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Areski Cousin∗, Elena Di Bernardino†

28th October 2013

Abstract

In this paper, we introduce two alternative extensions of the classical univariate Conditional-Tail-
Expectation (CTE) in a multivariate setting. The two proposed multivariate CTE are vector-valued
measures with the same dimension as the underlying risk portfolio. As for the multivariate Value-
at-Risk measures introduced in Cousin and Di Bernardino (2013), the lower-orthant CTE (resp.
the upper-orthant CTE) is constructed from level sets of multivariate distribution functions (resp.
of multivariate survival distribution functions). Contrary to allocation measures or systemic risk
measures, these measures are also suitable for multivariate risk problems where risks are heterogenous
in nature and cannot be aggregated together. Several properties have been derived. In particular,
we show that the proposed multivariate CTE-s satisfy natural extensions of the positive homogeneity
property, the translation invariance property and the comonotonic additivity property. Comparison
between univariate risk measures and components of multivariate CTE are provided. We also analyze
how these measures are impacted by a change in marginal distributions, by a change in dependence
structure and by a change in risk level. Sub-additivity of the proposed multivariate CTE-s is provided
under the assumption that all components of the random vectors are independent. Illustrations are
given in the class of Archimedean copulas.

Keywords: Multivariate risk measures, Level sets of distribution functions, Multivariate probability in-
tegral transformation, Stochastic orders, Copulas and dependence.

1 Introduction

As illustrated by the recent financial turmoil, risks are strongly interconnected. Consequently, risk quan-
tification in multivariate settings has recently been the subject of great interest. Much research has been
devoted to construction of risk measures that account both for marginal effects and dependence between
risks.

In the literature, several generalizations of the classical univariate Conditional-Tail-Expectation (CTE)
have been proposed, mainly using as conditioning events the total risk or some extreme risks. These
measures can be used as capital allocation rules for financial institutions. The aim is to find the contribu-
tion of each subsidiary (or risk category) to the total economic capital. As can be seen in Scaillet (2004)
and Tasche (2008), the Euler or Shapley-Aumann allocation rule associated with a particular univariate
risk measure (such as VaR or CTE) involves the dependence structure between marginal and aggregated
risks. More formally, let X = (X1, . . . , Xd) represent the risk exposures of a given financial institution,
where, for any i = 1, . . . , d, the component Xi denotes the marginal risk (usually claim or loss) associated
with the underlying entity i (the latter could be, for instance, a subsidiary, an operational branch or a
risk category). Then, the sum S = X1 + · · ·+Xd corresponds to the company aggregated risk, whereas
X(1) = min{X1, ..., Xd} and X(d) = max{X1, ..., Xd} are the extreme risks. In capital allocation prob-
lems, we are not only interested in the “stand-alone” risk measures CTEα(Xi) = E[Xi |Xi > QXi(α) ],

∗Université de Lyon, Université Lyon 1, ISFA, Laboratoire SAF, 50 avenue Tony Garnier, 69366 Lyon, France, Tel.:
+33437287439, areski.cousin@univ-lyon1.fr, http://www.acousin.net/.
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where QXi(α) = inf{x ∈ R+ : FXi(x) ≥ α} is the univariate quantile function of Xi at risk level α, but
also in

CTEsum
α (Xi) = E[Xi |S > QS(α) ], (1)

CTEmin
α (Xi) = E[Xi |X(1) > QX(1)

(α) ], (2)

CTEmax
α (Xi) = E[Xi |X(d) > QX(d)

(α) ], (3)

for i = 1, . . . , d. The interested reader is referred to Cai and Li (2005) for further details. Explicit formula
for CTEsum

α (Xi) are provided in Landsman and Valdez (2003) in the case of elliptic distribution functions,
Cai and Li (2005) for phase-type distributions and in Bargès et al. (2009) for Fairlie-Gumbel-Morgenstern
family of copulas. Furthermore, we recall that CTEsum

α (Xi) corresponds to the “Euler allocation rule”
associated with the univariate CTE (see, e.g., Tasche (2008)).

Another problem which recently receives a great interest is the construction of systemic risk measures.
One of the proposed measure is the Marginal Expected Shortfall (MES) defined as the expected loss on
its equity return (X) conditional on the occurrence of a loss in the aggregated return of the financial
sector (Y ), i.e.,

MESα(X) = E[X |Y > QY (α)], (4)

where QY (α) is the (α)-th quantile of the distribution of Y . The MES of a financial institution aims at
detecting which firms in the economy are the more vulnerable in case of a global financial distress. On
mathematical grounds, this measure is similar to the allocation measure CTEsum. The interested reader
is referred to Acharya et al. (2010) or Brownlees and Engle (2012) for more details. Cai et al. (2013)
propose a non-parametric estimator of the MES using extreme value theory. The CoVaR (conditional
VaR) of company i is instead given by

CoVaRi
α(X) = VaRα (S | X ≥ VaRα(X)) . (5)

As opposed to the MES, the CoVaR is constructed in order to identify which firms in the economy have a
great importance in terms of systemic risk (see Adrian and Brunnermeier (2011) or Mainik and Schaan-
ning (2012)).

However, the previous risk measures are not suitable for multivariate risk problem where risks are hetero-
geneous in nature and thus cannot be aggregated together or even compared. This is the case for
instance for risks which are difficult to expressed under the same numéraire or when one has to deal with
non-monetary risks or exogenous risks. The literature which deals with risk measures for intrinsically mul-
tivariate problems can be divided in two categories. The first group of papers are interested in extending
classical univariate axioms to different multivariate settings (see for instance Jouini et al. (2004), Burgert
and Rüschendorf (2006), Rüschendorf (2006), Cascos and Molchanov (2007), Hamel and Heyde (2010),
Ekeland et al. (2012)). One of the objectives is to derive theoretical representation of risk measures.
This is done without proposing tractable constructions for the axiom-consistent multivariate measures.
Another group of papers investigates different generalizations of the concept of quantiles in a multivariate
setting. Unsurprisingly, the main difficulty regarding multivariate generalizations of quantile-based risk
measures (as the VaR and the CTE) is the fact that vector preorders are, in general, partial preorders.
Then, what can be considered in a context of multidimensional portfolios as the analogous of a “worst
case” scenario and a related “tail distribution”? For example, Massé and Theodorescu (1994) define
multivariate α-quantiles for bivariate distribution as the intersection of half-planes whose the distribu-
tion is at least equal to α. Koltchinskii (1997) provides a general treatment of multivariate quantiles as
inversions of mappings. Another approach is to use geometric quantiles (see, for example, Chaouch et al.
(2009)). Along with the geometric quantile, the notion of depth function has been developed in recent
years to characterize the quantile of multidimensional distribution functions (for further details see, for
instance, Chauvigny et al. (2011)). We refer to Serfling (2002) for a review of multivariate quantiles.

