
HAL Id: hal-00840156
https://hal.science/hal-00840156

Submitted on 1 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A compositional semantics for the reversible pi-calculus
Ioana Domnina Cristescu, Jean Krivine, Daniele Varacca

To cite this version:
Ioana Domnina Cristescu, Jean Krivine, Daniele Varacca. A compositional semantics for the re-
versible pi-calculus. Logic in Computer Science, 2013, New Orleans, United States. pp.388-397,
�10.1109/LICS.2013.45�. �hal-00840156�

https://hal.science/hal-00840156
https://hal.archives-ouvertes.fr

A compositional semantics for the reversible π-calculus

Ioana Domnina Cristescu Jean Krivine Daniele Varacca

Univ. Paris Diderot and CNRS,

Laboratoire PPS, UMR 7126, F-75205 Paris, France

Abstract—We introduce a labelled transition semantics for
the reversible π-calculus. It is the first account of a com-
positional definition of a reversible calculus, that has both
concurrency primitives and name mobility.

The notion of reversibility is strictly linked to the notion of
causality. We discuss the notion of causality induced by our
calculus, and we compare it with the existing notions in the
literature, in particular for what concerns the syntactic feature
of scope extrusion, typical of the π-calculus.

I. INTRODUCTION

A. Reversible computations

Being able to reverse a computation is an important

feature of computing systems although not always studied

as a topic of its own. In sequential systems, step by step

rewinding of a computation is a common way of debugging

programs. Also (reversible) programs running on logically

reversible gates are known to have good properties with

respect to energy consumption [1]. In the concurrent world,

reversibility is a key aspect in every system that needs to

solve distributed consensus [2], [3] in order to escape local

states where the consensus cannot be found. However in the

concurrent case, rewinding a computation requires to define

first what is a legitimate backward move from a given state,

in a context where the computation is no longer functional.

A formal model for concurrent systems needs to address

two challenges at the same time: (i) how to compute without

forgetting and (ii) what is an optimal notion of legitimate

backward moves. Roughly speaking, the first point –that

needs to be answered in the sequential world as well– is

about syntax: processes need to carry a memory that keeps

track of everything that has been done (and of the choices

that have not been made). The second point is tied to

the choice of the computation’s semantics. In a concurrent

setting we do not want to undo the actions precisely in the

opposite order than the one in which they were executed, as

this order is immaterial. The concurrency relation between

actions has to be taken into account. Semantics that represent

explicitly the concurrency of actions usually come equipped

with a notion of causality.

We argue that the most liberal notion of reversibility is

the one that just respects causality: an action can be undone

This work is supported by the French National Research Agency (ANR),
project REVER ANR 11 INSE 007

precisely after all the actions that causally depend on it have

also been undone.

B. Our contributions

We are not the first to observe that causality and reversibil-

ity are tightly connected notions [4], [5]. Also, there are

already several accounts of reversible operational semantics

for CCS [6]–[8], and even of the (higher-order) π-calculus

[9]. In spite of that, we think this paper makes important

contributions.

First of all, we believe the existing approaches are not

fully satisfactory. Distributed computations done in CCS are

rather limited in scope because of the absence of name mo-

bility. As soon as name creation (and exchange) is enabled,

computing without forgetting becomes difficult because of

the variable substitutions and also because the scope of

a name that may increase in forward computation, should

decrease accordingly when backtracking. Also, although the

reversible Hoπ that has been proposed [9] is a clear gain in

expressivity over CCS, it is only given in terms of reduction

semantics and therefore not compositional.

We believe that the present study addresses the challenges

that have been left aside in the previous works, namely a

compositional definition of a reversible calculus, that has

both concurrency primitives and name mobility. As we will

see, achieving compositionality is far from trivial, in the

same way as the standard labelled transition semantics of

the π-calculus is not a trivial extension of its reduction

semantics.

As a byproduct of compositionality, our contribution lies

also in the realm of the non-interleaving semantics of the

π-calculus. We take here the stance that the concrete events

of a computation are the reductions, i.e. the steps that a

closed system does. Labelled transitions are then considered

as abstract or incomplete events, that await a suitable

context to become concrete. In other words, they only

exist for the sake of compositionality. As a consequence,

the concrete causality relation between reductions is the

one that is induced by the prefix operator (the "dot") and

propagated through communications, also called structural

dependence. Which notion of causality should then be

considered on labelled transitions? For a simple calculus

like CCS the answer cannot be disputed because causality

between labelled transitions is also structural. But this is no

longer true in the π-calculus due to the dependency induced

by the scope extrusion. To be as liberal as possible, the

causality between labelled transitions, that should not be

violated when backtracking, is the smallest relation that is

consistent with the structural causality between reductions.

More precisely, there should be a causal relation between

two consecutive labelled transitions of a process only if

the corresponding reductions obtained by "completion" of

those transitions (by parallel composition) are also causally

related. This would guarantee that if a backward labelled

transition is not derivable in our semantics, it is because

any corresponding reduction would violate the structural

causality. There are several works that add different notions

of causality to the labelled transition system of the π-

calculus [10], [11]. Although the causal semantics that is

induced by our semantics is related to them, ours is the

only one, to the best of our knowledge, that satisfies the

above requirement, which is formalized by Theorem 5.6 of

Section V.

C. Other notable features

• In the purely forward direction, our semantics is just a

decoration over the classical π-calculus: by forgetting

additional annotations, we retrieve the (late) labelled

transition semantics of the standard π-calculus. This

can be considered as a sanity check.

• Our semantics is not only compositional but also struc-

tural. That is, the semantics of a process is obtained by

structural rules from the semantics of its direct sub-

processes. Compositionality requires in particular rules

for the scope extrusion. Making these rules reversible

is one of the main technical challenges of the present

work.

• The notion of causality that is induced by our semantics

is stable: every event carries with itself its unambiguous

causal history. This is in contrast with the causal

semantics of the π-calculus proposed in Ref. [12]. A

full comparison of the present work with the event

structure semantics is our current interest.

D. Outline

This paper is organized as follows: in Section II we

introduce the syntax and the labelled transition semantics for

the reversible π-calculus and we show its main properties

in Section III. In Section IV, we then define the notion

of equivalence up-to permutation that is induced by the

semantics of our calculus. We then show that backtracking

is done according to any path that is equivalent to the

forward computation. In Section V we discuss the notion

of causality induced by our semantics and show that it is

maximally liberal with respect to the structural causality of

the reduction semantics. In Section VI we conclude with

some perspectives that our work suggests. Although this

paper is self-contained, we assume the reader has some

familiarity with the π-calculus.

