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Abstract

We consider supervised learning problems within the positive-definite kernel framework, such as

kernel ridge regression, kernel logistic regression or the support vector machine. With kernels lead-

ing to infinite-dimensional feature spaces, a common practical limiting difficulty is the necessity of

computing the kernel matrix, which most frequently leads to algorithms with running time at least

quadratic in the number of observations n, i.e., O(n2). Low-rank approximations of the kernel

matrix are often considered as they allow the reduction of running time complexities to O(p2n),
where p is the rank of the approximation. The practicality of such methods thus depends on the

required rank p. In this paper, we show that in the context of kernel ridge regression, for approx-

imations based on a random subset of columns of the original kernel matrix, the rank p may be

chosen to be linear in the degrees of freedom associated with the problem, a quantity which is

classically used in the statistical analysis of such methods, and is often seen as the implicit num-

ber of parameters of non-parametric estimators. This result enables simple algorithms that have

sub-quadratic running time complexity, but provably exhibit the same predictive performance than

existing algorithms, for any given problem instance, and not only for worst-case situations.

1. Introduction

Kernel methods, such as the support vector machine or kernel ridge regression, are now widely

used in many areas of science and engineering, such as computer vision or bioinformatics (see,

e.g., Schölkopf et al., 2004; Zhang et al., 2007). Their main attractive features are that (1) they al-

low non-linear predictions through the same algorithms than for linear predictions, owing to the

kernel trick; (2) they allow the separation of the representation problem (designing good kernels

for non-vectorial data) and the algorithmic/theoretical problems (given a kernel, how to design,

run efficiently and analyze estimation algorithms). Moreover, (3) their applicability goes beyond

supervised learning problems, through the kernelization of classical unsupervised learning tech-

niques such as principal component analysis or K-means. Finally, (4) probabilistic Bayesian in-

terpretations through Gaussian processes allow their simple use within larger probabilistic mod-

els. For more details, see, e.g., Rasmussen and Williams (2006); Schölkopf and Smola (2002);

Shawe-Taylor and Cristianini (2004).

However, kernel methods typically suffer from at least quadratic running-time complexity in

the number of observations n, as this is the complexity of computing the kernel matrix. In large-

scale settings where n may be large, this is usually not acceptable. In these situations where plain

kernel methods cannot be run, practitioners would commonly (a) turn to methods such as boosting,

decision trees or random forests, which have both good running time complexity and predictive

performance. However, these methods are typically run on data coming as vectors and usually put a
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strong emphasis on a sequence of decisions based on single variables. Another common solution is

(b) to stop using infinite-dimensional kernels and restrict the kernels to be essentially linear kernels

(i.e., by choosing an explicit representation of the data whose size is independent of the number

of observations) where the non-parametric kernel machinery (of adapting the complexity of the

underlying predictor to the size of the dataset) is lost, and the methods may then underfit.

In this paper, we consider the traditional kernel set-up for supervised learning, where the input

data are only known through (portions of) the kernel matrix. The main question we try to tackle

is the following: Is it possible to run supervised learning methods with positive-definite kernels in

time which is subquadratic in the number of observations without losing predictive performance?

Of course, if adaptation is desired, linear complexity seems impossible, and therefore we should

expect (hopefully slightly) super-linear algorithms. Statistically, a quantity that characterizes the

non-parametric nature of kernel method is the degrees of freedom, which play the role of an implicit

number of parameters and which we define and review in Section 4.1. This quantity allows to

go beyond worst-case analyses which are common in statistical learning theory: our generalization

bounds will then depend on problem-dependent quantities which may not be known at training time,

but that characterize finely the behavior on any given problem instance, and not only for the worst

case over a large class of problems. In this paper, we try to tackle the following specific question:

Do the degrees of freedom play a role in the computational properties of kernel methods?

An important feature of kernel matrices is that they are positive-semidefinite, and thus they

may well be approximated from a random subset of p of their columns, in running-time complex-

ity O(p2n) and with a computable bound on the error (see details in Section 3). This appears

through different formulations within numerical linear algebra or machine learning, e.g., Nyström

method (Williams and Seeger, 2001), sparse greedy approximations (Smola and Schölkopf, 2000),

incomplete Cholesky decomposition (Fine and Scheinberg, 2001; Bach and Jordan, 2005), Gram-

Schmidt orthonormalization (Shawe-Taylor and Cristianini, 2004) or CUR matrix decompositions

(Mahoney and Drineas, 2009). It has been thoroughly analyzed in contexts where the goal is kernel

matrix approximation or approximate eigenvalue decomposition (see, e.g., Boutsidis et al., 2009;