When it turns to generalize the Value-at-Risk measure, Embrechts and Puccetti (2006), Nappo and
Spizzichino (2009), Prékopa (2012) use the notion of quantile curve but these papers do not investigate
whether these measures are compatible with some desirable axioms. Moreover, the proposed risk measu-
res are hyperspaces and thus quantify a vector of risks with an infinite number of points. Contrarily
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to the latter approach, the multivariate Conditional-Tail-Expectation proposed in this paper quantifies
multivariate risks in a more parsimonious and synthetic way. This feature can be relevant for operational
applications since it can ease discrimination between portfolio of risks. Lee and Prékopa (2012) introduce
a real-valued measure of multivariate risks which also bears on quantile curves but the proposed measure
relies on a somehow arbitrary convex combination.

We propose two vector-valued extensions of the univariate Conditional-Tail-Expectation. The lower-
orthant CTE of a random vector X (introduced by Di Bernardino et al. (2013) in a bivariate setting) is
defined as the conditional expectation of X given that the latter is located in the α–upper level set of its
distribution function. The upper-orthant CTE of X is defined as the conditional expectation of X given
that the latter is in the (1 − α)–lower level set of its survival function. Several properties have been
derived. We provide an integral representation of the proposed measures in terms of the multivariate
VaR introduced in Cousin and Di Bernardino (2013) and we show that the proposed multivariate CTE-s
satisfy natural extensions of the positive homogeneity property, the translation invariance property
and the comonotonic additivity property. We show that the proposed measures are sub-additive for
independent vectors with independent components. We also provide comparisons between univariate
risk measures and components of the proposed multivariate CTE. We analyze how these measures are
impacted by a change in marginal distributions, by a change in dependence structure and by a change
in risk level.

The paper is organized as follows. In Section 2, we give the definition of the lower-orthant and the
upper-orthant Conditional-Tail-Expectation measures. We then show that these measures satisfy mul-
tivariate extensions of Artzner et al. (1999)’s invariance properties (see Section 2.1). Illustrations in some
Archimedean copula cases are presented in Section 2.2. We also compare the components of these mul-
tivariate CTE measures with the associated univariate VaR, the associated univariate CTE and with the
multivariate lower-orthant and upper-orthant VaR previously introduced by Cousin and Di Bernardino
(2013) (see Section 2.3). The behavior of our CTE-s with respect to a change in marginal distributions,
a change in dependence structure and a change in risk level α is discussed respectively in Sections 2.4,
2.5 and 2.6. The conclusion discusses open problems and possible directions for future work.

2 Multivariate generalization of the Conditional-Tail-Expectation
measure

As in the univariate case, the multivariate VaR introduced in Cousin and Di Bernardino (2013) does
not give any information regarding the upper tail of the loss distribution function and especially its
degree of thickness above the VaR threshold. In an univariate setting, the problem has been overcome
by considering for instance the Conditional-Tail-Expectation (CTE) risk measure1, which is defined as
the conditional expectation of losses given that the latter exceed VaR. Following Artzner et al. (1999),
the CTE at level α for a distribution function F (or survival function F ) is given by

CTEα(X) := E[X |X ≥ VaRα(X) ], (6)

where VaRα(X) is the univariate Value-at-Risk defined by

VaRα(X) := inf {x ∈ R : F (x) ≥ α} = inf
{
x ∈ R : F (x) ≤ 1− α

}
.

Since the sets {X ≥ VaRα(X)}, {F (X) ≥ α} and {F (X) ≤ 1 − α} correspond to the same event in a
univariate setting, the CTE can alternatively be defined2 as

CTEα(X) := E[X |F (X) ≥ α ] = E[X |F (X) ≤ 1− α ]. (7)

The CTE can then be viewed as the conditional expectation of X given that X falls into the α-lower-level
set of its distribution function L(α) := {x ∈ R+ : F (x) ≥ α} or equivalently in the (1−α)-upper-level set

1This measure is also called Tail Conditional Expectation. As far as continuous distribution functions are considered,
the CTE measure is coherent in the sense of Artzner’s axioms and it coincides with the Expected Shortfall or Tail VaR.

2Note that this definition does not depend on VaR.
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of its survival function L(α) := {x ∈ R+ : F (x) ≤ 1 − α}. This definition can naturally be extended in
higher dimension, keeping in mind that the two previous sets L(α) and L(α) are different in general as soon
as the dimension d of the underlying risk vector is greater or equal to 2. In analogy with Embrechts and
Puccetti (2006) notations, we will denote by CTE the lower-orthant Conditional-Tail-Expectation based
on level sets of the underlying distribution function (distrubution function measures mass of probabilities
in lower-orthant regions) and by CTE the upper-orthant Conditional-Tail-Expectation based on level sets
of the underlying survival function (survival function measures mass of probabilities in upper-orthant
regions).

Assumption 2.1. In the following, we will consider non-negative absolutely-continuous random vector3

X = (X1, . . . , Xd) (with respect to Lebesgue measure λ on Rd) with partially increasing multivariate distri-
bution function4 F and such that E(Xi) <∞, for i = 1, . . . , d. These conditions will be called regularity
conditions.

Definition 2.1 (Multivariate lower-orthant and upper-orthant Conditional-Tail-Expectation). Consider
a random vector X = (X1, . . . , Xd) with distribution function F and survival function F , such that E[Xi]
is finite for all i = 1, . . . , d. For α ∈ (0, 1), we define the lower-orthant Conditional-Tail-Expectation at
probability level α by

CTEα(X) = E[X |F (X) ≥ α] =

 E[X1 |F (X) ≥ α ]
...

E[Xd |F (X) ≥ α ]

 ,

and the upper-orthant Conditional-Tail-Expectation at probability level α by

CTEα(X) = E[X |F (X) ≤ 1− α] =

 E[X1 |F (X) ≤ 1− α ]
...

E[Xd |F (X) ≤ 1− α ]

 .

Remark that the lower-orthant CTE is a multivariate generalization of the bivariate Conditional-Tail-
Expectation previously introduced by Di Bernardino et al. (2013).

From now on, we denote by CTE1
α(X), . . ., CTEdα(X) the components of the vector CTEα(X) and by

CTE
1

α(X), . . ., CTE
d

α(X) the components of the vector CTEα(X).

Note that if X is an exchangeable random vector, CTEiα(X) = CTEjα(X) and CTE
i

α(X) = CTE
j

α(X)
for any i, j = 1, . . . , d. Furthermore, given a univariate random variable X, E[X |FX(X) ≥ α] =
E[X |FX(X) ≤ 1−α] = CTEα(X), for all α in (0, 1). Hence, lower-orthant and upper-orthant Conditional-
Tail-Expectation coincide with the usual CTE for (univariate) random variables.

Let us remark that, under the regularity assumption, the multivariate lower-orthant (resp. upper-orthant)
Conditional-Tail-Expectation can be represented as an integral transformation of the multivariate lower-
orthant VaR (resp. upper-orthant VaR) introduced by Cousin and Di Bernardino (2013), i.e.,

CTEiα(X) =
1

1−K(α)

∫ 1

α

VaRi
γ(X)K ′(γ)dγ, (8)

and

CTE
i

α(X) =
1

K̂(1− α)

∫ 1

α

VaR
i

γ(X)K̂ ′(1− γ)dγ, (9)

3We restrict ourselves to Rd+ because, in our applications, components of d−dimensional vectors correspond to random
losses and are then valued in R+.