II. THE REVERSIBLE π-CALCULUS

In this section we present the compositional semantics

of the reversible π-calculus (Rπ). In order to define the

reversible operational semantics (Section II-B), we need

first to introduce our meta variables and go through a few

definitions (Section II-A).

A. Statics

1) Terms: We use a, b, c to range over channel names and

P,Q to range over π calculus processes, defined as follows:

P,Q ::= 0 | π.P | (P | Q) | νa(P)

where π ::= b(c) | b〈a〉 | τ denotes traditional π prefixes.

We introduce neither choice nor replication. This restriction

of expressivity is only in order to simplify the presentation,

and these operators would pose no technical issues in the

following developments.

As in RCCS [6], Rπ processes are built upon simple π
processes to which we add a memory that will keep track of

past actions. Every entry in a memory is called a (memory)

event and can be used to trigger backward moves. From now

on the term process will refer to Rπ processes.

We use I for the set of event identifiers, with a distin-

guished symbol ∗ ∈ I that will denote partial synchronisa-

tion. Let i, j, k range over elements of I and ∆,Γ range over

subsets of I. Rπ terms are built according to the following

grammar:

(Event labels) α ::= b〈a〉 | b[⋆/c] | b[a/c]
(Memory events) e ::= 〈i, k,α〉
(Memory stacks) m ::= ε | 〈↑〉.m | e.m
(Rπ processes) R,S ::= 0 | m � P | (R ‖ S) | νaΓ(R)

In the style of RCCS, Rπ memories are structured as stacks,

the top element being on the left and the empty stack being

denoted by ε. There are two types of information that can be

pushed on a memory: either a fork symbol 〈↑〉, which allows

memory stacks to divide whenever processes are forking, or

events which are triplets of the form 〈i, k,α〉. For any event

e = 〈i, k,α〉, we say that i is the identifier of e, k is the

identifier of its contextual cause and α its label. The label

of an event is used to record the prefix that was consumed

during a transition, but also acts as an explicit substitution

that allows one not to lose information about variable scope.

We will come back to this important point in Section II-A3.

The notations id(e), c(e) and λ(e) give access to the

identifier, the contextual cause and the label of e respectively.

The restriction νaΓ(R) and the parallel composition of

processes R ‖ S reflect the corresponding operators of π-

processes thanks to the following structural rules:

m � (P1 | P2) ≡m 〈↑〉.m � P1 ‖ 〈↑〉.m � P2 (1)

m � νa(P) ≡m νa∅(m � P) with a /∈ m (2)

which distribute a memory whenever two π processes are

forking (1), and push classical π calculus restrictions at the

level of processes (2). Note that an Rπ restriction is indexed

by a set Γ ⊂ I (initially empty) and behaves as a classical

restriction only when Γ = ∅. It will be used to keep track

of past variable scope whenever Γ 6= ∅ (see Section II-A2).

It is noteworthy that not all syntactically correct processes

are semantically meaningful. Indeed processes contain a

computation history composed of past interactions, stored in

the memories, and past variable scope, recorded by the νaΓ
constructs. History consistency cannot be easily enforced

statically1. For the present work we only consider reachable

terms, i.e. the set of terms that contains the obviously sound

process ε � P and that is closed under the operational

semantics of Rπ.

2) Names, scope and substitutions: In a process R, a

channel a can be bound (a ∈ bn(R)), free (a ∈ fn(R))
or liberated (a ∈ lib(R)). While free and bound names

are as usual, one may think of liberated names as channels

that used to be under the scope of a restriction that is no

longer there because of an extrusion. They are the names

that fall under the scope of the construct νaΓ 6=∅(R), which

then behaves as the "ghost" of a restriction in R with the

set Γ containing the identifiers of all the events that have

extruded the name a out of R.

Free and liberated names are defined inductively on the

structure of processes (+ and − denote classical operations

on sets, f(a) denotes either fn(a) or lib(a) whenever the

distinction is irrelevant):

f(νa∅R) = f(R)− a
(Γ 6= ∅) f(νaΓR) = f(R) + a
f(R ‖ S) = f(R) + f(S)
fn(m � P) = names(m) + fn(P)
lib(m � P) = ∅
fn(b(a).P) = b+ (fn(P)− {a})
fn(b〈a〉.P) = fn(P) + a+ b

with names(m) being all the names occurring in the mem-

ory m. It is obvious from the above definition that all

liberated names are free. As usual, names which are not

free in R are called bound.

The operational semantics of Rπ is built on top of the so

called "late" semantics of the π-calculus, where substitutions

on variables occur upon synchronisation. Since substitutions

are forgetful operations that cannot always be reversed

correctly, we replace them with explicit substitutions that are

logged in the event labels (see Section II-B2). We will also

see that a process communicating on a liberated channel, has

to make an assumption on the identity of the event that made

the channel public (via an extrusion), called its contextual

cause. Since the initial assumption can be made more precise

1It is possible to characterize well-formedness as a set of properties that
insures that processes (i) have at most one synchronisation partner in their
past and (ii) that Γ-restrictions are consistent with a possible past scope.

while more structure of the process is revealed by the LTS,

the contextual cause may also be updated in a "late" fashion.

We thus need to define the following special substitutions

on processes:

Definition 2.1: The synchronisation update, denoted by

R[a/c]@i, replaces the partial substitution [⋆/c] with the com-

plete substitution [a/c] at the event identified by i ∈ I−{∗},

it is defined as:

(R ‖ S)[a/c]@i = R[a/c]@i ‖ S[a/c]@i

(νa′ΓR)[a/c]@i = νa′Γ(R[a/c]@i)
(〈i, _, b[⋆/c]〉.m � P)[a/c]@i = 〈i, _, b[a/c]〉.m � P
(m � P)[a/c]@i = m � P otherwise

The contextual cause update, denoted by R[k/k′]@i proceeds

similarly but substitutes the old cause k′ for a new one:

(R ‖ S)[k/k′]@i = R[k/k′]@i ‖ S[k/k′]@i

(νaΓR)[k/k′]@i = νaΓ(R[k/k′]@i)
(〈i, k′, _〉.m � P)[k/k′]@i = 〈i, k, _〉.m � P
(m � P)[k/k′]@i = m � P otherwise

3) Memories and events: We will use the following

intuitive notations: we write m ∈ R if there exists a context

C[•] such that R = C[m � P]. Similarly we write e ∈ R
when there is m ∈ R such that m = m1.e.m0 for some

(possibly empty) m1 and m0. Finally for all i ∈ I we write

i ∈ R if there exists e ∈ R such that id(e) = i or c(e) = i.
There are 3 relations between events that we need to

consider.

Definition 2.2 (Relations on events): Let R be a process,

we define the following relations on events of R.

