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Abstract—Functional connections between brain regions are
supported by structural connectivity. Both functional and struc-
tural connectivity are estimated from in-vivo MRI and offer
complementary information on brain organisation and function.
However, imaging only provides noisy measures, and we lack a
good neuroscientific understanding of the links between structure
and function. Therefore, inter-subject joint modeling of structural
and functional connectivity, the key to multimodal biomarkers,
is an open challenge. We present a probabilistic framework to
learn across subjects a mapping from structural to functional
brain connectivity. Expanding on our previous work [1], our
approach is based on a predictive framework with multiple sparse
linear regression. We rely on the randomized LASSO to identify
relevant anatomo-functional links with some confidence interval.
In addition, we describe resting-state (rs)-fMRI in the setting of
Gaussian graphical models, on the one hand imposing conditional
independences from structural connectivity and on the other
hand parameterizing the problem in terms of multivariate
autoregressive models. We introduce an intrinsic measure of
prediction error for functional connectivity that is independent of
the parameterization chosen and provides the means for robust
model selection. We demonstrate our methodology with regions
within the default mode and the salience network as well as,
atlas-based cortical parcellation.

Index Terms—structural brain connectivity, functional brain
connectivity, statistical associations, predictive modeling

I. INTRODUCTION

Descriptions of brain function rely on complementary prin-
ciples of functional specialization and functional integration,
also referred as connectivity. Functional specialization refers to
the localization of particular aspects of cognitive processes to
brain regions and is studied via the well-established framework
of brain mapping. However, it must be complemented by the
study of interactions between brain regions [2]. These inter-
actions are mediated by physical connections –brain fibers–
and appear in the functional signal via so-called functional
connectivity. The large-scale organizations reflected by both
types of connectivity are the focus of intense research [3], [4],
[5], [6]. Indeed, connectivity and network integration appear
as markers of brain states such as consciousness [7], [8] or
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high-level cognition [9], as well as brain pathologies, including
schizophrenia [10], [11], attention deficit hyperactivity disor-
der (ADHD) [12], autism [13], Alzheimer disease (AD) [14]
and traumatic brain injury (TBI) [15], [16].

Magnetic Resonance Imaging (MRI) is central to the study
of brain networks because it allows non-invasive, in-vivo mea-
sures of both functional and structural connections. Diffusion
Weighted MRI (DWMRI) captures local tissue properties that
can be used to estimate neuronal fibers via tractography tech-
niques that output structural networks [17], [18], [19]. On the
other hand, functional MRI (fMRI) measures hemodynamic,
metabolic activity. Beyond its typical use for mapping task-
related regions, it reveals intrinsic functional connectivity via
spontaneous fluctuations of brain activity [20], in resting-
state fMRI (rs-fMRI) experiments. This observed functional
connectivity stems from the correlated patterns of activity
between interacting regions [2], [21]. Combining DWMRI and
rs-fMRI can provide a whole-brain connectivity description
that reflects structure and function [22], [23], [24], [25].

Integration of structural and functional brain connectivity
from multimodal imaging holds the promise of improved
markers of brain function and malfunction [26]. The first
step towards this objective is to build reliable anatomo-
functional models that extract meaningful relationships in
healthy subjects. This would allow the development of a sound
methodology to draw conclusions on the statistical significance
of the results and the corresponding confidence intervals.
The key challenges to face are that: i) both rs-fMRI and
DWMRI are noisy, indirect measures of function and structure,
respectively. Their relationship is underpinned by the fact that
structural connectivity is the carrier of the signal which is
transmitted from one region to another, ii) linking functional
connectivity to anatomical connectivity is a highly multivariate
statistical problem due to the number of possible neuronal
pathways. Most previous approaches have circumvented this
challenge by neglecting indirect effects, based on the simpli-
fying assumptions that an observed functional connection is
underpinned solely by the structural connection between the
two corresponding brain regions [27], [28]. On the contrary,
empirical studies [29], [27], [30] have reported that there is
significant functional connectivity mediated from one region
to another via indirect pathways.
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The coupling between function and structure has been
also studied with neurocomputational models [3]. These build
from the hypothesis that dynamical resting states emerge
from the interplay between large-scale brain structure and
oscillatory neural dynamics at the local level. Connectivity
in these networks is enforced based on long-range structural
connections and conduction delays proportional to their length.
This simulation work sheds light on models of intrinsic func-
tional activity directly linked to the underlying neurobiology.
However, this approach is not well suited to estimating subject
specificities from imaging data, and the authors do not quantify
precisely the agreement between empirical and simulated
functional connectivity.

To our knowledge the first probabilistic framework that
jointly models functional and structural connectivity interac-
tions has been introduced recently in Venkataraman et al. [31].
They model the observed correlation between two areas as a
random variable with parameters dependent on both the latent
functional and structural connectivity. The limits of this model
are that it treats each connection independently and it ignores
the variance of connectivity strength across connections.

Functional connectivity, inter-subject studies are usually
based on coefficient-level comparison of correlation matrices.
The underlying variability model is often expressed as a
univariate additive linear model on the covariance matrix,
which encodes both the group variability as well as the
subject specific contributions. However, a major limitation of
this approach is that it models separately the variation of
the different matrix coefficients. Correlation matrices have a
certain structure: they are by construction positive definite.
Constructing a matrix with coefficients chosen independently
leads, with high probability, to a non-positive definite matrix,
hence, it does not yield any consistent signal model. Therefore,
it is not possible to generalize the learned model to new
subjects [32].

In this paper, we introduce a joint predictive model of
brain structural and functional connectivity. In the absence
of any specific knowledge, we represent the link between
structure and function with multiple sparse linear regressions.
An important specificity of our approach is to account for indi-
rect connections, both by predicting partial correlations rather
than marginal correlations in the functional signal, and by
learning a many-to-one mapping from structural to functional
connections. Unlike previous studies [31], we use prediction
error, i.e. out-of-sample modeling error, as an Occam razor
to select the best performing model while limiting model
complexity and corresponding overfit. We quantify model-
ing error independently of the choice of parameterization of
functional connectivity, i.e. correlation or partial correlation.
Functional connectivity is considered as a multivariate statistic,
rather than a collection of independent correlations and hence
the predicted functional-connectivity matrices are constrained
to the set of observable correlation matrices, i.e. symmetric
positive definite (SPD) matrices.

This paper extends our previous work [1] in several ways.
We introduce a model selection framework based on nested
cross-validation, which relates prediction error and the sparsity
of the Gaussian graphical model. Furthermore, we discuss

model identification, that is how to estimate with some
confidence the relevant anatomo-functional links. Finally, we
present a detailed evaluation of our model with both atlas-
based ROIs and regions derived based on known functional
networks such as the default mode network (DMN) and the
salience network (SN). These parcellations provide intuitive
brain network descriptions and allow to relate our results with
existing literature [16].

The paper is organized as follows. In section II, we in-
troduce our predictive modeling framework. In section III,
we present a joint model linking the two modalities and we
discuss model selection and model identification. In section
IV, we discuss the overall validation design that includes
both the validation of the model and the qualitative repre-
sentation of anatomo-functional connections. In section V we
give empirical results that show how our model performs in
terms of predictive accuracy and we relate qualitatively our
identification results with current literature. Finally, in sections
VI and VII we discuss the strengths and weaknesses of our
approach and the evidence supporting it.

Notations: We write vectors with bold letters, a ∈ Rn,
matrices with capital bold letters, A ∈ Rn×n, and we denote
‖A‖ the operator norm, ‖A‖2 =

∑n
i,j=1A

2
ij . In is the

identity matrix of Rn×n and On the zero matrix. When
considering a variable with values across a group of subjects,
we denote the corresponding subject-specific variable with an
exponent: As. Quantities estimated from the data at hand
are written Â. A−1 is the matrix inverse of A, AT is the
transposed matrix, and A−T is the inverse transposed. Finally,
we denote Symn the set of n × n symmetric matrices and
Sym+

n the set of symmetric definite positive (SPD) matrices.