Mahoney and Drineas, 2009; Kumar et al., 2012; Gittens, 2011). Such bounds have also been sub-

sequently used to characterize the approximation of predictions made from these low-rank decom-

positions (Cortes et al., 2010; Jin et al., 2001), but these two-stage analyses do not lead to guaran-

tees that reflect the good observed practical behavior. In this paper, our analysis aims at answering

explicitly the simple question: how big should p be to incur no loss of predictive performance com-

pared to the full kernel matrix? The key insight of this paper is not to try to approximate the kernel

matrix well, but to predict well from the approximation. This requires a sharper analysis of the

approximation properties of the column sampling approach.

We make the following contributions:

– In the fixed design least-squares regression setting, we show in Section 4.2 that the rank p can

be chosen to be linear in the degrees of freedom associated with the problem, a quantity which

is classically used in the statistical analysis of such methods. Note that our results hold for any

problem instance, and not only in a worst-case regime.

– We present in Section 4.4 simple algorithms that have sub-quadratic running time complexity,

and, for the square loss, provably exhibit the same predictive performance as classical algo-

rithms than run in quadratic time (or more).
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– We provide in Section 4.3 explicit examples of optimal values of the regularization parameters

and the resulting degrees of freedom, as functions of the decay of the eigenvalues of the ker-

nel matrix, shedding some light in the joint computational/statistical trade-offs for choosing a

good kernel. In particular, we show that with kernels with fast spectrum decays (such as the

Gaussian kernel), computational limitations may prevent exploring the relevant portions of the

regularization paths, leading to underfitting.

2. Supervised learning with positive-definite kernels

In this section, we present the problem we try to solve, as well as several areas of the machine

learning and statistics literatures our method relates to.

2.1. Equivalent formulations

Let (xi, yi), i = 1, . . . , n, be n pairs of points in X × Y , where X is the input space, and Y is the

set of outputs/labels. In this paper, we consider the problem of minimizing

min
f∈F

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2, (1)

where F is a reproducing kernel Hilbert space with feature map φ : X → F , and positive-definite

kernel k : X × X → R. While this problem is formulated as an optimization problem in a Hilbert

space, it may be formulated as the optimization over Rn in two different ways.

First, using the representer theorem, the unique solution f may be found as f =
∑n

i=1 αiφ(xi)
(see, e.g., Wahba, 1990; Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004). Thus,

by replacing the expression of f in Eq. (1), α is a solution of the following optimization problem:

min
α∈Rn

1

n

n∑

i=1

ℓ(yi, (Kα)i) +
λ

2
α⊤Kα, (2)

where K ∈ R
n×n is the kernel matrix, defined as Kij = k(xi, xj).

Second, for convex losses only, an equivalent dual problem is classically obtained as (see proof

in Appendix A):

max
α∈Rn

−g(−λα)− λ

2
α⊤Kα, (3)

where g(z) = maxu∈Rn − 1
n

∑n
i=1 ℓ(yi, ui) + uizi is the Fenchel-conjugate of the empirical risk

(for the hinge loss, Eq. (3) is exactly the classical dual formulation of the SVM). Again, one may

express the primal solution as f =
∑n

i=1 αiφ(xi). In many situations (such as with the square loss

or logistic loss), then the solution of Eq. (3) is unique, and it is also a solution of Eq. (2) (note

however that the converse is not true).

2.2. Related work

Efficient optimization algorithms for kernel methods. In order to solve Eq. (1), algorithms

typically consider a primal or a dual approach. Solving Eq. (2), i.e., the primal formulation after ap-

plication of the representer theorem, is typically inefficient because the problem is ill-conditioned1

1. The objective function in Eq. (2) is a function of K1/2
α, with a kernel matrix K which is often ill-conditioned,

usually leading to ill-conditioning of the original problem (Chapelle, 2007).
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and thus second-order algorithms are typically used (Chapelle, 2007). Alternatively, K is repre-

sented explicitly as K = ΦΦ⊤ and a change of variable w = Φ⊤α is considered (note that when

the kernel k is linear, Φ is simply the design matrix, and we are solving directly a linear super-

vised learning problem). Then, the classical battery of convex optimization algorithms may be

used, such as gradient descent, stochastic gradient descent (Shalev-Shwartz et al., 2007) or cutting-

planes (Joachims et al., 2009). However, in a kernel setting where a small matrix Φ (i.e., with few

columns) is not known a priori, then they all exhibit at least quadratic complexity in n, as the full

kernel matrix is used.

