the underlying theory and the
calculation methods can be found in [3–6]. The results describe well the behavior that is observed experimentally
(compare with Fig. 1 of the main text): as H⊥ increases, the paramagnetic χzz decreases and the superparamagnetic
blocking shifts towards lower temperatures.
In a real sample, however, this effect coexists with a decrease in the ordering temperature Tc, thus also in the Weiss

temperature, which also affect χzz. For this reason, a more direct comparison with the theoretical predictions can be
done by extracting the Curie constant, that is, the slope of 1/χ′ vs T data measured above the blocking and ordering
temperatures. This quantity is shown in Fig. 5, together with the theoretical prediction that follows from Eqs. (2,4,5)
for ϕ = 68 degrees and Hz = 200 Oe. Theory provides a satisfactory description of the experimental data, considering
the experimental uncertainties. This agreement clearly shows that field-induced quantum fluctuations have important
effects already at relatively high temperatures, well above Tc.
This effects admits also a simple interpretation within a classical picture of anisotropic spins. As H⊥ increases,

the molecular spins are tilted towards the field (this ’tilt’ is the classical analogue to the quantum mixing of |m⟩ and
|m ± 1⟩ states by H⊥). As a result, the component Sz, which can follow the variations of the excitation field hz,
decreases.
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FIG. 4: Theoretical predictions for χ′ (solid lines) and χ′′ of Fe8, at ω/2π = 333 Hz and different magnitudes of the transverse
magnetic field. Hz was set equal to 200 Oe, to account for the effect of the local dipolar bias fields present in the paramagnetic
phase. The equilibrium χzz for H⊥ = 0 is also shown (dashed-dotted line).
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FIG. 5: Dependence of the Curie constant of Fe8 on H⊥: •, experimental data; solid line, theoretical predictions for ϕ = 68
degrees.
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