4A function F (x1, . . . , xd) is partially increasing on Rd+ \ (0, . . . , 0) if the functions of one variable g(·) =
F (x1, . . . , xj−1, ·, xj+1, . . . , xd) are increasing. About properties of partially increasing multivariate distribution functions
we refer the interested reader to Rossi (1973), Tibiletti (1991).
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where K is the Kendall distribution of X, i.e., K(x) = P (F (X) ≤ x) , for all x in (0, 1) and K̂ is its

“upper-orthant” Kendall distribution, i.e., K̂(x) = P
(
F (X) ≤ x

)
, for all x in (0, 1). Formula (8) and (9)

will be useful in Proposition 2.8 and Corollary 2.3 below.

Remark that the existence of densities K ′ and K̂ ′ that appears in Equations (8)-(9)) is guaranteed by
the regularity conditions (for further details, see Proposition 1 in Imlahi et al. (1999) or Proposition 4 in
Chakak and Ezzerg (2000)). The interested reader is also referred to Cousin and Di Bernardino (2013).

2.1 Invariance properties

In the present section, the aim is to analyze the lower-orthant and the upper-orthant CTE introduced in
Definition 2.1 in terms of classical invariance properties of risk measures (we refer the interested reader to
Artzner et al. (1999)). In analogy with Section 2.1 in Cousin and Di Bernardino (2013), we now introduce
the following results (Proposition 2.1 and Corollary 2.1) that will be useful in order to prove invariance
properties of our risk measures.

Proposition 2.1. Let the function h be such that h(x1, . . . , xd) = (h1(x1), . . . , hd(xd)).

- If h1, . . . , hd are non-decreasing functions, then the following relations hold

CTEiα(h(X)) = E[hi(Xi) |FX(X) ≥ α ], i = 1, . . . , d

and

CTE
i

α(h(X)) = E[hi(Xi) |FX(X) ≤ 1− α ], i = 1, . . . , d.

- If h1, . . . , hd are non-increasing functions, then the following relations hold

CTEiα(h(X)) = E[hi(Xi) |FX(X) ≥ α ], i = 1, . . . , d

and

CTE
i

α(h(X)) = E[hi(Xi) |FX(X) ≤ 1− α ], i = 1, . . . , d.

Proof: From Definition 2.1, CTEiα(h(X)) = E[hi(Xi) |Fh(X)(h(X)) ≥ α ], for i = 1, . . . , d. Since

Fh(X)(y1, . . . , yd) =

{
FX(h−1(y1), . . . , h−1(yd)), if h1, . . . , hd are non-decreasing functions,
FX(h−1(y1), . . . , h−1(yd)), if h1, . . . , hd are non-increasing functions,

then we obtain the result. 2

Finally, we can state the following result that proves positive homogeneity and translation invariance for
our measures.

Proposition 2.2. For α ∈ (0, 1), the multivariate upper-orthant and lower-orthant Conditional-Tail-
Expectation satisfy the following properties:

Positive Homogeneity: ∀ c = (c1, . . . , cd)
′ ∈ Rd+,

CTEα(c1X1, . . . , cdXd) =
(
c1CTE1

α(X), . . . , cdCTEdα(X)
)′

CTEα(c1X1, . . . , cdXd) =
(
c1CTE

1

α(X), . . . , cdCTE
d

α(X)
)′

Translation Invariance: ∀ c ∈ Rd+,

CTEα(c + X) = c + CTEα(X), CTEα(c + X) = c + CTEα(X)

The proof comes down from Proposition 2.1.
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Remark 1. i) In the univariate as well in the multivariate setting, a risk measure may be interpreted as
the riskiness of a portfolio or the amount of capital that should be added to a portfolio with a given loss,
so that the portfolio can then be deemed acceptable. In this respect, the translation invariance property
for (multivariate) risk measures are necessary if the risk-capital interpretation we stated above is to make
sense. The homogeneity property is often motivated by a change of currency argument: the amount of
required capital in order to manager risks should be independent of the currency in which it is expressed
(e.g. see Artzner et al. (1999)). For these reasons, the invariance properties proved in Proposition 2.2
play a central role in practical applications.
ii) It is straightforward to show that the capital allocation measures presented in (1)-(3) do not satisfy
the invariance properties stated in Proposition 2.2 as soon as the components of c = (c1, ..., cd) are all
different. In that sense, these measures may not be suitable for intrinsically multivariate problem where
risks cannot be expressed under the same numéraire.

Remark 2. For α = 0, using Definition 2.1, we obtain

CTE0(X) = CTE0(X) =

 E[X1 ]
...

E[Xd ]

 = E[X].

Then, as in the univariate case, the multivariate lower-orthant and upper-orthant CTE-s are equal to the
expected value of the underlying random vector for α = 0.

Since these two new measures are not the same in general for dimension greater or equal to 2, we also
provide some connections between CTE and CTE. From Proposition 2.1 one can obtain the following
property which links the multivariate upper-orthant Conditional-Tail-Expectation and the lower-orthant
one.

Corollary 2.1. Let h be a linear function such that h(x1, . . . , xd) = (h1(x1), . . . , hd(xd)).

- If h1, . . . , hd are non-decreasing functions then it holds that

CTEα(h(X)) = h(CTEα(X)) and CTEα(h(X)) = h(CTEα(X)).

- If h1, . . . , hd are non-increasing functions then it holds that

CTEα(h(X)) = h

(
E[X]

1− K̂(α)
− K̂(α)

1− K̂(α)
CTE1−α(X)

)

and

CTEα(h(X)) = h

(
E[X]

K(1− α)
− 1−K(1− α)

K(1− α)
CTE1−α(X)

)
.

Example 1. If X = (X1, . . . , Xd) is a random vector with uniform margins and if, for all i = 1, . . . , d,
we consider the functions hi such that hi(x) = 1− x, x ∈ [0, 1], then from Corollary 2.1, we get

CTE
i

α(X) =
1

K̂(1− α)

[
1

2
−
(

1− K̂(1− α)
) (

1− CTEi1−α(1−X)
)]

(10)

for all i = 1, . . . , d, where 1−X = (1−X1, . . . , 1−Xd). Note that K̂ is the Kendall distribution function
associated with the vector 1−X. Additionally, if X and 1−X have the same distribution function, then
X is invariant in law by central symmetry and the following relation holds:

CTE
i

α(X) =
1

K(1− α)

[
1

2
− (1−K(1− α))

(
1− CTEi1−α(X)

)]
. (11)

For instance, this property is satisfied for vector X which follows an elliptical or a Frank copula structure.
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We now show that, as in the univariate setting, the lower-orthant and the upper-orthant CTE-s are
additive for π-comonotonic couple of random vectors as defined in Puccetti and Scarsini (2010).

Definition 2.2. A couple (X,Y) of d-dimensional random vectors is said to be π-comonotonic if there
exists a d-dimensional random vector Z and non-decreasing functions f1, . . . , fd, g1, . . . , gd such that

(X,Y)
d
= ((f1(Z1), . . . , fd(Zd)), (g1(Z1), . . . , gd(Zd))) .