The dual problem in Eq. (3) is usually better-behaved (it has a better condition number) (Chapelle,

2007), and algorithms such as coordinate descent and its variants such as sequential minimal opti-

mization may be used (Platt, 1999). Again, in general, the full kernel matrix is needed.

Some algorithms operate online and do not need to compute the full kernel matrix, such as the

“forgetron” (Dekel et al., 2005), the “projectron” (Orabona et al., 2008), BGSD (Wang et al., 2012),

or LASVM (Bordes et al., 2005), with typically a fixed computational budget and good practical

performance. They often come with theoretical approximation guarantees, which are either data-

dependent or based on worst-case analysis; however, these do not characterize the required rank

which is needed to achieve the same accuracy than the problem with a full kernel matrix. In fact,

one of the main motivations for this work is to derive precise bounds for reduced-set stochastic

gradient algorithms for supervised kernel problems.

Analysis of column sampling approximation. Given a positive semi-definite matrix K of size n,

many methods exist for approximating it with a low-rank (typically also positive semidefinite)

matrix L. While the optimal approximation is obtained from the eigenvalue decomposition, it

is not computationally efficient as it has complexity at least quadratic in n (since it requires the

knowledge of K). In order to achieve linear complexity in n, approximations from subsets of

columns are considered and appear under many names: Nyström method (Williams and Seeger,

2001), sparse greedy approximations (Smola and Schölkopf, 2000), incomplete Cholesky decom-

position (Fine and Scheinberg, 2001), Gram-Schmidt orthonormalization or CUR matrix decompo-

sitions (Mahoney and Drineas, 2009). Note that reduced-set methods (see, e.g., Keerthi et al., 2006)

typically consider using a subset of columns after the predictor has been estimated. These low-rank

methods are described in Section 3 and have running time complexity O(p2n) for an approximation

of rank p. Note that they may also be used in a Bayesian setting with Gaussian processes (see, e.g.,

Lawrence et al., 2002).

Column sampling has been analyzed a lot (Mahoney and Drineas, 2009; Cortes et al., 2010;

Kumar et al., 2012; Talwalkar and Rostamizadeh, 2010; Gittens, 2011); however, typically the anal-

ysis provides a high-probability bound on the error ‖K − L‖ for an appropriate norm (typically

operator, Frobenius or trace norm), but this is too pessimistic and does not really match with good

practical performance (see empirical evidence in Figure 1). Some works do consider prediction

guarantees (Cortes et al., 2010; Jin et al., 2001), but as shown in Section 4.2, these are not sufficient

to reach sharp results depending on the degrees of freedom. Moreover, many analyses consider

situations where the matrix K is close to low-rank, which is not the case with kernel matrices. In

this paper, the control of K − L is more precise and adapted to the use of K within a supervised

learning method.

Randomized dimension reduction. The method presented in this paper, which considers ran-

dom columns from the original kernel matrix, is also related to random projection techniques used

4
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Figure 1: Comparison of relative errors of kernel approximation and prediction performance.

We consider a least-squares prediction problem with n = 400 and a decay of eigenvalues

of the kernel matrix which is the inverse of a low-order polynomial (see examples in

Section 5). We compare the decays to zero of the relative kernel matrix approximation

‖K−L‖/‖K‖ (for the trace and operator norms) with the decay of the relative prediction

performance (i.e., prediction for L minus prediction for the full matrix K). Left: random

selection of columns, right: selection of columns by incomplete Cholesky decomposition

with column pivoting. The prediction error (red curve) stops when the average prediction

error of the column sampling approach gets below the prediction error of the full kernel

matrix approach. As the rank p increases, the decay of the relative prediction error is

much faster than the error in matrix approximation, suggesting that relying on good kernel

matrix approximation may be suboptimal if the goal is simply to predict well.

for linear prediction problems (Mahoney, 2011; Maillard and Munos, 2009). These techniques are

not kernel methods per se, as they require the knowledge of a matrix square root Φ (such that

K = ΦΦ⊤), which leads to complexity greater than quadratic. For certain kernel functions that can

be explicitly expressed as an expectation of dot-products in low-dimensional spaces, similar ran-

domized dimensionality reduction may be performed (Rahimi and Recht, 2007). Note however that

the dimension reduction is then independent of the particular distributions of the input data points,

while the column sampling approach is; see Yang et al. (2012) for more discussion.