• Structural causal relation: e′ <R e if there exists m ∈
R such that m = m2.e.m1.e

′.m0 for some (possibly

empty) m2,m1,m0.

• Contextual causal relation: e′ ≺R e if c(e) = id(e′).
• Instantiation relation: e′ ;R e if e′ <R e and

λ(e′) = b[a/c], for some name a, b, c and c is in subject

position in λ(e). Furthermore for all memories m, we

write instm(c) = i if there is an event of the form

〈i, k, b[a/c]〉 in m that instantiates c. Note that there is

at most one such event in m. If no such event exists in

m we write instm(c) = ∗.

Example 2.1: In the process

νa{i2}(νa{i1}(〈i1, ∗, b〈a〉〉.m1 � P1‖〈i3, i1, a〉.m2 � P2)

‖〈i3, ∗, c〉.〈i2, ∗, d〈c〉〉.〈i1, ∗, b[a/c]〉.m3 � P3)

we have:

〈i1, ∗, b[a/c]〉 < 〈i2, ∗, c〉 〈i1, ∗, b〈a〉〉 ≺ 〈i2, i1, a〉
〈i1, ∗, b[a/c]〉 ; 〈i2, ∗, d〈c〉〉 inst〈i2,∗,c〉.〈i1,∗,b[a/c]〉.m3

(c) = i1

For any events e ∈ R and e′ ∈ R such that id(e) = i and

id(e′) = j, we use the overloaded notations i <R j, i ≺R j
or i ;R j, if e and e′ are in the corresponding relation.

Note that there are at most two events e and e′ such that

id(e) = id(e′), in which case (e, e′) forms a synchronisation

pair.

B. Dynamics

1) Transitions and transition labels: The label ζ of a

transition t : R
ζ
−→ S is a quadruple of the form (i, j, k) : γ

where i ∈ I − {∗} is the identifier of t, j ∈ I is the

instantiator of i and k ∈ I is the contextual cause of i.
The labels γ are built on the following grammar:

γ ::= α | α−

α ::= b(c) | b〈a〉 | b(νaΓ)

where b(νaΓ) corresponds to the bound output of the π-

calculus, whenever Γ = ∅, and otherwise corresponds to a

free output, decorated with a set of event identifiers.

For all labels γ of the form α or α−, we write subj (γ) = b
if α ∈ {b(c), b〈a〉, b(νaΓ)} for some a. We also write

bn(γ) = {a} whenever α = b〈νaΓ 6=∅〉 for some b. A

transition is positive whenever its label is of the form α,

and negative if the label is of the form α−. It is derivable

if it can be obtained from the LTS presented in the next

section.

As we already hinted at, Rπ substitutions are not executed

directly but simply logged in event labels. As a consequence,

processes need to search in their memories for the public

name of a channel in order to check that a synchronisation

is possible. Such operation is performed only on demand,

when a process is trying to reduce its prefix (see IN+ and

OUT+ axioms in Section II-B2).

Definition 2.3 (Public label): For all process of the form

m � π.P let m[π] be the public label of π. It is defined by

lexicographical induction on the pair (π,m):

ε[a] = a
m[b(c)] = m[b](c)

m[b〈a〉] = m[b]〈m[a]〉
(〈i, k, b[c/a]〉.m)[a] = c
(〈i, k, b[⋆/a]〉.m)[a] = a
(〈↑〉.m)[a] = m[a]
(e.m)[a] = m[a] otherwise

2) The labelled transition system (LTS): The labelled

transition system of Rπ can be divided into positive and

negative rules. The negative ones are derived from the

positive ones by inversion (see Definition 2.4). The positive

rules are presented in Table I, where for i, j ∈ I , i =∗ j
means ∗ ∈ {i, j} or i = j.

Note that the complete positive LTS contains also the

symmetrical rules for the COM+, CLOSE+ and PAR+ rules

with respect to the ‖ operator. For lack of space, we do not

write them explicitly.

The backward rules are derived according to the following

definition:

IN+
i /∈ m j = instm(b)

m � b(c).P
(i,j,∗):m[b(c)]
−−−−−−−−−→ 〈i, ∗, b[⋆/c]〉.m � P

OUT+
i /∈ m j = instm(b)

m � b〈a〉.P
(i,j,∗):m[b〈a〉]
−−−−−−−−−→ 〈i, ∗, b〈a〉〉.m � P

OPEN+

R
(i,j,k):α
−−−−−→ R′ α = b〈a〉 ∨ α = b〈νaΓ′〉

νaΓR
(i,j,k):b〈νaΓ〉
−−−−−−−−−→ νaΓ+iR

′

CAUSE REF+

R
(i,j,k):α
−−−−−→ R′ a ∈ subj(α)

νaΓR
(i,j,k′):α
−−−−−−→ νaΓR

′
[k′/k]@i

k = k′
or

∃k′ ∈ Γ k ;R k′

COM+

R
(i,j,k):b〈a〉
−−−−−−−→ R′ S

(i,j′,k′):b(c)
−−−−−−−−→ S′

R ‖ S
(i,∗,∗):τ
−−−−−→ R′ ‖ S′

[a/c]@i

k =∗ j′

k′ =∗ j

CLOSE+

R
(i,j,k):b〈νaΓ〉
−−−−−−−−−→ R′ S

(i,j′,k′):b(c)
−−−−−−−−→ S′

R ‖ S
(i,∗,∗):τ
−−−−−→ νaΓ(R

′ ‖ S′
[a/c]@i)

k =∗ j′

k′ =∗ j

with a 6∈ fn(S) whenever Γ = ∅

PAR+

R
(i,j,k):α
−−−−−→ R′

R ‖ S
(i,j,k):α
−−−−−→ R′ ‖ S

bn(α) ∩ fn(S) = ∅, i /∈ S

MEM+

R ≡m S
ζ
−→ S′ ≡m R′

R
ζ
−→ R′

NEW+

R
ζ
−→ R′

νaΓR
ζ
−→ νaΓR

′
a /∈ ζ

Table I
THE POSITIVE RULES OF THE LTS

Definition 2.4 (Inverting operation): Let α−1 = α− and
(α−)−1 = α. Let opp be the operation defined in a
functorial manner on labelled transition systems:

opp(R
(i,j,k):γ
−−−−−→ S) = S

(i,j,k):γ−1

−−−−−−−→ R

and on derivation rules:

opp

R
ζ
−→ S

R′ ζ′

−→ S′

 =
opp(R

ζ
−→ S)

opp(R′ ζ′

−→ S′)

opp

R1
ζ1−→ S1 R2

ζ2−→ S2

T
ζ′

−→ T ′

 =

opp(R1
ζ1−→ S1) opp(R2

ζ2−→ S2)

opp(T
ζ′

−→ T ′)

Side conditions are invariant. For all processes R, let

L+(R) = (R,→) be the positive LTS of R and L−(R) =
(R, opp(→)) its negative version. The reversible operational

semantics of R is defined as L(R) = L+(R) ∪ L−(R).

