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SUMMARY 
This work was performed in the frame of collaboration between the Laboratory on Plasma 

and Energy Conversion (LAPLACE), University of Toulouse, and the Second University of 
Naples (SUN). This work was supported by Rongxin Power Electronic Company (China) and 
concerns the use of multilevel converters in High Voltage Direct Current (HVDC) 
transmission. 

For more than one hundred years, the generation, the transmission, distribution and uses of 
electrical energy were principally based on AC systems. HVDC systems were considered some 
50 years ago for technical and economic reasons. Nowadays, it is well known that HVDC is 
more convenient than AC for overhead transmission lines from 800 - 1000 km long. This 
break-even distance decreases up to 50 km for underground or submarine cables. 

Over the twenty-first century, HVDC transmissions will be a key point in green electric 
energy development. Due to the limitation in current capability of semiconductors and 
electrical cables, high power applications require high voltage converters. Thanks to the 
development of high voltage semiconductor devices, it is now possible to achieve high power 
converters for AC/DC conversion in the GW power range.  

For several years, multilevel voltage source converters allow working at high voltage level 
and draw a quasi-sinusoidal voltage waveform. Classical multilevel topologies such as NPC 
and Flying Capacitor VSIs were introduced twenty years ago and are nowadays widely used 
in Medium Power applications such as traction drives. In the scope of High Voltage AC/DC 
converters, the Modular Multilevel Converter (MMC), proposed ten years ago by Professor R. 
Marquardt from the University of Munich (Germany), appeared particularly interesting for 
HVDC transmissions.  

On the base of the MMC principle, this thesis considers different topologies of elementary 
cells which make the High Voltage AC/DC converter more flexible and easy suitable respect 
to different voltage and current levels. The document is organized as follow. 
 

Firstly, HVDC power systems are introduced. Conventional configurations of Current 
Source Converters (CSCs) and Voltage Source Converters (VSCs) are shown. The most 
attractive topologies for VSC-HVDC systems are analyzed. 

The operating principle of the MMC is presented and the sizing of reactive devices is 
developed by considering an open loop and a closed loop control. Different topologies of 
elementary cells offer various properties in current or voltage reversibility on the DC side. To 
compare the different topologies, an analytical approach on the power losses evaluation is 
achieved which made the calculation very fast and direct.  

 
A HVDC link to connect an off-shore wind farm platform is considered as a case study. 

The nominal power level is 100 MW with a DC voltage of 160 kV. The MMC is rated 
considering press-packed IGBT and IGCT devices. Simulations validate the calculations and 
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also allow analyzing fault conditions. The study is carried out by considering a classical PWM 
control with an interleaving of the cells. 
 

In order to validate calculation and the simulation results, a 10kW three-phase prototype was 
built. It includes 18 commutation cells and its control system is based on a DSP-FGPA 
platform. 
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RESUME 
Les travaux présentés dans ce mémoire ont été réalisés dans le cadre d’une collaboration 

entre le LAboratoire PLAsma et Conversion d’Énergie (LAPLACE), Université de Toulouse, 
et la Seconde Université de Naples (SUN). Ce travail a reçu le soutien de la société Rongxin 
Power Electronics (Chine) et traite de l’utilisation des convertisseurs multi-niveaux pour le 
transport d’énergie électrique en courant continu Haute Tension (HVDC). 

Depuis plus d’un siècle, la génération, la transmission, la distribution et l’utilisation de 
l’énergie électrique sont principalement basées sur des systèmes alternatifs. Les systèmes 
HVDC ont été envisagés pour des raisons techniques et économiques dès les années 60. 
Aujourd’hui il est unanimement reconnu que ces systèmes de transport d’électricité sont plus 
appropriés pour les lignes aériennes au-delà de 800 km de long. Cette distance limite de 
rentabilité diminue à 50 km pour les liaisons enterrées ou sous-marines.  

Les liaisons HVDC constituent un élément clé du développement de l’énergie électrique 
verte pour le XXIème siècle. En raison des limitations en courant des semi-conducteurs et des 
câbles électriques, les applications à forte puissance nécessitent l’utilisation de convertisseurs 
haute tension (jusqu’à 500 kV). Grâce au développement de composants semi-conducteurs 
haute tension et aux architectures multicellulaires, il est désormais possible de réaliser des 
convertisseurs AC/DC d’une puissance allant jusqu’au GW. 

Les convertisseurs multi-niveaux permettent de travailler en haute tension tout en délivrant 
une tension quasi-sinusoïdale. Les topologies multi-niveaux classiques de type NPC ou « 
Flying Capacitor » ont été introduites dans les années 1990 et sont aujourd’hui couramment 
utilisées dans les applications de moyenne puissance comme les systèmes de traction. Dans le 
domaine des convertisseurs AC/DC haute tension, la topologie MMC (Modular Multilevel 
Converter), proposée par le professeur R. Marquardt (Université de Munich, Allemagne) il y a 
dix ans, semble particulièrement intéressante pour les liaisons HVDC. 

Sur le principe d’une architecture de type MMC, le travail de cette thèse propose différentes 
topologies de blocs élémentaires permettant de rendre le convertisseur AC/DC haute tension 
plus flexible du point de vue des réversibilités en courant et en tension. Ce document est 
organisé de la manière suivante. 

Les systèmes HVDC actuellement utilisés sont tout d’abord présentés. Les configurations 
conventionnelles des convertisseurs de type onduleur de tension (VSCs) ou de type onduleur 
de courant (CSCs) sont introduites et les topologies pour les systèmes VSC sont ensuite plus 
particulièrement analysées. 

Le principe de fonctionnement de la topologie MMC est ensuite présenté et le 
dimensionnement des éléments réactifs est développé en considérant une commande en 
boucle ouverte puis une commande en boucle fermée. Plusieurs topologies de cellules 
élémentaires sont proposées afin d’offrir différentes possibilités de réversibilité du courant ou 
de la tension du côté continu. Afin de comparer ces structures, une approche analytique de 
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l’estimation des pertes est développée. Elle permet de réaliser un calcul rapide et direct du 
rendement du système. 

Une étude de cas est réalisée en considérant la connexion HVDC d’une plateforme 
éolienne off-shore. La puissance nominale du système étudié est de 100 MW avec une tension 
de bus continu égale à 160 kV. Les différentes topologies MMC sont évaluées en utilisant des 
IGBT ou des IGCT en boitier pressé. Les simulations réalisées valident l’approche analytique 
faite précédemment et permettent également d’analyser les modes de défaillance. L’étude est 
menée dans le cas d’une commande MLI classique avec entrelacement des porteuses.  

Enfin, un prototype triphasé de 10kW est mis en place afin de valider les résultats obtenus 
par simulation. Le système expérimental comporte 18 cellules de commutations et utilise une 
plate-forme DSP-FPGA pour l’implantation des algorithmes de commande. 
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RIASSUNTO 
Durante i tre anni del corso di Dottorato di Ricerca in Conversione dell’Energia, l’attività 

si è sviluppata nel quadro di una collaborazione tra la Seconda Università degli Studi di 
Napoli, il laboratorio LAPLACE (Laboratoire Plasma et Conversion d'Energie) 
dell’Università di Toulouse. Il lavoro di tesi è stato inoltre supportato dalla Rongxin Power 
Electronic (Cina) e concerne l’impiego del convertitore multilivello per le trasmissioni in 
corrente continua ad alta tensione comunemente conosciute in letteratura come High Voltage 
Direct Currents (HVDC).  

Nell’ultimo secolo, la generazione, la trasmissione, la distribuzione ed il consumo di 
energia è stato principalmente basato su sistemi in corrente alternata (AC). I sistemi di tipo 
HVDC si sono resi attrattivi negli ultimi 50 anni per una serie di ragioni di natura tecnica ed 
economica. Oggi, è ben noto che le connessioni HVDC sono più convenienti rispetto a quelle 
AC per distanze superiori a linee comprese tra 800 – 1000 km. Questa distanza di soglia si 
riduce quando si parla di trasmissioni sottomarine. 
 

Nel ventunesimo secolo, le trasmissioni HVDC saranno un punto chiave anche per lo 
sviluppo e l’integrazione con il preesistente sistema elettrico delle energie rinnovabili. A causa 
della limitazione in corrente dei dispositivi semiconduttori e dei cavi di trasmissione, 
l’impiego di alte potenze si traduce nell’impiego di convertitori ad alte tensioni. Grazie alo 
sviluppo di dispositivi semiconduttori, è oggi possibile ottenere conversioni AC/DC per alte 
potenze dell’ordine dei GW. 

Per diversi anni, i convertitori Multilivello di tipo sorgente di tensione, in letteratura noti 
come voltage source converters (VSC), consentono di lavorare ad alti livelli di tensione e di 
imporre una forma d’onda di tensione al lato AC pressoché sinusoidale. Le classiche topologie 
come NPC e Flying Capacitors ti tipo VSI sono state introdotte circa venti anni addietro ed 
oggi sono generalmente utilizzate in applicazioni di media potenza come gli azionamenti delle 
macchine elettriche. Per la conversione AC/DC ad alta tensione, il convertitore modulare 
multilivello (MMC), proposto circa dieci anni fa dal professore R. Marquardt della Università 
di Monaco (Germania), è sembrato particolarmente attrattivo ed interessante per le 
trasmissioni HVDC. 

Partendo dalla struttura HVDC, si sono considerate all’interno del lavoro di differenti 
topologie di celle elementari che rendono il convertitore più flessibile e più facilmente 
adattabile rispetto ai differenti livelli di tensione e corrente.  

Il lavoro di tesi si è svolto secondo il seguente ordine: 

in primis, i sistemi HVDC sono stati introdotti. Le configurazioni convenzionali basate sui 
convertitori a sorgente di corrente (CSC) e quelle basate sui convertitori a sorgente di tensione 
(VSC) sono state descritte. In entrambi i casi il principio di funzionamento sul quale si basa il 
trasferimento di potenza è stato descritto. Parallelamente è stato effettuato uno studio sullo 
stato dell’arte dei semiconduttori impiegati nella elettronica di potenza e  sono state tratte 
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valutazioni sui meglio adattabili alle connessioni HVDC. Si è evinto dedotto che 
l’orientamento delle trasmissioni HVDC è basato sulla conversione VSC. Per tale motivo ha 
analizzato le topologie multilivello più attrattive. 

I principi di funzionamento dell’MMC sono stati studiati e il dimensionamento dei 
componenti reattivi è stato proposto considerando due differenti approcci a seconda del 
controllo ipotizzato per il sistema. Nel corso del suo studio si è inoltre evinto che differenti 
topologie di celle elementari offrono varie proprietà reversibilità di corrente o di tensione sul 
lato DC. Al fine di comparare le differenti topologie, si è proposto un nuovo approccio 
analitico per lo studio delle perdite ha reso il calcolo veloce e diretto. 

In tale ambito una nuova struttura multilivello è stata introdotta. Tale topologia è stata 
pensata per sistemi AC/DC basata su raddrizzatori a ponte di diodi. Tali sistemi infatti sono 
composti da trasformatori di rete di tipo ZigZag configurati in tal modo da compensare le 
componenti continue della corrente introdotte dal raddrizzatore a ponte lato AC. La topologia 
proposta nel lavoro di tesi è pensata per rimpiazzare i vecchi raddrizzatori obsoleti e poco 
versatili con una struttura multilivello capace di avere un impatto armonico ridotto ed un 
funzionamento a quattro quadranti in termini di potenza.  

In una fase successiva gli studi sono stati validati attraverso una campagna di simulazioni. 
Il caso considerato è quello di un sistema HVDC-VSC multiterminal chiamato ad interfacciare 
un parco eolico off-shore sito in Cina. La potenza del sistema è di 100 MW con una tensione 
DC di 160 kV. Il convertitore MMC è stato dimensionato considerando dei dispositivi IGBT 
di tipo press-Pack e dei dispositivi IGCT.  Le simulazioni hanno validato le simulazioni anche 
in condizioni di fault. Lo studio del controllo per il sistema è stato effettuato in prima battuta 
considerando la classica modulazione PWM. Tale modulazione è stata implementata 
sfasando le portanti tra le celle che compongono la struttura. 

Al fine di validare lo studio e i risultati di simulazione, un prototipo trifase da 10 kW è 
stato realizzato. Tale prototipo è formato da 18 celle di commutazione di tipo semplici. Il 
sistema di controllo è stato implementato grazie una piattaforma basata su logica DSP-FPGA. 
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RESUME DE LA THESE EN LANGUE FRANÇAISE 

Chapitre I : Les systèmes HVDC 

Ce chapitre présente les systèmes pour le transport d’énergie électrique en courant continu 
à haute tension (HVDC) et souligne leur rôle clé dans le développement des énergies 
renouvelables. 

Ces 40 dernières années, les systèmes HVDC ont été développés pour le transport de 
l’électricité compte tenu des considérations techniques et économiques suivantes : 

• Par rapport aux systèmes en courant alternatif, la transmission en courant continu, 
malgré le coût additionnel des sous-stations de conversion, est économiquement 
intéressante pour des distances supérieures à 800 km dans le cas des lignes aériennes et 
50 km pour les lignes enterrées ou sous-marines (Figure I-1). 

• Les systèmes en courant continu permettent les interconnexions entre des réseaux 
hétérogènes qui peuvent être asynchrones entre eux, et/ou à fréquences différentes. 

• L’amélioration constante de la technologie des dispositifs semi-conducteurs a permis 
d’atteindre des niveaux de puissance de l’ordre du GW. 

Nous illustrons la description des principes de connexion HVDC en faisant référence aux 
principales installations actuelles. Deux principaux types de connexion HVDC sont utilisés. 
Celles basées sur des convertisseurs AC/DC de type onduleur de courant (CSC) et celles 
basées sur des convertisseurs AC/DC de type onduleur de tension (VSC). 

Avant d’entrer dans les détails de fonctionnement de ces liaisons HVDC, nous décrivons 
les principaux dispositifs semi-conducteurs disponibles sur le marché et employés pour les 
applications « haute tension ». Nous donnons en particulier une description détaillée des 
technologies en boitier pressé (press-pack), qui peuvent être considérées comme les meilleures 
candidates pour la mise en œuvre de semi-conducteurs en haute tension et fort courant. 

Nous donnons ensuite une description des convertisseurs CSC à base de thyristors et 
présentons les principes de réglage de la puissance. Du fait que les thyristors ne présentent pas 
de problèmes de mise en série directe, les convertisseurs peuvent atteindre des tensions de 
l’ordre de 500 kV. Bien que simple et robuste, la topologie de type CSC ne permet pas un 
contrôle indépendant des puissances active et réactive et absorbe également des courants non 
sinusoïdaux qui nécessitent des dispositifs de filtrage occupant 20 à 30% de la superficie totale 
d’une sous-station (Figure I-42). 

Les convertisseurs de type VSC commandés en modulation de largeur d’impulsion (MLI) 
sont basés sur des semi-conducteurs à amorçage et blocage commandées (IGBT ou IGCT). 
Les topologies HVDC-VSC permettent d’effectuer le transport d’énergie en courant continu en 
offrant, vis-à-vis des réseaux AC, des réglages indépendants des puissances active et réactive . 
La mise en série directe d’IGBT étant très délicate, la tension reste aujourd’hui limitée à 320 
kV pour une topologie classique à trois niveaux de tension par bras. 
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Nous décrivons ensuite des topologies multiniveaux qui sont adaptées à la haute tension. 
Par rapport aux structures classiques, elles peuvent garantir une forme d’onde quasi 
sinusoïdale en réduisant les harmoniques et en permettant une réduction des éléments de 
filtrage. Parmi ces topologies multiniveaux, nous présentons le principe de base du 
convertisseur modulaire multiniveaux (MMC) qui sera développé dans la suite de la thèse. 
Cette structure consiste en la mise en série de blocs élémentaires identiques (Figure I-62). Elle 
est aujourd’hui préférée aux structures traditionnelles car elle garantit une modularité en 
termes de production industrielle et n’a théoriquement pas de limite supérieure pour la valeur 
de la tension DC puisqu’il est toujours possible d’ajouter des blocs élémentaires en série. 

Chapitre II : Le convertisseur modulaire multiniveaux (MMC) 

Nous étudions dans ce chapitre le convertisseur AC/DC modulaire multiniveaux. Le 
circuit triphasé est formé de la connexion de deux bras par phase (Figure II-1). Chaque bras 
impose la moitié de la tension DC ainsi que la tension AC. Chacun des bras conduit 
également un tiers du courant DC et la moitié du courant AC. La combinaison des deux bras 
nous permet d’obtenir les courants et tensions AC et DC nécessaires au transfert de puissance 
par la liaison DC. Après une première analyse du fonctionnement, nous proposons un modèle 
moyen de la structure (macro modèle) afin de simplifier l’étude de dimensionnement. Ce 
modèle ne prend pas en considération les effets des harmoniques dus aux dispositifs de 
commutation mais garantit une plus grande rapidité dans les simulations, les calculs étant 
simplifiés. L’étude est en outre valable quelle que soit la topologie des blocs élémentaires et 
considère une commande MLI classique avec entrelacement des porteuses. 

Nous effectuons une analyse préliminaire des courants et tensions du convertisseur. Du 
point de vue des harmoniques de courant, outre les composantes DC et AC, chacun des bras 
conduit une composante au double de la fréquence fondamentale (Figure II-9). Cette 
composante découle de l’équilibrage énergétique entre les deux bras qui composent chaque 
phase. La minimisation de cette composante jouant un rôle fondamental dans le 
dimensionnement des éléments de filtrage, nous étudions par la suite deux possibilités liées au 
pilotage de la structure. Des simulations sur un système de 100 MW composé de 64 
convertisseurs élémentaires par bras valident l’étude. 

Dans le premier cas, nous adoptons un contrôle de la structure qui ne permet pas de 
supprimer l’harmonique de second ordre du courant de bras. La limitation de son amplitude 
est alors effectuée exclusivement par les composants passifs. Ainsi, en augmentant la capacité 
du condensateur de chaque bloc élémentaire et l’inductance série de chaque bras, l’amplitude 
de cet harmonique peut être diminuée. Pour ne pas limiter la plage de réglage du convertisseur 
à cause des valeurs élevées de l’inductance de bras, nous proposons alors d’utiliser deux 
inductances couplées par phase. Elles sont couplées de manière à présenter une valeur élevée 
vis-à-vis de l’harmonique de courant d’ordre deux tandis qu’une valeur faible est présentée vis-
à-vis de la composante fondamentale de courant. Cette approche requiert bien entendu une 
structure plus coûteuse mais un circuit de contrôle plus simple. 

Le second cas considère une commande plus complexe capable de contrôler chaque 
courant de bras de façon à obtenir la référence désirée à la fréquence fondamentale tout en 
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supprimant la composante de rang deux. Dans ces conditions, le dimensionnement des 
composants passifs est réduit puisque seul l’harmonique de courant à fréquence fondamentale 
est considéré. La complication du contrôle n’est pas aujourd’hui un problème grâce au large 
choix de dispositifs numériques de commande disponibles sur le marché. Ainsi, avons-nous 
privilégié ce cas dans la suite du travail de thèse. 

Chapitre III : Nouvelles topologies de convertisseurs modulaires multiniveaux. 

Dans ce chapitre, nous proposons et étudions et différentes topologies pour le convertisseur 
modulaire multiniveaux afin d’obtenir différentes propriétés en termes de réversibilité de 
tension ou de courant. 

La première topologie considérée pour réaliser un bloc élémentaire est une simple cellule 
de commutation. C’est celle qui est utilisée dans la version de base du MMC (Figure III-5). 
Cette topologie est bidirectionnelle en courant et unipolaire en tension. Pour cette raison, en 
cas de court-circuit sur le côté DC, le système multiniveaux n’est pas en mesure de limiter le 
courant ce qui risque de détruire les semi-conducteurs. Seules les cellules bipolaires sont en 
mesure de limiter le courant en cas de court-circuit sur le côté DC. Dans ce but, nous 
introduisons le pont asymétrique et le pont complet. La première structure (Figure III-8) est 
bipolaire en tension mais unidirectionnelle en courant. Cette topologie rend le MMC peu 
adaptée au réglage de la puissance réactive mais dans le cas où le facteur de puissance est 
unitaire, cette topologie étant unidirectionnelle en courant, le système effectue l’inversion de la 
puissance en inversant la tension DC, ce qui est typique des CSC à thyristors. Pour cette 
raison, une telle structure peut être utilisée pour le remplacement immédiat des convertisseurs 
à thyristors. Par la suite, nous considérons également le pont complet (Figure III-11). 
Assurément, cette structure est la plus flexible car elle est simultanément bidirectionnelle en 
courant et en tension, mais par rapport aux deux précédentes elle exige le double de 
composants semi-conducteurs. 

Dans ce chapitre, nous présentons une approche analytique pour le calcul des pertes dans 
les semi-conducteurs. Elle permet par la suite une évaluation directe et rapide du rendement 
du convertisseur AC/DC. Jusqu’à présent, dans la littérature, une telle approche n’avait pas 
été proposée pour le MMC car la forme d’onde du courant dans les semi-conducteurs rend le 
calcul des pertes très complexe. 

A la suite de la validation des formules analytiques par des simulations avec les modules de 
calcul de pertes du logiciel PSIM, nous effectuons une comparaison du rendement du système 
en considérant l’utilisation des trois topologies mise en avant ci-dessus. La comparaison est 
effectuée pour une puissance de 100 MW et une tension DC de 160 kV. En termes de 
rendement, la structure à simples cellules est la moins dissipative. Les deux autres à base de 
cellules bipolaires présentent des pertes plus élevées car elles requièrent au final plus de 
composants semi-conducteurs. Bien que ces topologies permettent au système de mieux gérer 
les conditions de court-circuit DC, une baisse même minime au niveau du rendement (de 
l’ordre 0,5%) est difficilement acceptable compte tenu des niveaux de puissance mis en jeu. 

Nous présentons ensuite une nouvelle structure modulaire multiniveaux (Figure III-28) de 
convertisseur AC/DC. Contrairement à la version traditionnelle, cette topologie adopte pour 
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chaque phase une seule branche de blocs élémentaires et une seule boucle de contrôle du 
courant. D’autre part, celle-ci est connectée avec le réseau alternatif triphasé à travers un 
transformateur zig-zag. Le dimensionnement des composants réactifs et des semi-conducteurs 
est identique à la version de base. A titre d’exemple, nous proposons cette nouvelle structure 
pour remplacer les anciens redresseurs à base de diodes ou thyristors (Figure III-30). Nous 
développons ce remplacement en conservant le même transformateur de ligne et ainsi les 
mêmes niveaux de courant et tension. Nous effectuons les simulations en considérant un 
système de 10 MVA. 