Proposition 2.3. Let (X,Y) be a π-comonotonic couple of random vectors, then

CTEα(X + Y) = CTEα(X) + CTEα(Y), CTEα(X + Y) = CTEα(X) + CTEα(Y).

Proof: We focus on the lower-orthant CTE. Similar arguments apply for the upper-orthant CTE. Let
X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) be two π-comonotonic random vectors. There exits a random
vector Z = (Z1, . . . , Zd) such that, for any i = 1, . . . , d, Xi = fi(Zi) and Yi = gi(Zi) where fi and gi are
non-decreasing functions. Let f be the function defined by f(x1, . . . , xd) = (f1(x1), . . . , fd(xd)), g be the
function defined by g(x1, . . . , xd) = (g1(x1), . . . , gd(xd)) and h be the function defined by h(x1, . . . , xd) =
(h1(x1), . . . , hd(xd)) where hi := fi+gi, i = 1, . . . , d. The function hi, i = 1, . . . , d are non-decreasing as a
sum of non-decreasing functions and X + Y = h(Z). We obtain from Prop. 2.1 that, for any i = 1, . . . , d,
CTEiα(X + Y) = E[hi(Zi) |FZ(Z) ≥ α ] = E[ fi(Zi) |FZ(Z) ≥ α ] + E[ gi(Zi) |FZ(Z) ≥ α ] where FZ

denotes the distribution function of Z. Eventually, E[ fi(Zi) |FZ(Z) ≥ α ] = E[ fi(Zi) |Ff(Z)(f(Z)) ≥ α ]

= CTEiα(X) and E[ gi(Zi) |FZ(Z) ≥ α ] = E[ gi(Zi) |Fg(Z)(g(Z)) ≥ α ] = CTEiα(Y), which concludes the
proof. 2

Remark 3. The previous proposition also holds for the lower-othant VaR and the upper-orthant VaR
introduced in Cousin and Di Bernardino (2013).

We now prove that the proposed multivariate measures are subadditive for independent random vectors
with independent components.

Proposition 2.4. Let X and Y be two d-dimensional independent random vectors with finite expectations
for each marginal. If all components in X and Y are independent, then the lower-orthant Conditional-
Tail-Expectation CTE is such that

CTEα(X + Y) ≤ CTEα(X) + CTEα(Y), for α ∈ (0, 1).

The same result holds for the lower-orthant Conditional-Tail-Expectation CTE.

Proof: It is equivalent to prove that, for all i = 1, . . . , d and for all α ∈ (0, 1),

E[Xi + Yi |FX + Y(X + Y) ≥ α] ≤ E[Xi |FX(X) ≥ α] + E[Yi |FY(Y) ≥ α]. (12)

Equation (12) can be written as:

E[Xi + Yi, FX + Y(X + Y) ≥ α]

P[FX + Y(X + Y) ≥ α]
≤ E[Xi, FX(X) ≥ α]

P[FX(X) ≥ α]
+

E[Yi, FY(Y) ≥ α]

P[FY(Y) ≥ α]
.

Note that Xi+Yi and Xj+Yj are independent for all i, j = 1, . . . , d, with i 6= j. Then all denominators of
the terms above are the same, i.e., the survival Kendall distribution K(α) associated to the d-dimensional
independence copula structure. As a result, we have then to prove that, for all i = 1, . . . , d and for all
α ∈ (0, 1),

E[Xi + Yi, FX + Y(X + Y) ≥ α] ≤ E[Xi, FX(X) ≥ α] + E[Yi, FY(Y) ≥ α].

Let us denote by U = (U1, . . . , Ud) the random vector with components Uj := FXj+Yj (Xj + Yj), j =
1, . . . , d and by V = (V1, . . . , Vd) the random vector with components Vj := FXj (Xj), j = 1, . . . , d. As
the components of X + Y are independent, we get:

E[Xi + Yi, FX + Y(X + Y) ≥ α] = E[Xi + Yi, FXi+Yi(Xi + Yi) ≥ α̃i]

where
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α̃ := α
d∏

j=1,j 6=i

Uj

.

Using the sub-additivity of the univariate Conditional-Tail-Expectation (see for instance Denuit et al.
(2005)), the following relation holds

E [Xi + Yi, FXi+Yi(Xi + Yi) ≥ α̃ | Uj,j 6=i] ≤ E [Xi, FXi(Xi) ≥ α̃ | Uj,j 6=i] + E [Yi, FYi(Yi) ≥ α̃ | Uj,j 6=i] .
(13)

Note that the vector (U1, . . . , Xi, . . . , Ud) has the same distribution as the vector (V1, . . . , Xi, . . . , Vd)
since they both share the same marginals and the same dependence structure (the independent cop-
ula). As a result, E [Xi, FXi(Xi) ≥ α̃ | Uj,j 6=i] = E [Xi, FX(X) ≥ α | Vj,j 6=i]. Using the same argument for
the second term in the right hand side of (13), the result follows from the law of iterated expectation. 2

Remark 4. Note that the previous subadditivity property does not hold in general. Lee and Prékopa
(2012) provide a counterexample in the case where the underlying random vectors follow particular discrete
distributions.

2.2 Archimedean copula case

In this section, we focus on multivariate random vectors distributed as particular Archimedean copulas.
Note that, since Archimedean copulas are exchangeable, all components of the introduced multivariate
risk measures are the same, when applied to random vectors with such distributions. We show that
analytical expressions can be obtained for the lower-orthant and the upper-orthant CTE, which allows
us to illustrate the behavior of the proposed risk-measures. In the next sections, the presented properties
will be investigated more formerly.

We restrain ourself to random vectors with uniform marginals. In that case, the multivariate VaR-s
introduced in Cousin and Di Bernardino (2013) can be expressed as an integral transformation of the
Archimedean generator.

Definition 2.3. A d-dimensional Archimedean copula C with generator φ is a distribution function on
(0, 1)d defined by

C(u1, . . . , ud) = φ−1 (φ(u1) + · · ·+ φ(ud)) ,

where φ−1 is a d-monotone function from [0,∞) to [0, 1].

Proposition 2.5. Let X be a d-dimensional random vector which follows an Archimedean copula with
generator φ, then, for any i = 1, . . . , d,

VaRi
α(X) = 1−

∫ 1

α

(
1− φ(u)

φ(α)

)d−1

du, (14)

VaR
i

α(1−X) =

∫ 1

1−α

(
1− φ(u)

φ(1− α)

)d−1

du. (15)

Proof: This comes down from Corollary 8 in Cousin and Di Bernardino (2013). 2

Consequently, by using representations (8)-(9) and relations (14)-(15), the following integral expressions
hold for any i = 1, . . . , d

CTEiα(X) =
1

1−K(α)

∫ 1

α

(
1−

∫ 1

γ

(
1− φ(u)

φ(γ)

)d−1

du

)
K ′(γ)dγ, (16)

CTE
i

α(1-X) =
1

K(1− α)

∫ 1

α

(∫ 1

1−γ

(
1− φ(u)

φ(1− γ)

)d−1

du

)
K ′(1− γ)dγ, (17)
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where K is the Kendall distribution function associated with X. Using (16), we are able to give analytical
expressions of CTEα(X) for some particular families of Archimedean copulas. Additionally, from Example
1, analogous expressions can be obtained for the upper-orthant CTE of the vector 1−X = (1−X1, . . . , 1−
Xd) given that the Kendall distribution K of X is known. One can use either formula (17) or the following
relation

CTE
i

α(1-X) =
1

K(1− α)

[
1

2
− (1−K(1− α))

(
1− CTEi1−α(X)

)]
(18)

which comes downs from Equation (10). In Table 1, we provide analytical expressions of the Kendall
distribution function K(α) for bivariate Gumbel, Frank, Clayton and Ali-Mikhail-Haq families.