II. PREDICTIVE MODELING OF FUNCTIONAL
CONNECTIVITY

In this section we introduce our predictive modeling set-
tings: using statistical learning to infer a link between anatom-
ical and functional connectivity. We start by reviewing the sta-
tistical learning framework we rely on and the corresponding
modeling choices it entails. Then we expose the specificities
of our learning problem. Briefly, modeling challenges stem
from i) the fact that both connectivity modalities need to be
described as multivariate objects, which gives rise to structured
output prediction problems ii) the small sample size compared
to the complexity of the objects, which leads to seeking
simpler models via a sparsity description of the problem and
learning procedures that can include penalization.

A. Casting the problem as a statistical learning task

Problem setting: In a population of S subjects, we aim to
infer the link between the connections between brain regions
estimated by tractography of DWMRI and the observed syn-
chronization in the brain activity observed via rs-fMRI. Given
a set of n ROIs, we represent the set of anatomical connections
for a subject s as a connectivity matrix As ∈ Symn. The
corresponding brain activity in the ROIs is summarized by
n time series of length t, F s ∈ Rn×t. We are interested in
explaining the correlation structure of the observed rs-fMRI
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time-series F s from the subject’s anatomical connectivity
matrix As. For this purpose, we propose to learn the link
between As and the covariance matrix of the fMRI data
Σs ∈ Rn×n.

The typical population size used in clinical studies is small
compared to the number of possible connections that grows
as 1

2n
2. As a result, the statistical estimation of a link across

subjects between anatomical and functional connection is ill-
posed, and it will need to resort to regularization, i.e. injecting
sparsity constrains. We adapt the empirical risk minimization
framework [33], [34], in which sparsity, or other regularization
strategies, can easily be added via penalization terms. This
framework gives theoretical bounds on the performance of
learning algorithms and it can be used to compare different
models as well as to select the best model parameters.

The statistical learning framework: Briefly, the goal is
to learn a mapping f from a space A describing anatom-
ical connectivity matrices to a second space F describing
functional connectivity, such that for a new subject, given
the anatomical connectivity Atest, the function f yields a
prediction for the functional connectivity Σpred = f(Atest)
close to the subject’s observed functional connectivity Σtest.
In our case, the prediction function f expresses a multi-modal
model of brain connectivity, parameterized by a vector of
model parameters θ. Learning the model from the data is
performed by adjusting these model parameters to minimize
the sum of a loss, i.e. a term quantifying the goodness of fit of
the model to the observed data, and a regularization term that
controls for overfitting by penalizing more complex models
and can account for prior information on the parameters. For
instance, the celebrated LASSO estimator [35] relies on these
principles: the square loss quantifies the error in regression
settings, and the `1 penalty brings sparsity to the solution.

In general, the model is learned from the data by solving
the following optimization problem:

θ̂ = argmin
θ

∑
s

l
(
ys, fθ(x

s)
)
+ p(θ), (1)

where xs are features extracted from the input space, here
structural connectivity, and ys are the corresponding observed
features of the output space, here functional connectivity.

In the empirical risk minimization framework, specifying
our learning problem entails the choice of a predictive model
with the associated function fθ, a loss l, and a penalization p.
Several considerations come into play to guide these choices.
First, the prediction function fθ constitutes the forward model
and thus reflects our understanding of the mechanisms linking
x and y. The simplest and most parsimonious assumption here
is the linear model. With regards to this inter-modality map-
ping, prior work has shown that the strength of correlations
observed in the resting-state signal between a pair of regions
correlates with a measure of their anatomical connectivity [30].
It is thus reasonable to stipulate a linear relation between mea-
sures of functional and anatomical connectivity. We describe
the anatomo-functional mapping in details in section III-A.

Second, the loss should be well-suited to quantify errors for
the output space. In particular, it must be consistent with its
distribution. For instance, as we will see, the square loss –

Euclidean distance– is ill-suited to estimate the error between
predicted functional connectivity and estimated functional
connectivity. However, it leads to well-known estimators and
efficient optimization algorithms. Therefore, we will formulate
the learning problem on a parameterization well suited for the
square loss. Third, the penalization is used to encode prior
knowledge on the problem, i.e. specify which model to prefer
out of a family of models fitting the data equally well. In the
proposed framework this prior knowledge reflects sparsity.

Since, we have chosen to formalize this learning prob-
lem as a structured-output multivariate regression, suitable
for predicting multiple interdependent variables: rather than
predicting each functional connection separately, we seek to
predict a complete matrix with a structure compatible with
our output space. We show how to achieve this in section
III-B. Statistical consistency is an important property for our
learning framework to be useful as an inference tool. A
learning strategy is consistent if its prediction error converges
to the expected error in the large sample limit. Empirical risk
minimizers achieve such consistency under weak assumptions,
such as convexity of the loss and stability of the estimates
under resampling [36], [37]. We demonstrate evidence that
these properties are fulfilled in the results section.

Parameterization of Structural and Functional Connectiv-
ity : A statistical framework linking functional and anatomical
connectivity across subjects is underpinned by variability
models for anatomical and functional connectivity. A common
practice to investigate variations of anatomical connectivity
across subjects is to use linear models on a tract-based
measure of fractional anisotropy [38]. While the relationship
between local changes in fractional anisotropy and a measure
of connectivity between regions is subject to debate, modeling
inter-individual differences in anatomical connectivity using
independent tract-level statistics is a well-accepted paradigm
[39]. For our purposes, such an approach implies that the off-
diagonal coefficients of our anatomical connectivity matrix
As are good candidates for the input variable to our learning
problem. Given that linear relations are the most parsimonious
hypothesis from a statistical standpoint and have been widely
used to relate a measure of structural connectivity to observed
functional connectivity [38], [39], [30], we will base our
approach on a linear model from structural connectivity to
functional connectivity.

Another challenge of predicting functional brain connectiv-
ity is that it can be described by many different parameters.
Most often, the functional connectivity between a set of
regions is described by the covariance matrix, Σ ∈ Rn×n,
between the time series of the mean activation in the different
regions of interest. However, this characterisation reflects sig-
nal transmission from one region to another via indirect links.
Partial correlation reflects the level of interaction between
two regions after removal of the common influences from
all the other regions. Therefore, it is a closer description of
direct signal transmission from one area to another. In fact,
Fransson and Marrelec [40] reported that partial correlations
identified between-regions describe interaction better than cor-
relations based on rs-fMRI. Several studies [41], [32], [1] have
shown that the precision matrix, the inverse of the covariance,
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K = Σ−1, has adequate properties for the estimation of brain
functional networks. Note that the partial correlation matrix P
is estimated from the precision matrix K with normalization
to have unit diagonal and reversing the sign of the off-diagonal
elements. We describe how to obtain a suitable precision
matrix in section III-A.

III. JOINT MODELING OF ANATOMIC AND FUNCTIONAL
CONNECTIVITY

In this section, we introduce a joint generative model of
fMRI time series and anatomical connections. This model
is used to reformulate the learning problem into an easier
problem with output variables in a vector space. We also
discuss the model selection: comparing different models based
on predictive power. Finally, we use state-of-the-art sparse
recovery techniques to identify the most robust associations
between function and structure and quantify confidence for
these measurements.

A. Generative model

Sparsity is introduced in two levels. Firstly, the structural
support removes noisy and irrelevant connections in a unified
manner across structure and function. This constrains the
conditional dependencies between the time-series, within each
subject, and improves the estimation of partial correlation.
Secondly, sparse linear regression, across subjects, links each
functional connection with a subset of structural connections
and it allows data-driven extraction of multi-stage pathways.

We use the square loss only to estimate the fit of each
functional connection independently, whereas for the whole
functional connectivity matrices we discuss losses suitable for
SPD matrices, later in this section.

Single-subject generative model for fMRI: In this para-
graph, we model the observed fMRI data for a single subject.
We temporarily drop the subject exponent on the matrices.

The rs-fMRI data are described by the correlation matrices
of the activity in the different ROIs. The simplest probabilistic
model with a given order-two moment is the multivariate
Gaussian model. A graphical model representation of such
distribution gives a picture that can be linked to brain connec-
tivity. Following [41], we assume a multivariate autoregressive
model (MAR) to describe the generative process of fMRI time
series. If f(τ) ∈ Rn is the multivariate vector giving the fMRI
signal in the n ROIs at time τ , f(τ + 1) is given as:

f(τ + 1) = T f(τ) + e(τ + 1), (2)

with e additive Gaussian noise between variables with zero
mean and identity covariance, and T ∈ Rn×n a matrix
specifying the connections between variables that can be
understood as transition probabilities.