Chapitre IV : Commande MLI pour les convertisseurs modulaires multiniveaux 

Nous développons dans ce chapitre le contrôle pour les structures MMC en considérant 
une modulation (commande MLI classique avec entrelacement des porteuses). A chaque fois, 
les simulations valident l’étude en considérant un système de 100 MW avec une tension de 
160 kV sur le côté continu et côté alternatif un fonctionnement à facteur de puissance unitaire 
en mode onduleur ou redresseur. 

La commande pour convertisseurs modulaires multiniveaux proposée dans ce chapitre 
comporte trois boucles de contrôle (Figure IV-3) :  

• Le contrôle du courant assure que chaque courant de branche ait les bonnes valeurs 
des composantes AC et DC nécessaires pour obtenir la puissance requise. Après avoir 
établi les équations électriques du MMC triphasé, nous exprimons les grandeurs 
électriques dans un repère tournant dq synchronisé sur le réseau alternatif. Une fois les 
équations établies dans ce nouveau repère, nous effectuons la synthèse des régulateurs 
PI de manière à ce que le système soit stable, capable de suivre la consigne de courant 
à la fréquence fondamentale et de supprimer la composante harmonique de courant de 
rang 2. 

• En amont du contrôle de courant il faut assurer l’équilibre des énergies stockées dans 
les condensateurs. Compte tenu de la puissance mise en jeu côté continu, cette partie 
du contrôle adapte la puissance active afin de maintenir constantes les tensions sur les 
condensateurs des blocs. A cet effet un correcteur PI, dont nous donnons la synthèse, 
assure pour les branches positive et négative le contrôle de la valeur moyenne des 
tensions condensateurs. 

• Dans une branche du convertisseur, les tensions sur chaque bloc peuvent être 
déséquilibrées à cause des dispersions sur les valeurs des composants passifs et des 
pertes différentes dans les semi-conducteurs. Pour cela, dans le but de réguler chaque 
tension condensateur à la valeur désirée, nous prévoyons un contrôle local basé sur un 
correcteur proportionnel qui agit sur le signal modulant au niveau de chaque bloc 
élémentaire. Des simulations, basées sur un convertisseur ayant des branches avec des 
pertes par blocs différentes, valident l’efficacité de ce réglage. 

Chapitre V : Prototype de convertisseur modulaire multiniveaux de 10 kW. 

Afin de valider les résultats de calcul et de simulation, nous avons réalisé un prototype à 
puissance réduite. La structure inclut 18 cellules de commutation, elle est prévue pour 
fonctionner avec une tension DC de 600 V pour une puissance nominale de 10 kW (Figure V-
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1). Cette maquette a été conçue et réalisée au LAPLACE. Le contrôle est implanté sur une 
plateforme DSP-FPGA. 

Nous testons une première configuration conformément à la Figure V-5. Nous considérons 
une branche unique par phase avec une charge RL triphasé de 4 kW en série, le tout est 
alimenté par une source de tension continue de 600 V. Après avoir étudié les boucles de 
contrôle et réalisé des simulations préliminaires, nous effectuons les tests en boucle fermée. 
Cette configuration a été initialement choisie car nous savons que la structure MMC classique, 
à deux branches par phase, peut difficilement limiter le courant en condition de défaut. Ainsi, 
la présence de la charge RL en série dans chaque branche limite « naturellement » le courant et 
permet sans danger la mise au point des chaines de mesure des signaux et la validation de la 
synthèse des régulateurs.  

La bonne correspondance entre les résultats expérimentaux et les simulations nous permet 
alors d’aborder le fonctionnement dans une configuration MMC classique mais dans un 
premier temps avec un contrôle en boucle ouverte (Figure V-20) sur une charge RL triphasée 
de 5 kW. 

Des simulations en boucle fermée avec un contrôle en boucle fermée dans un repère dq 
valident ensuite la synthèse des correcteurs pour le système de 10 kW (Figure V-16). Les 
simulations sont effectuées sur une charge RL triphasée (Figure V-20). Il nous reste à effectuer 
les tests en boucle fermée sur la maquette. 

Conclusions et Perspectives 

Aujourd’hui, les connexions HVDC constituent un élément de réponse aux besoins 
énergétiques mondiaux croissants. La technologie multiniveaux, associé au  développement 
de semi-conducteurs haute tension contrôlés au blocage, va permettre aux convertisseurs de 
type onduleur de tension (VSC) de devenir la topologie la plus employée dans les systèmes 
HVDC. Toutefois, grâce aux avantages découlant de la facilité de mise en série des thyristors, 
les structures CSC restent encore mieux adaptées aux tensions élevées. A court terme, l’écart 
entre les deux topologies pourrait se réduire de manière significative grâce aux performances 
offertes par les thyristors blocables de type IGCT. Ces composants en boitier pressé présentent 
par rapport aux modules classiques plusieurs avantages : En cas de court-circuit dans une 
cellule, il n’y a pas de risque d’explosion du boitier et la structure monolithique de l’IGCT 
(single wafer) est plus adaptée pour l’encapsulation en boitier pressé qu’un ensemble de petites 
puces IGBT.  

Ce travail de thèse a porté sur des topologies convertisseurs modulaires multiniveaux. Pour 
les études préliminaires, nous avons proposé un « macro modèle », indépendant de la 
topologie des blocs élémentaires, qui a permis une analyse directe du fonctionnement et des 
simulations plus rapides. 

Le dimensionnement du convertisseur a été effectué pour deux stratégies de contrôle. La 
première considère seulement un contrôle de la composante fondamentale du courant de 
sortie mais entraîne la circulation d’un harmonique de rang deux dans les branches du circuit. 
La mise en œuvre d’inductances couplées dans les branches du convertisseur pourrait 
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constituer une bonne solution pour limiter ce courant mais dans la gamme de puissance visée 
(GW), une telle technologie augmenterait les coûts de manière considérable. En revanche, la 
seconde approche, consiste à contrôler le courant dans chacune des branches mais requiert un 
système de contrôle plus performant basé sur une commande en dq. A cette condition, la 
composante harmonique de courant de rang deux est supprimée, ce qui permet de minimiser 
le volume et donc le coût des éléments réactifs. 

L’emploi des différentes topologies de bloc élémentaire rend le MMC plus flexible en 
termes de réversibilité en tension et en courant. En termes de pertes, à niveaux de puissance et 
de tension continue identiques, la simple cellule est la plus intéressante. Cependant, les autres 
topologies qui fournissent une tension de sortie bipolaire (pont asymétrique et pont complet) 
rendent la structure apte à limiter le courant en cas de court-circuit côté continu. 

La commande MLI classique avec entrelacement des porteuses permet une réduction de la 
fréquence de commutation ce qui minimise les pertes dans les semi-conducteurs. Toutefois 
cette technique de modulation présente une limite inférieure en fréquence de commutation de 
l’ordre de 200 Hz. Quand le nombre de niveaux est très élevé, la modulation de la tension en 
« marches d’escalier » peut être très intéressante. Une étude de cette technique de modulation 
(marge d’escalier) sera développée prochainement. En effet, il nous reste à analyser l’impact 
de cette stratégie de modulation sur le dimensionnement des éléments réactifs et les pertes 
dans les semi-conducteurs pour la comparer à la commande MLI classique avec entrelacement 
des porteuses. 

Différents aspects pourraient rendre le pont asymétrique intéressant dans les applications 
HVDC. En effet, par rapport à la structure classique, pour une même amplitude relative 
d’ondulation de tension, la capacité du condensateur de chaque bloc peut être réduite. De 
plus, comme le système effectue l’inversion du flux de puissance par le changement de polarité 
de la tension DC, cette topologie peut être employée pour remplacer les structures CSC dans 
des sous-stations HVDC avec l’avantage de travailler à facteur de puissance unitaire. 

La nouvelle structure à une seule branche par phase (single loop) proposée dans le chapitre 
III permet un contrôle plus simple. Elle ne requiert pas d’inductances en série dans les 
branches puisqu’elle utilise directement l’inductance de fuite du transformateur dont le 
secondaire doit être couplé en zigzag pour annuler la composante continue du flux dans les 
colonnes. De plus l’isolement du transformateur est dimensionné uniquement pour la tension 
du réseau alternatif. Ceci n’est pas le cas de la configuration classique du MMC où, en plus de 
la composante alternative de tension, le transformateur doit supporter une tension d’isolement 
continue égale à la moitié de la tension sur le lien DC (composante homopolaire). Au-delà de 
ces considérations, et de manière plus générale, l’utilisation de cette nouvelle structure 
pourrait être intéressante pour remplacer d’anciens redresseurs à diodes ou à thyristors, en 
apportant les avantages découlant de la structure VSC. 

Un prototype de 10 kW a été développé au laboratoire LAPLACE. Afin d’interfacer le 
circuit de puissance avec le système de contrôle, un ensemble de cartes « Interface Hardware » 
a été réalisée. Cet ensemble de cartes adapte les niveaux des signaux provenant des capteurs 
du prototype aux niveaux des tensions d’entrée du dispositif de commande. Il permet aussi le 
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filtrage du bruit pour les signaux analogiques. En ce qui concerne les signaux numériques de 
commande en provenance du dispositif de contrôle, ceux-ci sont transmis aux cellules de 
commutation via des fibres optiques. 

Avant de démarrer les essais en puissance, une procédure préliminaire de test a été 
effectuée. Tous les capteurs ont été calibrés et toutes les connexions de la chaine de mesure ont 
été vérifiées. Enfin, l’interconnexion des masses de tout le système a été effectuée petit à petit 
afin d’éviter tout problème de compatibilité électromagnétique (CEM). 

Les résultats expérimentaux avec une commande MLI classique avec entrelacement des 
porteuses ont été obtenus pour la structure à boucle simple et la structure classique. Le bon 
fonctionnement des boucles de contrôle a permis de valider le modèle du système et la 
synthèse des régulateurs. 

Prochainement, ce prototype permettra d’une part de tester la structure à une branche par 
phase avec le transformateur à secondaire couplé en zigzag et d’autre part le fonctionnement 
en boucle fermée avec la commande en dq puis la modulation en « marche d’escalier ». 
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RIASSUNTO DETTAGLIATO DELLA TESI IN LINGUA ITALIANA 

Capitolo I: A proposito di HVDC 

Questo capitolo tratta i sistemi HVDC (le transport d’énergie électrique en courant continu 
Haute Tension) andandone ad evidenziare il ruolo chiave che hanno nel campo della 
trasmissione dell’energia elettrica attraverso la consultazione di circa 40 riferimenti 
bibliografici. 

L’adozione di sistemi HVDC negli ultimi 40 anni ha avuto un ruolo fondamentale per i 
sistemi di trasmissione per una serie di considerazioni tecniche ed economiche.  

• Rispetto ai sistemi di trasmissione AC, trasmettere in corrente continua, nonostante il 
costo addizionale dovuto alle sottostazioni di conversione, inizia a diventare conveniente per 
distanze maggiori di 800 km per linee aeree e 50 km per linee sottomarine (Figure I-1). 

• Il continuo miglioramento delle tecnologie dei dispositivi semiconduttori essendo al 
cuore delle tecnologie HVDC 

• Sistemi in corrente continua consentono interconnessioni tra reti eterogenee che 
possono essere asincrone tra loro e/o a frequenza diversa. 

Una descrizione sui principi di connessione HVDC è stata illustrata facendo riferimento 
alle principali installazioni attualmente esistenti ciascuna delle quali in grado di gestire 
potenze dell’ordine dei GWs. 

Due tipi di connessione HVDC sono utilizzate. Quelle basate su convertitori AC/DC di 
corrente (CSC) e quelle basate su convertitori AC/DC di tensione (VSC). I lavori presenti 
nella letteratura corrente fino ad oggi si sono sempre focalizzati sulla topologia dei 
convertitori, in questo lavoro una delucidazione esaustiva sul concetto di trasferimento di 
potenza di tipo HVDC sia per strutture CSC che VSC è stata data. 

Prima di scendere nel dettaglio i principali dispositivi semiconduttori disponibili sul 
mercato ed impiegati per le alte tensioni sono stati descritti attraverso la consultazione di circa 
venti riferimenti bibliografici. Lo studio ha messo in luce le varie evoluzioni dei dispositivi 
dandone un’ordine di grandezza sulle tensioni e correnti nominali sostenibili per ciascuno di 
essi. Inoltre una descrizione dettagliata della tecnica presspack è stata data giacché tale 
tecnologia può essere considerata la meglio candidata per l’utilizzo e l’impiego di dispositivi 
semiconduttori nelle alte potenze.  

Una descrizione dei convertitori CSC basati su tiristori è stata fornita al fine di rendere 
meglio comprensibile l’approccio adottato per lo scambio di potenza per queste strutture. 
Grazie al fatto che i tiristori non presentano problemi di connessione diretta in serie, i sistemi 
CSC-HVDC riescono a raggiungere tensioni dell’ordine dei 500 kV. Ovviamente la topolgia 
non consente il controllo indipendente della potenza attiva e reattiva ed inoltre esibisce un 
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contenuto armonico in corrente tale da richiedere dispositivi di filtraggio che occupano il 20-
30 % della superficie totale di una sottostazione (Figure I-42). 

Una descrizione dei convertitori VSC modulati PWM (MLI) basati su dispositivi di 
commutazione controllabili sia in apertura che in chiusura (IGBT) è stata fornita. Dopodiché 
la trasmissione di energia HVDC basata su convertitori VSC è stata illustrata. Le topologie 
VSC riescono ad effettuare il trasferimento di potenza attiva e reattiva in maniera 
indipendente. D’altro canto per topologie classiche a due livelli si riesce al massimo ad operare 
a 320 kV a causa dei problemi dovuti alla messa in serie di dispositivi IGBT.  

Le topologie VSC sono state prese in considerazione nel lavoro. In particolare una 
descrizione delle strutture multilivello è stata data grazie alla loro capacità di lavorare ad alte 
tensioni. Tali topologie rispetto a quelle tradizionali riescono a garantire una forma d’onda 
quasi sinusoidale riducendo il contenuto armonico e permettendo una riduzione degli 
elementi di filtraggio. All’interno delle topologie multilivello la struttura modulare multilivello 
(MMC) è stata presentata nel capitolo e studiata nel lavoro di tesi. Tale struttura consiste nella 
messa in serie di convertitori elementari (Figure I-62) normalmente identici (per questo 
modulare). Tale struttura è stata preferita a quelle tradizionali giacché garantisce una 
modularità in termini di produzione industriale e non ha limitazioni superiori sul valore della 
tensione DC poiché è possibile sempre aggiungere convertitori elementari in serie. 

Capitolo II: Strutture modulari multilivello 

La struttura modulare multilivello è stata studiata in questo capitolo. La configurazione 
trifase per questa struttura è formata dalla connessione di due rami per fase (Figure II-1). Ogni 
ramo impone metà della tensione DC e la tensione al lato AC. Ciascun ramo inoltre conduce 
un terzo della corrente DC e la metà della corrente AC. La combinazione tra i due rami fa si 
che si ottengano le correnti e tensioni AC e DC necessarie al trasferimento di potenza 
richiesto. Per l’analisi un modello medio della struttura è stato estratto (macro modello) al fine 
di semplificare le considerazioni preliminari. Tale modello non considera gli effetti delle 
armoniche dovuti ai dispositivi di commutazione ma garantisce una maggiore velocità nelle 
simulazioni poiché semplifica i calcoli. Lo studio inoltre è stato ottenuto indipententemente 
dalla scelta della topologia per il convertitore elementare e considerando una phase shifted 
sinusoidal PWM (commande MLI classique avec entrelacement des porteuses). La 
potenzialità dello studio, oltre alla semplificazione della comprensione, sta nel fatto che tale 
struttura è stata resa altamente flessibile e versatile in termini di tensioni e correnti gestite. 

In una analisi preliminare correnti e tensioni del sistema sono state analizzate. Dal punto di 
vista armonico di corrente, ciascun ramo, oltre alle componenti DC ed AC conduce una 
componente AC al doppio della frequenza fondamentale che rimane all’interno della struttura 
(corrente circolante in Figure II-9). Questa componente deriva dal bilanciamento energetico 
tra i due bracci che compongono ogni fase. La soppressione di tale componente gioca un ruolo 
fondamentale nel dimensionamento dei componenti reattivi che è stata effettuata 
considerando due casi. 

Il primo caso considera un sistema controllato in maniera tale per cui non si è in grado di 
sopprimere l’armonica di II ordine della corrente di ramo. Per tale motivo la compensazione è 
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effettuata in maniera hardware. Al crescere del condensatore posto in parallelo a ciascun 
convertitore elementare e dell’induttore di ramo tale armonica si riduce. Per problemi di 
controllabilità del sistema dovuti ad elevati valori dell’induttore di ramo una nuova 
configurazione di tipo tripolare per l’induttore è stata proposta nel lavoro. Tale induttore è 
configurato in maniera tale da imporre una elevata induttanza di ramo al fine di sopprimere la 
II arminica nella corrente ed una ridotta induttanza di uscita garantendo la controllabilità del 
sistema. Tale approccio ovviamente richiede un hardware più costoso ma un controllo più 
semplice. 

Il secondo caso considera un controllo leggermente più complesso capace di controllare 
ciascuna corrente di ramo in maniera tale da ottenere il riferimento desiderato alla armonica 
fondamentale di corrente e di sopprimere anche la corrente circolante nel ramo alla seconda 
armonica della fondamentale. In tali condizioni il dimensionamento dei componenti passivi si 
riduce giacché solo l’armonica di corrente a frequenza fondamentale è considerata. La 
complicatezza del controllo non è un problema al giorno d’oggi grazie alla vasta scelta di 
dispositivi di controllo disponibili sul mercato. Per questo motivo è stato preferito in questo 
lavoro di tesi. Per tutti i casi, simulazioni su un sistema da 100 MW composto da 64 
convertitori elementari per ramo hanno validato lo studio. 

 

Capitolo III: Nuove topologie multilivello per sottostazioni HVDC 

In questa parte del lavoro nuove configurazioni per la struttura modulare multilivello sono 
state studiate e proposte. Ciò è avvenuto andando a cambiare di volta in volta la topologia del 
convertitore elementare. Disporre di differenti topologie ha reso la struttura MMC più 
versatile e flessibile nei confronti dei livelli di tensione e corrente. 

La prima topologia considerata come convertitore elementare è la cella semplice che 
rappresenta la versione base dell’MMC. Questa topologia è bidirezionale in corrente ma 
unipolare in tensione. Per tale motivo in condizioni di fault DC il sistema multilivello non è in 
grado di limitare la correne di corto circuito rischiando di danneggiare i dispositivi 
semiconduttori. Solo celle bipolari sono in grado di meglio limitare la corrente in condizioni 
di fault DC. A tale scopo il ponte asimmetrico ad H ed il ponte  intero ad H sono stati 
considerati. La prima struttura (Figure III-8) è bipolare in tensione ma unidirezionale in 
corrente. Per tale motivo l’impiego di questa topologia rende la struttura MMC poco adatta a 
scambi di potenza reattiva. In condizioni di fattore di potenza unitario, essendo tale topologia 
unidirezionale in corrente, il sistema effettua l’inversione della potenza tramite l’inversione 
della tensione che è tipico dei sistemi CSC. Per questo motivo tale struttura può essere anche 
utilizzata per il rimpiazzo immediato di convertitori basati su tiristori. Infine tra le celle 
bipolari anche il ponte ad H è stato considerato (Figure III-11). Ovviamente tale struttura è la 
più flessibile delle prime due essendo anche bidirezionale in corrente ma esige il doppio dei 
componenti. 

In questa parte un approccio analitico per il calcolo delle perdite nei dispositivi è stato dato. 
Tale approccio ha reso la valutazione della efficienza del sistema diretta veloce. Tale 
approccio era stato evitato in letteratura giacché la componente continua della forma di 
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corrente nei dispositivi, dovuta alla struttura MMC, rendeva il calcolo delle perdite molto 
complesso. Nel presente lavoro invece la formalizzazione analitica delle perdite è stata 
formalizzata e validata.  

A valle della validazione delle forme analitiche tramite il software PSIM un confronto sul 
rendimento del sistema è stato effettuato considerando l’uso delle tre topologie evidenziate 
sopra. Il confronto è stato effettuato a parità di potenza (100 MW) e di tensione DC (160 kV). 
In termini di rendimento la singola cella è la meno dissipativa. Le altre due celle bi-polari 
hanno un incremento delle perdite giacché richiedono un incremento dei componenti, tali 
perdite non sono accettabili per i livelli di potenza gestita. Ovviamente tali topologie 
permettono al sistema di gestire meglio le condizioni di faults. 

Successivamente nel capitolo una nuova struttura modulare multilivello è presentata 
(Figure III-28) chiamata Raddrizzatore a singola semionda. Per ogni fase questa topologia 
adotta un solo ramo rispetto alla versione tradizionale. D’altro canto si interfaccia con la rete 
attraverso un trasformatore zig-zag. Il dimensionamento dei componenti reattivi e dei 
dispositivi semiconduttori è lo stesso della versione base. Al fine di validare lo studio del 
macromodello questa nuova struttura è stata proposta per rimpiazzare i vecchi raddrizzatori 
basati su diodi o tiristori (Figure III-30). Il rimpiazzo è stato sviluppato conservando lo stesso 
trasformatore di linea e dunque gli stessi livelli di corrente e tensione. Simulazioni sono state 
effettuate considerando un sistema da 10 MVA. 

Capitolo IV: Un nuovo controllo PWM per le strutture modulari multilivello 

Un nuovo controllo per le strutture MMC è stato sviluppato in questo capitolo 
considerando una modulazione (commande MLI classique avec entrelacement des porteuses). 
Volta per volta simulazioni hanno validato lo studio considerando un sistema da 100 MW con 
una tensione DC di 160 kV. Le simulazioni sono state inoltre fornite per condizioni di 
funzionamento a fattore di potenza unitario in modalità inverter e raddrizzatore.  

Il controllo dei sistemi MMC in letteratura hanno sempre cercato di sopprimere la seconda 
armonica di ramo della corrente in maniera parallela al controllo tradizionale. Ci sono 
numerosi lavori che adottano tale sistema rendendo il controllo alquanto complesso sia alla 
comprensione che all’implementazione [49]-[51].  