Copula θ ∈ Kendall distribution K(α, θ)

Gumbel [1,∞) α
(
1− 1

θ lnα
)

Frank (−∞,∞) \ {0} α+ 1
θ

(
1− eθα

)
ln
(

1−e−θ α

1−e−θ

)
Clayton [−1,∞) \ {0} α

(
1 + 1

θ

(
1− αθ

))
Ali-Mikhail-Haq [−1, 1) α−1+θ+(1−θ+θα)(ln(1−θ+θ α)+lnα)

θ−1

Table 1: Kendall distribution in some classical bivariate Archimedean copulas.

As a matter of example, we now focus on Clayton and Gumbel copula families.

Clayton family illustration

Let us now consider the Clayton family of bivariate copulas. This family is interesting since it contains the
counter-monotonic, the independence and the comonotonic copulas as particular cases. Clayton copulas
are associated with generator φ of the form φ(u) = 1

θ

(
u−θ − 1

)
, u ∈ (0, 1) with a dependence parameter

θ. Let (X,Y ) be a random vector distributed as a Clayton copula with parameter θ ≥ −1. Then, X and
Y are uniformly-distributed on (0, 1) and the joint distribution function Cθ of (X,Y ) is such that

Cθ(x, y) = (max{x−θ + y−θ − 1, 0})− 1
θ , for θ ≥ −1, (x, y) ∈ [0, 1]2. (19)

We obtain in Table 2 a closed-form expression for the multivariate lower-orthant CTE in that case.

Copula θ CTEiα,θ(X,Y )

Clayton Cθ (−1,∞) 1
2

θ
θ−1

θ−1−α2(1+θ)+2α1+θ

θ−α(1+θ)+α1+θ

Counter-monotonic W −1 1
4

1−α2+2 lnα
1−α+lnα

Independent Π 0 1
2

(1−α)2

1−α+α lnα

Π
Σ−Π 1 1

2
1+α2(2 lnα−1)

(1−α)2

Comonotonic M ∞ 1+α
2

Table 2: CTEiα,θ(X,Y ), i = 1, 2, for different copula dependence structures.

Interestingly, one can readily show that
∂CTEiα,θ

∂α ≥ 0 and
∂CTEiα,θ

∂θ ≤ 0, for θ ≥ −1 and α ∈ (0, 1).
This proves that, for Clayton-distributed random vectors, the components of our CTE are increasing
functions of the risk level α and decreasing functions of the dependence parameter θ. Note also that, in
the comonotonic case, our CTE corresponds to the vector composed of the univariate CTE associated with
each component. These properties are illustrated in Figure 1 (left panel) where CTEiα,θ(X,Y ) is plotted as
a function of the risk level α for different values of θ. Observe that an increase of the dependence parameter
θ tends to lower the CTE up to the perfect dependence case where CTEiα,θ=+∞(X,Y ) = CTEα(X) = 1+α

2 .
The previous empirical behaviors will be formally investigated in next sections.
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In the same framework, using Equation (18), one can readily show that
∂CTE

i
α,θ

∂α ≥ 0 and
∂CTE

i
α,θ

∂θ ≥ 0, for
θ ≥ −1 and α ∈ (0, 1). This proves that, for random couples with uniform margins and Clayton survival
copula, the components of our multivariate CTE are increasing functions both of the risk level α and of
the dependence parameter θ. Note also that the multivariate CTE in the comonotonic case corresponds
to the vector composed of the univariate CTE associated with each component. These properties are

illustrated in Figure 1 (right panel) where CTE
i

α,θ(1−X, 1−Y ) is plotted as a function of the risk level α
for different values of the parameter θ. Observe that, contrary to the lower-orthant CTE, an increase of
the dependence parameter θ tends to increase the CTE. Then in the case of upper-orthant CTE, the up-

per bound is represented by the perfect dependence case where CTE
1

α,θ=+∞(X,Y ) = CTEα(X) = 1+α
2 .

The latter empirical behaviors will be formally confirmed in next sections.

Figure 1: Behavior of CTE1
α,θ(X,Y ) = CTE2

α,θ(X,Y ) (left) and CTE
1
α,θ(1 −X, 1 − Y ) = CTE

2
α,θ(1 −X, 1 − Y )

(right) with respect to risk level α for different values of dependence parameter θ. The random vector (X,Y )

follows a Clayton copula distribution with parameter θ. The horizontal line corresponds to E[X ] = 1
2
. Note that

this limit is reached (right panel) for the upper-orthant CTE in the counter-monotonic case, i.e., CTE
1
α,θ=−1(1−

X, 1 − Y ) = 1
2
.

Gumbel family illustration

Gumbel copulas are associated with a generator φ of the form φ(u) = (− log(u))θ, u ∈ (0, 1) with a
dependence parameter θ ≥ 1. The bivariate family of copulas is such that

Cθ(x, y) = e−((− ln x)θ+(− ln y)θ)
1
θ
,

for θ ∈ [1,∞), (x, y) ∈ [0, 1]2 (e.g., see Section 3.3.1 in Nelsen (1999)) and X, Y standard uniform
marginals. For θ = 1 we have the independent copula C1(x, y) = Π(x, y) = x y; for θ = ∞ the Fréchet
bound M(x, y) = min{x, y} (comonotonic random variables). Again, in this case, analytical expressions

of CTEα(X,Y ) and CTE
1

α,θ(1 − X, 1 − Y ) can be derived. As in the Clayton case, it can be proved

that
∂CTE1

α,θ

∂α ≥ 0,
∂CTE1

α,θ

∂θ ≤ 0,
∂CTE

1
α,θ

∂α ≥ 0 and
∂CTE

1
α,θ

∂θ ≥ 0, for θ ≥ 1 and α ∈ (0, 1). Figure 2
plots one component of the proposed measures in the Gumbel case (all components are the same by
exchangeability), as a function of the risk level α and for different dependence parameter θ. We can see
that the behavior of the upper-orthant and the lower-orthant CTE are similar to the one exhibited in
Figure 1 for the Clayton case.

2.3 Comparison with other risk measures

We now discuss whether the components of CTE and CTE can be compared with univariate VaR and
CTE applied to the corresponding marginal risks and under which condition components of CTE and
CTE are more conservative that the components of VaR and VaR.
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Figure 2: Behavior of CTE1
α,θ(X,Y ) = CTE2

α,θ(X,Y ) (left) and CTE
1
α,θ(1 −X, 1 − Y ) = CTE

2
α,θ(1 −X, 1 − Y )

(right) with respect to risk level α for different values of dependence parameter θ. The random vector (X,Y )

follows a Gumbel copula distribution with parameter θ. The horizontal line corresponds to E[X ] = 1
2
.