We consider the resting-state brain activity as a stationary
process. Eq. (2) is then written as a zero-lag process:

F = T F +E ⇔ F = (In − T )−1E, (3)

where F ∈ Rn×t is the observed signal matrix for t time
points, and E ∈ Rn×t the corresponding noise matrix. Thus,

the covariance of the observed time series, Σ, is given by:

Σ =
1

t
F F T = (In − T )−1covE (In − T )−T (4)

=
(
(In − T )T(In − T )

)−1
, (5)

as covE = In. In the context of multivariate Gaussian, Σ−1,
the inverse covariance is called the precision matrix K. We
call B = In − T the interaction matrix. B can be easily
linked to region-to-region connectivity via T and gives a full
parameterization of our model as a directed Gaussian graphical
model. It follows from Eq. (5) that B is a matrix square root
of the precision matrix of the observed time series:

K = Σ−1 = BTB. (6)

Anatomical to functional model: We use a multivariate
linear model between all the anatomical connectivity values
and the coefficients of the matrix B. Formally, we introduce
vector representations of the matrices A and B simply by
taking all their coefficients above the diagonal:

xs = Vec(As) = {As
i,j , i > j}, xs ∈ R1/2n (n−1),

ys = Vec(Bs) = {Bs
i,j , i > j}, ys ∈ R1/2n (n−1).

The model is then written

∀k ∈ {1 . . . 12n (n− 1)} ys
k = βk x

s, (7)

where βk are the coefficients relating the functional connection
yk to the whole-brain anatomical connectivity1, x. The inter-
pretation of this model is that each coefficient of the matrix B
is the transition probability between regions, which is a linear
function of the various anatomical connections.

Note that, unlike K, B is not constrained to be positive-
definite. In addition to the simple interpretation of the coef-
ficients of B, this property is a reason for choosing B as a
parameterization of functional connectivity for our predictive
model. Indeed, we can predict all coefficients of y separately
without any constraints.

B. Estimation of the joint model

Here we give the learning strategy to estimate the model
described above. The different steps of the full estimation
procedure are illustrated in Fig. 1.

Covariance selection for the fMRI precision matrix: In
Gaussian models, conditional independence between variables,
also known as the Markov structure of the model, is given
by the zeros in the precision matrix. Imposing a conditional
independence structure, i.e estimating from the fMRI data a
sparse precision matrix, reduces the small-sample estimation
error present in the empirical covariance matrix [32], [42]. This
is known in statistics as covariance selection [43]. Indeed, for
a fully-connected graphical model, the number of functional
connectivity parameters can be much greater than the number
of samples: t < 1

2n (n− 1). This results in a large estimation
error on the sample covariance matrix [44], [32].

1βk also contain a coefficient representing an offset, or intercept, that we
omit from the equation, as can be conflated into the vector of coefficients βk

by adding a constant term to the design matrix {xs}.
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Fig. 1. Processing pipeline for predicting functional connectivity
from structural brain connectivity:
1. Tracts are transformed into a connectivity measure between ROIs
2. On each subject, the fMRI signal is extracted for each ROI
3. A T-test on anatomical connectivity matrices across subjects gives
the graph of connected regions common to the group
4. Using this graph, a sparse inverse covariance is estimated from the
fMRI time series with the IPS algorithm
5. An approximated minimum degree ordering is found for graph G
6. Using this ordering, the interaction matrix for each subject is
computed from the Cholesky decomposition of the subject’s fMRI
precision matrix
7. The interaction matrix is rescaled according to Eq. 8
8. A multivariate linear predictor is learned from the subjects’ anatom-
ical matrices to the interaction matrices
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To impose a conditional independence structure of the fMRI
model, we use anatomical connections that are not significantly
positive across subjects [1]: given the anatomical connectivity
matrices across the various subjects, {As, s = 1 . . . S}, for
each pair of regions (i, j), we perform a T-test to testAs

i,j 6= 0
in our population of subjects. The output of this procedure is
a set of candidate connections, that can be represented as a
non-valued graph G, or equivalently a symmetric matrix G ∈
Symn of zeros and ones. We call this matrix the support of
our functional and anatomical connectivity graphs.

The maximal likelihood estimate of Ks for each subject
can then be computed using the iterative proportional scaling
algorithm (IPS) [44], taking as an input this support G, and
the observed time series for the subject F s.

Estimation of the interaction matrix Bs: We use the
Cholesky decomposition of the precision matrix Ks to es-
timate Bs. The Cholesky decomposition is not invariant by a
permutation of the rows and columns of the input matrix K.
We use the approximate minimum degree (AMD) ordering
[45], which provides a permutation of Ks favoring a sparser
Cholesky decomposition. This permutation depends only on
the support of the matrix Ks, G, and thus it is identical
across subjects. Note that the scaling of the fMRI activity
recording in the different ROIs is generally not deemed related
to structural information. For this reason, most investigators
study correlation, and not covariance, which corresponds to
imposing a certain scaling to the columns of B. For this
purpose, we rescale the diagonal of B to ones with the
following rule:

B̃s = Bs diag(Bs)−1, (8)

where diag(Bs) is the diagonal matrix made of only the
coefficients on the diagonal of Bs2. In simpler terms, we
consider that the partial-correlations, and not the elements of
the inverse covariance, are the quantities that can be mapped
to structural connectivity across subjects.

Anatomical to functional regression: The binary matrix
G imposes a common support across subjects to anatomical

2Note that another possible rescaling strategy would correspond to multi-
plying Bs on the left, rather than on the right, in Eq. (8). As can be seen from
Eqs. (3) and (6), this amounts to setting the covariance of the noise term E
in the MAR and it imposes that our matrix B̃s reflects only the structure and
not the innovation terms of the MAR. We do not discuss this option further,
as it gives poorer prediction in the experiments below.

and functional connectivity. However, inside this support, these
two quantities are modeled with multivariate linear model,
specified by Eq. 7. Without any prior information, this linear
model is ill-posed as there are many more candidate anatom-
ical connections than subjects: we are in high-dimensional
settings. Therefore we use the LASSO [35], which is a sparse
`1-penalized regression:

β̂k = argmin
β

(
1

2
‖Yk − βX‖2 + λ ‖β‖1

)
, (9)

where X and Y are the multi-subject concatenation of the
input and output vectors: X = {xs, s = 1 . . . S} and
Y = {ys, s = 1 . . . S}. LASSO offers two major advantages
over ordinary least square regression that are very useful in
modeling brain connectivity. Firstly, it improves prediction by
setting some coefficients to zero. This results in removing
noisy and irrelevant variables and thus reducing the total
variance. Secondly, it allows the selection of the most relevant
variables and thus it links each functional connection with a
subset of structural connection in a data driven way. Under
certain assumptions, if the true model is sparse, the correct
predictors can be identified even when the number of variables
is higher than the number of observation [46].

C. Model selection and identification

Here we discuss how to select the model parameters and
the anatomo-functional links that we can reliably consider as
non zero.

Choice of model parameters: The model and associated
estimation procedure presented above takes two parameters:
the significance threshold α on the inter-subject test of anatom-
ical connectivity between pairs of ROIs, and the amount of
penalization λ on the LASSO regression from anatomical to
functional connectivity. The parameters set the sparsity of the
model at two different levels: α set the joint sparsity of the
anatomical and functional graphs, while λ sets the sparsity of
the relation from anatomy to function.

We set a different value of λ for each connection to be
predicted. For this, given X and Yk in as in Eq. 9, we
apply 5-fold cross-validation, choosing λ to maximize the
explained variable of unseen samples of Yk. We denote this
procedure of selecting the λ-value by cross-validation fitting a
LASSO on the full data as LassoLarsCV. The LassoLarsCV is
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a parameter-free algorithm. Note that this cross-validation can
be considered as nested, since it is performed in an internal
loop of the general estimation algorithm. We set α to maximize
predictive power of our model on unseen data using random
hold-out cross validation with 10% held out.