3) Discussion:

Axioms: IN+ and OUT+ add an event e into the memory

and apply the necessary substitutions on the transition label.

The event identifier is locally fresh, as ensured by the side

condition i /∈ m.

Name extrusion: In Rπ, the role of the Γ-restriction

νaΓ(R) is to act as a boundary that delimitates the past and

present scope of a in R. Intuitively any partial synchroni-

sation (either input or output) on channel a emanating from

R needs to pick inside Γ an event identifier which will act

as a proof that some process in the context knows a. As

a consequence, if Γ = ∅ no partial synchronisation on a
may cross this boundary and νa∅ behaves as a classical π-

calculus restriction. The role of the OPEN+ rule is to update

Γ each time a process in R is sending a to the context2 (see

also Example 2.2).

Importantly, because of possible successive extrusions, Γ-

restrictions may be nested inside each others (see Proposi-

tion 3.5). Each time a partial synchronisation on a liberated

name crosses such boundary, the LTS updates the contextual

cause (i.e. the proof that a complete synch may eventually

occur) that was chosen so far. The role of the CAUSE

REF+ rule is to make sure a partial synchronisation on a
chooses a correct contextual cause. Critically for the unicity

of derivations (see Proposition 3.2), the way a cause is

updated is not arbitrary, as indicated by the side condition

of the CAUSE REF+ rule. In a nutshell, when passing a Γ-

restriction, a contextual cause k may either be preserved if

k ∈ Γ or replaced by any k′ ∈ Γ such that k ;R k′. We

will see that there always exists at least a k′ ∈ Γ such that

k ;R k′ (see Propositions 3.4 and 3.6) so the CAUSE REF+

rule is never blocking if Γ 6= ∅.

Synchronisations: Two partial synchronisations may

compose only if they agree on the public channel name in

subject position (in the rule COM+ and CLOSE+ rules this

is channel b). Such public name is deduced in the LTS at

the level of the axiom applications. The side conditions of

both synch rules proceed with the following intuition: if the

left premise of transition i learned the name b thanks to an

earlier communication j, then j 6= ∗ in the transition label.

There are then two cases for the right premise of transition i:
either k′ = ∗, in which case no assumption was made on the

contextual cause of this transition and the synchronisation

may occur (since j =∗ ∗), or k′ 6= ∗. In the latter case, the

leftmost sub-derivation had to cross a Γ-restriction and one

must make sure that the chosen contextual cause k′ coincides

with the instantiator of the left derivation, i.e. k′ = j. The

2Conversely, OPEN- will decrease the number of identifiers in Γ in order
to take into account the fact that there is one less extruder for a.

argument is symmetric if one starts with the instantiator of

the leftmost derivation.

Example 2.2: Consider the process (empty memory stacks and
empty π-processes are omitted):

R = νa∅

(

(b〈a〉‖c〈a〉)‖a
)

The following trace is derivable (we use integers for identifiers and
(i, j, k) : α is written i : α whenever j = k = ∗):

R
1:b〈νa∅〉
−−−−−→ νa1

(

(〈1, ∗, b〈a〉〉‖c〈a〉)‖a
)

2:c〈νa1〉
−−−−−→ νa{1,2}

(

(〈1, ∗, b〈a〉〉‖〈2, ∗, c〈a〉〉)‖a
)

= R′

There are now two possibilities to reduce the rightmost prefix
a of R′: the first one assuming that event 1 is the reason why
a is "known" in the context, and the other one making the
complementary assumption, namely that event 2 is the culprit. This
yields the following two derivable transitions from R′:

R′ (3,∗,1):a
−−−−−→ νa{1,2}

(

(〈1, ∗, b〈a〉〉‖〈2, ∗, c〈a〉〉)‖〈3, 1, a〉
)

= T1

R′ (3,∗,2):a
−−−−−→ νa{1,2}

(

(〈1, ∗, b〈a〉〉‖〈2, ∗, c〈a〉〉)‖〈3, 2, a〉
)

= T2

Notice here that T1 (resp. T2) may rollback event 2 (resp. event
1) while event 1 (resp. event 2) is backward blocked: indeed it

is impossible to derive T1
1:b〈a〉−

−−−−−→ since the PAR- rule would
require 1 6∈ 〈2, ∗, c〈a〉〉)‖〈3, 1, a〉. In fact, we will see Section III
that backtracking respects both contextual and structural causes.

In order to illustrate how synchronisation is compositionally
defined, let us consider the above derivations in a context where R
is in parallel with S = b(d).d̄ (which is called a reduction context
in Section V). From S one may derive the following transition,
that complements event 1:

S
1:b(d)
−−−→ 〈1, ∗, b[⋆/d]〉 � d̄

Using the CLOSE+ rule, one may now compose both transitions
identified by 1 (since ∗ =∗ ∗) and one gets:

(R‖S)
1:τ
−−→ νa∅

(

νa1

(

〈1, ∗, b〈a〉〉‖c〈a〉‖a
)

‖〈1, ∗, b[a/d]〉 � d̄
)

2:c〈νa1〉
−−−−−→
νa2

(

νa{1,2}

(

〈1, ∗, b〈a〉〉‖〈2, ∗, c〈a〉〉‖a
)

‖〈1, ∗, b[a/d]〉 � d̄
)

using the PAR+ rule for the second transition. Now recall that there
are two possible derivations from S in order to reduce the a prefix
at the center of the above term. However only the first one can be
composed with a transition on the d̄ prefix on the right, since d is
instantiated to a at event 1. Thus the only possibility3 is to use the
first derivation (with target T1) in the COM+ rule composed with
the derivation:

〈1, ∗, b[a/d]〉 � d̄
(3,1,∗):ā
−−−−−→ 〈3, ∗, d̄〉.〈1, ∗, b[a/d]〉

the side condition of the COM+ rule being satisfied.

Other rules: The rule PAR+ ensures freshness for the

bound names and for the identifier i. In the PAR- rule, the

side condition i /∈ S prevents a part of a synchronisation to

backtrack by itself. Rule MEM+- rewrites the process in a

form in which it can trigger a transition. Importantly only

the MEM- rule allows one to pop the 〈↑〉 symbol out of a

3The second derivation from R′ is still applicable but can only be used
for a synchronisation occurring later in the context of the process.

memory. This ensures that a child process cannot backtrack

below its spawning point, without reuniting first with its

sibling. Lastly, in rule NEW+ if Γ = ∅ the process cannot

do a transition that has the bound name a in its subject. If

Γ 6= ∅ then the side conditions forces the usage of rules

OPEN+-, CAUSE REF+-.