Proposition 2.6. Consider a d–dimensional random vector X. Assume that its multivariate distribution
function F is quasi concave5. Then, for any i = 1, . . . , d, the following inequality holds:

VaRα(Xi) ≤ CTEiα(X), for i = 1, . . . , d. (20)

Proof: Let α ∈ (0, 1). From the definition of the accumulated probability, it is easy to show that
∂L(α) is inferiorly bounded by the marginal univariate quantile functions. Moreover, recall that L(α)
is a convex set in Rd+ from the quasi concavity of F (see Section 2 in Tibiletti (1995)). Then, for all

x = (x1, . . . , xd) ∈ L(α), x1 ≥ VaRα(X1), · · · , xd ≥ VaRα(Xd) and trivially, CTEiα(X) is greater than
VaRα(Xi), for i = 1, . . . , d. Hence the result. 2

Proposition 2.6 states that the multivariate lower-orthant CTEα is more conservative than the vector
composed of the classical univariate α-Value-at-Risk of marginal distributions. Such a result is not true
for the upper-orthant CTE as can be seen in left panel of Figures 1-2.

It is interesting to remark that, for comonotonic random vectors, the proposed multivariate CTE-s coin-
cide with the vector composed of univariate CTE-s of the corresponding marginals.

Proposition 2.7. Consider a comonotonic non-negative d–dimensional random vector X. Then, for all
α ∈ (0, 1), it holds that

CTEiα(X) = CTEα(Xi) = CTE
i

α(X), for i = 1, . . . , d.

Proof: If X = (X1, . . . , Xd) is a comonotonic non-negative random vector then there exist a random

variable Z and d increasing functions g1, . . . , gd such that X is equal to (g1(Z), . . . , gd(Z)) in distribution.

So FX(x) = FZ

(
min

i=1,...,d
{g−1
i (xi)}

)
and FX(x) = FZ

(
max
i=1,...,d

{g−1
i (xi)}

)
so that FX(X) = FZ(Z) =

FXi(Xi) and FX(X) = FZ(Z) = FXi(Xi) for all i = 1, . . . , d. The result follows immediately. 2

Let us now compare the multivariate lower-orthant and upper-orthant CTE introduced in Definition 2.1
with the multivariate lower-orthant and upper-orthant VaR defined by Cousin and Di Bernardino (2013).

5A function F is quasi concave if for any x, y, F (px + (1− p)y) ≥ min (F (x), F (y)) for all p ∈ (0, 1). Note that a function
F is quasi concave if and only if its upper level sets of are convex. Tibiletti (1995) points out families of distribution functions
which satisfy the property of quasi concavity. For instance, multivariate elliptical distributions and Archimedean copulas
are quasi concave functions.
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Proposition 2.8. Consider a d–dimensional random vector X satisfying the regularity conditions. If
VaRi

α(X) is a non-decreasing function of α, then it holds that

CTEiα(X) ≥ VaRi
α(X), for all α ∈ (0, 1).

If VaR
i

α(X) is a non-decreasing function of α, then it holds that

CTE
i

α(X) ≥ VaR
i

α(X), for all α ∈ (0, 1).

Proof:
From Equation (8), since VaRi

γ(X) is assumed to be non-decreasing with respect to γ, we obtain

CTEiα(X) ≥ 1
1−K(α)

∫ 1

α
VaRi

α(X)K ′(γ)dγ = K(1)−K(α)
1−K(α) VaRi

α(X) = VaRi
α(X).

From Equation (9), if VaR
i

γ(X) is assumed to be non-decreasing with respect to γ, we obtain

CTE
i

α(X) ≥ 1

K̂(1−α)

∫ 1

α
VaR

i

α(X)K̂ ′(1− γ)dγ = K̂(1−α)−K̂(0)

K̂(1−α)
VaR

i

α(X) = VaR
i

α(X).

Hence the result. 2

This property holds for instance for any random vector which admits an Archimedean copula. It is indeed
proved in Cousin and Di Bernardino (2013) that VaRα(X) and VaRα(X) are non-decreasing functions of
the risk level α for such dependence structures.

2.4 Behavior of multivariate CTE with respect to marginal distributions

In this section we study the behavior of the multivariate lower-orthant and upper-orthant Conditional-
Tail-Expectation with respect to a change in marginal distributions. Results presented below provide a
natural multivariate extension of classical results in a univariate setting (see, e.g., Denuit and Charpentier
(2004)).

Proposition 2.9. Let X and Y be two d–dimensional random vector satisfying the regularity conditions

and with the same copula structure C. If Xi
d
= Yi, then it holds that

CTEiα(X) = CTEiα(Y), for all α ∈ (0, 1),

and

CTE
i

α(X) = CTE
i

α(Y), for all α ∈ (0, 1).

Proof: From Proposition 2.6 in Cousin and Di Bernardino (2013), we know that VaRi
α(X) = VaRi

α(Y)

and VaR
i

α(X) = VaR
i

α(Y). The demonstration comes down from representation (8) and (9). 2

In particular, when one component of the underlying risk vector changes, it does not affect the other
components of the multivariate CTE-s as far as the dependence structure is unchanged. In the following,
we analyze how our multivariate measures behave when the marginal risks increase with respect to the
first-order stochastic dominance.

Proposition 2.10. Let X and Y be two d–dimensional random vectors satisfying the regularity conditions
and with the same copula structure C. If Xi �st Yi then it holds that

CTEiα(X) ≤ CTEiα(Y), for all α ∈ (0, 1),

and
CTE

i

α(X) ≤ CTE
i

α(Y), for all α ∈ (0, 1).

Proof: From Proposition 2.7 in Cousin and Di Bernardino (2013), we know that VaRi
α(X) ≤ VaRi

α(Y)

and VaR
i

α(X) ≤ VaR
i

α(Y). The demonstration comes down from representation (8) and (9). 2

12



Example 2. In this example, we provide an illustration of Propositions 2.9-2.10 above. We consider the
case of lower-orthant Conditional-Tail-Expectation (the upper-orthant case is completly analogous). The
obtained results are gathered in Table 3.

We consider five different bivariate random vectors (X,Yi), for i = 1, . . . , 5, with the same bivariate
Clayton copula with parameter 1. Let

X ∼ Exp(1), Y1 ∼ Exp(2), Y2 ∼ Burr(2, 1), Y3 ∼ Exp(1), Y4 ∼ Fréchet(4) and Y5 ∼ Burr(4, 1).

We calculate CTEα(X,Yi), for i = 1, . . . , 5 (see Table 3). As proved in Proposition 2.9 we obtain
an invariant property on the first coordinate of all CTEα(X,Yi), for i = 1, . . . , 5. Furthermore, since
(X,Y3) is an exchangeable continuous random vector, then CTE1

α(X,Y3) = CTE2
α(X,Y3). Moreover, as

QX(α) = 2QY1
(α), then CTE1

α(X,Y1) = 2 CTE2
α(X,Y1), for α ∈ (0, 1) (see Table 3).