Losses of functional connectivity: The Euclidean distance
is not suitable to quantify differences between functional
graphs. Sym+

p can be parameterized as a Riemannian mani-
fold using an intrinsic metric [47], which is suitable to build
a full statistical framework on Sym+

p [48], [49]:

dAI(C,D)2 = tr
(
logC− 1

2DC− 1
2

)2
(10)

This metric is invariant under affine scaling and inversion
of the matrices, and it is thus equivalent for a wide range
of parameterization for functional connectivity. In particular,
if D is the predicted matrix, and C the ground truth, it
gives the same prediction error on the correlation matrices
and on the precision matrices. The metric dAI cannot be used
with non-structured output predictors, such as the independent
prediction of each coefficient of the functional connectivity
matrix, because they cannot guarantee that the prediction will
be positive definite. To compare all models, whether they give
SPD predictions or not, with a prediction error independent of
the parametrization of functional connectivity, we develop the
metric given in Eq. (11) around the target matrix, Ξtarget, that
can be a correlation, precision, partial correlation matrix and
it is by construction positive definite:

d(Ξpred,Ξtarget) = ‖(Ξtarget)−1(Ξtarget −Ξpred)‖ (11)

For our generative model of the fMRI signal, a natural mea-
sure of distance between the predicted fMRI covariance and
the observed one is the KL divergence of these models. Under
the assumption, that fMRI time series are well-described by
a multivariate normal model parameterized by a covariance
matrix Σ, the relevant measure of divergence between two
models, a predicted and a target model, is the Kullback-Leibler
divergence3:

KL(Σpred,Σtarget) =
1

2

(
log det(Σpred)− log det(Σtarget)

+ tr
(
(Σpred)−1Σtarget))

(12)

Unlike dAI or d, it applies only to covariance matrices, and
is not invariant, or close to, by scaling or re-parameterization.

Model identification: Once we have selected the optimal
model in terms of predictive performance, we seek to identify
the important anatomo-functional non-zero coefficients βk.
For this purpose, we use the randomized LASSO, a general-
ization of LASSO with better sparse recovery properties [50].
The randomized LASSO estimate is computed by solving the
LASSO problem with random weights Wj within specified

3Note that neither d nor the KL divergence are distances, as they are not
symmetric. They however are suitable to define a loss.

Algorithm 1: Anatomo-functional model estimation
Input: {F s ∈ Rn×t, s = 1, . . . , S}, the time series for each subject;
{As ∈ Rn×n, s = 1, . . . , S}, the anatomical connectivity
matrices for each subject; α, the threshold on the p-value for
group-level anatomical connectivity.

Output: G ∈ {0, 1}n×n the support of functional connectivity
graphs; P ∈ {0, 1}n×n, permutation of the ROIs’ ordering;
{βk ∈ Rn×n} the anatomo-functional link coefficientsb.

1: G← On (initialize empty support)
2: for i=1 to n, j=1 to n, where T-test({As

i,j} 6= 0) > α do
3: Gi,j ← 1
4: end for
5: P ← AMD(G) (Approximate Minimum Degree ordering)
6: for s=1 to S do
7: Ks ← IPS(F s,G) (Iterative Proportional Fitting)
8: Bs ← Cholesky(P Ks)
9: B̃s ← Bs diag(Bs)−1 (scale Bs according to Eq. 8)

10: end for
11: X = {Vec(As)}; Y = {Vec(B̃s)}
12: for i=1 to n, j=1 to n, such that Gi,j 6= 0 do
13: βk ← LassoLarsCV(X,Yk); k = i+ n j
14: end for

bNote that as the matrices are symmetric, we only need to compute at
most 1/2 n (n − 1) coefficients. We write the full computations to simplify
the exposition of the algorithm.

bounds4:

β̂k = argmin
β

(
‖Yk − βX‖2 + λ

N∑
j=1

|βj |
Wj

)
(13)

This randomized penalization regression is solved many times.
The probability that a functional connection is related to a
anatomical connection is then given by the fraction of times
the coefficient is selected during the repetitions. The benefit
is that the identification of relevant anatomo-functional links
is not sensitive to the parameters of the regression equations.
Note that we have one parameter for each functional con-
nection, yk. For the randomized LASSO, we use the penalty
parameter λk selected previously by cross-validation with the
LassoLarsCV.

IV. EXPERIMENTS

A. Multi-subject and multi-modal brain imaging dataset

Brain connectivity analysis was performed in 41 normal
adults (24 males, age 29.07 ± 9.54 years). The data were
acquired at a 3T Philips scanner of the Computational, Cogni-
tive and Clinical Neuroimaging Laboratory (C3NL), Imperial
College London, UK. Resting-state fMRI data acquisition was
performed with eyes closed. Subjects were instructed neither
to fall asleep, nor to think of something in particular. rs-fMRI:
T2*-weighted gradient EPI sequence, TR/TE=2000/30, 31
ascending slices with thickness 3.25mm, gap 0.75mm, voxel
size 2.5×2.5×4mm, flip angle 90o , FOV 280×220×123mm,
matrix 112×87. DWI: 64 non-collinear directions, in 72 slices,
slice thickness 2mm, FOV 224mm, matrix 128x128, voxel

4Wj chosen randomly equal to .5 or 1, as recommended by [50]. In practice,
the results are not very sensitive to the randomization strategy used to draw
Wj .
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size 1.75×1.75×2mm3, b-value 1000 s/mm2. High reso-
lution T1-weighted whole-brain structural images were also
obtained in all subjects.

FSL was used for image pre-processing of both DWI and
rs-fMRI images [51]. This involved eddy current correction of
DWI and motion correction as well as spatial smoothing and
whitening of rs-fMRI images. Brain extraction was performed
originally with FSL. Multi-resolution bias correction with
N4ITK [52] was applied to T1s, B0s and the middle fMRI
volumes to improve the robustness of the non-rigid registration
tools [53].

BOLD fluctuations are profound in gray matter, while
tractography is more reliable in delineating white matter fibers.
Hence, we are interested in defining cortical ROIs that are
located in gray matter. There are usually two competing
approaches in defining brain ROIs: i) atlas-based ROIs and
ii) connectivity-based ROIs. We tested our methodology with
ROIs from both approaches.
Atlas-based ROIs: Atlas-based ROIs are accurately defined

in T1 space using a robust label propagation tech-
nique [54]. Note that labels of the original atlases were
subdivided into their white matter (WM), gray matter
(GM) and cerebrospinal fluid (CSF) portions using FSL
FAST tissue classification [55]. The individual atlases
were propagated using transformations calculated with
a non-rigid registration procedure based on free-form
deformations (FFD) [53]. The propagated label sets are
then merged into a consensus probabilistic segmentation
using a locally weighted fusion strategy [56]. These
probabilistic labels were then used as spatial priors in a
subsequent refinement step, where a probabilistic inten-
sity model is solved using the Expectation-Maximization
(EM) algorithm. For this procedure we used our pre-
viously published method as described in [57]. These
automatically computed labels are then transferred from
T1 space to both fMRI and B0 space using intra-subject,
non-rigid registration [53]. In total we used 54 cortical
regions.

Connectivity-based ROIs: Connectivity-based ROIs are pre-
defined in MNI space and they are derived from a multi-
subject independent component analysis (ICA) [58]. Sub-
sequently, specific regions were selected by an expert
review of the resting-state literature. An effort was made
to split large regions into smaller and the boundaries
were manually refined so there is no overlap. We identify
ROIs that belong to the default mode network (DMN):
i) posterior cingulate cortex (PCC), ii) medial prefrontal
cortex (mPFC), iii) superior parietal regions (SupPar), iv)
inferior parietal regions (InferPar), v) occipital regions
(Occ) and vi) thalamus (Thal). We also identify ROIs
that belong to the salience network (SN): i) anterior
insula (AI), ii) presupplementary motor area (preSMA)
and iii) middle frontal regions (MidFront). These regions
are propagated to native fMRI and B0 space with non-
rigid registration. Left and right hemispheric parts are
identified based on each subject atlas-based segmentation.
We also use the subject GM mask to keep only voxels
within GM. We used a total of 18 regions.

To construct corresponding functional networks the fMRI
signal was averaged across voxels within each area. Confound
parameters were regressed out with linear regression: the
mean CSF and white-matter signal, as well as the six motion
correction parameters estimated with FEAT, FSL [51].