Not all side conditions are necessary for the backward

transitions, as most of them are in fact invariant of the history

consistency of processes. For simplifying the presentation

however we keep them in both directions.

III. PROPERTIES

After presenting some interesting properties of the LTS,

Section III-A, that may shed light on some subtle point of

its behaviour, we show in Section III-B that the forward

interpretation of an Rπ process is strongly bisimilar to its

projection in the π-calculus.

A. Basic properties

First of all we observe that every transition can be undone.

Proposition 3.1 (Loop): For R reachable and for every

forward transition t : R
ζ
−→ R′ there exists a backward

transition t′ : R′ ζ−

−−→ R, and conversely.

This is a trivial consequence of the symmetries of the

rules.

An interesting property of proof systems, is that each

transition has a unique derivation. Given the complexity of

our rules, in particular the choice of the contextual cause

(rule CAUSE REF), it is not trivial that our system enjoys

such a property. Not only it does, but it does in a stronger

sense for backward transitions.

Proposition 3.2: Two derivation trees have the same con-

clusion:

π1

R
ζ
−→ S

π2

R
ζ
−→ S

if and only if π1 = π2.

Proposition 3.3: Suppose we have two negative transi-

tions R
ζ
−→ S1 and R

ζ
−→ S2. Then S1 = S2.

The forward transitions do not have this property due to

the nondeterminism in the choice of the synchronisation

partners. In the backward case, however, this form of non-

determinism disappears.

The following propositions emphasize some important

properties of well-formed terms, concerning Γ-restrictions

within processes. First we notice that in any T = C[νaΓR],
event identifiers in Γ correspond exactly to extruders of a
that occur in the memory of R.

Proposition 3.4: For all T = C[νaΓR] reachable, for

some context C[•], i ∈ Γ if and only if m1.〈i, _, b〈c〉〉.m2 ∈
R such that m2[c] = a, and 〈i, _, d[a/e]〉 /∈ R.

Then we show that, in a reachable process, all νaΓ’s on

the same name a are nested.

Proposition 3.5: Let Γ,∆ 6= ∅. In T = C[νaΓ(R) ‖ S]
reachable, νa∆ /∈ S.

A liberated name a occurs in a process or in its memory

if the process was within the scope of the original νa∅ or if

a was received through a synchronisation. This is formally

stated in the following Proposition.

Proposition 3.6: In T = C1[C2[νaΓR] ‖ S] reachable

and Γ 6= ∅, if a ∈ fn(S) then 〈i, _, d[a/c]〉 ∈ S, for some

i ∈ Γ.

B. Correspondence with the π-calculus

In Section II we have defined the reversible semantics

of an Rπ process R as the LTS engendered by the union

of L+(R), the positive LTS of R, and L−(R) its negative

version. In order to claim that Rπ is a reversible π-calculus

we need to prove that L+(ε � P), the positive interpretation

of a π process P in Rπ, is bisimilar to P .

We define a forgetful operation which maps Rπ terms to

π processes. To do so we simply need to:

• erase memories and νaΓ annotations, whenever Γ 6= ∅;

• apply the substitutions stored in the memories before

erasing them.

Formally we have:

Definition 3.7: Let φ be the forgetful map sending an Rπ
process R into the π-calculus, defined inductively on the

structure of R as:

φ(ε � P) = P
φ(R ‖ S) = φ(R) | φ(S)
φ(νa∅R) = νa (φ(R))
φ(νaΓ 6=∅R) = φ(R)
φ(〈i, k, b[a/c]〉.m � P) = φ(m � P{a/c})
φ(〈↑〉.m � P) = φ(m � P)
φ(e.m � P) = φ(m � P) otherwise

The map φ naturally extends to transition labels with

φ(i, j, k : γ) = φ(γ) and:

φ(b〈νaΓ 6=∅〉) = b〈a〉
φ(b〈νa∅〉) = b〈νa〉
φ(α) = α otherwise

For the π-calculus, we consider the late transition se-

mantics, as presented for instance in [13]. Let −→π denote

late transitions of the π-calculus, and −→+ transitions of the

positive LTS of Rπ.

Proposition 3.8: (Strong bisimulation between forward

Rπ and its π-image) For all reachable process R, the pair

(R,φ(R)) is a (strong) bisimulation, i.e. we have:

1) If R
ζ
−→+ S then φ(R)

φ(ζ)
−−−→π φ(S).

2) If P
α
−→π Q then R

ζ
−→+ S for all reachable R such

that φ(R) = P , for some S such that φ(S) = Q and

with φ(ζ) = α.

Although relatively straightforward the complete proof

of Proposition 3.8 is quite lengthy and in practice, to

better carry it out, the translation is split into two parts:

first removing the tagged restrictions and the memories,

obtaining a π-calculus with explicit substitution. Then a

second translation applies the substitutions.

As an immediate corollary of Proposition 3.8 one has that

the pair (ε � P, P) is a bisimulation.

IV. CORRECTNESS OF BACKTRACKING

In the introduction of this paper, we argued that we

wanted our notion of reversibility to be as liberal as possible.

As was already noted in RCCS [6] and subsequent work

on reversible process algebra [8], [9], backtracking a trace

should be allowed along any path that respects causality,

or, said otherwise, backtracking can be done along any path

that is causally equivalent to the path that was executed.

This property was formulated first in the work of the

reversible CCS as a combination of a loop lemma, stating

that any forward trace can be undone step by step, and a

fundamental property that ensures that any two coinitial and

cofinal traces are necessarily causally equivalent (see Fig. 1).

R
σ

((
S

σ−

ii + R
σ

((

γ
66 S iff γ ∼ σ ⇒ R

σ
((
S

γ−

ii

Figure 1. The conjunction of a loop property (left) and the fundamental
property (right) ensures that after the forward trace σ, one may rollback to
R along a causally equivalent past γ−.

We already know that the loop property holds trivially

for Rπ (Proposition 3.1). It remains to check that Rπ traces

do exhibit the fundamental property, which depends on the

equivalence on traces that is induced by the semantics of the

language (denoted by ∼ in Fig. 1). For instance, the least

liberal backtracking policy is obtained when the fundamental

property holds only for trace equality.

This section follows closely the argument made in RCCS,

in the context of Rπ. We will see (Lemma 4.3) that Rπ
transitions contain enough information to characterize syn-

tactically the concurrency and causality relations. This will

let us define a notion of equivalence up-to permutation on

traces (Definition 4.4) and prove the fundamental property

for Rπ (Theorem 4.5). Later, in Section V, we will also

argue that our notion of equivalence is, in a sense, optimal

for reversing the π-calculus.