Il controllo tipico per i sistemi multilivello è costituito da tre cicli di controllo fondamentali 
(Figure IV-3). 

• Il controllo di corrente , assicura che ciascuna corrente di ramo abbia i giusti valori per 
le componenti AC e DC necessare ad ottenere la potenza richiesta. L’approccio per tale 
controllo è stato effettuato tramite una sovrapposizione degli effetti. Dopo aver impostato le 
equazioni caratterizzanti il sistema è stata effettuata una trasformazione delle grandezze nel 
sistema di riferimento ad assi rotanti DQ. Una volta definite le equazioni, la sintesi dei 
regolatori PI è stata effettuata in maniera tale rendere il sistema in grado di inseguire la 
corrente desiderata e sopprimere la seconda armonica di corrente (corrente di ricircolo) nei 
margini di stabilità.  
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Il sistema di controllo proposto nel lavoro di tesi è lineare ed, attraverso la taratura dei 
regolatori, agisce in maniera tale da sopprimere anche la seconda armonica a frequenza 
fondamentale di corrente. L’innovazione sta nel fatto che il tutto è effettuato attraverso un 
singolo ciclo senza l’aggiunta di loops addizionali adottati in [50]-[51]. 

 

• A monte del controllo di corrente è posto il bilancio di energia di ramo. Tale parte di 
controllo regola la potenza attiva necessaria a mantenere tutte le tensioni sui condensatori di 
ramo costanti al valore desiderato. La sintesi dei regolatori PI è stata fornita.  

• Ciascuna cella di ramo può essere sbilanciata a causa delle differenti tolleranze dei 
componenti passivi, conduzioni diseguali e/o perdite differenti nei dispositivi semiconduttori 
ed infine differenti risoluzioni dei sensori. Per questo motivo al fine di bilanciare ogni cella al 
valore di tensione desiderato, un controllo locale è stato previsto definito come il bilancio della 
tensione di cella. Un correttore proporzionale per ogni convertitore elementare è stato 
adottato e sintetizzato. Tale controllo in maniera indipendente dai due precedenti agisce 
direttamente sull’indice di modulazione. Simulazioni in condizioni di celle sbilanciate hanno 
validato lo studio. 

Capitolo V: Il prototipo MMC da 10 kW  

Al fine di validare i risultati analitici e simulativi un prototipo a potenza ridotta è stato 
realizzato. Tale struttura include 18 celle di commutazione di tipo semplice (simple cell), una 
tensione DC di 600 V ed una potenza nominale di 10 kW (Figure V-1). Il prototipo è stato 
progettato e realizzato presso il LAPLACE. Inoltre al fine di effettuare i test sperimentali il 
controllo è stato implementata tramite piattaforma DSP-FPGA. I livelli di potenza e di 
tensione scelti per il prototipo sono abbastanza alti per una rispetto a quelli adottati in 
letteratura per la sperimentazione da laboratorio di sistemi MMC. 

Una prima configurazione in modalità single loop è stata testata (Figure V-5). In 
particolare solo un ramo per fase si è considerato con in serie un carico RL da 4 kW. Il tutto in 
parallelo alla sorgente DC. Dopo la sintesi del controllo e simulazioni preliminari, sono stati 
effettuati tests a ciclo chiuso. Questa è una configurazione intermedia che ha un duplice 
scopo. È noto che la classica struttura MMC è poco capace di limitare la corrente di ramo in 
condizioni di faults, per questo motivo non è stata preferita come prima prova. La presenza 
del carico RL in serie al ramo infatti limita la corrente nel ramo garantendo lo stesso un set-up 
delle catene di segnale e la validazione della sintesi dei regolatori in condizioni di sicurezza. È 
definita configurazione intermedia giacché a causa delle proprietà unipolari della cella 
semplice al carico viene imposta anche una componente DC all’interno del ramo. In ogni caso 
la buona corrispondenza tra simulazioni e prove sperimentali hanno reso il passaggio alla 
configurazione con trasformatore zig-zag immediato. 

In un secondo step la struttura MMC a ciclo aperto è stata considerata (Figure V-20). 
Simulazioni preliminari a ciclo chiuso con un controllo nel sistema di riferimento rotante DQ 
hanno validato la sintesi dei controllori per il sistema da 10 kW (Figure V-16). Le simulazioni 
sono state effettuate imponendo la rete al lato AC. Il sistema è stato dunque testato in 
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modalità raddrizzatore e inverter a fattore di potenza unitario. Successivamente prove 
sperimentali a ciclo aperto sono state effettuate imponendo al sistema un carico RL di circa 5 
kW (Figure V-20) al fine di validare la giusta modulazione e il corretto dimensionamento dei 
componenti reattivi (condensatori ed induttori). Resta da effettuare ovviamente il passaggio 
dei test a ciclo chiuso per la struttura MMC. 

Conclusioni e Prospettive  

Al giorno d’oggi le connessioni HVDC sono una buona risposta alla fabbisogno energetico 
mondiale che è sempre più crescente. Le topologie multilivello stanno rendendo i Voltage 
source converters (VSC) tra i più impiegati nei sistemi HVDC. Lo sviluppo dei dispositivi 
semiconduttori controllati in fase di spegnimento ed impiegati per alte tensione hanno reso 
queste strutture molto interessanti. D’altro canto grazie ai vantaggi derivanti dalla facilità della 
messa in serie di tiristori, le strutture CSC gestiscono meglio le alte tensioni. Nel prossimo 
futuro, il divario tra le due topologie verrà decisamente ridotto grazie alle prestazioni offerte 
dai dispositivi IGCT sia nella fase di accensione che di spegnimento. L’inscatolamento a 
pressione (press pack) porta inoltre una serie di vantaggi rispetto ai moduli classici 
specialmente in condizioni di emergenza dove c’è il rischio di esplosione. La struttura a 
singolo tassello (single wafer) rende l’IGCT più adatto per l’inscatolamento a pressione 
rispetto all’IGBT. Per queste ragioni l’IGCT sembra essere il dispositivo più attrattivo in 
applicazioni VSC-HVDC. 

Il lavoro di tesi è stato focalizzato sui convertitori modulari multilivello. Per studi 
preliminari il “macromodello” ha consentito valutazioni dirette e simulazioni più veloci. 
Inoltre ha reso il modello indipendente dalla particolare topologia. 

Il dimensionamento del sistema è stato effettuato attraverso due approcci di controllo. Il 
primo considera solo un controllo sulla corrente di uscita AC che determina una considerevole 
seconda armonica nel ramo. L’induttore tripolare accoppiato potrebbe essere una buona 
soluzione al fine di limitare questa corrente ma nel campo delle applicazioni di alta potenza, la 
particolarità dell’hardware accresce i costi in maniera considerevole. Il secondo approccio 
invece consiste nel controllo della corrente di ciascun ramo, inoltre esso richiede un sistema di 
controllo più efficiente basato sul sistema di riferimento rotante DQ. Sotto questa condizione 
la seconda componente armonica della corrente è cancellata andando a ridurre i costi degli 
elementi reattivi. 

L’impiego di differenti topologie come convertitore elementare rende l’MMC più flessibile 
in termini di reversibilità di tensione e corrente. In termini di perdite a parità di potenza e 
tensione DC, la cella semplice è più conveniente. Le altre topologie però che forniscono una 
tensione bipolare (HB asimmetrico e ponte ad H) rendono la struttura capace di limitare la 
corrente di corto circuito in caso di fault DC. 

La commande MLI classique avec entrelacement des porteuses porta ad una riduzione 
della frequenza di switching e dunque riduce le perdite nei dispositivi. Certamente questa 
tecnica di modulazione presenta un limite inferiore sulla frequenza di switching. Quando il 
numero dei livelli è molto elevato la modulazione stai case (marge d’escalier) può essere molto 
interessante per strutture multilivello. Uno studio della modulazione (marge d’escalier) sarà 
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presto sviluppato. Infatti rimane da fare una investigazione sugli effetti della modulazione nei 
confronti del dimensionamento di elementi reattivi e nei confronti delle perdite nei dispositivi 
rispetto alla (commande MLI classique avec entrelacement des porteuses). 

Differenti aspetti potrebbero rendere il ponte asimmetrico ad H interessante nelle 
applicazioni HVDC. Se questa topologia è scelta, il condensatore di cella potrebbe essere 
ridotto a parità di ampiezza di oscillazione della tensione. Siccome il sistema effettua 
l’inversione del flusso di potenza tramite il cambiamento della polarità della tensione DC, 
questa topologia può essere impiegata per rimpiazzare strutture CSC per sottostazioni HVDC 
con il vantaggio di lavorare a fattore di potenza unitario. 

 

La struttura nuova a controllo unico (single loop) proposta nel capitolo III permette un 
controllo più semplice. La topologie non richiede il doppio induttore poiché utilizza 
l’induttore parassita posto in serie al trasformatore accoppiato zig-zag. l’accoppiamento del 
trasformatore richiede più rame di un classico avvolgimento. L’isolamento del trasformatore 
deve essere effettuato solo per la tensione AC. Questo non è il caso della classica 
configurazione per l’MMC dove il trasformatore deve sostenere un isolamento DC pari alla 
metà della tensione sullo DC link (sequenza omopolare). Oltre a queste considerazioni, l’uso 
di questa nuova struttura potrebbe essere interessante per rimpiazzare i vecchi raddrizzatori 
garantendo i vantaggi derivanti dalle strutture VSC. 

Un prototipo da 10 kW è stato sviluppato nel laboratorio LAPLACE. Al fine di 
interfacciare il circuito di potenza con il sistema di ptototipazione rapida, una piattaforma di 
schede piazzate sulla struttura chiamata “Hardware di Interfaccia” è stata realizzata. Questo 
hardware adatta i livelli dei segnali provenienti dai sensori del prototipo verso il livello delle 
tensioni di ingresso del dispositivo di pototipazione rapida. Inoltre tale hardware fornisce il 
filtraggio del rumore per i segnali analogici. Anche per i segnali digitali provenienti dal 
dispositivo di prototipazione, una conversione elettro-ottica è stata fornita dall’hardware di 
interfaccia al fine di controllare le celle. 

Prima di avviare le prove in potenza, una procedura preliminare è state eseguita. Tutti i 
sensori sono stati calibrati e la giusta connessione della catena di segnale è stata verificata. 
Infine l’ottimizzazione della configurazione delle masse di tutto il sistema è stata effettuata 
passo dopo passo al fine evitare tutti i probleme dovuti alla compatibilità elettromagnetica 
(EMI) 

Risultati sperimentali in (commande MLI classique avec entrelacement des porteuses) sono 
stati ottenuti per la struttura a singolo ciclo e quella classica. Il buon funzionamento dei cicli di 
controllo ha validato il modello del sistema e la sintesi dei regolatori. 

Prossimamente, questo prototipo permetterà di testare la struttura a singolo ciclo con il 
trasformatore zig-zag, il funzionamento a ciclo chiuso nel sistema di riferimento dq e la 
modulazione a (marge d’escalier). 
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Chapter I. HVDC SYSTEMS 

This chapter presents the HVDC systems by pointing out the key role that they play in the 
field of electrical energy transmission. After a chronological description of the penetration of 
the HVDC system in the transmission grid scenario, the most employed structures are 
depicted and their advantages/drawbacks are described. A comparison is achieved between 
the Current Source Converter and Voltage Source Converter based HVDC. Nowadays, 
regarding economic and technical considerations VSC-HVDC systems are most popular. 
Then, this work focuses on the topology based on Modular Multilevel Converters (MMCs) 
which is more and more often chosen for VSC-HVDC power stations 

I.1 About HVDC  
The world energy consumption is expected to increase by more than 54% every ten years 

[1]. Moreover, population growth and the development of “new economies” require energy 
sharing that has to keep in step to guarantee electrical grid voltage stability. 

On the other hand, the Kyoto protocol to the United Nations framework convention on 
climate change defined the ways and the constraints of regulating energy production. Those in 
attendance at this meeting considered renewable energy sources as a good way to achieve the 
goal.  

Since the beginning of the 21st century, many countries have chosen to deregulate the 
electricity sector. This has created a more flexible mix of energy sources by encouraging higher 
efficiencies, particularly with the introduction of private investments in the energy market. 

In the scenario of electrical energy transmission growth, HVDC systems seem to best 
meet the purposes given. As affirmed in [1], thanks to their inherent power flow control 
capability and asynchronous feature, HVDC systems associated with flexible AC transmission 
systems (FACTS) are spreading all over the world.   

In the last 40 years, HVDC has played a key role in transmission systems with a series of 
economic and technical considerations: 

• As shown in Figure I-1, compared to AC transmission systems, HVDC 
transmission systems become more convenient for a distance depending on the 
line technology (around 800 km for overhead line and 50 km for underground or 
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submarine cables). Despite the fact that HVDC converter stations are expensive, 
the transmission line requires a reduced number of conductors which 
approximately leads to a reduction of one third of the cost. 

 

 

Figure I-1 - Estimation of the coasts for AC and DC transmission 

• The ever-increasing improvements in power electronics devices, more 
particularly in the field of turn-off controlled semiconductors, are at the heart of 
HVDC technologies [2]. 

• HVDC systems allow interconnections between miscellaneous grids which can 
be asynchronous or with different operating frequencies. They facilitate 
integration of renewable sources like wind farms or photovoltaic plants. 

Until 2005, according to [3], the total power installed in HVDC systems was around 55 
GW, amounting to 1.4% of the worldwide installed generation capacity. The curve shown in 
Figure I-2 shows the trend of the main installations achieved in the world since 1970. In the 
next years, 48 GW of HVDC installed stations are expected by China alone. A detailed 
overview on the existing project can be further found in [4]. 
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Figure I-2: Power provided by HVDC transmissions 

I.2 HVDC Connection Systems 

I.2.1 The concept of a HVDC connection 
The evolution of the solid state devices essentially made possible the concept of the 

AC/DC conversion. The mercury arc valves were replaced by solid-state devices named 
thyristors since 1970s. The first thyristor employment was the Eel River in Canada based on 
Line-Commutated Converter (LCC), which was built by General Electric and went into 
service in 1972 [5]. Since that time onwards, the thyristor LCCs or Current Source Converters 
(CSCs) have been continuously diffusing and developing for HVDC applications, like the 
transmission systems for which the basic configuration is shown in Figure I-3. The typical 
CSC based HVDC connection assumes in steady state that the power flow is regulated by 
changing the sign of the averaged value of the voltages (Vout1 and Vout2 ) imposed on the DC 
line. The system is adopted for high power levels, beyond 1 GW, for installations like the 
Itapiu system in Brazil (6.3 GW) [6], or the longest power transmission that links Xiangjiaba 
to Shanghai [7].  

 

 

Figure I-3 - CSC-HVDC system base lay out  

 

Real Power

Reactive Power Reactive Power

vout1 vout2

IDC

v
iv

i



Chapter I    

 

 
 4 

In TABL
idea of the 

 

Project Nam

France 
England 

Shin-Shinan
Sakuma 
Norway 

Netherland
Xiangjiaba
Shanghai 

 

The hug
connection
section. Jus
336 thyristo
also given i
the France 

Figur
c

 

Howeve
the next se

                      

LE I-1 exam
 power, leve

me 
Comple

Yea

198

no 
199

d 
200

a 
 

201

ge DC volta
n of the thyr
st to give an
ors such as 
in Figure I-5
 – England H

re I-4: thyristor
converter on Sh

er, the devel
ection, such

                       

mples of exi
el voltages an

etation 
ar 

Pow

86 

93 0

08 0

10 7

TABLE I-1

age that thes
ristors. Mor
n idea of the
the Shin-Sh
5. It corresp
HVDC inter

r tower for the 
hin-Shinano si
 

lopment of h
h as insulat

                       

sting CSC-H
nd the transm

wer Rating 

2 GW 

0,3 GW 

0,7 GW 

7.2 GW 

: Example of E

se converter
e detailed d

e huge physi
hinano subst
ponds to the 
rconnection

 
 frequency 
de 

high rated fu
ted gate bip

                       

HVDC conn
mission dist

DC 
voltage 

±270 kV 

±125 kV 

±450 kV 

±800 kV 

Existing CSC-H

rs can reach 
descriptions 
ical structur
tation is giv
 substation 
. 

Figur

ully controll
polar transis

                      

nections are 
tances insure

Covered 
Distance 

70 km 

 M

580 km 

1900 km 

HVDC connec

 is allowed t
 on the devi
e, an examp

ven in Figure
located in F

re I-5: Thyristo
connection 

lable switche
stors (IGBT

                    H

 listed. The 
ed by these 

Maker 

Alstom 
Grid 

Mitsubishi 

ABB® 

ABB® 

tions 

thanks to th
ices are give
ple in series 
e I-4. Anoth

France (Les 

r tower of the F
 on the french 

es, which ar
Ts) and gate

HVDC System

 table gives 
systems.  

Semiconduct
devices 

Thyristors

Thyristors

Thyristors

Thyristors

he direct ser
en in the ne
 connection 
her example
mandarins) 

France-Englan
 side 

re described
e-commutat

ms 

an 

tor 

s 

s 

s 

s 

ries 
ext 
 of 

e is 
 of 

 
nd 

 in 
ted 



Nicola Serbia                           MODULAR MULTILEVEL CONVERTERS FOR HVDC POWER STATIONS 

 

 
  5 

thyristors (IGCTs) let the Voltage Source Converters (VSCs) be an attractive alternative to the 
CSCs for HVDC applications.  

The level of power afforded for these systems goes hand in hand with the evolution of the 
VSC topologies and the voltage which the semiconductor device is able to sustain. A basic 
configuration of these connections is shown in Figure I-6. In steady state the power flow is 
regulated by changing the sign of the averaged value of the currents imposed on the DC line. 
The first VSC-HVDC installation, which consolidated the success of these systems, was the 
HVDC Hellsjön–Grängesberg (Sweden) from ABB, called HVDC Light [8]. It is a PWM-
controlled system built at the beginning of 1997 [1]. The power rating is about 3 MW with a 
voltage of 10 kV. Many other installations are listed in [9]. 

 

 

Figure I-6 - VSC-HVDC system base layout  

 

First VSCs for HVDC applications were two-level inverters while three-level inverters 
(Neutral Point Clamped topology) were introduced later. To sustain the huge voltage the 
installations are composed by series connected IGBTs. ABB is the only maker which provides 
this configuration (Figure I-7 and Figure I-8) [10]. The configuration allows each VSC to 
sustain maximum 320 kV with a maximum power rating at one GW. 

 

 
Figure I-7: Typical series valve tower of ABB 

 
Figure I-8: IGBTs Series connected lay-out 
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the power reversibility through the changing of the current direction require a less expensive 
cable technology than the others [20] (CSC-HVDC systems allow the change of the power 
flow through the changing of the DC voltage polarity). 

I.2.2 HVDC Configurations 

Different configurations of HVDC systems can be determined according to the particular 
application and the project considered. The main configuration lay outs are shown in this 
section. Then the methods to regulate the power flow are described for CSC and VSC systems. 

Back-to-back systems are composed of two converter stations. The conversion takes place 
in the main location, and these systems are not suitable for long-distance transmission. The 
block diagram depicted in Figure I-11 shows AC/DC conversion. This facilitates the 
connection between asynchronous grids. This kind of connection is also known as a unipolar 
system.  

Unipolar systems can be employed also for submarine connections by using the ground to 
return current. On the other hand many problems can be led from this kind of employment 
[9].  

 

 

Figure I-11 – B2B HVDC system  

 

One of the most used configurations is as shown in Figure I-12. These systems are mainly 
employed to transmit power in overhead lines. Also called bipolar systems, these are 
composed of two unipolar structures. Usually the double structure can be considered to be a 
redundancy. Of course if one of the two converters turns off, half part of the total power can 
be guaranteed on the line [9]. This structures use the ground as potential reference. 
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Figure I-12: Bipolar system  

By connecting more than two sets of converters, it is possible to arrange multi-terminal 
connections Figure I-13. For the particular depicted configuration converters, if CSC based 
connections are considered, 1 and 3 operate as rectifiers while converter 2 can operate as 
inverter. By mechanically switching the connections of a given converter, other combinations 
can be achieved [9]. For VSC based connections the switch is not necessary due to the sign of 
the DC voltage is kept.   

 

 

Figure I-13: Multi-terminal connection 

 

I.2.3 Semiconductor devices for HVDC systems 

Despite the huge cost of devices employed for the medium and high power applications, 
this kind of application covers only a much reduced part of the semiconductor total market 
[21] as shown in Figure I-14. The distribution and the trend of the semiconductors in power 
electronic field are reported in Figure I-15. The description indicates the manufacturer and 
places the semiconductor devices according to voltage and current rating. 
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Figure I-14: Total semiconductor market (2012) 

 
Figure I-15: Distribution and trend for semiconductor 

devices in power electronic field [22] 
 

 

An investigation on the most used semiconductor devices was provided for the HVDC 
connection's field. For each device the operating range was given in terms of managed power, 
moreover advantages and drawbacks which decided the replacement of one respect to one 
another were highlighted.  

In [23] is affirmed that the device manufacturers have developed different technologies for 
addressing the demand for an increasing reliability and lifetime. In this context, the device 
packaging assumes a critical role. Several manufacturers prefer power modules with bonded 
interconnections even though these bonding wires and solder layers are susceptible to thermo-
mechanical stress and ultimately failure when subjected to power cycling. In the high power 
electronic, particularly in HVDC field, a consolidated packaging structure is the press contact 
assembly technology [24] called Press-pack (PP). This technology achieves the conduction on 
the power side of the semiconductor junction through pressure contact surfaces. This leads to 
eliminate bonding wires and solder layers; it offers an improved power cycling lifetime [23]. 
According to the type of device, different technologies were developed by the makers such as 
single wafer (Figure I-16) PP or multi-die device PP (Figure I-17). 

 

mW

W

MW (1 B$)

Total
20 (B$)

kW

Figure I-17: Example of Press-Pack multi-die device 
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Typical frame assemblies are provided for the single wafer press-pack and for multi die 
device in Figure I-18 and Figure I-19. 

 
Figure I-18: Press-pack single wafer tower 

by ABB® 
 

Figure I-19: Assembled Press-Pack multi-die device 
 

I.2.3.1 Diode 
For HVDC connections the fast diodes for the free-wheeling and the clamping ones are 

used according to the topology. The operating voltage range for the single device is about 1-10 
kV. Moreover these devices can reach currents of 2-7 kA. The device is almost composed by a 
monolithic junction even for Press-Pack structures. 