To build the anatomical connectivity matrices As, the tracks
between regions are identified based on the standard ball and
stick model available in FSL [51], [59]. However, measure-
ments of connection probability are difficult to interpret as
the probability measure is very sensitive to noise in the data,
as well as the size and separation of the ROIs [23], [24].
In our work, the strength along these tracks is determined
as the integral of the local diffusion anisotropy. This is
estimated based on the diffusive transfer between voxels using
the orientation distribution function (ODF). The ODFs are
calculated directly from all samples on the volume fraction of
diffusion, allowing direct correspondence with the underlying
fiber model [23], [24].

B. Model validation by prediction performance

Here, we use cross-validation to compare our model to
other approaches based on prediction performance across
subjects. Specifically, we revisit the different choices relevant
for the construction of the model: i) structured prediction
using a Cholesky decomposition, ii) imposing a common graph
support in both modalities iii) ordering the MAR with the
AMD ordering, and iv) scaling the innovation terms to 1 –Eq.
(8). The various alternatives tested are:
MAR AMD: the model presented in section III estimated

with Algorithm 1.
MAR Random-order: the same model and estimation strat-

egy, but choosing random orders rather than an approx-
imate minimum degree ordering before performing the
Cholesky, and averaging the prediction for many of these
random choices.

Dense: the same model and estimation strategy, but rather
than using the IPS to estimate a sparse inverse covariance,
we estimate a dense precision matrix using the Ledoit-
Wolf covariance shrinkage [60]. This approach guaranties
a more accurate and well-conditioned covariance estimate
under little assumptions and with no parameters to tune.

Unstructured: independent prediction of each entry of the
precision matrix. The precision matrix has been estimated
based on the Ledoit-Wolf covariance shrinkage.

Finally, to set the filling factor of anatomical and func-
tional connectivity graphs that gives the optimum prediction
performance, we vary the threshold α on the T-test so that the
percentage of selected connections ranges from 10% to 90%.

In Fig. 2 we show a qualitative example of how a predicted
interaction matrix (BS), Fig. 2a, is transformed to a precision
matrix, Fig. 2b, by multiplying with its transpose and subse-
quently it is inverted to derive a correlation matrix, Fig. 2c, in
the AMD model. The derived correlation matrix, Fig. 2c, is
subsequently compared to the ’ground truth’ correlation, Fig.
2f, with each of the measures described above: i) dAI , ii) d
and iii) KL. The ’ground truth’ correlation is estimated as
the correlation coefficient of each pair of average time-series
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(a) Predicted interaction matrix (b) Corresponding predicted precision matrix (c) Corresponding predicted correlation matrix

(d) Training interaction matrix (e) Structural Connectivity (f) Target correlation matrix

Fig. 2. We show a qualitative example of how in the AMD model a) a predicted interaction matrix is transformed to b) a precision matrix by multiplying
with its transpose and subsequently it is inverted to derive c) a correlation matrix. The derived correlation matrix Fig. 2c is subsequently compared to the
’ground truth’ correlation Fig. 2a with each of the measures described above: i) dAI , ii) d and iii) KL. We also show an example of d) an interaction matrix
used for training the model as well as e) the structural connectivity matrix used for prediction of the interaction matrix a). The structural connectivity is
derived with 70% support. In f) we show the ’ground truth’ correlation, which is estimated as the correlation coefficient of each pair of averaged time-series
within each ROI once the WM, CSF and motion parameters have been regressed out. Note that the functional-connectivity matrices display diagonal features
in the middle of the upper and lower part of the matrices. These are due to homologous inter-hemispheric connections; in other words, each region tends to
be highly correlated with the corresponding region in the opposite hemisphere.

within each ROI once the WM, CSF and motion parameters
have been regressed out. We also show an example of an
interaction matrix used for training the model, Fig. 2d, as well
as the structural connectivity matrix used in this example for
prediction, Fig. 2e. We follow the same procedure for all the
models that give SPD predictions. For the unstructured model
we predict the precision matrix directly and subsequently it is
inverted to derive the corresponding correlation matrix. Note
that precision matrices inherently reflect partial correlation
between ROIs and are more suited for the association of
structure with function.

C. Identification of relevant anatomo-function connections

Once the best performing model has been selected using
cross-validated predictive power, we are interested in iden-
tifying which structural connections are determined given a
functional connection. This is important to interpret the results,
and possibly draw neuroscientific or medical conclusions in
an applicative context. Thus, for the model estimation we use
randomized LASSO across all 41 subjects. This results in a
sparse array with rows that correspond to functional connec-
tions and columns that correspond to the structural connections
and the probability to have been selected. Although, there
is a profound lack of ground truth data, there are numer-
ous functional studies that draw conclusions about functional

and structural connectivity among regions implicated in well
known networks such as the DMN and the SN. The SN is
thought to regulate dynamically other networks, such as the
DMN and it is implicated in impaired inhibition and slow
information processing speed.

V. RESULTS

A. Model selection

Fig. 3 summarises the results of model selection with both
atlas-based ROIs, Fig. 3a-3c and connectivity-based ROIs, Fig.
3d-3f. Each column demonstrates the prediction performance
as it is measured with the intrinsic metrics dAI introduced in
Eq. (10), d as in Eq. (11) and the Kullback-Leibler divergence,
KL, Eq. (12), respectively. Mean values and standard deviation
is estimated for each scenario with cross-validation, which
consists of 100 randomly selected triplets (left-out subjects)
out of the 41 subjects. Each plot shows the performance of
various models explored. The performance of the unstructured
model is only estimated with the d metric, since the prediction
is non-SPD.

The prediction performance of the proposed model, (MAR
AMD) in section III outperforms all the other approaches for
all the different support levels. The results are robust across
different types of parcellations and different performance mea-
sures. In the MAR Random Order 100 random permutations
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(a) dAI for atlas-based ROIs (b) d for atlas-based ROIs (c) KL for atlas-based ROIs

(d) dAI for connectivity-based ROIs (e) d for connectivity-based ROIs (f) KL for connectivity-based ROIs

Fig. 3. Model selection and prediction performance. a-c) summarise the results of model selection and prediction performance with atlas-based ROIs. d-f)
summarise the results of model selection and prediction performance with connectivity-based ROIs. Each column demonstrates the prediction performance as
it measured with the intrinsic metrics dAI introduced in Eq. (10), d introduced in Eq. (11) and the Kullback-Leibler divergence, KL, Eq. (12), respectively.
Each plot shows the performance of the following models: i) MAR AMD, ii) MAR Random Order, iii) Dense AMD. The performance of the unstructured
model is only estimated with the d metric, since the prediction is non-SPD.

MAR AMD - Random Order 10% 20% 30% 40% 50% 60% 70% 80% 90%
54 3.3e-18 1.2e-49 1.9e-42 1.1e-47 2.7e-16 2.2e-07 2.5e-28 3.4e-30 2.0e-04
18 4.0e-05 2.6e-48 1.5e-49 1.4e-44 9.0e-43 4.2e-05 6.4e-29 2.4e-03 8.9e-04

TABLE I
WILCOXON SIGNED-RANK TEST (PAIRED, TWO-SIDED TEST) ON THE DIFFERENCE BETWEEN THE MATCHED SAMPLES IN THE MAR AMD AND RANDOM
ORDER APPROACHES, AS THEY MEASURED WITH dAI . THE TABLE VALUES INDICATE THE PROBABILITY OF OBSERVING THE GIVEN RESULT UNDER THE

NULL HYPOTHESIS.

for the interaction matrix K are estimated and applied to each
of the 100 randomly selected triplets, respectively. Here, we
test whether random orders of the interaction matrix would
significantly affect the performance of the model. Inter-subject
variability accounts for most of the magnitude of the error bars.
Therefore, to demonstrate that there is substantial difference
between the MAR-AMD model and the Random Order, we
estimate the Wilcoxon signed rank test as shown in Table I.
The results reveal statistically significant differences between
the two approaches for all support levels.