As usual, the causal equivalence class of a path is con-

structed by permuting the transitions that are concurrent.

We proceed by defining the concurrency relation between

transitions as the complement of causality.

Two transitions, t and t′ are composable, written t; t′,
if the target of t is the source of t′. A trace, denoted by

σ : t1; . . . ; tn is a sequence of composable transitions. The

empty trace is denoted by ǫ. Two traces are coinitial if they

have the same source and cofinal if they have the same

target.

Definition 4.1 (Causality and concurrency): Let

t1 : R
(i1,j1,k1):γ1

−−−−−−−−→ S and t2 : S
(i2,j2,k2):γ2

−−−−−−−−→ T be

two transitions, where t1 6= opp(t2). We say that t1 is:

• a structural cause of t2, written t1 < t2, if i1 <T i2 or

i2 <R i1
• a contextual cause of t2, written t1 ≺ t2, if i1 ≺T i2

or i2 ≺R i1.

We simply say that t1 causes t2, written t1 < t2, if either

t1 < t2 or t1 ≺ t2. Otherwise we say that they are

concurrent.

It is worth noticing that for two consecutive transitions t
and t′, one may decide whether t ≺ t′ by looking at their

respective labels only, thanks to the following proposition:

Proposition 4.2: Let t1 : R
(i1,j1,k1):γ1

−−−−−−−−→ S and t2 :

S
(i2,j2,k2):γ2

−−−−−−−−→ T . We have t1 ≺ t2 if either both transitions

are positive and k2 = i1 or both transitions are negative and

k1 = i2.

Example 4.1: Consider the following trace (with the conven-
tions of Example 2.2):

νa∅(b〈a〉.a)
1:b〈νa∅〉
−−−−−→

(2,∗,1):a
−−−−−→ νa1(〈2, 1, a〉.〈1, ∗, b〈a〉〉)

where the first transition is both a structural and a contextual cause
of the second; and consider the trace:

νa∅(b〈a〉‖c〈a〉)
1:b〈νa∅〉
−−−−−→
2:c〈νa1〉
−−−−−→ νa{1,2}(〈1, ∗, b〈a〉〉‖〈2, ∗, c〈a〉〉)

where the two transitions are this time concurrent.

We need now to show that the above syntactic definition

of concurrency indeed coincides with commutability of

transitions. We shall see that a particularity of Rπ is that

commutation of concurrent transitions may not always be

strictly label preserving but only up-to the label equivalence

=λ, defined as the least equivalence relation satisfying:

(i, j, k) : b(νaΓ) =λ (i, j, k) : b(νa∆)

for all i, j, k, a, b and Γ,∆ ⊂ I.
Lemma 4.3 (Square): Consider two consecutive transi-

tions t1 : R
ζ1
−→ S1 and t2 : S1

ζ2
−→ T . If t1 and t2 are

concurrent, there exist t′2 : R
ζ′
2−→ S2 and t′1 : S2

ζ′
1−→ T ,

with ζi =λ ζ ′i, such that the following diagram commutes:

R

ζ1

~~

ζ′
2

S1

ζ2

S2

ζ′
1~~

T

Following the standard notation, we say that t2 is the

residual of t′2 after t1 and write t2 = t′2/t1.

Example 4.2: Back to Example 4.1, swapping the two concur-
rent transitions one obtains:

νa∅(b〈a〉‖c〈a〉)
2:c〈νa∅〉
−−−−−→
1:b〈νa1〉
−−−−−→ νa{1,2}(〈1, ∗, b〈a〉〉‖〈2, ∗, c〈a〉〉)

Definition 4.4 (Equivalence up-to permutation): The

equivalence up-to permutation of concurrent transitions,

written ∼, is the least equivalence relation on traces

satisfying:

t1; (t2/t1) ∼ t2; (t1/t2) t; opp(t) ∼ ǫ

We can now state the fundamental property which proves

that backtracking respects the causality induced by Rπ.

Theorem 4.5 (Fundamental property): Two traces are

coinitial and cofinal if and only if they are equivalent.

The reader aware of the work on non-interleaving seman-

tics for the π-calculus may have noticed that our seman-

tics allows more transitions to commute than the standard

ones [10], [11] in which the transitions of Example 4.2 are

not considered concurrent. This is related to the fact that

we let commutation preserve label up-to =λ. We will come

back to this important point in the next section.

V. NON INTERLEAVING SEMANTICS

Following the work of Lévy, on characterizing equiva-

lence up-to permutation in the λ-calculus [14], it is well

known that one may enrich the syntax of a calculus with

concurrent redexes so as to track causal dependencies be-

tween reductions, either by annotating transition labels or

directly by annotating the terms. This has been thoroughly

studied in the 90s, in the context of CCS using static or

dynamic locations and proof terms [15]–[18] and for the π-

calculus as well although to a lesser extent [10], [11]. In

this section we wish to view Rπ as an annotated version

of the π-calculus, forgetting reversibility for a moment, and

use the non-interleaving semantics it engenders in order to

revisit, and update, standard concepts for the π-calculus.

In the absence of an indisputable definition of permutation

equivalence for the LTS semantics of the π-calculus it is hard

to assert the correctness of one definition over another.

As we have remarked in the introduction, in a closed

system however (i.e. where only reductions are observed),

there is a canonical definition of causality: the structural

one. The semantics we have designed respects this intuition.

Indeed, although contextual causality can be defined also for

reductions, it is always hidden behind structural causality.

Proposition 5.1: Let t1 : R
(i,∗,∗):τ
−−−−−→ S and t2 :

S
(j,∗,∗):τ
−−−−−→ T . Then t1 < t2 if and only if t1 < t2.

We want to justify contextual causality between labelled

events as an "anticipation" of the structural causality between

the reductions these events will generate. Or, dually, that

if two labelled events are concurrent, then it is possible

from them to generate two concurrent reductions. In order to

formalize this intuition, given a process and one computation

trace, we need a notion of reduction context, that provides a

synchronising partner for every non-τ transition in the trace

(see Definition 5.4).

Then the main result of this Section (Theorem 5.6) is that

two non-τ transitions are concurrent if and only if there

exists a reduction context that preserves concurrency.

In order to formulate the Theorem, we introduce the

notion of projection that is used to retrieve from a synchro-

nisation its two composing transitions.

In the following developments, we write R
i:τ
−−→ S instead

of R
(i,∗,∗):τ
−−−−−→ S whenever unambiguous.