Problems due to the reverse recovery are well treated in literature especially for the free 
willing diodes. Unexpected problems are caused by this phenomenon such as overvoltage and 
HF oscillations which lead to EMI problems. The most frequent problems are the “Snappy 
Recovery” (Figure I-20-a) and “Reverse Recovery Dynamic Avalanche” (Figure I-20-b). The 
study of these phenomena were been consolidated in [26] which showed that under adverse 
combinations of high commutating di/dt, large circuit stray inductance, low forward current 
and low junction temperature, it is likely that all fast power diodes produce excessive voltage 
spikes due to snappy recovery. 

One of the last high voltage diode technology is proposed by [26] and exhibits soft recovery 
performance under all operating conditions. This diode structure is capable of providing the 
necessary charge for soft recovery behavior by employing the new Field Charge Extraction 
(FCE) technology. More detailed aspects are treated in [21]-[27].  

 

Figure I-16:Cross section of a press-pack single 
wafer (monolithic) 
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Figure I-20: Reverse recovery voltages and 

current in the diodes (ABB®) 

 
Figure I-21: Reverse recovery voltage and current in the 

FCE diode 

 

This FCE diode provided a new performance for high voltage fast recovery diodes and it 
can be considered as the most employed in applications based on fully-controlled 
semiconductor devices such as VSCs. 

 

I.2.3.2 Thyristor 
These devices that can sustain voltages in the range of 10kV are matched for HVDC 

applications. On the market it can be found devices which can conduct current levels up to 
5kA. Nevertheless, the thyristor is not a fully controllable switch. For HVDC applications, this 
device is usually provided in a Press-Pack single wafer structure (monolithic) (Figure I-22). 
Evolutions of power rating and wafer dimension versus time are reported in Figure I-23. 

 

 
Figure I-22: Typical commercial thyristors 

(Infineon®)  
Figure I-23: The most powerful semiconductor type 

 

Thyristors can reach very high voltage levels, they are very fast during turn-on and they 
don’t show overvoltage problems in series connection [28]-[22].  
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I.2.3.3 IGBT 

The Insulate Gate Bipolar Transistor was introduced in 1981 combining a MOS gate with a 
bipolar transistor for high voltage sustaining and simple gate driving. Actually on the market 
there are devices which can sustain a voltage up to 6.5 kV and switch a current up to 750 A. 

This device thanks to the MOS gate can be controlled with a small power level. Moreover 
the MOS structure, distributed over the entire chip, allows full area conduction of the bipolar 
transistor.. For high high voltage and high current applications modules are based on multi-
chip substrates (Figure I-24). The bi-directionality in current is guaranteed by the reverse diode 
which is included in the structure. An example of multi-chip packaging is given in Figure I-25. 
In many cases the fault of this component due to over-current makes the device always 
opened, which leads to an explosion [29]. For series connection of these devices, an external 
mechanical switch or a semiconductor device are always added to by-pass the broken device 
[30]. 

 

 
Figure I-24: Multi chip configuration proposed by 

ABB 
 

 
Figure I-25: External package proposed by ABB for 

a multi chip configuration 

 

For HVDC applications also the Press-Pack could be adopted. Nevertheless, as discussed in 
[23] the single wafer construction cannot be directly transferred to the manufacturing of 
IGBTs. Indeed, it is still not feasible to produce a large IGBT wafer for high power 
applications due to the fine pattern of the IGBT cell structure. To overcome this technological 
limitation, the press-pack housing for IGBT was developed as a multi-die device. Nowadays 
two Press Pack technologies can be found on the market [22], [31]. 

• Direct Pressure 

Proposed by Toshiba and Westcode, the system consists of several chip stacks each 
composed of an IGBT die, supporting molybdenum disks and a chip frame to align these 
disks. The external lids are also achieved with multi-blocks (stamps) transferring the external 
force to the individual IGBT stacks [22].  
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Figure I-26: 3D lay out of a Direct pressure IGBT 

(Westcode) 

 
Figure I-27: Westcode internal disposition of a 

IGBT 
 

In [23] it was proved that the press-pack package shows excellent performances in terms of 
reliability and thermo mechanical-behaviors. On the other hand, according to the structure 
lay-out shown in Figure I-28, the direct transmission of the pressure to the single chip requires 
a calibration of the strength with high resolution due to the fragile structure of the single chip. 
Moreover an unbalanced distribution of the pressure among the chips directly decreases the 
reliability. 

 

 

 
Figure I-28: Lay out of the IGBT in the frame 

 

• Indirect pressure 

This technology was introduced by ABB that is the only maker, the structure is also called 
Press Pack Indirect (PPI). As reported in [32] - [33] a module consists of a number of parallel 
connected subassemblies, called “sub-modules” inside a rigid frame. As reported in Figure 
I-29, when the module is mechanically clamped, each of the press-pins is subject to a force 
F=c∆x, where c is the spring constant and ∆x is the travel distance. The surplus force, 
exceeding the sum of all forces on the chips, is sustained by the rigid frame. In this way, the 
difference in the force on the chips no longer depends on the pressure homogeneity in the 
stack, but only on internal tolerances of spring constant and travel distance, which can be 
accurately controlled.Thus, even long stacks, with their inherent problem of having 
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inhomogeneous pressure distribution across the PPI, become easy to assemble. In Figure I-30 
a typical press-pack made by ABB and a tower of series connected IGBSs are reported. 

 

Figure I-29: Three IGBT chips with an 
individual press-pin each 

Figure I-30: Pictures of a module stack, an open 
individual module, and a sub-module inside the module 

 

It’ is well known that the Press-Pack IGBT modules proposed by ABB have a good 
resistance to the thermal cycling and allow a stable short circuit in fault conditions [34]. 

The indirect pressure of the construction presents better performances in case of high 
number of series connected devices. The homogeneous pressure distribution guarantees 
improvements in terms of thermal behaviors and gives to the structure a good robustness 
toward the vibrations. The modular structure leads to a good efficiency in terms of industrial 
production. 

I.2.3.4  IGCT 
The Integrated Gate-Commutated Thyristor is exclusively used for very high power 

applications such as medium voltage drives or wind turbine converters in the multi-megawatt 
range. These devices can turn-off up to 6 kA under 4.5 kV. In the future, this device could be 
the best candidate for HVDC systems based on VSCs. In the world-wide, there are only three 
production sites which are located in Japan (Mitsubishi), in Switzerland (ABB) and in Czec 
Republic (ABB). The IGCT presents a Monolithic structure (Figure I-31) always in press pack 
packaging as shown in Figure I-32. 
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Figure I-31: 4" IGCT (5.5 kA/4.5 kV) (ABB) 

 
Figure I-32: 6" IGBT wafer 

 

As reported in [35] in the conducting state, an IGCT is a regenerative thyristor switch like a 
SCR or a GTO as illustrated in Figure I-33. In the blocking state, the gate cathode junction is 
reverse-biased and is effectively “out of operation” so the resultant device is that of Figure 
I-34. 

 
Figure I-33: Lay out in conduction mode for the 

IGCT 

 
Figure I-34: Lay out of the IGCT in blocking mode 

 

Figure I-33 and Figure I-34 also represent the conducting and blocking states of GTOs with 
one major difference, namely that the IGCT can transit from a state to other one 
instantaneously [35]. A typical turn off phase for an IGCT device is shown in Figure I-35. . 
The IGCT technology allows eliminating the GTO zone [28] so the device becomes a 
transistor prior having to sustain any blocking voltage. Because turn-off occurs after the device 
has become a transistor, no external dv/dt limitation is required and the IGCT may operate 
without snubber as does a MOSFET or an IGBT [35]. 
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Figure I-35: Typical currents and voltages for a IGCT in turn off mode 

More detailed aspect in terms of devices presents on the market and their dimension, 
operative voltage and current are highlighted in [35]. 

Of course at the moment of its introduction the IGCT required a more complicated 
production costs. Actually the IGCT can be considered very simple because of the 
development of the makers. This device is affirmed on the market also for its availability 
because there are not many things that fail its [35]. Moreover about its junction aspects the 
IGCT is not sensitive to dv/dt and di/dt problems [35]. 

I.2.4 CSC-Phase controlled converters 

CSCs are the most affirmed structures in the field of HVDC systems [19]. The basic 
converter is depicted in Figure I-36, this is a classical 6-pulse topology.  

 

Figure I-36: Rectifier bridge based on phase-controlled thyristors 
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Typical voltage waveforms are presented in Figure I-37. The DC waveform depends on the 
line-to-line AC voltages. The average value on the DC voltage (2) can be fixed by controlling 
the turn-on angle of the semiconductor devices respect to the line-to-line voltage. 

 

 

Figure I-37: Line to line voltage waveforms for the 6-pulse converter 

 

The relationship between the turn-on angle and the amplitude of the DC voltage imposed 
by this system is described in Figure I-38.  

 

)sin(.2 01 tVv ω=  (1) ψ
π

cos.63
1 VVOUT >=<  (2) 

 
Figure I-38: DC voltage regulation according to the phase angle 

 

The turn-on angle ψ determines also the phase between the current and the line-neutral 
voltage. A typical current waveform of a 6-pulse thyristor converter is depicted in Figure I-39. 
At high current level, the inductance on the ac-side l cannot be ignored. In fact for a given 

angle ψ, the current commutation takes a significant commutation interval δ which influences 
also the maximum negative limit on the DC voltage [36].  
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Figure I-39: Typical input current waveform for a 6-pulse rectifier compared with the AC phase voltage 

 

The AC current waveform can be decomposed in a Fourier series (3). The fundamental 
component shows a phase shift respect to the phase voltage. This means that the regulation of 
the DC voltage determines the active (4) and reactive power (5) transmission.  
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The typical spectral content is shown in Figure I-40. Nevertheless, it is well known that the 
harmonic spectrum can be improved by interleaving thyristor commutations with multi-
winding transformers to achieve 12-pulse or 24-pulse rectifiers [36]-[37]. 

 

Figure I-40: Harmonic content for a 6 pulse thyristor rectifier 
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The presence of the AC line inductor limits the voltage capability of the converter 
depending on the line current as (6).  

 

IVvOUT ..3cos.63 ω
π

ψ
π

l−>=<  (6) 

 

The output characteristic of the converter is given in Figure I-41. The curves are marked for 

different values of ψ. For values ψ greater than 90°, the system works in inverter mode (4th 
quadrant). In this case there is an extinction time interval, tinv, during which the voltage across 
the thyristor is negative and beyond which it becomes positive. Time interval tinv should be 
greater than the thyristor minimum turn-off time tq. Otherwise, the thyristor will prematurely 
turn-on, leading to a loss on the current control which can be destructive.  

 

 

Figure I-41: DC voltage capability vs AC current 

 

The current drawn by the power station has to be filtered by LC shunt circuits tuned on the 
typical frequencies of the low rank harmonics [38]. These filters take-up 20-30 % of the surface 
employed for the substation which is not negligible. As example, Figure I-42 shows the “field” 
of LC filters associated to the AC/DC converter station of the France-England connection (2 
GW). 

<vOUT>

I

ψ= 0°63 V
π

63 V
π

−

0

ψ= 180°

tinv



Chapter I    

 

 
 20 

 

Figur

I.2.5
In this s

CSC-HVD
power nece

achieved th

 

 

By cons
red charact
is importan

                      

re I-42: LC shu

 CSC
section is sh
C link. The 
essary to the

hrough the p

sidering the 
teristic in  F
nt to note tha

                       

unt filters at « L

C-HVDC
hown the op
 basic conne

e transmissio

phase angle ψ

Figure I-43: 

reference cu
Figure I-44. T
at the contro

                       

Les Madarins »

C SYSTEM
perating prin
ection is com
on line throu

ψ1. 

 Basic HVDC c

urrent the co
The operatin
ol of the acti

                       

» converter sta

MS 
nciple for th
mposed by a
ugh the DC 

connection bas

onverter wh
ng power di
ive power af

ref
OUTv 1

                      

tion in France 

he converte
a voltage re
 current imp

sed on CSC sy

hich is in rec
iagram is sh
ffects the inp

                    H

 

 - England Inte

rs which ch
ctifier which

position. Th

 

stems 

ctifier mode
hown in Figu
put reactive 

HVDC System

erconnection 

haracterize t
h provides t

he regulation

e works on t
ure I-45 and
 power. 

ms 

the 
the 
n is 

the 
d it 



Nicola Serbia                           MODULAR MULTILEVEL CONVERTERS FOR HVDC POWER STATIONS 

 

 
  21 

 Figure I-44: I-V diagram for the two converters 
 

 
Figure I-45: PQ diagram 

 

The converter which gets the power and works in inverter mode is depicted in Figure I-46. 

The converter must regulate the voltage phase angle ψ2 to operate at the minimum turn-off 
time tinv and then limit the reactive power received. As shown in  Figure I-44, the operating 
point is given by the intersection of characteristics for the first converter (in red) and the 
receiver converter (in blue). 

 

Figure I-46: thyristor converter in inverter operation 

 

To change the direction of the power flow it is necessary that the two converters switch the 
roles. This means an inversion of the DC voltage polarities.  

 

I.2.6 VSC-PWM based AC/DC converters 
In this section, after a brief review on the VSC SPWM converters the principles of the 

HVDC transmission are explained. The so-called Voltage Source Converter based on the 
Sinusoidal Pulse Width Modulation allows the AC/DC conversion (and vice-versa) by 
regulating the active and the reactive power independently. The basic structure for the 
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conversion is shown in Figure I-47. If the AC voltage is imposed the power flow is regulated 
via duty cycle α which determines the sign of the current. 

 

Figure I-47: basic structure for the AC/DC conversion based on VSC systems 

The basic control diagram for a 3-phase VSC is depicted in Figure I-48. A generator 
synchronized on the grid voltage vs determines the AC current reference which is composed by 
active and reactive components. The duty cycle α determines the voltage vr which draw the 
desired AC current via inductor L [39]. 

 

Figure I-48: Diagram of the control for a VSC PWM converter 

 

According to the duty cycle variation the pulse width modulation is determined as shown 
in Figure I-49. The phase voltage waveform imposed by the three phase converter on the AC 
side reaches values between -2/3Vd and +2/3Vd [37]. The fundamental component can reach 
maximum amplitude equal to Vd/2. 
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Figure I-49: switch pulses and duty cycle; phase voltage imposed by the converter and its fundamental 
component waveform 

Inductor L determines the current waveform according to the single phase equivalent 
circuit in Figure I-50.  

 

Figure I-50: Single phase Equivalent circuit VSC-HVDC connection 

 

Amplitude and phase ϕ of the current depends on the active and reactive powers provided 
to the grid. (Figure I-51). 
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Figure I-51: AC current and grid voltage 

As it is shown in Figure I-52, the line current waveform shows a spectrum which has inter-
harmonics centered on the multiple of the switching frequency [40] h is the ratio between 
switching frequency and fundamental frequency). 

 

 

Figure I-52: AC current harmonic spectrum for a PWM VSC structure 

Due to the unidirectional DC voltage, the direction of the power flow regulated on the AC 
side leads on the DC side to a change on the sign of the current averaged value. An example 
of positive averaged value of the DC current is shown in Figure I-53. Each converter imposes 
the desired DC voltage through the averaged value of the DC current. 
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Figure I-53: id current 

Regarding the single phase equivalent circuit at the fundamental frequency (Figure I-50), 
the corresponding vector diagram converter is given in Figure I-54. The DC voltage 
determines the output voltage limit of the converter as marked on black ring while the AC 
current the limit (red ring) is fixed by the semiconductor devices. Then the area corresponding 
to the intersection of the two rings gives the operative range of the DC/AC converter. 
According to the references made in Figure I-50 the sign of the power flow is also determined. 

 

 

Figure I-54: Fresnel diagram for a AC/DC VSC structure 
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The synchronous reference frame is tuned on the voltage grid v1. By varying the amplitude 
and the phase γ of Vr the vector jXLI is placed to achieve the desired active (7) and reactive (8) 
power. 

 

L

rS

X
VVP γsin3=  (7) 

L

Sr
S X

VV
VQ

−
=

γcos
3  (8) 

 

In the next section the principle of control to achieve the power sharing is provided for the 
HVDC link based on VSC structures. 

 

I.2.7 VSC-HVDC systems 
The basic lay out of a VSC-HVDC link is highlighted in Figure I-55. The approach 

supposes that the power is transferred from the source 1 (on the left) to the source 2 (on the 
right).  

 

 

Figure I-55: simple control strategy for a VSC based HVDC connection 

 

The two terminals share the same voltage on the DC link. The receiver converter (right) 
draw the currents in grid2 which fixes the active power level. To balance the DC voltage, the 
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side are completely independent. The stability of the DC voltage is ensured by the first 
converter. The DC voltage control generates the reference for the active part of the current 
necessary to keep the required DC voltage. 

According to the claims made up to this point, VSC-HVDC systems can be chosen rather 
than CSC-HVDC ones because of a series of factors, such as: 

• Failures of the commutations due to AC network disturbances that could be 
avoided. 

• Independent managing of the active and reactive power. 

• The use of modulations such as PWM, which guarantees frequency very low 
harmonic distortion on the currents. The AC filter size can be greatly reduced. 

That is why in the following section, multilevel VSC topologies, able to operate in high 
voltage applications, are considered.  

I.3 VSC-HVDC multilevel topologies 
Due to the limited current capability of the cables and semiconductor devices, HVDC 

systems require converters able to operate on around a hundred volts. In Figure I-56, the main 
topologies of voltage source inverters are reminded. 

 

 

Figure I-56: Basic schema of VSC topologies for a simple one a), 2-VSI b), and a multilevel topology c) 

The simplest VSC topology is the two-level, three-phase bridge [40]. If this solution is 
adopted, many series-connected IGBTs are used to compose one device as shown in Figure 
I-57. As treated previously there is just one manufacturer available on the market for this 
solution. 
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Figure I-57: VSI 2-level topology for high voltage employment 

 

The connection of series devices leads to output voltage waveforms, which show high 
dv/dt, which is a main constraint for transmission line transformers. Moreover, for high-
power converters, the switching frequency is very low due to power losses and the limitations 
of the semiconductor device. To keep the harmonic impact under the limit imposed by the 
standards, an AC filter is necessary. 

The use of multilevel converters enables work at a high-voltage level, with a high-waveform 
quality. The main feature of these converters is that they draw a quasi-sinusoidal voltage 
waveform from several levels obtained from flying capacitors (like flying cap converters) [42] 
connected to each commutation cell. 

In multilevel structures, due to the interleaved modulation technique, it is possible to 
achieve a series of advantages [42] - [43], such as:  

• Quasi-sinusoidal AC voltage waveform 

• Low harmonic impact 

• Reduced costs for the filtering elements 

• Possible direct connection to the MV grid 

• Reduction of semiconductor losses due to a very low single-switching frequency per 
device 

An overview is given in the next section on the multilevel topologies candidate to be 
employed for high-power transmission. 
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I.3.1 Neutral Point Clamped (NPC) 
One of the topologies which literature started to consider is the NPC [43]. In Figure I-58, a 

three-level version is shown, but it is possible to add the components and place them correctly 
to increase the number of levels. 

 

 

Figure I-58: Three-level three-phase NPC topology 

 

The component which characterizes this topology is the diode necessary to clamp the 
switching voltage to the half level of the DC bus, which is split into three levels by two series 
of connected bulk capacitors. In this topology, the middle point is also called the neutral point, 
outlined in Figure I-58 as the ground. By increasing the number of levels, the voltage which 
the diodes have to sustain rises. If the voltage rating of each diode is kept, more devices are 
necessary for the whole voltage. For this reason, if the number of voltage levels that the system 
can impose is N, (N-1)2 diodes are necessary. For high-DC voltages, the system becomes less 
convenient due to the huge number of diodes. 

I.3.2 Flying capacitor 
 

Another multilevel topology which is suitable for high-power applications is the Flying 
Capacitor structure with N imbricated cells (Figure I-59). The output inductor value is 
calculated to limit the output current ripple at the equivalent switching frequency. [44] The FC 
topology includes N-1 flying capacitors, and the operating voltage of each cell is Vd/N [44]. 
One drawback of this topology is the stored energy in the flying capacitors close to the DC bus 
(voltage and energy increase with index i). However, it is possible to connect capacitors in the 
series to sustain high voltage, but it is not certain that the voltage will be equally shared 
between them. 

1T

2T

3T

4T

1D

2D

3D

4D

DCV+

DCV−

1CD

2CD

1T

2T

3T

4T

1D

2D

3D

4D

1CD

2CD

1T

2T

3T

4T

1D

2D

3D

4D

1CD

2CD

C

C



Chapter I                                                                                                                               HVDC Systems 

 

 
 30 

 

Figure I-59: Three-phase flying capacitor converter 

 

The two topologies analyzed present a better reduction in the harmonics. Despite the 
improvements which they are able to reach, these kinds of multilevel converters present a 
series of limitations/drawbacks. For this reason, they did not succeed in these HV-application 
demands [47]. 

• Not suitable for the industrial series production (thanks to the modular construction in 
order to enable scaling to different power and voltage levels, using the same hardware 
[48]) 

• Unwanted EMI disturbances generated by a very high slope (di/dt) of the arm currents 

• The DC bulk capacitor stores a huge quantity of energy which leads to damages under 
faulty conditions 

• The stored energy of the concentrated DC capacitor at the DC-Bus results in extremely 
high surge currents and subsequent damage if short circuits at the DC-Bus cannot be 
excluded 

• Harmonics on the AC current must always be suppressed 
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• Each arm conducts half current 
and in continuous conduction 
mode 

• Arm inductances contribute to 
limit faulty conditions 

• The bulk capacitor is not 
necessary because there are two 
terminal cells 

• Each capacitor cell voltage can be 
controlled very slowly with respect 
to the current regulator 

• The DC link voltage can be 
controlled by the converter 

 

  
Figure I-62 : Modular Multilevel Converter base 

schema 
 

 

I.4 Conclusions 
The development of semiconductor turn-off devices and the success of the multilevel 

topologies in recent years have made VSC-HVDC structures the most employed in HVDC 
systems.  

CSC structures can manage high voltages because are composed by thyristor rectifiers. This 
device does not suffer the series connection. On the other hand, VSC structures can control the 
active and reactive power independently. Moreover the SPWM based structures make the 
filtering stage very small respect to the CSC. VSC structures allow also islanded operation. 