By in Proposition 2.10, since Y1 �st Y5 �st Y4 �st Y2, then,

CTE2
α(X,Y1) ≤ CTE2

α(X,Y5) ≤ CTE2
α(X,Y4) ≤ CTE2

α(X,Y2), for any level α ∈ (0, 1).

Analogously, we also obtain CTEα(X,Y1) ≤ CTEα(X,Y3) ≤ CTEα(X,Y2), for any level α ∈ (0, 1).
Conversely Y3, Y4 and Y3, Y5 are not ordered in stochastic dominance sense.

α CTEα(X,Y1) CTEα(X,Y2) CTEα(X,Y3) CTEα(X,Y4) CTEα(X,Y5)

0.10 (1.188, 0.594) (1.188, 1.838) (1.188, 1.188) (1.188, 1.315) (1.188, 1.229)

0.24 (1.449, 0.724) (1.449, 2.218) (1.449, 1.449) (1.449, 1.431) (1.449, 1.366)

0.38 (1.727, 0.864) (1.727, 2.661) (1.727, 1.727) (1.727, 1.555) (1.727, 1.506)

0.52 (2.049, 1.025) (2.049, 3.235) (2.049, 2.049) (2.049, 1.704) (2.049, 1.667)

0.66 (2.454, 1.227) (2.454, 4.074) (2.454, 2.454) (2.454, 1.902) (2.454, 1.876)

0.80 (3.039, 1.519) (3.039, 5.591) (3.039, 3.039) (3.039, 2.219) (3.039, 2.202)

0.90 (3.768, 1.884) (3.768, 8.175) (3.768, 3.768) (3.768, 2.675) (3.768, 2.665)

0.99 (6.102, 3.059) (6.102, 26.59) (6.102, 6.102) (6.102, 4.813) (6.102, 4.811)

Table 3: CTEα(X,Yi), for i = 1, . . . , 5, with the same copula Clayton copula with parameter 1, X ∼ Exp(1)

and Y1 ∼ Exp(2); Y2 ∼ Burr(2, 1); Y3 ∼ Exp(1); Y4 ∼ Fréchet(4); Y5 ∼ Burr(4, 1). This table provides an

illustration of Propositions 2.9-2.10.

In the following proposition, we investigate the effect of a mean-preserving change in marginal risks.

Proposition 2.11. Let X and Y be two d–dimensional random vectors satisfying the regularity conditions
and with the same copula structure C. Let us assume that E[Xi] ≤ E[Yi] and that the ith components of
the lower-orthant VaR of X and Y satisfy the following single-cut condition: there exists a real c in [0, 1)
such that VaRi

α(X) ≥ VaRi
α(Y) for all α < c and VaRi

α(X) ≤ VaRi
α(Y) for all α ≥ c. Then,

CTEiα(X) ≤ CTEiα(Y), for all α ∈ (0, 1).

The same result holds CTE.

Proof: Let us consider the function ∆ defined by

α 7→ ∆(α) = (1−K(α)) (CTEiα(Y)− CTEiα(X))

=

∫ 1

α

(VaRi
γ(Y)−VaRi

γ(X))K ′(γ) dγ

Then ∆(0) = (1 − K(0))(E[Yi] − E[Xi]) ≥ 0, ∆(1) = 0 and ∆′(α) = (VaRi
α(X) − VaRi

α(Y))K ′(α) is
positive for all α < c and negative for all α ≥ c thanks to the single-cut condition. As a result, the
function ∆ remains positive on [0, 1] and the result holds. 2
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This result is similar to the consistency property of univariate CTE with respect to the less danger-
ous order, i.e., for univariate random variables X and Y such as X �D Y , then, for any α in [0, 1],
CTEα(X) ≤ CTEα(Y ).

Example 3. We provide here an illustration of Proposition 2.11. Firstly we remark in Example 2 that
E[Y3] < E[Y5]. However, the single-cut condition of Proposition 2.11 for VaR2

α(X,Y3) and VaR2
α(X,Y5)

is not satisfied and from Table 3 one can see that CTE2
α(X,Y3), CTE2

α(X,Y5) are not ordered for any
level α ∈ (0, 1).

We now define X := (X,Z1) and Y := (X, 1
2 (Z1 + Z2)). Let X a continuous random variable. Let Z1,

Z2 be two independent random variables such that Z1 ∼ Z2 ∼ Exp(2), then Z1 + Z2 ∼ Erlang(2, 2)
distribution. Assume that X and Y have both the same independent copula C. One can show that
E[ 1

2 (Z1 + Z2)] = E[Z1] = 1
2 and there exists a real c in [0, 1) such that VaR2

α(Y) ≥ VaR2
α(X) for all

α < c and VaR2
α(Y) ≤ VaR2

α(X) for all α ≥ c (see Figure 3, left). The interested reader is also referred
to Section 7.3 in Denuit et al. (2005).
Then, using Proposition (2.11) we obtain CTE2

α(Y) ≤ CTE2
α(X), for all α ∈ (0, 1). This property is

illustrated in Figure 3 (right).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Single−cut condition for Multivariate VAR

alpha

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

2.
5

Multivariate CTE order

alpha

Figure 3: Left: VaR2
α(X) (full line) and VaR2

α(Y) (dashed line). We also represent the associated univari-
ate VaR, i.e. VaRα(Z1) (squared line) and VaRα( 1

2 (Z1 + Z2)) (dotted line). Remark that VaR2
α(X) and

VaR2
α(Y) verify the single-cut condition in Proposition 2.11. Right: CTE2

α(X) (full line) and CTE2
α(Y)

(dashed line).

2.5 Behavior of multivariate CTE with respect to the dependence structure

In this section we study the behavior of our CTE generalizations with respect to a variation of the
dependence structure, with unchanged marginal distributions.

Proposition 2.12. Let X and X∗ be two d–dimensional continuous random vectors satisfying the regu-
larity conditions and with the same margins FXi and FX∗

i
, for i = 1, . . . , d, and let C (resp. C∗) denote

the copula function associated with X (resp. X∗) and C (resp. C
∗
) the survival copula function associated

with X (resp. X∗).
Let Ui = FXi(Xi), U∗i = FXi∗(X∗i ), U = (U1, . . . , Ud) and U∗ = (U∗1 , . . . , U

∗
d ).

If [Ui |C(U) ≥ α] �st [U∗i |C∗(U
∗) ≥ α] then CTEiα(X) ≤ CTEiα(X∗).

Let Vi = FXi(Xi), V ∗i = FXi∗(X∗i ), V = (V1, . . . , Vd) and V∗ = (V ∗1 , . . . , V
∗
d ).
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If [Vi |C(V) ≤ 1− α] �st [V ∗i |C
∗
(V∗) ≤ 1− α] then CTE

i

α(X) ≥ CTE
i

α(X∗).