Proposition 5.2: If t : R
i:τ
−−→ S then there exists at most

one context C[•] such that t : C[R1‖R2]
i:τ
−−→ C ′[S1‖S2]

with Rq 6= Sq, q ∈ {1, 2}.

The intuition of the above Proposition is that if the τ
transition is generated by a prefix of the form τ.P then

no such context exists. Otherwise, we can separate the two

synchronising partners using the first parallel operator that

is above them in the syntax tree.

Definition 5.3: The projections to the left and to the right

of a transition t are defined as follows:

• if t : C1[R1‖R2]
i:τ
−−→ C2[S1‖S2] with Rq 6= Sq, q ∈

{1, 2}, then considering the derivation:

R1
(i,j,k):α
−−−−−→ S′

1 R2
(i,j′,k′):α
−−−−−−→ S′

2

R1‖R2
i:τ
−−→ S1‖S2

we define:

πl(t) : R1
(i,j,k):α
−−−−−→ S′

1 πr(t) : R2
(i,j′,k′):α
−−−−−−→ S′

2,

• otherwise, πl(t) = πr(t) = t.

Definition 5.4 (Reduction contexts): Given a trace

σ : R0
ζ1
−→ R1...Rn−1

ζn
−→ Rn

with ζq = (iq, jq, kq) : αq , a context C[•] is a reduction

context for σ if: C[R0]
i1:τ−−→ R′

1...R
′
n−1

in:τ−−→ R′
n for some

R′
1, .., R

′
n and, furthermore for each q ∈ {0, .., n} we have:

• if αq 6= τ then there is x ∈ {l, r} such that:

πx(R
′
q

iq :τ
−−→ R′

q+1) = Rq
(iq,jq,kq):αq

−−−−−−−−→ Rq+1

• if αq = τ then ∃C ′[•] such that R′
q = C ′[Rq], R

′
q+1 =

C ′[Rq+1].

The fact that reduction contexts always exist may be

viewed as a sanity check of the LTS semantics: for every

derivable partial reduction, there is a context that makes it

whole. This property holds trivially for CCS and the π-

calculus but is not obvious in a more complex LTS such

as the one of Rπ.

Proposition 5.5: In Rπ reduction contexts exist for every

finite trace.

It is interesting to note that the Proposition 5.5 is impor-

tant because we derive a reduction semantics from the LTS

and there is no guarantee a priori that every transition can

be part of some reduction. This should be put in contrast

with the approach of Leifer and Milner which proposed a

technique to derive LTS’s from reduction semantics [19].

The reduction contexts of Definition 5.4 and the substitution

stored in the memories also appear in a similar fashion in

Ref. [20], where Leifer and Milner’s approach is applied to

the π-calculus.

Example 5.1: With the convention of Example 2.2, let us con-
sider the process: R = νa∅(b〈a〉‖ a) with the trace emanating
from it:

σ : R
i1:b〈νa∅〉
−−−−−−→

(i2,∗,i1):a
−−−−−−→ S

A reduction context for σ is C[•] = ([•] ‖ b(u).u), and the closure
of the trace is:

σ̂ : C[R]
i1:τ−−→

i2:τ−−→ C′[S]

with i1 ≺S i2 and i1 <C′[S] i2 as stated in Proposition 5.1.

We are now in position to state the theorem on which we

rely to claim that the permutation equivalence induced by

Rπ is optimal with respect to the reduction semantics.

Theorem 5.6: Let t1 and t2 be two transitions of the form:

t1 : R
(i1,j1,k1):α1

−−−−−−−−→ S t2 : S
(i2,j2,k2):α2

−−−−−−−−→ T.

We have that t1 and t2 are concurrent if and only if there

exists a reduction context C[•] such that:

t′1 : C[R]
i1:τ−−→ S′ t′2 : S′ i2:τ−−→ T ′

and t′1 is concurrent to t′2.

Proof: (Sketch) If the two transitions are concurrent,

a reduction context preserving concurrency is C[•] =
[•] ‖ (ε � α1 ‖ ε � α2).

The other direction is done by showing its contrapositive,

namely that if t1 and t2 are causal, then so are t′1 and t′2. We

have that e1 = 〈i1, k1, α1〉 ∈ T and e2 = 〈i2, k2, α2〉 ∈ T .

From the properties of a reduction context we have that

eq = 〈iq, kq, α
′
q〉 ∈ T ′ where: α′

q = b[c/a] if αq = b[∗/a]
and α′

q = αq otherwise, for q ∈ {1, 2} and x ∈ {l, r}. Hence

if e1 <T e2 then e1 <T ′ e2 (the order in which the events

are added to the memory does not change) and if e1 ≺T e2
then e1 ≺T ′ e2 (the events do not change their contextual

cause).

In particular the contrapositive of Theorem 5.6 implies that

two transitions are causally related (either structurally or

contextually) if and only if for all reduction contexts, the

corresponding reductions are. This property is however not

satisfied by the causal semantics of the π-calculus considered

in earlier works, where the first extruder of a name a is

considered to be the cause of any subsequent transition using

a as a free name. In particular this prevents the transitions of

Example 4.2 from commuting when there exists a reduction

context which would let their closures commute.

While the proof of Theorem 5.6 is conceptually simple,

some subtleties should nevertheless be pointed out. First,

the fact that the causality relation is preserved by parallel

composition is a design choice of our semantics, which is

not shared by the other causal semantics in the literature.

Also, even though causality is preserved, it is not obvious

that context causality between labelled events should become

structural causality after composition. But this is precisely

what Proposition 5.1 says. We designed our semantics so

that Theorem 5.6 is true, and the simplicity of the proof is

just a consequence of this choice.

Example 5.2: Consider the π-calculus process

P = νa(b〈a〉 | c〈a〉 | a) with the trace P
b〈νa〉
−−−→

c〈νa〉
−−−→

a
−→ Q. A

reduction context for P is C[•] = ([•] | b(u).u | c(v).v) and we

have C[P]
τb−→

τc−→
τa−→ Q′. Remark that the transitions τb and τc

are concurrent and that we can interchange them in the trace.
The last synchronisation on channel a corresponds to two

different events: one engendered by the substitution on u and
another by the substitution on v. In Rπ, the corresponding events
choose as cause the transition on b and on c respectively. We can
represent all the commutative transitions for P as follows:

ε � P
1:b〈νa∅〉

{{

2:c〈νa∅〉

##

3,∗,1:a

��
2:c〈νa1〉 ##

1:b〈νa2〉

{{

3,∗,2:a

��

2:c〈νa1〉 ��

R

3,∗,1:a
||

3,∗,2:a

""
1:b〈νa2〉��

S T

Note that from process R, depending on the choice of contextual
cause (either event 1 or 2) we can reach two distinct processes, that
allow different backward paths from them. Previous permutation
equivalence for the π-calculus in the literature would not allow the
top diagram with source ε � P and target R to commute.