Compared to the traditional multilevel structures, Cascaded multilevel converters, due to 
their modularity, are matched to series industrial production. Moreover they do not present 
upper-DC voltage limits. In fact, it is possible to add more series cells to sustain the desired 
voltage.  
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Chapter II. MMC systems 

In the first part of this chapter a macro model is provided for the MMC structure. The so-
called averaged model facilitates considerations and investigations without taking into account 
the effects of the harmonics at the switching frequency, making the study fast and direct. 
Sizing parameters are provided for the reactive elements (branch inductors and cell capacitors) 
for two different approaches. A first approach supposes a current control, which acts directly 
on the AC output current (one current control per phase). Under this condition, a new 
configuration is also proposed for the branch inductor in order to improve the system 
performances. The second approach proposes two current loops per phase, each of which acts 
on the current of each inductor. For both approaches, simulations are performed to validate 
the study.  

The considered structure in the work is depicted in Figure II-1. Each phase of the system is 
composed by two branches. Each branch is a connected series of N elementary cells (EC) and 
the branch inductor L. Each phase contains 2N elementary cells. At the top are the negative 
branches (n), and at the bottom are the positive ones (p). 

 

Figure II-1: Modular Multilevel Converter in three-phase configuration 
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II.1  The Macro Model 
To make preliminary considerations and gain an easier understanding of the system, a 

model at low frequency was extracted. A Sinusoidal Pulse Width Modulation (SPWM) is 
assumed. This approach does not consider the switching contribution on the spectral content 
for the voltages and currents of the system. Moreover, this approach makes the study of the 
MMC structure independent from the particularly topology of the series connected elementary 
converters. 

 

 

Figure II-2: Low-frequency model b) of an elementary switching cell a) 

Each commutation cell can be seen as a 2-port device (Figure II-2 a)). The input side is 
characterized by the voltage and current for the cell capacitor. The output side carries out the 
voltage cell and the branch inductor. The relations between currents and voltages of the cell 
are at (1) and (10), respectively, where f(t) is the modulation function, depending on the 
modulation signal and the topology of the elementary converter. Thus, the averaged model of 
the cell is depicted in Figure II-2 b). 
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By starting from the diagram given in Figure II-1, it is possible to extract the equivalent 
averaged circuit (Figure II-3) valid for the MMC system; the equations which characterize the 
structure don’t consider the particularly topology of the elementary converter. Moreover each 
capacitor resumes the total capacitance for the N converters which compose the branch. The 
equivalent value is C/N. 
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Figure II-3: Averaged model for the MMC  

 

To make the study not-dependent from the particular topology, definitions on the 
nomenclature about the functions has to be given in Table II-1. 

 

Table II-1: Elementary converters function definition 

f(t) Function which multiplied for the averaged cell gain gives the averaged voltage 
waveform of the cell output 

k(t) AC part of f(t)  

α(t) Averaged value of the switching function. (for a unipolar elementary converter f(t)=α(t); 
for a bipolar elementary converter α(t)=(1±f(t))/2) 

 

All of the considerations were made just for one phase. Each branch imposes a voltage (11) 
which is the equivalent sum of the output voltage of each series’ connected cell. Moreover 
each cell imposes a voltage depending on the modulation function and the voltage capacitor. 
By supposing the voltages on the capacitors for all the cells of the branch equal between them 
and the same for all the modulation functions, each branch imposes the voltage in (12) 
According to the diagram shown in Figure II-3, the phase voltage is achieved in by neglecting 
the voltage drop on the branch inductor L (13). Branch currents determine the current in the 
phases (14).  
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The instantaneous and averaged voltage waveforms are compared in the next section. This 
facilitates better understanding of the difference between the two models.  

II.1.1 Macro model validation 

The typical voltages and currents of an MMC system are considered to demonstrate the 
reliability of the macro model. The simulation results are reported in p.u., because the 
particular case study is shown after the sizing considerations achieved in the next sections. 
The switching frequency for the single cell is 450 Hz for the instantaneous model. The voltage 
and currents of the instantaneous model are compared to the averaged ones. Moreover, 
considerations for the spectral content are achieved to show the frequency limits of the model 
with respect to the instantaneous one. 

In Figure II-4, a typical voltage waveform of the capacitor of the elementary converter is 
shown. The instantaneous model seems to match well with the averaged one. This is 
consolidated also by the spectral content comparison in Figure II-5.  

 

 

Figure II-4: Instantaneous and averaged model comparison of a voltage on a cell capacitor 
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Figure II-5: Spectral content comparison of a capacitor voltage for a cell 

 

A more evident matching between the two models is shown by considering the output 
voltage of the elementary cell (10) in Figure II-6. In this case, the matching between the two 
models is more evident in their low-frequency spectral content compared in Figure II-7. The 
averaged model is not able to take into account the switching frequency. 

 

Figure II-6: output voltage imposed by an elementary cell; comparison between instantaneous model and 
averaged model 
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²  

Figure II-7: Spectral content comparison for the output cell voltage 

The macro model is very useful in making all preliminary considerations about the reactive 
element sizing and testing the control. The model implementation is very direct, and the 
simulations are very fast because the switching frequency is not considered for the time step 
choice. By now, if it is not specified, all the simulations are performed by considering the 
averaged model. 

Before the sizing approach proposition, the elementary cell topology is defined in the next 
section. The single cell characterizes the MMC base structure [49] by considering a SPWM. A 
more detailed study on the choice of the cell topology is achieved in chapter III. In this 
chapter the study in given for the averaged model if the adaptation of the instantaneous one is 
not specified. 

II.1.2 Study of the MMC basic structure 

The basic version of the MMC structure is composed by single cells (Figure II-8). The 
modulation signal given in (15) considers ω0 to be the fundamental frequency and cos(φ) the 
power factor. Negative and positive branches have duty cycle (16) and (17), complementary 
between them. 

 

 
Figure II-8: Simple cell adopted for the MMC structure 
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From the assumptions given for the elementary cells in (1) and (10) and based on 
consideration for the modulation ratio assumed for the single cell, the branch voltages and 
currents for the u-phase are carried out in (18) and (19), the positive part is symmetrical to the 
negative one. The presence of a second harmonic component is confirmed in the works [50]-
[14] and is highlighted as follows. 
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Each branch current is composed of three terms: 

• The DC component, which follows the flow shown in Figure II-9 a) 

• The AC component at the fundamental frequency; according to the flow depicted 
in Figure II-9 b), each branch conducts half of the phase output current 

• The second harmonic component, which is kept in the branches (Figure II-9 c)) and 
represents the energy balance between the negative and the positive branch for each 
phase [49]-[14]. Moreover, this component doesn’t flow on the DC side because it 
is a negative sequence. 

 

 

Figure II-9: Current flow in the MMC structure 
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• The output AC current imposition permits control of the system by considering the AC 
output current iu. In this case, it is not possible to regulate the branch currents composed also 
by the 2nd harmonic component, which has to be considered in the study (Figure II-10). In 
this hypothesis, a method for the passive components sizing is given and, upon consideration 
for a case study, simulations were achieved. 

• The branch current imposition operates directly on the branch currents inu and ipu and 
supposes the AC voltage imposed on the AC output side. In this case, it is possible to achieve 
the AC output current desired and to suppress the second harmonic components (Figure 
II-11). Sizing parameters are given in the study, and one more time, the simulation results 
validated the study. 

 

 
Figure II-10: MMC elementary circuit by imposing 

the AC output current 

 
Figure II-11: MMC elementary by imposing each 

branch current 
 

II.2 Output current imposition 
In this section, the circuit presented in Figure II-10 is studied. The sizing parameters were 

achieved by starting from considerations made in (18) and (19). Evaluations gave the 
dependence of voltages and currents on the branch inductors and cell capacitors. 

By suppressing the current source (Figure II-10), the amplitudes of the 2nd harmonic 
components of the branch voltages and currents are reported in (20) [49]. 
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The capacitor current ic(t) is  
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By using the Werner formulas: 

)sin(
4

)23sin(
4

)2cos(
2

)2cos(
8

)cos(
8

)sin(
4

)sin(
22

)(

0
2

0
2

0
2

0
11

0
1

0
00

t
MI

t
MI

t
I

tMIMItIt
MII

ti

fff

cn

ωϕωϕω

ϕωϕωϕω

+−−−+

+−+−+−−=

 

 

The current capacitor has also a third harmonic component thus, the capacitor current is 
achieved in (22) according to (21). 
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The fundamental current component is sufficient to generate the second harmonic 
component. Moreover, according to (23), to keep a constant DC component of the capacitor 
voltage, the DC component of the capacitor current has to be equal to zero, so it is possible to 
achieve a relationship between the I1 and I0 in (24). 

It is possible to verify that the amplitude of the third harmonic for the capacitor voltage can 
be neglected with respect to the other ones. Thus the capacitor voltage (25) and the total 
branch voltage (26)-(27) can be obtained. 
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(27) 

 

By fixing the apparent power of the system, Vd and therefore N, I1, and M and varying the 
power factor, the variation of the amplitude of Vun(t)2nd is not very sensitive to its second term, 
so it is possible to rewrite Vun(t)2nd as (28). 

The amplitude of the 2nd harmonic component of the current is therefore extracted in (29).
 

 

⎥
⎦

⎤
⎢
⎣

⎡ −
++

+
≈= ))(cosMIMI(M

MII
C

N)t(VwithI
L
)t(V

f
f

ndunf
ndun

2
2

2
4

162

22

12
12

0
22

2 ϕ
ωω

 

(28) 

NLCNM
MNNMII f 4642

3)(cos
22

23

12 +−
−

≈
ω

ϕ
 (29) 

 

This study permits evaluation of the 2nd harmonic amplitude of the branch currents and 
voltages from the knowledge of the power rate of the system, Vd and therefore N, I1, and M.  

II.2.1 Cell capacitor 

The value of the capacitor is extracted according to the ripple amplitude of the voltage at 
low frequency. By considering equation (25), the components of the voltage do not depend 
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only on the capacitor value but also on the I2f , whose extraction is in (29). The evaluation of 
the capacitor becomes a non-linear problem. 

For this reason, the evaluation of the cell capacitor was achieved by implementing the 
formulas given previously in an iterative procedure shown in the flow chart in Figure II-12. 

 

 

Figure II-12: Iteration method for the capacitor evaluation 

 

II.2.2 Branch inductor 

When the second harmonic component in the current is considered, it is necessary to define 
a limit range within which the branch inductor has to be defined.  

The inferior limit is given by the ripple amplitude of the branch current due to the 
commutations of the devices. By assuming a sinusoidal pulse width modulation and 
considering that all of the cells are interleaved between them, the maximum amplitude of the 
branch current ripple is ΔIMAX. In (30) is reported the inferior limit of the inductor. 

 

MAXc IfN
VdL

Δ
> 28  (30) 

 

The second harmonic component of the branch current contributes to increase the total rms 
value. If this component is considered, an oversizing of semiconductor devices and the copper 
of the inductor must be taking into account. According to (29), to limit the amplitude of the 
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second harmonic component of the branch current, it is necessary to increase the value of the 
inductor.  

If the inductor value is significant, its voltage drop at the fundamental frequency could 
become very great. Usually, the voltage drop on the inductor, ΔVL , has to be kept under a 
small percentage of the AC voltage to ensure the controllability of the system at network 
frequency (31). 

 

10

2
I

VL LMAX

ω
Δ

<  (31) 

II.2.2.1 Considerations 

The only way to limit the branch second harmonic both for the voltage and the current is to 
size the reactive elements as big as possible. For the current controller, it is not possible to 
operate on this component, which flows only in the branch (look the grey loop in Figure II-9).  

The dynamic response of the equivalent internal current loop has to be studied. To extract 
the equivalent capacitor of each branch the relationship between the output voltage of the vun/p 
(32) and the branch current iu(n/p) (33) of the averaged branch shown in Figure II-3, if the 
averaged duty cycle of the cell is considered equal to ½. The branch capacitance is extracted in 
(38) and for the phase is (39). 
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The equivalent circuit of the loop depicted in Figure II-10 is achieved in Figure II-13 for the 
small signal approximation. 

 

 
Figure II-13: Equivalent RLC circuit of a single 
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The RLC circuit includes the capacitor, which represents the equivalent capacitance in the 
phase; then there are the negative and the positive inductors and the resistance, which resumes 
the dissipative part of the semiconductors and the copper losses. The system is studied like a 
typical second-order circuit of which the transfer function is (36).  

According to the particular application, it is possible to achieve some consideration for the 
bode diagram of the magnitude (Figure II-14), particularly about the frequency resonance (37) 
and the damping factor (38). 

If the considered system has to sustain high voltages, the number of cell capacitors N can 
be considered huge. If the typical value of the cell capacitor is around mF [51], the Ceq is 
relatively small. Thus, in most cases the frequency resonance fr is greater than the fundamental 
frequency. Moreover, the branch inductor is around mH if the second harmonic has to be 
attenuated [50]. This leads to a dumping factor (38) smaller than 1. For these reasons, the 
fundamental frequency of the system is placed in the positive slope of the magnitude curve 
(Figure II-14). This means a further increase for the amplitudes of greater harmonics. 

 

 

Figure II-14: Bode diagram of a RLC circuit for a typical high voltage system 

 

With these considerations, for this control approach the inductor sizing has to respect the 
condition on the resonant pulsation given in (38).  

 

1 f 2f fres 20f
-40

-20

0

20

-40

-20

0

Frequency [p.u.]

db
 [p

.u
.]



Chapter II                                                                                                                                 MMC Systems 

 

 
 46 

0
1 ωω <=

eqeq
r CL  (39) 

 

This condition requires an increment of the mathematical product on the denominator. The 
chance to increment the value of the capacitor is greatly reduced because of the physical size 
of this element which is included on each elementary converter. It is not possible to further 
increment the branch inductor because of the voltage drop condition (31) at the fundamental 
frequency. For these reasons, in the next section is given a new configuration of the inductor 
which can better manage the two contrasting conditions given until now. 

II.2.2.2 Coupled inductors 

The aim of this configuration is to achieve an inductor which offers a small series 
impedance to respect the condition (31) and a high impedance at 2.fr to meet the condition 
(39). Considerations start from the classical configuration of the 4-port model of a transformer 
depicted in Figure II-15. The equations which characterize the real transformer are shown in 
(40). 

 

 

Figure II-15: 2-port model of a transformer 
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(40) 

 

If the transformer is connected in the configuration depicted in Figure II-16, it can be 
considered a tripolar component of which equations are reported in (41) and (42). 
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Figure II-16: transformer model in tripolar configuration 
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The reactive element provides results that can be considered a simple connected inductor 
series element for which the schema is shown in Figure II-17. This circuit has a series inductor 
which has four times the magnetization inductance LM and output impedance LT, which 
typically is very low as described in (43). 

 

 
Figure II-17: Equivalent tripolar element of the 

coupled transformer 
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The coupled transformer requires more complicated building costs; on the other hand it 
presents an equivalent branch inductance which is four times that of the classical version. This 
can be achieved if the magnetization inductance is sized with the same number of turns of the 
simple branch inductor. 
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II.2.3 Simulations 

After the choice of the system power rate, in this section, simulations performed validated 
the sizing parameters given above. Moreover, the improvements through the coupled reactor 
are shown. 

A HVDC link to connect an off-shore wind farm platform is considered as a case study. 
The nominal power level is 100 MW, with a DC voltage of 160 kV. The MMC is rated 
considering press-packed IGBT. The study is carried out by considering a classical PWM 
control with an interleaving of the cells. 

All of the simulations are performed by considering the macro model. The reference 
structure is depicted in Figure II-3, and it considers just six averaged cells (one per branch), 
each of which resumes the N interleaved instantaneous cells. Each capacitor corresponds to 
the whole capacitance of each branch and has to sustain the DC voltage Vd. 

II.2.3.1 MMC system with classical branch inductor  

The main parameters of the system are given in Table II-2. 

 
Figure II-18: Case study system 

Table II-2: system power rate 
 

System Power Rate 
Nominal power 100 MW 

Phase to phase Grid voltage Vll 83 kV 
Vd 160 kV 

Number of sub-modules N=64 
Voltage capacitor 2.5 kV 

Inductor resistance RS 60 mΩ 

 

In this case, an inductor equal to 50mH was chosen, and a cell capacitor of 7mF is picked 
to achieve a voltage ripple around the 10%. According to condition (39), a resonance 
frequency of 34 Hz was chosen. In Figure II-19, the capacitor voltages are reported only for a 
single phase. The chosen capacitor keeps the ripple amplitude under the imposed value. 

2
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Figure II-19: Cell voltage normalized on the number of cells 

 

The currents flowing (Figure II-20) in the branch inductors have a limited second harmonic 
component around 10%, as shown in Figure II-21. Moreover, other harmonics are not 
amplified, so condition (39) is met. 

 

 

Figure II-20: branch currents 
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Figure II-21: Spectral content of the branch current in percentage with respect to the fundamental component 

The huge inductor value makes the system unable to meet condition (31). Figure II-22 
reports a huge voltage drop on the inductor, which could cause the system to lose the current 
controllability. Under these assumptions, the system is not able to quite match all of the 
conditions imposed in the previous section. 

 

Figure II-22: Percentage spectral content of the voltage drop on the branch inductor 

In the next paragraph, the interphase transformer is employed for the MMC structure. This 
reactor is called to replace the traditional branch inductor to overcome the contrasting 
conditions given before. 

II.2.3.2 Coupled transformer for MMC structure 

The interphase transformer is chosen with a magnetization inductor LM of 25 mH. The 
inductor LT candidate to define the series voltage drop VL at the fundamental frequency is 
chosen to be 20 times smaller than the previous one. A cell capacitor of 6mF is proposed 
always to achieve a voltage ripple around the 10% mark. By considering condition (39), the 
resonance frequency of the circuit is 36 Hz. 
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Figure II-23: MMC phase with coupled inductors 

 

Table II-3: Reactive elements sizing 
Cell Capacitor 6 mF 

LT @ ∆IMAX 2.5  H 
LM 25 mH 

 

 

Figure II-24 reports the capacitor voltages. The chosen capacitor keeps the ripple amplitude 
under the imposed values. 

 

Figure II-24: Cell voltage normalized on the number of cells 

 

Also, in this case, the branch inductors (Figure II-25) are able to limit the second harmonic 
component as shown in Figure II-21. Moreover, other harmonics are not amplified so that 
condition (39) is met. 
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Figure II-25: Branch currents 

 

 

Figure II-26: Spectral content of the branch current in percentage with respect to the fundamental component 

 

The employment of coupled inductors (interphase transformer) better manages the tradeoff 
between the frequency response condition affirmed in (39) and a low-voltage drop on the 
series inductor LT depicted by (31). Figure II-27 reports the voltage drop with respect to the 
phase voltage amplitude provided for the classical branch inductor employment and the 
coupled inductors employment. The amplitude of the voltage drop is reduced about ten times 
that of the classical version.  
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Figure II-27: Comparison of the harmonic content of the voltage drop on the traditional branch inductor of the 
previous case and the series inductor LT 

 

For MMC structures, the use of the coupled transformer better manages the hard trade-off 
between the controllability of the system and the dynamic response. If this approach is 
adopted, the interphase transformer employment is suggested. In this application, only one 
current control loop is necessary with respect for other traditional approaches. On the other 
hand, more complex hardware is necessary.  

II.3 Branch current imposition 
For this approach, there are two controls per phase that operate directly on the branch 

currents inu and ipu , and the AC voltage is imposed on the AC output side. In this case, it is 
possible to achieve the AC output current desired and to suppress the second harmonic 
components (Figure II-11). A detailed description of the control is proposed in Chapter IV. 
Thus, the voltages v(n/p)u (44)-(45) and the currents i(n/p)u (46)-(47) are reported without the 
second harmonic component. As evaluated in (21) the current has a DC component which is 
related to the fundamental one to keep constant the voltage capacitor in the cell. A clearer 
understanding on the components of the branch currents can be achieved by looking Figure 
II-9. 
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II.3.1 Sizing 

The value of capacitor C is chosen to limit the voltage ripple at the fundamental frequency 
∆VC provided by (25) and with a neglected second harmonic component. The maximum ripple 
amplitude is achieved in a pure reactive operating mode, when sin(φ)=1. So the capacitor 
evaluation in this case is a linear problem and can be extracted from (48).. 
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II.3.1.1 Considerations on the arm inductor 

For systems with high power and high voltage, the number of sub modules employed 
becomes very large. For this reason, the equivalent switching frequency is very high if 
interleaved modulations are implemented. This allows a very low switching frequency fsw for 
each device, which leads to a significant reduction in the switching losses. At this condition, 
the branch inductor value, which is calculated from (30), is very low for a huge number of 
cells. The second harmonic suppression in the branch is not considered, because it is 
automatically managed by the current control loop. Problems due to the dynamic response no 
longer exist because the control approach is different. On the other hand, the branch inductor 
plays a key role in the limitation of short circuit currents under faulty conditions. For this 
reason, a low branch inductor means huge short circuit currents. If a branch current control 
approach is considered, the choice of this reactive element is achieved in order to limit the 
short circuit current. This aspect is taken into account in V.II. 

For a limited number of sub modules, usually the branch inductor value given by (30) 
succeeds in managing a limited short circuit current, too. 

II.3.2 Simulations 

According to the considerations provided previously, an inductor equal to 10 mH was 
chosen, the ripple amplitude of the current is kept around 7% (Figure II-28). Only in this case 
instantaneous model is considered to achieve the current ripple. A cell capacitor of 6mF is 
considered to achieve a voltage ripple around 10% of the DC value (Vd/N). Simulations are 
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performed by considering the averaged model shown in Figure II-3. The capacitor voltages 
reported in Figure II-29 just for a single phase show that the amplitude of the voltage ripple is 
kept under the imposed value. 

 

 

Figure II-28: Current ripple on the phase current from the instantaneous model 

 

 

Figure II-29: Voltage capacitor normalized on the number of cells 
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The currents flowing in the branch inductors (Figure II-30) can be considered sinusoidal. 
The second harmonic component is reduced and can be considered negligible with respect to 
the fundamental.  

 

 

Figure II-30: Branch currents 

The second harmonic component is greatly reduced if compared to the previous case 
(output current imposition) as shown in Figure II-31. The current control loop in the branch 
directly limits the component. 