Proof: We recall that U1 �st U2 if and only if E[f(U1)] ≤ E[f(U2)], for all non-decreasing function f , such
that the expectations exist (see Denuit et al. (2005); Proposition 3.3.14). We now choose f(u) = QXi(u),
for u ∈ (0, 1). Then we obtain

E[QXi(Ui) |C(U) ≥ α ] ≤ E[QXi(U
∗
i ) |C∗(U∗) ≥ α ],

But the right-hand side of the previous inequality is equal to E[QX∗
i
(U∗i )|C∗(U∗) ≥ α ] since Xi and

X∗i have the same distribution. Finally, we obtain CTEiα(X) ≤ CTEiα(X∗). For the second point of the

statement we choose the non-decreasing function f(u) = −F−1

Xi (u), for u ∈ (0, 1). Since Xi and X∗i have
the same distribution, we obtain the result. 2

We now provide an illustration of Proposition 2.12 in the case of bivariate Archimedean copulas.

Corollary 2.2. Consider a 2–dimensional random vector X, satisfying the regularity conditions, with
marginal distributions FXi , for i = 1, . . . , d, copula C and survival copula C.

If C belongs to one of the bivariate family of Archimedean copulas introduced in Table 1, an increase of
the dependence parameter θ yields a decrease in each component of CTEα(X).

If C belongs to one of the d-dimensional family of Archimedean copulas introduced in Table 1, an increase
of the dependence parameter θ yields an increase in each component of CTEα(X).

Proof: In the bivariate Archimedean case, the joint distribution of (U,C(U, V )) can be obtained analyt-
ically by using a change of variable transformation6 from (U, V ) to (U,C(U, V )):

F(U,C(U,V ))(u, α) = α− φ(α)

φ′(α)
+
φ(u)

φ′(α)
, 0 < α < u < 1. (21)

Then, thanks to formula (21), we can obtain the joint survival probability

h(u, α) := P[U ≥ u ,C(U, V ) ≥ α] = 1− u+
φ(u)

φ′(α)
for 0 < α < u < 1. (22)

Note that 1 − K(α) = P[C(U, V ) ≥ α] = h(α, α). Let Cθ and Cθ∗ be two bivariate Archimedean
copulas of the same family with generator φθ and φθ∗ such that θ ≤ θ∗. Given Proposition 2.12 and
by exchangeability, we only have to check that the relation [U∗|Cθ∗(U∗, V ∗) ≥ α] �st [U |Cθ(U, V ) ≥ α]
hold where (U, V ) and (U∗, V ∗) are distributed according to (resp.) Cθ and Cθ∗ . Given formula (22), the
previous relation can be restated as

h∗(u, α)

h∗(α, α)
≤ h(u, α)

h(α, α)
, for 0 < α < u < 1, (23)

where, from (22), h(u, α) = 1 − u + φθ(u)/φ′θ(α) and h∗(u, α) = 1 − u + φθ∗(u)/φ′θ∗(α). Eventually, we
have checked that, for all Archimedean family introduced in Table 1, Equation (23) is indeed satisfied
when θ ≤ θ∗. We then immediately obtain from Proposition 2.12 that each component of CTEα(X) is a
decreasing function of θ. Analogously one can prove the result for CTEα(X). 2

Then, for copulas in Table 1, the multivariate lower-orthant CTE (resp. the upper-orthant CTE) is
non-increasing (non-decreasing) with respect to the dependence parameter θ. In particular, this means
that limit behaviors of dependence parameters are associated with bounds for CTE and CTE within the
same family of Archimedean copulas.

6In the book by Nelsen (1999) (Corollary 4.3.5), a geometrical argument is used instead to obtain the distribution
function of (U,C(U, V )).
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2.6 Behavior of multivariate CTE with respect to risk level

We now study the behavior of the multivariate lower-orthant and upper-orthant Conditional-Tail-Expectation
with respect to risk-level α. In particular we obtain the following result.

Corollary 2.3. Consider a d–dimensional random vector X satisfying the regularity conditions.

1. If VaRi
α(X) is a non-decreasing function of α, then CTEiα(X) is a non-decreasing function of α.

2. If VaR
i

α(X) is a non-decreasing function of α, then CTE
i

α(X) is a non-decreasing function of α.

Proof: Let us consider the i-th coordinate CTEiα(X). From (8) we have

d

dα
CTEiα(X) =

K ′(α)

1−K(α)

[
CTEiα(X)−VaRi

α(X)
]
.

Using Proposition 2.8 the latter expression is non-negative for any level α ∈ (0, 1). The second point of
Corollary 2.3 comes down analogously. 2

The following result proves that assumptions of Corollary 2.3 are satisfied in the large class of d-
dimensional Archimedean copulas.

Corollary 2.4. Consider a d–dimensional random vector X, satisfying the regularity conditions with
copula C and survival copula C.

1. If C is a d-dimensional Archimedean copula, then CTEiα(X) is a non-decreasing function of α.

2. If C is a d-dimensional Archimedean copula, then CTE
i

α(X) is a non-decreasing function of α.

Proof: The demonstration of this result comes down from Corollary 2.5 in Cousin and Di Bernardino
(2013). 2

In the univariate setting, the Conditional-Tail-Expectation contains a safety loading i.e., CTEα(X) ≥
E[ X ], ∀α ∈ (0, 1) (see Section 2.4.3.3 in Denuit et al. (2005)). The safety loading should cover the
fluctuations of loss experience. Corollary 2.5 below provides a similar property also for our multivariate
lower-orthant ad upper-orthant CTE.

Corollary 2.5. Under assumptions of Corollary 2.3, it holds that

CTEiα(X) ≥ E[Xi], CTE
i

α(X) ≥ E[Xi],

for all α ∈ (0, 1).

Conclusion and perspectives

In this paper, we provide two extensions of the Conditional-Tail-Expectation to a multivariate setting.
The lower-orthant CTE and the upper-othant CTE can be viewed as natural counterparts of the lower-
orthant VaR and upper-orthant VaR introduced in Cousin and Di Bernardino (2013). These measures
transform risk vectors into real-valued vectors with the same dimension. The proposed multivariate CTE
measures incorporate the entire extreme quadrant part of the underlying distribution function contrary
to their multivariate VaR counterparts. They are well-suited for intrinsically multivariate risk problems
where, for instance, risks cannot be aggregated together or even compared. We have shown that most
properties satisfy by the aforementioned multivariate VaR-s also hold for the studied multivariate CTE-s.
In particular, the proposed CTE-s satisfy multivariate version of the positive homogeneity and the tran-
slation invariance property, which is not the case for instance for the classical Euler allocation measures
recalled in the introduction of this paper. We show that these measures are additive for π-comonotonic
couple of random vectors and we provide an evidence of the sub-additivity property in the independent
case. Unsurprisingly, the behavior of the lower-orthant CTE (resp. upper-orthant CTE) with respect
to a change in marginal risks or to a change in dependence structure turns to be the same as for the
lower-orthant VaR (resp. upper-orthant VaR).
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Extension to discrete distributions can be done by adapting the work by Lee and Prékopa (2012). How-
ever this interesting topic goes beyond the scope of the present paper. Another subject of future research
should be to compare our multivariate Conditional-Tail-Expectations with existing multivariate general-
izations of these measures presented in the introduction, both theoretically and experimentally.
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