An alternative approach could have been not to choose a context
cause, when many are available:

ε � P
1:b〈νa∅〉

{{

2:c〈νa∅〉

""
R0

3:a

}} 2:c〈νa1〉
""

S0

1:b〈νa2〉

||

3:a

R1

2:c〈νa1〉 ,,

R

3:a

��

S1

1:b〈νa2〉rrS′

However, this would be conceptually incorrect, as it would allow

the trace σ : ε � P
+
−→ R0

+
−→ R1

+
−→ S′ −

−→ S1 which
would break the fact that in any reduction context of σ the first
reduction is always a cause of the second (and therefore should
not be backtracked first).

VI. CONCLUSION

We have presented the first labelled reversible semantics

for the π-calculus. As reversibility is linked to causality, we

also provide a novel causal semantics for the π-calculus.

We have argued that our notion of causality is canonical,

as entirely sound with respect to the precedence operator

between reductions.

In our presentation, we have omitted the replication and

the choice operator. We believe including these would be

a straightforward import from the technique used in RCCS

[21], to the price of a more involved syntax for terms.

The causal semantics of π-calculus we defined guarantees

that events have each a unique causal history. As mentioned,

this is not the case for the event structure semantics pre-

sented in [12]. We plan to find a way to lift the semantics

presented here to event structures.

Another interesting continuation of our work consists in

reformulating the correctness criteria of our permutation

equivalence, in terms of a Galois connection between the

(concrete) world of reductions and the (abstract) one of

labelled transitions, taking inspiration, for instance, from the

approach of Feret [22].

Lastly, we are also interested in studying meaningful

equivalence relations for reversible processes. A notion of

forward-reverse bisimulation can be defined, which coin-

cides with Hereditary History preserving bisimulation [8].

These bisimulations are however quite discriminative and

do not abstract away from internal actions. The weak bisim-

ulation, usually employed in the π-calculus, is no longer

useful in a reversible context since a reversible process is

weakly bisimilar to any of its derivatives [9]. The problem

of finding interesting weak equivalences between reversible

systems is still an open issue and we hope that our labelled

semantics can be used as a good starting point.

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the com-
puting process,” IBM Journal of Research and Development,
vol. 5, pp. 183–191, 1961.

[2] L. Bougé, “On the existence of symmetric algorithms to find
leaders in networks of communicating sequential processes,”
Acta Inf., vol. 25, no. 2, pp. 179–201, 1988.

[3] C. Palamidessi, “Comparing the expressive power of the syn-
chronous and asynchronous pi-calculi,” Mathematical Struc-
tures in Computer Science, vol. 13, no. 5, pp. 685–719, 2003.

[4] R. D. Nicola, U. Montanari, and F. Vaandrager, “Back and
forth bisimulations,” in Proceedings of CONCUR’90, ser.
LNCS, vol. 458, 1990, pp. 152–165.

[5] V. Danos and J. Krivine, “Transactions in RCCS,” in In Proc.
of CONCUR, LNCS 3653. Springer, 2005, pp. 398–412.

[6] ——, “Reversible communicating systems,” in Proceedings
of 15th CONCUR, ser. Lecture Notes in Computer Science,
vol. 3170. Springer, 2004, pp. 292–307.

[7] I. Phillips and I. Ulidowski, “Reversing algebraic process
calculi,” in Proceedings of FOSSAC’06, ser. LNCS, vol. 3921,
2006, pp. 246–260.

[8] ——, “Reversibility and models for concurrency,” Electr.
Notes Theor. Comput. Sci., vol. 192, no. 1, pp. 93–108, 2007,
proceedings of SOS 2007.

[9] I. Lanese, C. A. Mezzina, and J.-B. Stefani, “Reversing
higher-order pi,” in Proceedings of 21st CONCUR, ser. Lec-
ture Notes in Computer Science, vol. 6269. Springer, 2010,
pp. 478–493.

[10] M. Boreale and D. Sangiorgi, “A fully abstract semantics for
causality in the π-calculus,” Acta Inf., vol. 35, no. 5, pp. 353–
400, 1998.

[11] P. Degano and C. Priami, “Non-interleaving semantics for
mobile processes.” Theor. Comp. Sci., vol. 216, no. 1-2, pp.
237–270, 1999.

[12] S. Crafa, D. Varacca, and N. Yoshida, “Event structure
semantics of the parallel extrusion in the pi -calculus,” in
Proceedings of 15TH FOSSACS, ser. Lecture Notes in Com-
puter Science, vol. 7213. Springer, 2012, pp. 225–239.

[13] D. Sangiorgi and D. Walker, The π-calculus. Cambridge
University Press, 2002.

[14] J.-J. Lévy, “Réduction optimales en λ-calcul,” Ph.D. disser-
tation, Université Paris 7, 1978.

[15] G. Boudol and I. Castellani, “Permutation of transitions: An
event structure semantics for CCS and SCCS.” in Linear Time,
Branching Time and Partial Order in Logics and Models for
Concurrency, ser. LNCS, vol. 354, 1989, pp. 411–427.

[16] P. Darondeau and P. Degano, “Causal trees,” in Proceedings
of ICALP’89, ser. LNCS, vol. 372, 1989, pp. 234–248.

[17] G. Boudol, I. Castellani, M. Hennesy, and A. Kiehn, “A theory
of processes with localities,” Formal Aspect of Computing,
1992.

[18] I. Castellani, “Observing distribution in processes: Static and
dynamic localities,” International Journal of Foundations of
Computer Science, vol. 6, no. 4, pp. 353–393, 1995. [Online].
Available: citeseer.ist.psu.edu/castellani94observing.html

[19] J. J. Leifer and R. Milner, “Deriving bisimulation congru-
ences for reactive systems,” in Proceedings of CONCUR, ser.
Lecture Notes in Computer Science, vol. 1877. Springer,
2000.

[20] P. D. Gianantonio, F. Honsell, and M. Lenisa, “Finitely
branching labelled transition systems from reaction semantics
for process calculi,” in WADT, ser. Lecture Notes in Computer
Science, A. Corradini and U. Montanari, Eds., vol. 5486.
Springer, 2008, pp. 119–134.

[21] J. Krivine, “Algèbres de processus réversibles,” Ph.D. disser-
tation, Université Paris 6 & INRIA-Rocquencourt, 2006.

[22] J. Feret, “Confidentiality analysis of mobile systems,” in
Seventh International Static Analysis Symposium (SAS’00),
ser. LNCS, no. 1824. Springer-Verlag, 2000.