 

 

Figure II-31: Comparison of the branch current -harmonic content  
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II.4 Conclusions 
The macro-model makes the preliminary evaluations direct and allows for very fast 

simulations. The control of the AC output current can lead to a huge second harmonic of the 
fundamental component in the branch current and an amplification of the greater harmonics. 
The simple approach of the control has to be compensated by hardware which becomes more 
complicated and expensive. On the other hand, the second approach facilitates the 
employment of more simple hardware. Of course, it requires a slightly more complicated 
control that is not a problem today thanks to the large choice of control devices available on 
the market. For these reasons, the second control approach was chosen herein the thesis. 
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Chapter III. New multilevel topologies 

A topological study is consolidated and extended in this chapter on three different cell 
topologies. The study of each cell is achieved, and their employment for the MMC structure is 
treated. For each cell, topology advantages and limits are discussed in terms of current and 
voltage. By fixing the nominal power of the system and the DC link voltage, the cells are 
studied and compared in terms of current and voltage on the AC output. It is shown that also 
improvements on the rating of the reactive elements can be achieved if other topologies are 
chosen as the elementary cell with respect for the basic cell employed. An analytic approach 
for the power losses evaluation is given. The losses in the semiconductor devices are evaluated 
for each topology. 

In the second part of this chapter a new multilevel structure is presented. For each phase 
this topology adopts just one branch and interfaces itself with the grid through the zig-zag 
transformer. The new structure is compared with the MMC one in terms of sizing. Moreover 
the so-called multilevel Half wave structure is proposed in order to upgrade the old three phase 
rectifiers based on diodes/thyristors. The upgrating is achieved by keeping the same grid 
transformer and therefore the voltage and current levels. Simulations are performed in order to 
validate the study and evaluate the advantages. 
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III.1 Elementary converters for the MMC Structure 
The choice of the elementary converter depends on the current and voltage which the 

MMC system has to conduct and to impose. A series of preliminary considerations on the 
power flow and the control approach are necessary to determine the voltage and current 
waveforms. As it was introduced in the previous chapter, the branch current control approach 
is chosen.  

For VSC-HVDC systems, as discussed in the chapter I, the grid voltage is imposed so the 
power flow is regulated through the current regulation as shown in the base circuit reported in 
Figure III-1. The basic control for an MMC structure is depicted in Figure III-2 according to 
the choice made in previous section. To simplify the representation, only one phase is 
depicted; the considered phase voltage and current are shown in (49)-(50). The averaged 
model is considered for the analysis, and the controlled sources (vnu and vpu) resume the N 
series connected converters. 

 
Figure III-1: AC side of the DC-AC transmission 
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Figure III-2: Current regulation for the power flow 

provided for a MMC structure 
 

Considerations regarding voltages and currents are given by splitting the circuit in the AC 
and DC part (principle of superposition). The study is performed only for one phase. 

According to the AC circuit of the MMC structure (Figure III-3), the branch currents (51) 
and voltages (53) are provided. This is valid if the branch inductors have the same value and a 
negligible voltage drop. For the DC part of the system (Figure III-4), each branch conducts the 
third part of the DC current (52) because of the three phases. The controlled voltage source in 
the branch must balance the DC link voltage according to (54). 

 

ref
nui

ref
pui



Nicola Serbia                           MODULAR MULTILEVEL CONVERTERS FOR HVDC POWER STATIONS 

 

 
  61 

 
Figure III-3: AC circuit of the MMC structure 

 
Figure III-4: DC circuit of the MMC structure 
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To balance the AC and the DC sides, each branch must conduct the currents in (55) and 
impose the voltages in (56). 
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The active and the reactive power on the AC side are reported in (57). 
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On the DC side the active power is achieved in (58). 
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ddDC IVP =  (58) 
 

From a power balance between the DC and AC side the (59) is carried out. 

)cos(3 ϕVIIV dd =  (59) 

In the next three sections, different topologies for the elementary converters are presented 
as candidates to be employed for MMC structures. Limits and advantages are highlighted for 
each topology. The approach supposes that each branch voltage is the equivalent sum of the N 
series converters as depicted in the previous section. The averaged model was considered for 
the study to make the analysis fast and direct. Moreover, a sinusoidal pulse width modulation 
is supposed. 

III.1.1 Single Cell 

This is the base cell topology used for MMC structures. This cell presents two transistors 
with anti-parallel diodes (Figure III-5). This topology allows the imposition of a monopolar 
voltage and the conducting of a bi-directional current. The study is provided for the negative 
part of the system; considerations on the positive part are directly deducted for symmetry. 

 

 
Figure III-5: Single cell topology 

• Monopolar voltage 

• Bi-directional current 

 

This structure can impose only a positive voltage as shown in Figure III-6. If the considered 
branch voltage is (56), the condition (60) must be met. The voltage on the cell capacitor VC 
must make the system able to reach all the voltage levels required as depicted by (61).  
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Figure III-6: Averaged voltage waveform if the 

single cell is considered 

2
2 dVV ≤  (60) 

2
.2 d

C
V

VN =⋅  (61) 
 

 

So the modulation signal is reported in (62) if the value of M is considered maximum 1. 

)sin(22)( 0 ϕω −= t
V

Vtk
d

)
, 

dV
VM 22

=  (62) 

 

The power balance in (59) is considered between the AC and the DC side to carry out the 
current waveform. The relationship between the AC and the DC currents is performed if the 
AC voltage amplitude in (62) is considered. The current waveform is shown in Figure III-7 by 
employing the single cell for an MMC structure. 

 

 
Figure III-7: Averaged current waveform if the single 

cell is considered 

)cos(2
4
3 ϕIMId =  (63) 

 

 

This balance is also necessary to ensure a constant dc voltage across the capacitor. The 
right power balance also indicates a constant voltage capacitor in the cell and therefore the 
right energy balance in the branch. 
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III.1.2 Asymmetrical H-bridge  

This topology guarantees the bipolar voltage, but it can only conduct a unidirectional 
current. The considered circuit is shown in Figure III-8. 

 

 
Figure III-8: Asymmetrical H-bridge topology 

• Bi-polar voltage 

• Monodirectional current 

 

For this topology, the branch current has to be kept as expressed in (64). This condition 
leads to a balance between the AC and DC components of the currents carried out in (65).  

 

 
Figure III-9: Averaged current waveform if 
Asymmetrical H-converter is considered 

0)sin(
2
2

3
)( 0 ≥++= ϕω tIIti d

un  (64) 

dII ≤2
2
3

 (65) 
 

 

The choice of a current with a high DC component increases the rms value. This means an 
oversizing of the semiconductor devices. To optimize the semiconductor choice, the balance 
(65) is chosen so that the DC component is equal to the AC one. Under this condition, by 
substituting (65) in the power balance (60), the relationship between the AC and DC voltages 
is achieved in (66). This means that the use of the asymmetrical HB-topology is not suggested 
for reactive power compensations because of the high DC link voltage levels required. Then, 
the following study was performed only with the unit power factor. 

 

ϕcos
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The voltages imposed by each branch are expressed by (67) where N is the number of 
elementary converters per branch. The total number of elementary converters has to be chosen 
according to (68) where f  is the modulation signal.  
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To ensure a linear SPWM modulation the peak value of f(t) has to be less than 1. The ratio 
between the number of elementary converters and the DC voltage is carried out in (69). 

 

 
Figure III-10: Averaged voltage waveform if 

asymmetrical H-bridge topology 

 

dC VVN
2
3

≥⋅ ,  (69) 

 

In this case, the voltage level NVC , which enables the system to reach the maximum 
amplitude of the branch voltage, is 1.5 times that of the DC voltage. This means a 50% 
increase for the number of elementary converters per branch with respect to the employment 
of the simple cell. On the other hand, considerations on the sizing capacitor make this 
topology more attractive. 

III.1.2.1  The capacitor of the Asymmetrical H topology and the AC current 

The voltage imposed by the Asymmetrical H-topology is double that of the simple one. By 
fixing the values of the DC voltage and the system power rate, the active power is provided for 
the single elementary converter (70) and for the asymmetrical H bridge topology (71). In the 
comparison between the two powers in (72), it is shown that, if the asymmetrical H bridge 
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topology is employed, half of the current is necessary to achieve the same power, also 
decreased by M.  

SCdSCAC IVMP ⋅⋅=
22

3
 (70) 

AHdAC IVP ⋅=
2

3
 (71) 

 

The amplitude of the voltage ripple on the capacitors depends on the AC current (48). 
Thus, to achieve the same amplitude of voltage ripple, at parity of capacitor voltage of the 
elementary converter, less than half of the capacitance is necessary in terms of single cell use 
(72).  

 

2
SC

SCAH
IMI = →

2
SC

SCAH
CMC =  (72) 

 

III.1.3 H-bridge 

The so-called four-quadrant converter can manage the bi-directional propriety in the 
current of the single cell, and it can impose a bi-polar voltage as the asymmetrical H-bridge 
topology. On the other hand, the H-bridge topology requires double the components of the 
others, four transistors and four diodes, as depicted in Figure III-11.  

 

 
Figure III-11: H-bridge topology 

• Bi-polar voltage 

• Bi-directional current 

 

In (73) the voltage condition to respect is reported. The equivalent sum of the output 
voltages waveform is highlighted in Figure III-12.  
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2
2

VVd <  (73) 

 

 
Figure III-12: Averaged output voltage of the H-

bridge converter 

 
Figure III-13: Averaged current waveform in the H-

bridge converter 

 

In (74), the current condition’s waveform is highlighted in Figure III-12.  

 

ϕcos
.

3
2

2
2 dII

≤  (74) 

 

Under ordinary operative conditions, the H-bridge structure is not necessary for the MMC 
systems. On the other hand, if this cell is configured like a single cell, the bi-polarity can be 
used in the case of DC fault, which is addressed in the chapter V. 

 

III.2 Efficiency for multilevel structure 
Regarding the power level, 1% of losses is not negligible (1 GW correspond to 10 MW of 

losses). For this reason many semiconductor producers consider efficiency as an ‘alternative 
fuel’. Thus, the power losses evaluation is not a secondary problem. The monitoring of the 
losses becomes more attractive for high-voltage applications when the number of devices is 
very high. 

In this chapter, the modular multilevel structure is studied in terms of efficiency. An 
investigation on the power losses in semiconductor devices is carried out by taking into 
account the previously described cells. An analytical approach was given for each case. After 
fixing the nominal power and the DC voltage for the converter, the efficiency of the system is 
evaluated for each kind of employed cell. The analytical results are validated by simulations 
performed by PSIM software.  
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III.2.1 The analytical approach 

A three-phase balanced operation is assumed and then only one elementary converter is 
considered. The current in the devices should be carefully determined and the definition of the 
conduction intervals is fundamental to evaluate conduction and switching losses [52]-[55]. 
Conduction losses (76) are evaluated by considering a piece-wise linear approximation of the 
forward characteristic (75) r0 is on state resistance and V0 the voltage threshold) [56]. Averaged 
and RMS values are calculated according to expressions (77) and (78) where α is the duty 
cycle of the control signal. Assuming θ=ω0t, θ2-θ1 is the conduction angle of the devices. 

 

0/0// DTCDTDT VIrV +=  (75) 

( ) avg
DTDT

rms
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DT IVIrP /0/

2
/0// +=  (76) 
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α θ

π
= ∫  (77) 

2

1
1

21 ( ) ( )
2
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TI i t t d

θ

θ
α θ

π
= ∫  (78) 

 

For the calculation of the switching losses, we considered, for the energy curves given by 
the manufacturer datasheets, a second order approximation [56]. Coefficients adev, bdev and cdev 
in (79) come from this approximation.  

( )∫ ⋅+⋅+⋅= 2
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π
d
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ref

i
devdevdev
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DT

 (79) 

 

Conduction and switching losses extracted in this section suppose a commutation 
frequency much higher than the fundamental frequency [56]. 

III.2.2 System rating 

In Table III-1 the nominal power and the devices are defined. Moreover from the 
semiconductor datasheet the linear coefficients of the conduction curve and the coefficients of 
second order of the energy curve are shown. The number of cells, AC output current and 
voltages are extracted according to the cell topology chosen for the system. 
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Table III-1: Case study 

POWER CONVERTER S = 100 MVA 

DC voltage Vd 160 kV 

Cell voltage 2.5 kV 

Switching frequency fsw = 200 Hz 

IGBT COEFFICIENTS @ VCC=2.8 kV 

TRANSISTOR TOSHIBA“S6X06B” DIODE  EUROPEC “D 1331 SH” 

rT0=1.3mΩ; VT0=1.5 V rD0=1.3mΩ; VD0=1.1V 

aon+aoff=-15n; bon+boff=12.1m; con+coff=-2.4m arec=-2μ; brec=5.2m crec=0.57 

  

III.2.3 Single cell& Full H-Bridge  

The performed study is valid for both the single and for the full H-bridge cell. This last one 
in ordinary conditions is configured like a single cell. The bipolar voltage is provided only for 
faulty conditions. The losses of both the switching and conduction depend on the duty cycle 
and on the current in the device. The RMS and the average values of the current in the devices 
are carried out in this section.  

III.2.3.1 Current calculation 

As it was shown in Figure III-14, for the study the negative branch is chosen. All capacitor 
voltages are considered with a constant value VC=Vd/N moreover for the current we consider a 
waveform without ripple at the switching frequency. For the H-bridge cell (Figure III-15), in 
normal operation, the device 3 is always on while the device 4 is always off. In terms of power 
losses, devices 1 and 2 are analyzed according to the analytical method adopted for the simple 
cell. In normal condition the device 4 is always opened while the device 3 conducts always 
without commutations. 

 

 
Figure III-14: Single cell configuration 

 
Figure III-15: H-bridge configuration 

 

The duty cycle is given by (80). 
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2
)(1)( tktn

−
=α  ; )(1)( tt np αα −=  (80) 

 

In Figure III-16, the modulation signal f(t) and the current in a cell of the negative branch 
inu (46) are reported. Due to the current waveforms, the conduction interval of the devices 
depend on the sign of cos(φ). The DC component of the current determines different losses 
between the two switches of the cell.  

 

 
Figure III-16: Modulation signal and cell current 

TABLE III-2 – Conduction intervals of the devices 

Dev. Conduction Interval 
[θ1 ; θ2] 

Current Mod. index 

T1 
[π+asin(Mcos(φ)/2) ; 
2π-asin(Mcos(φ)/2)] iun(t) αn(t) 

D1 
[-asin(Mcos(φ)/2); 

π+asin(Mcos(φ)/2)] iun(t) αn(t) 

T2 
[-asin(Mcos(φ)/2); 

π+asin(Mcos(φ)/2)] iun(t) αp(t) 

D2 
[π+asin(Mcos(φ)/2) ; 
2π-asin(Mcos(φ)/2)] iun(t) αp(t) 

 

TABLE III-2 gives for each device the conduction interval and the associated current. The 
current averaged values were evaluated by solving integrals (77) and (78) according to TABLE 
III-2. The results are given in expressions (81), (82) and (83).  
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In a similar way, integral (78) allows calculating current RMS value for each device. The 
results are given from expression (84) to expression (87) 
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The unsymmetrical current waveform makes the calculation more complicated compared 
to a classical Voltage Source Inverter. Knowing the RMS and averaged values of the currents 
the conduction losses can be easily evaluated considering expression (76). Switching losses are 
calculated by considering integral (79) and conduction intervals depicted in TABLE III-2. It is 
possible to define functions g1 and g2 as reported in (88) and (89). Nevertheless, switching 
losses change according to the sign of cos(φ) as it is shown in expressions (90) to (93). 

III.2.3.2 Case study 

The power losses evaluation was performed in different operating modes: inverter and 
rectifier at unit power factor and reactive power compensation. By keeping the same 
semiconductor devices, analytical calculations were validated by PSIM software. According to 
the analysis of the cell topology, the parameters in TABLE III-3 are extracted to carry out the 
power required by the system (Table III-1). 

 

Iu [rms]  693 A  

Vll [rms] 83 kV 

αMAX  0.925  

N 64 
TABLE III-3 – system parameters if the single cell or the H-bridge cell are used 
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III.2.3.3  Results for Single Cell 

As it is shown in Figure III-17 and Figure III-18, in the unit power factor operation the 
MMC presents a strong dispersion of the power losses between the devices as expected from 
the previous section. In the reactive power compensation, the currents in the branches of the 
MMC become symmetrical and the losses calculation is then equivalent to a classical VSI, 
moreover the inductor case is the same of the capacitor case (Figure III-19). 

 

 

Figure III-17: Cell power losses for MMC in 
Inverter operating mode 

 

 

Figure III-18: Cell power losses for MMC in 
Rectifier operating mode 

 

 

Figure III-19:Cell power losses for MMC in reactive operating mode 
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III.2.3.4 Results for the full H-bridge 

Analytical results are reported in Figure III-20 to Figure III-22. For the switching devices 1 
and 2 the power losses evaluation was performed as in the elementary cell. Just conduction 
losses for S3 are added. 

 

 

Figure III-20: Cell power losses for MMC in Inverter 
operating mode 

 

 

Figure III-21: Cell power losses for MMC in 
Rectifier operating mode 

 

 

Figure III-22: Cell power losses for MMC in reactive operating mode 

 

The addition of semiconductor devices makes the full H-bridge more expensive in terms of 
losses. For this reason an investigation on the total losses of this cell respect to the simple cell 
was carried out. In Figure III-23 and Figure III-24 the increases are shown. 
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Figure III-23: Increase of the losses for a 3-Phase 

system by using full H bridge cells respect to a classical 
system 

 

 
Figure III-24: Total losses comparison for a 3-phase 

system by considering the classical cell and the full H 
bridge cell 

III.2.4 Asymmetrical H-Bridge 

With respect to the previous topologies, the asymmetrical H-Bridge solution shows 
different current waveforms in semiconductor devices and different modulation ratios. 

Due to the symmetry, just the negative branch is considered; the reference circuit is 
reported in Figure III-25. The current has only one direction as in (94). For this reason, diodes 
D1 and D2 in nominal operating condition are not used. For each pair of devices, in (95) and 
(96) are reported the modulation ratio necessary for the calculation of RMS and average 
currents.  

 

 
Figure III-25: Asymmetrical H-Bridge employed for 

the negative branch 
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III.2.4.1 Current calculation 

According to (77), the average value of the devices is extracted in (97), while the RMS 
values are reported in (98) and (99). According to the current direction, shown in Figure 
III-25, only T1, T2, D3 and D4 are conducting. 
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According to (78) the switching losses can be expressed by (100). 
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To calculate the total losses, an equivalent case study with same power rating and same 
DC voltage level was considered (see Table III-1). According to the asymmetrical H-bridge 
properties, the AC voltage value is increased with respect to a topology using simple cells (66). 

III.2.4.2 Results 

As we said before, the power losses evaluation was performed only for a unit power factor. 
By keeping the same semiconductor devices and ratings (Table III-1), analytical calculations 
were validated by PSIM software by making rating adaptations in TABLE III-4 due to this 
kind of topology. 

 

Iu [rms]  295 A  

Vll [rms] 121 kV 

αMAX  0.925  

VC 2.5 kV 

N 113 
TABLE III-4 – System parameters 

 

Losses for this elementary converter are balanced between the components as shown in Figure 
III-26. Of course the total losses are the double (Figure III-27) respect to the single cells due to 
the number of elementary converters necessary for the employment of this topology.  
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Figure III-26: Single elementary converter losses  

  

 
Figure III-27: Total losses percentage comparison 

with the single cell 
 

 

III.3 Conclusions 
The MMC structure by Professor R. Marquardt is based on single-cell topologies. This cell 

cannot impose negative voltages; thus, in the case of DC faults, only the branch inductor can 
limit the current. The asymmetrical H-bridge topology needs the same number of devices per 
elementary converter. It can impose a bi-polar voltage that better limits the over-currents in 
faulty conditions. Moreover, at the parity of power sizing and capacitor voltage, this topology 
allows a reduced value of the capacitance. On the other hand, the number of elementary 
converter is around the double rather than the single cell use; moreover, this topology is not 
suitable for reactive power compensations. Of course this topology can be employed for CSC 
based applications where the power reversibility is achieved with the DC voltage reversibility. 
If the four-quadrant operation is required with a good limitation of over-currents, then the use 
of the H-bridge cell is suggested. Moreover, this cell causes the MMC structure not to depend 
on the voltage and current levels; this aspect is well consolidated in the next section. Of 
course, the employment of double the components increases the costs. The power reversibility 
with this topology can be achieved with both the DC voltage and the DC current. 

The analytical power losses study makes the evaluation fast and direct. It was not easy to 
carry out the formulas due to the DC component in the device’s current. If the DC voltage 
value is maintained, the Asymmetrical H-bridge is not so convenient in terms of power losses, 
despite the lower RMS AC current. This is because, in the Asymmetrical H-bridge, each 
device conducts during the whole period. Nevertheless, if this cell is employed, a reduced 
capacitor value can be achieved. Finally, the 25% increasing losses with respect to the single-
cell employment is not acceptable for the HVDC employments which usually require almost 
1% of the total losses (including losses in the reactive elements). For many other applications 
with a relatively reduced power the full H-bridge topology is recommended, because it can be 
employed like a single cell in ordinary operating conditions, and it can limit the current in 
faulty operating conditions. 
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III.4 New Modular Multilevel Half Wave topology 
with zigzag transformer 

As shown previously, each branch of the MMC structure has a DC and AC component in 
the voltage and current. The combination of two branches per phase makes possible the right 
power transferring of the two components according to the assumptions made in the previous 
chapter and the circuit diagrams given in Figure III-3 and Figure III-4. 

The proposed structure requires just the upper part of the MMC structure as shown in 
Figure III-28. This configuration absorbs on the AC side currents with a DC zero sequence. 
To avoid the saturation of the magnetic core a secondary winding with a zig-zag configuration 
is used [57]-[58]. Thanks to this coupling, secondary voltages are balanced while the DC zero 
sequence current is canceled on the primary side. 

On each phase, several DC/AC cells (converters) are connected in series. Output currents 
i’u ,i’v and i’w are imposed by three independent control loops which provide a Pulse Width 
Modulation to the DC/AC converters (101). The phase voltage is chosen according to (102) 
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Figure III-28 – Upgraded AC/DC converter 

 

From Figure III-28 the averaged model presented in Figure III-29 is developed and valid at 
the fundamental frequency. By neglecting the voltage drop across the leakage inductor of the 
transformer LS, voltage buV can be expressed by (103). 
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Figure III-29 - Simplified circuit on the AC side with averaged model of the Half Wave multilevel converter 

 

)sin(ˆ)( 0 tVVtV dBu ω−≈   (103) 
 

Each elementary converter has to conduct the third part of the DC current and the AC 
current necessary to achieve the power required if a unitary transformation ratio is provided 
for the zig-zag transformer.  