The unstructured model performs significantly worse than
the others. In figures 3b, 3e, the loss appears to be almost
constant due to the scaling. For both atlas-based ROIs and
connectivity-based ROIs, it follows a similar pattern as the
rest of the models: For example, with atlas-based ROIs, the
difference between the predicted functional connectivity and
the ’ground truth’ is 93.65 for 10% support, it gradually falls
to 93.4 for 80% support and it raises again to 94.7 for 90%
support.

For the multiple-penalized regression we use a LASSO
implementation in scikit-learn toolbox based on the Lars
algorithm [61], which is computationally very efficient. This
involves an intrinsic cross-validation to estimate the optimum
λ. To examine the distribution of λ across all connections
and cross-validations, we plot the histogram of λ values for
different support levels at Fig. 4. We note that the optimal λ
value is consistently close to 0.015 for most of the connections.
This holds for every support level, though here we present only
the histogramms for 50%, 60%, 70% and 80% connections
included Fig. 4.

With a Markov structure of 90% the structural connectivity
matrices are extremely ill-conditioned with several entries
close to zero. In this case, the estimation of the prediction
fails on average 10 out of in total 100 cross-validation trials.
The results presented here are by averaging the successful
cross-validation trials. For the remaining support levels there
is no drop-out. The results suggest that for both ROIs defined
either based on atlas-based segmentation or drawn from known
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0 0.01 0.02 0.03 0.04 0.05 0.06

(a) 50% support
0 0.01 0.02 0.03 0.04 0.05 0.06

(b) 60% support
0 0.01 0.02 0.03 0.04 0.05 0.06

(c) 70% support
0 0.01 0.02 0.03 0.04 0.05 0.06

(d) 80% support

Fig. 4. Histograms of the λ values across all cross-validations and connections for a) 50% support, b) 60% support, c) 70% support and d) 80% support.
We note that the optimal λ value is consistently close to 0.015 for most of the connections.

(a) 60% support - Amd Ordering (b) 60% support - Symamd Ordering (c) 60% support - Random Ordering

(d) 70% support - Amd Ordering (e) 70% support - Symamd Ordering (f) 70% support - Random Ordering

Fig. 5. Z-scores of the structural connections related to the functional connection between the left occipital lobe and the right PCC. Results are based on
model identification and bootstrap by drawing the subjects with replacement over 5000 iterations. The z-scores are shown for 60% and 70% support at the
top and bottom row, respectively. Three different strategies have been adapted for the ordering of the precision matrix: a,d) AMD, b,e) SYMAMD and c,f)
Random Ordering.
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networks a Markov structure of around 60−70% achieves the
higher performance across all models and metrics.

B. Connections identification

We run model identification across all subjects for 60%
and 70% of the connections included, to examine how the
identified connections based on the proposed data-driven ap-
proach are related to current evidence in neuroimaging and
neuroscience literature. Note that these support levels mini-
mize the prediction error in Fig. 3. Also, the model selection
demonstrated that the MAR AMD model outperforms the
others. We now utilize it to identify the structural connections
closely related to each functional connection. Furthermore, we
use bootstrap by drawing the subjects with replacement over
5000 iterations to obtain the corresponding z-scores, which
results in a matrix of 153×18×18 for the connectivity-based
ROIs and a matrix of 1431×54×54 for the atlas-based ROIs.
Fig. 5 shows one slice of the z-scores for the connectivity-
based ROIs that depicts the structural connections related to
the functional connection between the left occipital lobe and
the right PCC.

To assess how sensitive the model identification process
is to the ordering of the precision matrix, we show results
from three different strategies: AMD Fig. 5a, 5d, SYMAMD
Fig. 5b, 5e and Random Ordering Fig. 5c, 5f. Both AMD
and SYMAMD estimate an ordering that aims to sparsify
the cholesky decomposition. They provide similar but slightly
perturbed ordering sequences given the same support. On the
other hand, for the Random Ordering, we estimate a random
ordering for each bootstrap iteration. The results demonstrate
that similar key connections are identified for all the models.
However, the sparse models result in significantly higher
confidence intervals given the same sample size.

Subsequently, we plot the brain connections with the higher
z-scores for 60% and 70% support, Fig. 6. Fig. 6 is divided
in a left part (left two columns) and a right part (right
two columns). The left part shows the overall structural
connections linked to the function within the DMN and the
SN. The right part of the figure is focused on structural
connections linked to the functional connectivity between the
left part of occipital lobe and the right PCC. Each column
presents identification results with the same support. Each
row shows the 3D brain model from top, right and left view,
respectively. Each connection is represented as a 3D tube
between a pair of regions with diameter proportional to the
average probability over all bootstrap iterations. Connections
are thresholded with only 6% with the highest z-scores shown
here, which corresponds to 1.25 and 0.95 for 60% and 70%
support levels, respectively.

The thalamus, preSMA and superior parietal regions appear
as hubs of the underlying networks when all connections are
taken into consideration. When we examined the functional
connection between right PCC and left occipital lobe direct
structural connections emerge as well as other pathways via
homologous regions (left PCC) and the thalamus. Structural
connections between the anterior insula and middle frontal
gyrus as well as the anterior insula and the thalamus are also

highlighted. Note that SN tracts to the right anterior insula
have been found to predict default mode network function
after traumatic brain injury in a task-related paradigm [16].

Connection identification results for the atlas-based ROIs
are shown in Fig. 7. The top row shows the structural con-
nections with the highest 2% z-score values that predict the
functional connection between the left occipital lobe and the
right posterior part of the cingulate gyrus (PCC). At the bottom
row, we show the structural connections with the 2% highest z-
scores related to the functional connection between the left and
right frontal lobes. The value of z-score threshold is around 1.6
for both examples. We note that for connectivity-based ROIs
pathways emerge that involve subcortical regions, whereas for
the cortical atlas-based ROIs pathways emerge that involve
inter-hemispheric connections between homologous regions.

VI. DISCUSSION

Both DWI and rs-fMRI are indirect and noisy measures of
structure and function, respectively. Therefore, it is not clear
how inter-subject variability in functional connectivity is re-
lated to structural connectivity and to what degree it may result
from disease progression or imply it. Furthermore, there are
inconsistencies between independent structural and functional
connectivity studies, which may result from differences in
patient groups, imaging and analysis methods [4]. Multi-modal
integrative approaches of connectivity are potentially useful
tools in understanding brain function and for investigating the
impact of pathology on brain networks [62], [63].

A. Blending brain modeling with high-dimensional statistics

Integrating functional and structural connectivity under a
predictive framework is a very challenging statistical task
since, the dimensionality of both the input and the output
space increase as n2, where n is the number of ROIs. With 54
ROIs, there are up to 1431 coefficients to learn, for each of the
1431 functional connections, which is to be put in perspective
with the typical number of subjects in a study, seldom more
than a hundred. Previous anatomo-functional studies have
relied on simplification of the problem, either by predicting
distributed variations [64], or by only studying known uni-
variate associations between a given functional connection
and the corresponding direct structural connection [30]. Here,
we learn indirect effects using a many-to-one mapping from
structural to functional connections. In addition, to achieve
a simple description of the mapping, we rely on node-level
linear models. For this purpose, we propose a generative model
that is well-suited to the high-dimensionality of the data:
i) in the context of Gaussian graphical models we impose
a Markov independence structure on functional connectivity
using structural connectivity and ii) we employ the randomized
LASSO to select the structural connections predicting a given
functional connection. In addition, we assess the goodness of
the fit of our model and set its different parameters using
prediction performance on unseen data, the standard strategy
for model selection in the context of supervised learning. In
this context, overfitting is controlled by the external cross-
validation loop. A bias is introduced, but in high-dimensional
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(a) 60% support (b) 70% support (c) 60% support (d) 70% support

(e) 60% support (f) 70% support (g) 60% support (h) 70% support

(i) 60% support (j) 70% support (k) 60% support (l) 70% support

PCC preSMA mPFC SupPar MidFront AI InferPar Occ Thal
Fig. 6. Connectivity associations between structure and function in the underlying network for 60% and 70% of connections included. The figure is divided
in left and right part. The left part shows the overall structures linked to the function within the DMN and the SL. The thalamus, preSMA and superior parietal
regions appear as hubs of the underlying networks. The right part of the figure is focused on structural connections linked to the functional connectivity
between the left occipital lobe and the right pre-cuneous. The results highlight direct connections between pre-cuneous and occipital lobe as well as other
pathways. Each column presents identification results with the same support. Each row shows the 3D brain model from top, right and left view, respectively.
Each region is associated with a unique color. Each connection is represented as a 3D tube between a pair of regions with diameter proportional to the
probability of the connection. Connections are thresholded with only 20% with the highest probability shown here.

statistics, bias-variance tradeoffs are necessary. Importantly,
our model evaluation is based on an intrinsic metric suitable to
quantify distance between symmetric positive definite matrices
Sym+

n . This metric is invariant under affine transformations
and inversion, and enables us to compare different parame-
terizations of functional connectivity, such as correlation, or
partial correlations.

Describing resting-state fMRI with a Gaussian graphical
model provides an underlying generative process [32], [42],
[41], which can assist in gaining a deeper understanding
of the mechanisms of functional connectivity, compared to
purely descriptive models as [30]. We found empirically
that enforcing the independence structure based on structural
connectivity [1] improves the prediction of the model. From
the high-dimensional statistical point of view, this procedure
gives a better conditioned covariance matrix; in addition it
is consistent with the simple picture that absence of fiber
between regions should correspond to absence of functional

connections.
We assume a multivariate linear relationship between

anatomical and functional connectivity. In fact, the interaction
matrix reflects signal transition probabilities between regions,
which are considered as a linear function of the related
anatomical connections. Neuroscientific findings that support
this come from neuronal models that associate axonal diam-
eter, myelination and fiber integrity to conduction delays and
wiring cost. For example, metabolic cost is often assumed
proportional to the total volume of fibers [65], indicating a
multiple linear relation between function and structure.

To find associations between structure and function we use
sparse models. We rely on the randomized LASSO rather than
the LASSO, as it improves upon the LASSO in a number
of ways. Firstly, the randomized LASSO gives a reliable
detection of important features with less stringent conditions
than the LASSO [50]. Secondly, it assigns a selection score
for each structural connection that reflects the probability
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(a) OccL-PCCR (b) OccL-PCCR (c) OccL-PCCR

(d) Frontal L-Frontal R (e) Frontal L-Frontal R (f) Frontal L-Frontal R

Fig. 7. Connection identification results for the atlas-based ROIs. Top row shows the structural connections with the highest 2% z-score values that predict
the functional connectin between the left Occipital lobe and the right posterior part of the cingulate gyrus (PCC). At the bottom row, we show the structural
connections with the 2% highest z-scores related to the functional connection between the left and right frontal lobes. The value of z-score threshold is around
1.6 for both examples. Both examples are estimated with support 60%.

of it to be selected and can give a good control on false
detections. This is a significant step towards interpreting the
results compared to the standard LASSO estimate that gives
no indication on the statistical significance of the selected
features. Another benefit of the randomized LASSO is that
it decreases the dependence of the selected coefficients on
the initial choice of regularization parameter, λ. Note that in
our approach λ is selected independently for each functional
connection by cross-validation.

B. Remaining challenges to neuroscientific interpretation

a) Node ordering: Predicting a brain-wide functional
connectivity structure is a challenging problem as it boils
down to predicting second-order statistics of the signal, such
as correlations or partial-correlations, which cannot be well
modeled via a linear model. For this reason, we use a param-
eterization based on multivariate autoregressive models, that
can be linearly related to the observed functional signal, as
in equations (2) and (3). Such a first-order parameterization
requires to choose an ordering in the variables, i.e. the ROIs.
Our functional-connectivity model shares similarities with
structural equation models used for brain connectivity in fMRI
[66]. In these models, the structure is stipulated and, as cycles
pose challenges to the estimation, directed acyclic graphs are
used, which amounts to choosing a node ordering. Choosing
an ordering is not satisfactory, as the brain is best described
by top-down and bottom-up connections forming feedback
loops. However, we believe that it is a necessary implication of
using node-centric linear models. These offer the strong benefit
of simple interpretation. In practice, we use the approximate
minimum degree ordering, that leads to sparser autoregressive
models. Empirically, this choice yields a better prediction
performance than model averaging on random orderings. Our

results indicate that random ordering eventually converges to
similar results obtained from AMD ordering but it requires a
larger sample size.

b) Non-stationarity in rs-fMRI: In this work, the pre-
cision matrix, inverse of covariance is used to describe the
statistical characteristics of the fMRI signal under the as-
sumption of stationarity. In other words, this captures the
steady-state contribution to the connectivity. There is evidence
that in addition to this contribution, neural networks fluctuate
from one brain state to another. Hence, future work should
study non-stationarity in more detail. However, anatomical
connectivity reflects a wiring, static over the duration of an
experiment, and is thus most likely linked to steady-state
functional connectivity. A promising future direction is the
combined acquisition of rs-fMRI and electrophysiological data
EEG that have temporal resolution of milliseconds and can
reliably detect profound changes in brain states, such as sleep,
task related and so on. Nevertheless, our proposed method
highlights relationships between structure and function that
could potentially change due to brain plasticity and devel-
opment. In this perspective of long-term changes in brain
networks that affect both structure and function significantly,
modeling of short-term non-stationarity becomes less critical.
Future studies should investigate changes in this anatomo-
functional relationship in disease and relate them to existing
knowledge and neuroscientific evidence.

c) Confounding spatial variability: Inter-subject differ-
ences in connectivity, structural or functional, may also arise
from differences in the spatial location and the extent of
the corresponding brain regions [67], [41]. In this paper, we
investigated either subject-specific ROIs defined on purely
anatomical criteria, or functional ROIs from the literature.
Further work to improve the neuroscientific interpretability of
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our method calls for better definitions of ROIs, to reject this
confounding source of variability. For instance, our approach
could benefit from connectivity-based segmentation, to define
the ROIs exploiting patterns of cortico-cortical connections of
cortical areas [68], [69]. While most studies so far assume that
parcellation based solely on anatomical information reflects
functional specialization [22], [30], [1], [64], [70], functional
areas extracted from fMRI are not completely defined by
folding patterns or cytoarchitectural boundaries [71]. In addi-
tion, they appear in different locations and varying size across
subjects [72].

d) From anatomy to function: Using the anatomical
constraints enables a maximum-likelihood estimate of func-
tional connectivity. Estimation in a Bayesian framework with
continuous anatomical support would yield a maximum-a-
posteriori estimate where the functional connectivity would
be biased by the anatomical connectivity. This bias would
not be transferable to the new data, and thus would hinder
generalization of the anatomo-functional model. Furthermore,
joint estimation by iteratively refining both the anatomical
connectivity matrix and the functional connectivity matrix
would be interesting, drawing from the linear link that we
model between a parameterization of functional connectivity
and anatomical connectivity. However, the focus of this paper
is inter-subject predictive modeling, for which it is not clear
that joint estimation would be beneficial. It would introduce
a coupling between the two modalities due to the estimation
procedure that would add up to the natural coupling that we
are trying to measure.

VII. CONCLUSION

We have presented a probabilistic framework that explains
inter-subject variability of functional connectivity based on
structural connectivity, associating each functional connection
with structural connections. This association is data-driven
and can reveal interactions between function and structure
that remain unknown. Our proposed approach outperforms a
number of possible variants in terms of prediction error on
two different choices of ROIs. Although, several prior studies
measured localized differences between structure and function,
they are based on prior hypothesis and in isolation of the rest
of the brain [29], [15]. To our knowledge, this is the first
attempt to develop a full-brain predictive model.

Our contribution provides a systematic method to highlight
networks and provide neuroscientists and clinicians with an
exploratory tool with interpretable and reliable parameter
estimates. It is a step forward in learning multimodal biomark-
ers: extracting underlying anatomo-functional networks that
support the differences between diseased and healthy popula-
tions. Predictive models open the door to better data-driven
tracking of brain diseases progression. Indeed, there is a
plethora of possible associations and using domain knowledge
is challenging as the imaging modalities provide only very
indirect measures of connectivity. In addition, we lack ground
truth neuroscientific knowledge. In these settings, data-driven
approaches based on statistical learning can fill the gaps.
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[34] A. Barron, L. Birgé, and P. Massart, “Risk bounds for model selection
via penalization,” Probab. Theory Related Fields, vol. 113, p. 301, 1999.