By considering the same capacitor voltages VC and the same DC current, if Vd is the DC 
voltage for the traditional structure a fast comparison in terms of sizing can be achieved for the 
same cell topology (Single Cell). Moreover for the zig-zag transformer a unitary 
transformation ratio N1/N2 is chosen. 

The voltage imposed by each branch is evaluated in (108) to keep a unipolar voltage; the 
modulation signal is so extracted in (109). 
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The sizing comparison in Table III-5 highlights that for the modular multilevel Half Wave 
the double of the cells per phase are necessary respect to the classical MMC. The sources Vbx in 
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fact have to sustain all the DC voltage. Moreover the half of the current is imposed on the AC 
side because the AC voltage is the double respect to the classical MMC structure. 

 

 MMC Multi HW with zig-zag Ratio Multi HW/MMC 
Number of cells 

C

d

V
V

N .2.2 =  
C

d

V
V

N .2=  1 

AC rms voltage  

22
. dV

MV =  
2

. dV
MV =  2 

AC rms current 

V
PI
.3

=  
V
PI
.3

=  ½ 

Table III-5: Comparison on the sizing of the classical MMC structure and the Multilevel Active Front End 

 

In many cases the new structure can be used to replace systems where there is a pre-existent 
zig-zag configuration such as the application chosen as case study in the next section. 

III.4.1 3 MMC Half Wave topology to upgrade obsolete 
diode/thyristor rectifiers 

In this section a particular association of AC/DC multilevel converters is proposed to 
update classical 3-pulse diode or thyristor rectifiers. The approach is made by keeping the pre-
existing transformer and voltage values both on the AC and DC side. 

The use of 3-pulse diode or thyristor rectifiers can be considered one of the first structures 
to achieve a AC/DC conversion. In literature, it is well known that the simplicity of this 
topology leads to a series of drawbacks [59].  

Due to current waveforms show on the AC side, these rectifiers present a poor power 
factor. Due to severe constraints on Power Quality, these kinds of topologies are associated to 
harmonic filters which increase the complexity of the conversion system [60]. Moreover half 
wave rectifiers show a DC current component on the three phase currents that influences the 
transformer rating. At this effect, a transformer with a zigzag coupling can be used [59]. 

Nowadays, in the frame of Medium and High Power applications, new requirements on 
power quality lead to draw a quasi-sinusoidal current waveform with a four quadrant 
operation. For this reason, classical diode/thyristor rectifiers are obsolete and should be 
replaced. With the view to save money, it is necessary to update the traditional topology by 
keeping the same transformer and the same output voltage level. Nevertheless, active front end 
solutions based on multilevel voltage source inverters [61] are not suitable to control the DC 
voltage in the same conditions as a thyristor rectifier (the average output voltage is always 
lower than the input voltage). 
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III.4.1.1 Three phase half wave rectifier 

The 3 pulse bridge rectifier presented in Figure III-30 absorbs on the AC side currents with 
a DC zero sequence as shown in Figure III-31-a [62].To avoid the saturation of the magnetic 
core a secondary winding with a zig-zag configuration is used [57]-[58]. Thanks to this 
coupling, secondary voltages are balanced while the DC zero sequence current is canceled on 
the primary side as it is shown in Figure III-31-b. 

 

 

Figure III-30: Three phasehalf bridge rectifier with zigzag transformer. 

 

 

Figure III-31 – AC Current waveforms at secondary side (a) and primary side (b) of the transformer 
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III.4.1.2 The case study 

In a half wave three phase rectifier, voltages on AC and DC side are respectively defined by 
expressions (106) and (107) by considering the averaged circuit in Figure III-29. Thus, the 
upgraded system has to be able to manage the power with the same voltage level. So the 
branch voltage (108) and the modulation signal (109)-(110) are evaluated. 
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To keep constant the capacitor voltage on each elementary converter, the power level has 
to be the same on DC and AC side (111). This statement leads to a direct relation between Id 

and Î (112). Thus, expression (112) shows that the current waveform has positive and negative 
values requiring a converter topology bidirectional in current. 
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As discussed in the previous section, the multilevel AC/DC converter has to be based on 
four quadrants elementary converters as depicted in Figure III-11. 

Left column of TABLE III-6 shows the main parameters considered for the multilevel 
converter rating. Considering 4.5 kV IGBTs or IGCTs devices and according to (109).The 
switching frequency is fixed to 350 Hz and the value of the capacitor is calculated to achieve a 
voltage ripple under 2%. 

 

 



Nicola Serbia                           MODULAR MULTILEVEL CONVERTERS FOR HVDC POWER STATIONS 

 

 
  83 

DC link POWER CONVERTER SN = 10 MVA  

DC Link Voltage (Vd) 10 kV Transformer secondary voltage V’ll 23 kV 

Zigzag Transformer DC capacitor voltage VC 2.6 kV 

Magnetization Inductance LM 12 H Number of Cells per phase N 10 

Total Leakage Inductance 12.7 mH Cell Capacitor 10 mF 

Winding Resistance 0.7Ω Switching Frequency 350 Hz 

Turn ratio N1/N2= N1/N3 3.76   

TABLE III-6 – Converter Rating 

 

To validate this study a model based on the time-domain simulation tool PSIM was 
developed. Simulation results are presented below. In Figure III-32-a, the multilevel voltage 
waveforms imposed by the converters are shown. As it was highlighted in expression (108), 
the DC offset makes these waveforms unsymmetrical. 

Figure III-32-b show capacitor voltages and validate the choice of the capacitor value 
which guarantees a voltage ripple of 2%. 

 

 

Figure III-32: Simulation Results – Voltage waveforms. 
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Figure III-33-a show the secondary current waveforms with a DC component. As expected, 
the primary current waveforms presented in Figure III-33-b are quasi-sinusoidal with a very 
low harmonic distortion. 

 

Figure III-33 – Simulation Results – Current Waveforms 

 

Improvements on the AC side in terms of current are shown in Figure III-34. The single 
loop topology allows achieve negligible fundamental greater harmonics. This leads to a big 
reduction of the filtering elements. 

 

 

Figure III-34: comparison spectral content of the phase current 
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III.4.2 Conclusions 

In terms of sizing the MMC Half Wave structure is the same respect to the MMC, of 
course the new topology does not require the branch inductor because it utilizes the leakage 
inductance of the zig-zag transformer. In a classical MMC structure the transformer has to 
sustain a DC insulation equal to the half of the DC voltage. This is not the case for the new 
topology, a classical insulation is sufficient. 

The multilevel converter proposed to upgrade old rectifiers seems attractive. It draws on the 
AC side quasi-sinusoidal current waveforms. Furthermore, thanks to the cascaded H Bridge, a 
four quadrant operation can be achieved on the DC side. Nevertheless, the number of required 
devices could be very expensive. On the other hand, changing the transformer turns ratio 
could be a cheaper solution requiring a lower number of semi-conductor devices for the same 
output voltage.  
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Chapter IV. PWM Control for Modular 

Multilevel Converter 

A control strategy for modular multilevel structures is proposed in this chapter. The 
scenario of the modulations techniques is described considering Phase Shift Modulation 
PWM. 

In a classical VSI, the control imposes the desired output currents and keeps a constant 
voltage on the DC link. For multicellular structures the right balance among the voltages of 
each elementary converter is necessary, too. 

For PS-PWM employment, the control for multilevel structure is carried out through three 
main control loops which are described hereafter. The regulators are defined and synthetized 
for each control loop. A system of 100 MW composed by 64 elementary converters per branch 
is considered as a case study for which sizing parameters were provided in the second chapter. 
Simulations were performed to validate the control strategy by ensuring the right set-up of the 
regulators. The chosen simulation environment is MATLAB-PSIM. 
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IV.2 Principle of the Phase shifted PWM for MMCs 
 

One more time the averaged model of the structure shown in Figure IV-2 is proposed in 
order to make the preliminary study fast and direct. The subscript “av” in the formulas is 
neglected to better visualize the equations. The instantaneous model is used only if specified. 

 

 

Figure IV-2: Averaged model for a MMC structure 

 

The control for SPWM modulated multilevel structures has to ensure that: 

• The system is able to impose the desired current to achieve the required power 

• In each phase the capacitors are on the desired voltage level 

• The voltages among the capacitors of each elementary converter are balanced between 
them. 

The unbalancing can be caused by different tolerances of passive components, unequal 
conduction and switching losses in the semiconductor devices or signal imbalance and 
resolution issues inherent in the control circuit including voltage/current sensors [63]. 

For these reasons the control approach needs three controllers which are arranged 
according to the diagram in Figure IV-3. 
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Figure IV-3: SPWM Control approach for a multicellular structure  

The energy balancing and the current control follow the classical cascaded disposition of 
the VSC based structures. The energy balancing provides the required active power, through a 
current reference, in order to keep the capacitors charged. 

In ideal conditions where all the cells of the system are equal and balanced, with the same 
losses and with sensors with the same characteristics, the cell balancing control could be 
neglected. This control only regulates the voltage of each capacitor around the right level, 
which is just reached by the energy-balancing controller. Thus this loop adjusts the voltage on 
the capacitor by directly interfering on the modulation signal. 

The control approach does not depend from the particular topology of the elementary 
converter. The scaling between f(t) and the duty cycle α(t) is immediate. 

Each controller of Figure IV-3 was presented and developed for the MMC structure. 
Moreover simulations were performed to validate the study on the 100 MW system presented 
in the previous chapters and recalled in Table II-2. The system was sized according to the 
considerations carried out in section II.3. For a better understanding the averaged model was 
considered. 
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Figure IV-4: Case study system 

 
 
 
 
 
 

Table IV-1: system power rate 
 

System Power Rate 
Nominal power 100 MW 
Phase to phase Grid voltage Vll 83 kV 
Vd 160 kV 
Number of sub-modules  N=64 
Branch inductor L 10 mH 
Cell Capacitor C 6 mF 
Voltage capacitor  2.5 kV 
Cell switching frequency 200 Hz 
Inductor resistance RS 60 mΩ 

 

IV.2.1 Current control loop 

The study supposes that the averaged model of the MMC (shown in Figure IV-2) is 
connected on the AC side with a balanced (16) and symmetrical three-phase grid (114).  
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As discussed in the second chapter the superimposition approach facilitates the study and 
allows for easier understanding.  

In Figure IV-5 the control strategy for the AC part of the system is depicted. The system 
supposes that there is not DC current for the symmetry condition. The structure can be seen as 
two independent STATCOMs (negative and positive). 
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Figure IV-5: Control approach for the AC part for a MMC structure 

 

Each voltage of the branch generator can be regulated to impose the required current 
through the branch inductor. The AC part of the current for each branch is required to be the 
half of the phase current. 

According to the symmetry conditions one of the branch currents per STATCOM depends 
on the other ones as written in (115).  

 

( )AC
nu

AC
nv

AC
nw iii +−=  ( )AC

pu
AC
pv

AC
pw iii +−=  (115) 

 

This means that for each STATCOM just two branch voltage generators can be controlled 
according to the simplified schema shown in Figure IV-6 for the negative part and in Figure 
IV-7 for the positive part. 

 
Figure IV-6: Simplified circuit for the negative part of 

the structure 

 
Figure IV-7: Simplified circuit for the positive part 

of the structure 
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For each part the equations (116) and (117) are achieved by considering the branch 
inductors without copper losses. 
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In order to control the AC part of the MMC structure it is necessary to respect the four 
equations independently. 

The control strategy for the DC part of the structure is shown in the layout in Figure IV-8. 

 

Figure IV-8: Current control loop for the DC part of the MMC structure 

 

The u and v current controls are supposed to work well. The control must provide just the 
balance in (118). The current loop in Figure IV-8 is achieved in (120). Since the two controlled 
generators are driven by the same loop the (120) is developed into (121). 
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Finally for the current control, the branch generators have to be driven to comply with the 
five equations summarized in (116), (117) and (121). 

IV.2.2 dq0 reference frame 

The advantages coming from the control implemented in the dq0 reference frame with 
respect to the time domain are well known and described in the literature [64], [65]. In this 
section the control approach represented in the dq0 reference frame is shown and then 
simulations are performed to validate this study. 

During the steady state of the system the currents in the branches are thereby extracted in 
(122) for the negative part and in (123) for the positive part of the system. 
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According to the park transformation the dq0 components are evaluated according to (124) 
and (125) [66].  
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The dq0 components of the current for each part (negative and positive) of the MMC are so 
extracted in (126). Of course, the dq components depend on the AC part of the branch currents 
because the second part of the sum is equal to zero. 

To perform the current control loop the dq0 transform of the derivate has to be carried out 
according to (116), (117) and (121). For this reason the derivate in the time domain for (124) 
and (125) are achieved in (126). The 0 components are evaluated by considering the (118) and 
(119) 
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(126) 

 

In order to achieve a better visualization, (126) was rearranged in the form of (127) for the 
negative part of the system and (128) for the positive one. 
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The obtained equations show the dependency between the d and q components, as 
described in [63]-[65]. So the results in (116) and (117) and (121) in the dq0 reference frame 
become (129) and (130). 
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Evaluations showed that the d and q components of the current are coupled between them 
[64]. In the next section d and q components are decoupled to simplify the regulator synthesis.  

 

IV.2.2.1 The regulator synthesis  

In order to test only the current control loop, the system in Figure IV-9, the averaged branch, 
is considered by substituting the capacitor with a voltage source. 

 

 

Figure IV-9: Averaged model of the MMC branch to test the control loop 

 

The PLL adopted is the Feed Forward q-PLL which generates the direct component 
synchronous reference frame. The chosen q-PLL was consolidated in [68] for its fast and 
robust latching. 

As described before the dq current controls are performed for the positive and negative part 
of the structure. According to (129) and (130) the decoupling layouts are achieved in Figure 
IV-10 for the negative part and in Figure IV-11 for the positive part. 
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Figure IV-10: Layout of the control for the negative part in dq0 reference frame 

 

 

Figure IV-11: Current controller plant in dq0 reference frame for the positive part of the structure 

 

After the decoupling the d and q components can be independently treated as depicted in 
Figure IV-12 and Figure IV-13 [69]. 
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Figure IV-12: Current loops for the negative part 

after the de-coupling 

 
Figure IV-13: Current loops for the positive part 

after the de-coupling 
 

In the dq0 reference frame, the control of the fundamental component means controlling a 
constant variable in the time domain. Moreover, a second harmonic component due to the 
circulating currents, treated in the second chapter, has to be suppressed (Figure II-9). In dq0 
this component becomes the fundamental one.  

The PI regulator (131) is synthetized according to the open loop transfer function shown in 
(132). The gain ki is evaluated in order to achieve a crossing frequency ten times the 
fundamental component while the time constant Ti is defined to achieve a phase margin of 
60° in order to guarantee the stability. 
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The layout of the 0 component control is defined in Figure IV-14 by implementing the third 
equation of (129) or (130). 
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Figure IV-14: Current controller plant for the 0 component of the structure 

 

The layout of the control loop is depicted in Figure IV-15. 

 

 

Figure IV-15: Control loop for the 0 component 

 

The regulator (134) makes the system able to follow the power required, for this reason; the 
dynamic proprieties of the open loop transfer function (135) are slower than the current loop. 
Therefore, the cutting frequency is around 10 Hz while the time constant is chosen to 
guarantee the stability (136). 
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IV.2.2.2 Simulations 

The current control loops are validated via simulations by considering the averaged system 
with the main parameters listed in Table II-2.  

The simulations are performed according to the power excursion in Figure IV-16, from 
inverter to rectifier operating mode always at unit power factor. The dq currents measured in 
the system seem to match quite well with the references. The stability and the crossing 
frequency imposed by the regulators guarantee the stability and good shape of the waveforms. 

 

 

Figure IV-16: d-currents with the references and active power 

 

In Figure IV-18 and Figure IV-18 the good synthesis of the regulators is validated even for 
the q component which is imposed to zero and for the 0 component which is the third part of 
the DC current. 
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Figure IV-17: Components for q-currents 

 

 

Figure IV-18: q0-current references and measurements 

 

Finally the u, v, w current components in the branches are reported for the two parts of the 
system. As verified before, the 0 component regulator was also very well synthesized. 

 

0

-20

-40

20

inq [A]

1.5 2 2.5 3
Time (s)

0

-20

20

40

ipq [A]

1.8 2 2.2 2.4 2.6
Time (s)

0
-200

200
I0n I0p



Chapter IV                                                                         PWM Control for Modular Multilevel Converter 

 

 
 102 

 

Figure IV-19: u, v, w current components in the branches and continuous current 

 

IV.2.3 Branch energy balancing 

This part of the control regulates the active power necessary to keep the capacitor voltages 
on a required level. The averaged system in Figure IV-2 is considered. For each part of the 
system (positive and negative) the DC mean capacitor voltage of the three branches VCn/p is 
given by (137).  
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In the dq0 reference frame, considering the PLL latched on the phase voltage, the active 
and reactive powers, managed by each part of the structure, are achieved in (138). The 
achieved balance affirms that the active power depends only on the direct component of the 
AC current and of the AC voltage. The AC voltage is imposed by the grid. The control of the 
active power is achieved by the regulation of the direct component of the current. 
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Assuming that the negative and positive parts of the structure are balanced between them, 
the active power is shared in the structure according to the (139). The equivalent capacitance 
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of each branch is considered as discussed in the second chapter (C/N) by taking into account 
the AC in (138) and the balance (139) becomes the (140). 
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A constant value of the capacitor voltage requires a current with a null DC component as 
discussed in the second chapter. Hence, we have a direct relationship between the DC and AC 
currents of the system recalled by (24) in the dq0 reference frame. AC and DC current 
components in the system are dependent. 
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IV.2.3.1 Design of the controller 

The synthesis was developed by considering the layout in Figure IV-20 valid for the 
negative and the positive structure according to the (140). The gain of the loop was fixed by 
considering vd equal to the peak value of the voltage (16). 

 

 

Figure IV-20: Branch energy control loop 

 

By considering the voltage regulator (131), the open loop transfer function of the system is 
reported in (143). The control system guarantees the right energy balancing, for this reason the 
PI regulator is chosen to achieve a low crossing frequency and by ensuring the stability (144). 
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IV.2.3.2 Simulations 

Simulations were carried out in order to verify the good synthesis of the energy balancing 
regulators. The main parameters of the system are reported in Table II-2. Simulations are 
performed by considering the power excursion in Figure IV-21, keeping a null reactive power. 

The direct components of the current references are generated by the voltage control as 
depicted by the macro-layout for of the control in Figure IV-3.  

By requiring a DC current of 650 A (necessary to achieve 100 MW), the voltage controllers 
generate the right reference by ensuring the right level of the d-component for each branch 
current (24) for the two parts of the structure (Figure IV-21). 

 

 

Figure IV-21: Output of the energy balancing controller and direct component of the current for the negative 
and positive part; power flow 
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The voltage value on the averaged cell capacitors is kept constant as shown in Figure 
IV-22. 

 

 

Figure IV-22: Averaged capacitor voltages 

 

IV.2.4 Cell voltage balancing 

To balance each cell on the desired voltage value a proportional corrector is chosen as was 
described in [63]. For each branch the controllers are achieved according to Figure IV-23. The 
control adds an offset dα to the duty cycle imposed by the previous controller and it is placed 
according to the control plant in Figure IV-3. Because the balance locally interferes on the 
single cell it is necessary to take in account the direction of the current. In this way, according 
to the references imposed in Figure IV-2, if the current is positive and the voltage of the cell 
capacitor is low, the regulator increases the time in which the capacitor is connected to the 
branch until when is reached the required value and vice-versa.  
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Figure IV-23: Capacitor voltage balancing diagram in a branch 

 

The constant of the regulator kC (145) is evaluated to achieve at most 5% of the maximum 
value of the duty cycle where ∆VCi is the amplitude of the capacitor voltage determined by the 
value of the capacitance of the cell (6 mF to achieve 10% of voltage ripple). 

 

%5
max

≈
Δ⋅

α
CiC Vk

 (145) 

 

IV.2.4.1 Simulations 

To perform the simulations, the instantaneous model in Figure IV-4 was considered. More 
details are reported in Table II-2. A resistance is imposed in parallel (2.5 kΩ) for a cell 
capacitor in order to unbalance its voltage VC1u to 2375 V. On the other hand the energy 
balancing loop forces the voltage on another cell of the same branch, in this case VCu2 , to 
increase up to 2625 V in order to reestablish the balance. The simulation view in Figure IV-24 
starts with the cell balance enabling. 

According the sign of the current, Figure IV-24 shows the intervention of the first regulator 
dα1u in order to decrease the voltage amplitude by considering a positive DC current. The 
opposite intervention, for a less voltage amplitude, is carried out for VC2u by dα2u. The same 
results, starting from the same capacitor voltage value, for a negative DC current are shown in 
Figure IV-25.  
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Figure IV-24: Capacitor voltages and outputs of the cell balancing regulator dα for a positive DC current 

 

 

Figure IV-25: Capacitor voltages and outputs of the cell balancing regulator dα for a negative DC current 
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IV.3 Conclusions 
For multilevel structures a very low switching frequency can be obtained for each 

elementary converter due to the phase shifted carriers of the PWM modulation. For a high 
number of levels however there is an inferior limit of the switching frequency per switching 
device. In fact the averaged value of the capacitor current of the elementary converter has to 
be kept at zero. This is guaranteed for a switching frequency not less than 200 Hz. This means 
that at current parity, the device losses can’t be further reduced.  

For staircase based modulations, particularly when the number of levels is very high, the 
equivalent switching frequency can be further reduced up to 90 Hz [75]. This improves 
performances of the devices in terms of losses. 

For both the modulation techniques a centralized control is necessary. This means that all 
the signals of the system, currents and capacitor voltages, must be connected to a central 
controller. For a high number of levels a very complex hardware is required to wire each 
capacitor voltage to the central controller and, vice-versa, to wire the driving signal from the 
controller to the switching devices. For these reasons the trend could be to provide a central 
controller which manages just the control of the currents and each cell provides itself with 
voltage, maybe according the surrounding ones. 
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Chapter V. The 10 kW modular multilevel 

prototype 

In order to validate the sizing of the components and the control approach a three phase 
prototype of 10 kW was made. The structure is composed of 18 elementary cells. Each cell is 
sized to sustain a 200 V capacitor voltage. IGBTs were chosen as switching devices. 

The converter is configured to test the single loop structure proposed in the third chapter 
and then, to validate the control loop in the dq0 reference frame and described in the previous 
chapter. 