[35] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J Royal
Statist Soc B, vol. 58, p. 267, 1996.

[36] S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin, “Learning theory:
stability is sufficient for generalization and necessary and sufficient for
consistency of empirical risk minimization,” Adv Comput Math, vol. 25,
p. 161, 2006.

[37] F. Bach and E. Moulines, “Non-asymptotic analysis of stochastic ap-
proximation algorithms for machine learning,” in NIPS, 2011, p. 451.

[38] S. Smith, M. Jenkinson, H. Johansen-Berg, D. Rueckert, T. Nichols,
C. Mackay, K. Watkins, O. Ciccarelli, M. Cader, P. Matthews et al.,
“Tract-based spatial statistics: voxelwise analysis of multi-subject diffu-
sion data,” Neuroimage, vol. 31, p. 1487, 2006.

[39] D. Jones, “Challenges and limitations of quantifying brain connectivity
in vivo with diffusion MRI,” Imaging, vol. 2, p. 341, 2010.

[40] P. Fransson and G. Marrelec, “The precuneus/posterior cingulate cortex
plays a pivotal role in the default mode network: Evidence from a partial
correlation network analysis,” Neuroimage, vol. 42, p. 1178, 2008.

[41] S. Smith, K. Miller, G. Salimi-Khorshidi, M. Webster, C. Beckmann,
T. Nichols, J. Ramsey, and M. Woolrich, “Network modelling methods
for fMRI,” Neuroimage, vol. 54, p. 875, 2011.

[42] G. Varoquaux, A. Gramfort, J. B. Poline, and B. Thirion, “Markov
models for fMRI correlation structure: is brain functional connectivity
small world, or decomposable into networks?” Journal of Physiology -
Paris, vol. 106, pp. 212–221, 2012.

[43] A. Dempster, “Covariance selection,” Biometrics, vol. 28, p. 157, 1972.
[44] S. Lauritzen, Graphical models. Oxford University Press, USA, 1996.
[45] P. Amestoy, T. Davis, I. Duff et al., “An approximate minimum degree

ordering algorithm,” SIAM J Matrix Anal A, vol. 17, p. 886, 1996.
[46] D. Donoho, “For most large underdetermined systems of linear equations

the minimal `1-norm solution is also the sparsest solution,” Comm. Pure
Appl. Math., vol. 59, p. 797, 2006.

[47] W. Förstner and B. Moonen, “A metric for covariance matrices,” Qua
vadis geodesia, p. 113, 1999.

[48] X. Pennec, P. Fillard, and N. Ayache, “A Riemannian framework for
tensor computing,” Int J Comp Vision, vol. 66, p. 41, 2006.

[49] C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras, “Statistics on the
manifold of multivariate normal distributions: Theory and application
to diffusion tensor MRI processing,” J Math Imag Vis, vol. 25, p. 423,
2006.

[50] N. Meinshausen and P. Buhlmann, “Stability selection,” J Roy Statist
Soc B, vol. 27, p. 417, 2010.

[51] S. Smith, M. Jenkinson, M. Woolrich, C. Beckmann, T. Behrens,
H. Johansen-Berg, P. Bannister, M. D. Luca, I. Drobnjak, D. Flitney,
R. Niazy, J. Saunders, J. Vickers, Y. Zhang, N. D. Stefano, J. Brady, and
P. Matthews, “Advances in functional and structural MR image analysis
and implementation as FSL,” NeuroImage, vol. 23, p. 208, 2004.

[52] N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A.
Yushkevich, and J. C. Gee, “N4itk: Improved n3 bias correction,” IEEE
Trans. Med. Imag., vol. 29, p. 1310, 2010.

[53] D. Rueckert, L. Sonoda, C. Hayes, and D. Hill, “Non-rigid registration
using free-form deformations: application to breast MR images,” IEEE
Trans. Med. Imag., vol. 18, p. 712, 1999.

[54] R. Heckemann, J. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers,
“Automatic anatomical brain MRI segmentation combining label prop-
agation and decision fusion,” NeuroImage, vol. 33, p. 115, 2006.

[55] Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images
through a hidden markov random field model and the expectation-
maximization algorithm,” IEEE Trans. Med. Imag., vol. 20, p. 45, 2001.

[56] X. Artaechevarria, A. Barrutia, and C. Ortiz-de Solorzano, “Combination
strategies in multi-atlas image segmentation: Application to brain MR
data,” Adv NIPS, vol. 28, pp. 1266–1277, 2009.

[57] C. Ledig, R. Wolz, P. Aljabar, J. Lötjönen, R. A. Heckemann, A. Ham-
mers, and D. Rueckert, “Multi-class brain segmentation using atlas
propagation and EM-based refinement,” in ISBI, 2012, p. 896.

[58] G. Varoquaux, S. Sadaghiani, P. Pinel, A. Kleinschmidt, J. B. Poline,
and B. Thirion, “A group model for stable multi-subject ICA on fMRI
datasets,” NeuroImage, vol. 51, p. 288, 2010.

[59] T. Behrens, M. Woolrich, M. Jenkinson, H. Johansen-Berg, R. Nunes,
S. Clare, P. Matthews, J. Brady, and S. Smith, “Characterization and
propagation of uncertainty in diffusion-weighted MR imaging,” Magnet
Reson Med, vol. 50, p. 1077, 2003.

[60] O. Ledoit and M. Wolf, “A well-conditioned estimator for large-
dimensional covariance matrices,” J Multivar Anal, vol. 88, p. 365, 2004.

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine Learning in Python ,” J Mach Learn Res,
vol. 12, p. 2825, 2011.

[62] T. Jiang, Y. Liu, F. Shi, N. Shu, B. Liu, J. Jiang, and Y. Zhou,
“Multimodal magnetic resonance imaging for brain disorders: Advances
and perspectives,” Brain Imaging and Behavior, vol. 2, p. 249, 2008.

[63] M. Ewers, R. A. Sperling, W. E. Klunk, M. W. Weiner, and H. Ham-
pel, “Neuroimaging markers for the prediction and early diagnosis of
alzheimer’s disease dementia,” Trends in Neurosciences, vol. 34, p. 430,
2011.

[64] F. Deligianni, E. Robinson, C. Beckmann, D. Sharp, A. Edwards, and
D. Rueckert, “Inference of functional connectivity from structural brain
connectivity,” ISBI, p. 1113, 2010.

[65] D. Chklovskii, T. Schikorski, and C. Stevens, “Wiring optimization in
cortical circuits,” Neuron, vol. 34, pp. 341–7, Jan 2002.

[66] A. McIntosh and F. Gonzalez-Lima, “Structural equation modeling and
its application to network analysis in functional brain imaging,” Hum
Brain Map, p. 2, 1994.

[67] A. Zalesky, A. Fornito, and E. Bullmore, “Network-based statistic:
Identifying differences in brain networks,” NeuroImage, vol. 53, p. 1197,
2010.

[68] R. Passingham, K. Stephan, and R. Kotter, “The anatomical basis of
functional localization in the cortex,” Nat Rev Neurosci, vol. 3, p. 606,
2002.

[69] S. Jbabdi, M. W. Woolrich, and T. E. J. Behrens, “Multiple-subjects
connectivity-based parcellation using hierarchical Dirichlet process mix-
ture models,” NeuroImage, vol. 44, p. 373, 2009.

[70] F. Deligianni, E. Robinson, C. Beckmann, D. Sharp, D. Edwards, and
D. Rueckert, “Inference of functional connectivity from direct and
indirect structural brain connections,” ISBI, 2011.

[71] B. Yeo, F. Krienen, J. Sepulcre, M. Sabuncu et al., “The organization of
the human cerebral cortex estimated by intrinsic functional connectivity,”
J Neurophysio, vol. 106, p. 1125, 2011.

[72] G. Varoquaux, A. Gramfort, F. Pedregosa, V. Michel, and B. Thirion,
“Multi-subject dictionary learning to segment an atlas of brain sponta-
neous activity,” in IPMI, 2011, p. 562.

[73] P. Ramachandran and G. Varoquaux, “Mayavi: 3d visualization of
scientific data,” Computing in Science Engineering, vol. 13, p. 40, 2011.