In a first step, the converter was configured in a single loop structure using for each branch 
a RL load in series to the elementary cells. This is an intermediate configuration, which serves 
a double purpose. The classical MMC is well known for its much-reduced capability of 
limiting the branch current in faulty conditions [76]-[77] so it was not preferred for a first test. 
The RL series connected load instead limits the current in the branches by guaranteeing the 
setup of the signal chains and the validation of the synthesis of the regulators in safety 
conditions. Moreover, this configuration reinforced the study of the single loop topology for 
which experimental results are presented. 

In a second step, the classical MMC is tested in open loop conditions and experimental 
results are reported.  
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V.1 The prototype configuration 
The prototype was developed at the LAPLACE laboratory. It is a 10 kVA three-phase 

modular multilevel converter composed of 18 switching cells. On this basis each branch has 4 
voltage levels (0, VDCcell, 2VDCcell, 3VDCcell). Otherwise for a single loop configurations, two 
branches are directly in series and 7 voltage levels can be achieved (0, VDCcell, …, 6VDCcell). A 
diagram of the converter is shown in Figure V-1. The layout also shows the installed voltage 
and current sensors. The rating data is summarized in TABLE V-1. 

 

 

Figure V-1: Layout of the prototype  

 

10 kW system The Power supply 
Power Rate 10kVA Model TDK-Lambda ® Genesys 
VDC 600V Power 5 kW 
VDCcell 200V DC max. out voltage 600 V 
L 5mH DC max. out. current 8.5 A 
C 2mF 
Cell fsw 2kHz 
IGBT IRGP35B60PDPBF 60A 600V  – TO 247 Case 

TABLE V-1: 10 kW system parametres 
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The power supply can reach up to 5 kW that is the half of the power rating of the system. 
This value is sufficient to achieve the preliminary tests which concern the set-up of the sensor 
chains and the validation of the control loops. 

V.1.1 Reactive elements design 

The design was achieved according to the considerations carried out in Chapter II. The value 
of the inductor L is chosen in order to limit the current ripple in the branch at switching 
frequency. Particularly, for this prototype a maximum current ripple of 10% was allowed.  

vu is the phase voltage imposed by the converter on each phase. Equation (146) considers a 
maximum modulation index M of 0.9. 

V
V

V DC 190
22

9.0 ==  (146) 

 

The rms current on the AC side at fundamental frequency can be expressed as (147) where 
P is the power of the converter. 

 

A
V
PI 5.17

3
==  (147) 

 

As previously evaluated, the inductor must respect the balance in (148), for practical 
reasons an inductance L=5 mH was chosen with a rating of 20 A 
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A capacitor of 2 mF was chosen as it limits the voltage ripple at fundamental frequency 
under 10%. 

Each cell is designed to require an optical signal for the driving of the semiconductor 
devices. The design of the frame, the PCB of the single cell, the arrangement of the sensors 
and the power supply for the signal management are described in Appendix A. 

The final frame for the power side of the converter is shown in Figure V-2. 
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Figure V-2: Power Hardware frame 

 

V.1.2  Hardware In the Loop configuration 

In this section a description is given on the most important parts of the system, which 
allows the control implementation and tests. 

As shown in Figure V-3, the configuration, besides the multilevel prototype, is composed of 
a HIL box, which allows implementing the control system through a PC. The HIL box 
accepts analogical signals and sends digital signals to the prototype through the interfacing 
hardware designed for the purpose. 

The interfacing hardware allows managing the signals in two directions. In one direction it 
processes and adapts the analog signals coming from the prototypes’ sensors for the HIL box 
input. In the other direction the interfacing hardware converts the digital drivers coming from 
the HIL box in optical signals to control the cells. A more detailed description of these 
components is given in Appendix A. 
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Figure V-3: HIL configuration Lay out 

 

The final assembly of the system with a passive RL load is shown in Figure V-4. 

 

 

Figure V-4: Final assembly for the system 
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In the next section the modular structure is configured in single loop modality. A passive 
load is connected to the system. After a brief explication of the load choice, the control 
approach is shown and the synthesis of the regulators is carried out. Experimental results are 
used to validate the study. 

V.2 Single Loop Configuration 
The structure is organized as shown in Figure V-5. Due to the unipolar proprieties of the 

single cell this system imposes also a DC component on the load. For this reason this 
arrangement can be considered a preliminary configuration before connecting the zig-zag 
transformer introduced in Section III-2. 

The configuration was useful to set-up the sensors and to confirm the good correspondence 
between the simulations and the experimental results with respect to the regulator synthesis. 
For the tests, a 4 kW three-phase load was used. 

 

Figure V-5: Prototype in Single Loop Configuration 

 

In order to evaluate the value of the resistance RL to achieve the fixed power, the branch 
currents (149) and voltages (150) are defined by neglecting the voltage drop on the inductor.  
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The power of each branch is balanced according to (151) (in each cell AC and DC power 
must be balanced according to III.1), so the balance for the total active power is given by 
(152). By considering a SPWM modulation and the relationships achieved in Chapter II for 
the single cell, M is considered the amplitude of the modulation index. 
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By taking in account (151), in (153) the value of I is reported. 
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By substituting (153) in (152), (154) is achieved. 
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So the control matches the impedance through the variation of M in order to achieve the 
required power.  

In this case RL is defined by the resistor bench available in the laboratory which allows up 
to 4 kW operating power. According to the relationships achieved before, TABLE V-2 reports 
the main operating parameters. The inductor LL was chosen to test the good current ripple 
around the 5%. 
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Single loop system parameters  
Operating power 4 kW 
VDC 600 V 
RL 40 Ω 
Req 90 Ω 
IDC 6.7 A 
M 0.6 
LL 5 mH 
Number of cells N per branch 6 

TABLE V-2: system parameters for the single loop configuration  

In the next section the control approach is described and the synthesis of the controller is 
carried out. 

 

V.2.1 The control 

A simple u, v, w frame is considered and a superposition approach is used to simplify the 
study. By considering the averaged model, the DC current loops are shown in Figure V-6 
while the AC loops are reported in Figure V-7.  

 

Figure V-6: Layout of the DC part of the system Figure V-7: Layout of the AC part of the system 
 

 

By considering the single cell topology the voltage imposed by each branch is reported in 
(155) according to the averaged system in Figure V-8 for a generic phase (u, v or w). On the 
DC approach, the branch imposes the voltage to balance the DC side according to (156). The 
AC voltage value is determined by the modulation index M given in (157). The voltage on the 
equivalent capacitor is provided by (158). 
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Figure V-8: Averaged model of the branch 
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According to the control strategy for the multilevel structures depicted in Figure IV-3 
(previous chapter) PI regulators are synthetized. 

The current control loop is highlighted in Figure V-9, where in this case the gain of the 
system is 2VDC. The PI regulator is synthetized in order to achieve a crossing frequency of 1 
kHz while the time constant is defined to achieve a phase margin of 60° in order to guarantee 
the stability. 

 

 

Figure V-9: Current control loop 

 

The branch energy balancing generates the active reference current necessary to keep a total 
voltage on the capacitors of 2VDC where C/N is the equivalent capacitance of each branch. The 
PI regulator is chosen to achieve a low crossing frequency by ensuring the stability. 
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By considering the instantaneous model, the same strategy already described in the 
previous chapter was adopted to keep a constant voltage of 2VDC/N on each cell capacitor. 
This because the cell voltage balancing is a parallel loop which depends neither from the 
current nor from the branch energy balancing loops but it directly interferes on the modulation 
index. One more time each cell capacitor has 200V voltage. 

V.2.2 Simulations 

For the single loop system previously described, TABLE V-2 reports the main parameters 
and its layout is highlighted in Figure V-5. 

The levels imposed by the cells (Figure V-10) in the system are limited to 5 levels because 
the modulation index M is equal to 0.6. The maximum number of levels 7 is reached for a 
value of M almost equal to 1. 

 

 

Figure V-10: Voltage imposed by each branch 
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The currents in the branches and the DC current are shown in Figure V-11. The current 
ripple, kept below the desired value, confirms the right evaluation of the branch inductor.  

 

 

Figure V-11: Branch currents and DC current 

 

The voltage on the cell capacitors kept at the desired value validates the single cell 
balancing as shown in Figure V-12.  

 

 

Figure V-12: Voltages on the cell capacitors 
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Figure V-15: Cell capacitor voltages 

 

The experimental results seem to match quite well with the simulations. The voltages 
imposed by the branches confirm one more time the correct phase shift between the carriers. 
Moreover all the levels are not reached because the amplitude of the modulation index is 
around 60%. The achieving of the power required validates the good choice of gains for both 
the regulators for the energy balancing and current loops. The stability of the system is 
guaranteed by the phase margin which validates the values of the time constants. Finally the 
parallel loop for the cell voltage balancing interferes without influencing the stability. 

V.3 MMC configuration 
The MMC configuration of the prototype is considered. For the simulations in closed loop, 

the multilevel structure is connected to a three-phase voltage source (Figure V-16). For the 
experimental results, an open loop control is considered with a RL load (Figure V-20).  

V.3.1 Simulations in Closed Loop operation 

Because of the network connection the simulations were performed for the full 10kW 
power system of which parameters are reported in V.1. An excursion is carried out at unity 
power factor by leading the system during operation from inverter to rectifier mode. 
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Figure V-16: MMC system configured for the simulations 

 

The u, v, w currents are shown in Figure V-7. During the excursion the stability of the 
system is maintained. Also the stability of the DC current confirms the good synthesis of the 
current regulators. Moreover the right active power is required by the regulator synthetized for 
branch energy balancing loop. 

Elementary

Cell
1

V1

Elementary

Cell
2

V2

Elementary

Cell
3

V3

Elementary

Cell
4

V4

Elementary

Cell
5

V5

Elementary

Cell
6

V6

Elementary

Cell
7

V7

Elementary

Cell
8

V8

Elementary

Cell
9

V9

Elementary

Cell
10

V10

Elementary

Cell
11

V11

Elementary

Cell
12

V12

Elementary

Cell
13

V13

Elementary

Cell
14

V14

Elementary

Cell
15

V15

Elementary

Cell
16

V16

Elementary

Cell
17

V17

Elementary

Cell
18

V18

IL1 IL3 IL5

IL2 IL4 IL6

IDC

DCV

vu vv vw

nwv

pwvpvvpuv

nvvnuv



Nicola Serbia                           MODULAR MULTILEVEL CONVERTERS FOR HVDC POWER STATIONS 

 

 
  123 

 

Figure V-17: Branch currents and DC current 

 

The branch voltages in Figure V-18 show how all the four switching levels are reached. 
This validates the good phase delay between the SPWM modulation carriers.  

 

 

Figure V-18: Voltages imposed by the branches 
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Finally the averaged voltages on the cell capacitors are kept on 200 V. This validates the 
balancing of the single cell voltage. 

 

 

Figure V-19: Voltages on the cell capacitors 
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necessary for the tests. The final resistance star configured has a 40 Ω value in order to achieve 
4.8 kW. 

 

Figure V-20: MMC system configured for the experimental tests 

 

The currents in the negative branches are depicted in Figure V-21. In open loop each 
branch current presents a DC and a second harmonic component of the fundamental. . 
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V.4    Conclusions 
Experimental validations for the single loop structure will allow an immediate transition to 

the configuration with the zig-zag transformer. The closed loop tests ensured the good 
correspondence between the sensors and the input analog signals to the controller (HIL Box). 
Moreover, each output modulation signal coming from the controller drives the right device. 
The wiring of the switching signals by optical fiber considerably reduced the EMI problems. 

The stability of the tested closed loop system validates the reliability of the simulation 
results by confirming the right synthesis of the regulators. This aspect will facilitate the closed 
loop tests for the MMC structure. Of course this case is always more dangerous just because 
the branch inductor limits the current in emergency conditions (divergence of the control, 
faults etc). These tests will be performed in the coming month. 
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Conclusions & Future Prospects 

Nowadays HVDC connections are an appropriate answer to the more and more increasing 
world energetic demand. Multilevel topologies are going to make VSC converters the most 
employed in HVDC systems. The development of high voltage controlled turn-off devices 
made these structures very attractive. On the other hand because of advantages coming from 
the easily series connections of thyristors, CSC structures can better manage high voltages. In 
the near future, the gap between VSC and CSC structures will be much reduced thanks to the 
performances offer by IGCT devices in terms of on-state current rating and blocking voltage. 
The press packaging leads a series of advantages respect to the classical modules especially in 
fault condition where there is a risk of explosion. The single wafer feature makes the IGCT 
more suitable for the press pack packaging respect to the IGBT. For these reasons the IGCT 
seems to be the most attractive device in VSC-HVDC applications. 

This thesis focused on the VSC based Modular Multilevel Structure. For preliminary 
studies the “macro-model” allowed direct evaluations and very fast simulations especially as 
this model is not dependent on the elementary converter topology.  

The rating of the system was carried out through two control approaches. The first 
considers just a control on the AC output current which leads to a huge second harmonic 
current in the branch. We showed that Coupled inductors could be a good solution to limit 
this current but in the field of high power applications, the particularity of this hardware 
increases absolutely the cost. Thus, the second approach consists in a control of each current 
in the branch, despite it requires a more efficient control system based on a dq reference frame. 
Under this condition the second harmonic component of the current is cancelled which cut 
down the rating of the passive components. 

The employment of different topologies as elementary converter made the MMC more 
flexible in terms of voltage and current reversibility. In terms of losses at parity of power and 
DC voltage, the simple cell is more convenient. Unlike topologies which provide bipolar 
voltage (Asymmetrical HB and full H-bridge) make the structure able to limit the short-circuit 
current in case of fault on the DC link.  

The Phase Shifted PWM led to a reduction of the switching frequency and then the 
semiconductor losses. Of course this modulation technique presents an inferior limit on the 
switching frequency. When the number of levels is very huge the staircase modulation could 
be very attractive for multilevel structures. A study of the staircase modulation for the MMC 
structure is going to be soon developed. In fact an investigation on the influence of the 
modulation versus the rating of the reactive elements and versus power losses of the devices 
compared to the PS PWM left to be done.  

Few aspects could make the Asymmetrical HB attractive in terms of HVDC applications. If 
this topology is chosen, the cell capacitor can be reduced at parity of voltage ripple amplitude. 
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Since the system achieves the inversion of the power flow by changing the polarity of the DC 
voltage, this topology can be employed to replace CSC based HVDC power stations with the 
advantage of a unit power factor operation. 

The new single loop structure proposed in chapter III allows an easier control system. The 
topology does not require the double branch inductor because it uses the leakage inductor of 
the zig-zag coupling transformer. Although this coupling requires more copper than a classical 
winding, the insulation of the transformer has to be rated only for the AC voltage. This is not 
the case of a classical MMC arrangement where the transformer has to sustain a DC 
insulation half of the DC voltage (DC zero sequence component). Beyond these 
considerations, the use of this new structure could become very attractive to upgrade old 
rectifiers by guaranteeing advantages coming from VSC structures.  

A 10 kW prototype was developed in the LAPLACE laboratory. In order to interface the 
power circuit with the Hardware In the Loop system a boards console placed on the frame 
called “Interfacing Hardware” was achieved. The interfacing hardware adapts the voltage 
levels of the signals coming from the sensors of the prototype to the input voltage level at of 
the HIL box. Moreover it provides also the noise filtering for the analogical signals. Even for 
the output digital signals coming from the HIL box an electric-optical conversion is provided 
by the Interfacing Hardware to control the cells. 

Before starting the power tests, a preliminary procedure was carried out. All the sensors 
were calibrated and the good wiring of the signal chain was verified. Finally the optimization 
of the grounding configuration of all the system was improved step by step in order to avoid 
EMI problems. 

Experimental validations in SPWM were achieved for the single loop topology and the 
classical structure. The good operation of the control loops validated the system modeling 
approach and the regulator synthesis.  

In the near future, this prototype will allow testing the single loop structure with the zig-zag 
transformer, the closed loop operation in a dq frame and the staircase modulation. 

 

 

 



Nicola Serbia                           MODULAR MULTILEVEL CONVERTERS FOR HVDC POWER STATIONS 

 

 
  133 

 

APPENDIX A - The Prototype: Design & 
Development 

A.1 The Elementary cell 
In this section the elementary switching cell of the MMC converter prototype is described. 

A simple scheme is reported in Figure A - 1. 

 

 

Figure A - 1: Scheme of the elementary switching cell 

 

 

Each of the 18 switching cell is composed by the following main components: 

 2IGBT IRGP35B60PDPBF 60A 600V  – TO 247 Case 
 1 IGBTs Driver CONCEPT 2SC0108T 
 1 Voltage sensors 
 1 Capacitor 2mF (2x1mF) (450V) 
 1 optic fiber receiver for switching signal 
 Power supply TRACO TMS 15215 

 

The elementary switching cell is equipped by a single optic fiber receiver. On the cell, a 
logic circuit generates the 2 complementary switching signals for the BOT and the TOP IGBT. 
Moreover, a circuit for managing the dead time is present. Particularly this is designed to give 
a dead time of 2μs. 
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Figure A - 11: Interfacing Hardware platform 
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− Number of the way on the card 
− Number of the card  
− Name of the voltage/current measured 

 

A.2 HIL Box 
The device chosen for the prototyping is the OPAL-RT 5600, which permits to achieve the 

following performances. 

 

- Model-Based design and virtual Prototyping 
- Control Prototyping and testing 
- Embedded Control  
- Data Logging 

 

The OP5600 is a complete simulation system capable of operating with either Spartan 3 or 
Virtex 6 FPGA platforms. It is designed to be used either as a desktop (or shelf top) or as a 
more traditional rack mount. It contains a powerful Target Computer and a flexible high-
speed Front End Processor and a signal conditioning stage. The new design makes it easier to 
use with standard connectors (DB37, RJ45 and mini-BNC) which avoid input/output 
adaptors and allow quick connections for monitoring. The front of the chassis provides the 
monitoring interfaces and monitoring connectors, while the back of the chassis provides access 
to the FPGA monitoring connections, all I/O connectors, power cable and main power 
switch. 

Inside, the main housing is divided into two sections, each with a specific purpose and 
connected only by a DC power cable and a PCIe cable: 

In its standard configuration, the lower part of the chassis contains a powerful target 
computer that can be connected to a network of simulators or can have a stand-alone 
capability. The target computer includes the following features:  

 

− ATX motherboard with up to 12 cores 
− 6 DRAM connectors 
− 250 Mb hard disk 
− 600 W power supply 
− PCIe boards (up to 8 slots, depending on the configuration). 

 

The main features of the system are reported in [78]. 
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A.3 PIN tables 
 

The connections about the interfacing hardware are sorted according table A-1 for the 
analogic signals. 

 

PIN
 DB37M

_1 

Aq. Card 

Signal N
am

e 

OPAL‐RT

PIN
 DB37M

_2 

Aq. Card 

Signal N
am

e 

OPAL‐RTN
um

ber 

Connector N
am

e

HE_10 N
°Pin 

Signal N
am

e 

Channel 

G
r. 1 Sec. A 

N
um

ber 

Connector N
am

e

HE_10 N
°Pin 

Signal N
am

e 

Channel 

G
r. 1 Sec.B 

1  2  JB  3  Vout 5  V10  0    1 4 JB  3 Vout 5  IL6  0    
2  2  JB  5  Vout 6  V11  1    2 4 JB  5 Vout 6  VCA  1    
3  2  JB  7  Vout 7  V12  2    3 4 JB  7 Vout 7     2    
4  2  JB  9  Vout 8  V16  3    4 4 JB  9 Vout 8     3    
5  2  JA  3  Vout 1  V15  4    5 4 JA  3 Vout 1  IL3  4    
6  2  JA  5  Vout 2  V4  5    6 4 JA  5 Vout 2  IL4  5    
7  2  JA  7  Vout 3  V5  6    7 4 JA  7 Vout 3  VBC  6    
8  2  JA  9  Vout 4  V6  7    8 4 JA  9 Vout 4  IL5  7    
9  1  JB  3  Vout 5  V8  8    9 3 JB  3 Vout 5  IL1  8    

10  1  JB  5  Vout 6  V9  9    10 3 JB  5 Vout 6  IL2  9    
11  1  JB  7  Vout 7  V13  10    11 3 JB  7 Vout 7  VAB  10    
12  1  JB  9  Vout 8  V14  11    12 3 JB  9 Vout 8     11    
13  1  JA  3  Vout 1  V1  12    13 3 JA  3 Vout 1  V17  12    
14  1  JA  5  Vout 2  V2  13    14 3 JA  5 Vout 2  V18  13    
15  1  JA  7  Vout 3  V3  14    15 3 JA  7 Vout 3  IDC  14    
16  1  JA  9  Vout 4  V7  15    16 3 JA  9 Vout 4  VDC  15    
DB37M Pins 20..35=AGND on Acq. Card 

TABLE A-1 
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The connections about the interfacing hardware are sorted according table A-2 for the 
digital signals. 

 

PIN
 DB37M

_4 

Emetteur optique  OPAL‐RT 

Elem
entary Cell 

PIN
 DB37M

_3 

Emetteur optique  OPAL‐RT 

Elem
entary Cell 

N
um

ber 

HE_10 N
°Pin 

Signal N
am

e 

Channel 

G
r. 2 Sec. B 

N
um

ber 

HE_10 N
°Pin 

Signal N
am

e 

Channel 

G
r. 2 Sec. B 

1  1  9  Voie 7  0       1 3 9 Voie 7  16       
2  1  8  Voie 6  1       2 3 8 Voie 6  17       
3  1  7  Voie 5  2    1 3 3 7 Voie 5  18     13
4  1  6  Voie 4  3    2 4 3 6 Voie 4  19     14
5  1  5  Voie 3  4    3 5 3 5 Voie 3  20     15
6  1  4  Voie 2  5    4 6 3 4 Voie 2  21     16
7  1  3  Voie 1  6    5 7 3 3 Voie 1  22     17
8  1  2  Voie 0  7    6 8 3 2 Voie 0  23     18
9  2  9  Voie 7  8       9                  

10  2  8  Voie 6  9       10                  
11  2  7  Voie 5  10    7 11                  
12  2  6  Voie 4  11    8 12                  
13  2  5  Voie 3  12    9 13                  
14  2  4  Voie 2  13    10 14                  
15  2  3  Voie 1  14    11 15                  
16  2  2  Voie 0  15    12 16                  

DB37M Pins 20..35,37=GND on E.O. card; DB37M Pin 18= +5V on E.O. card 
TABLE A-2 
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