Theoretical analysis of predictive performance of kernel methods. In order to assess the re-

quired precision in approximating the kernel matrix, it is key to understand the typical predictive

performance of kernel methods. For the square loss, this is classically obtained from a bias-variance

decomposition of this performance (see Section 4). A key quantity is the degrees of freedom, which

play the role of an implicit number of parameters and is applicable to many non-parametric esti-

mation methods which consists in “smoothing” the response vector by a linear operator (see, e.g.,

Wahba, 1990; Hastie and Tibshirani, 1990; Gu, 2002; Caponnetto and De Vito, 2007; Hsu et al.,

2011). See precise definitions in Section 4.1.

3. Approximation from subset of columns

In this section, given subsets A and B of V = {1, . . . , n} and a matrix K ∈ R
n×n, we denote by

K(A,B) the submatrix of K with rows in A and columns in B.
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Approximation from columns. Given a random subset I of V = {1, . . . , n} of cardinality p,

we simply consider the approximation of the kernel matrix K from the knowledge of K(V, I) (the

columns of K indexed by I), by the matrix

L = K(V, I)K(I, I)†K(I, V ), (4)

where M † denotes the pseudo-inverse of M . As shown by Bach and Jordan (2005), L is the only

symmetric matrix with column space spanned by the columns of K(V, I), and such that L(V, I) =
K(V, I). Alternatively, given that K is the matrix of dot-products of points in a Hilbert space, it

may be seen as the kernel matrix of the orthogonal projections of all points onto the affine subspace

spanned by the points indexed by I (Mahoney, 2011).

Note that approximating K by L also corresponds to creating an explicit feature map of dimen-

sion p, i.e., φ̃(x) = K(I, I)−1/2(k(xi, x))i∈I ∈ R
p, and, this allows the application to test data

points (note that using such techniques also allows better testing running time peformance).

Such a feature map may be efficiently obtained in running time O(p2n) using incomplete

Cholesky decomposition—often interpreted as partial Gram-Schmidt orthonormalization, with the

possibility of having an explicit online bound on the trace norm of the approximation error (see,

e.g., Shawe-Taylor and Cristianini, 2004).

Pivoting vs. random sampling. While selecting a random subset is computationally efficient,

it may not lead to the best performance. For the task of approximating the kernel matrix, al-

gorithms such as the incomplete Cholesky decomposition with pivoting, provide an approximate

greedy algorithm with the same complexity than random subsampling (Smola and Schölkopf, 2000;

Fine and Scheinberg, 2001).

In Section 5, we provide comparisons between the two approaches, showing the potential ad-

vantage of the greedy method over random subsampling. However, the analysis of such algorithms

is harder, and, to the best of our knowledge, still remains an open problem.

4. Fixed design analysis for least-square regression (ridge regression)

To simplify the analysis, we assume that the n data points x1, . . . , xn are deterministic and that

Y = R. In this setting, the classical generalization error (prediction error on unseen data points)

is replaced by the in-sample prediction error (prediction error on observed data points). This fixed

design assumption could be relaxed by using tools from Hsu et al. (2011), as results for random

design settings are typically similar to the fixed design settings.

We assume that the loss ℓ is the square loss, i.e., ℓ(yi, f(xi)) =
1
2 (yi − f(xi))

2. By using the

representer theorem (see Section 2.1), we classically obtain:

f(x) =
∑n

i=1 αik(x, xi) with α = (K + nλI)−1y.

This leads to a prediction vector ẑ = K(K + nλI)−1y ∈ R
n, which is a linear function of the

output observations y, and is often referred to as a smoothed estimate of z.

4.1. Analysis of the in-sample prediction error

We denote by zi = Eyi ∈ R the expectation of yi, and we denote by εi = yi − zi = yi − Eyi ∈ R

the noise variables; they have zero mean and are only assumed to have finite covariance matrix C
(note that the noise may neither be independent nor identically distributed).
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Bias/variance decomposition of the generalization error. Following classical results from the

statistics literature (see, e.g., Wahba, 1990; Hastie and Tibshirani, 1990; Gu, 2002), we obtain the

following expected prediction error:

1
nEε‖ẑ − z‖2 = 1

n‖Eεẑ − z‖2 + 1
n tr varε(ẑ)

= 1
n‖(I −K(K + nλI)−1)z‖2 + 1

n trCK2(K + nλI)−2

= nλ2z⊤(K + nλI)−2z + 1
n trCK2(K + nλI)−2,

which may be classically decomposed in two terms:

bias(K) = nλ2z⊤(K + nλI)−2z

variance(K) = 1
n trCK2(K + nλI)−2.

Note that the bias term is a matrix-decreasing function of K/λ (and thus an increasing function

of λ), while the variance term is a matrix-increasing function of K/λ and the noise covariance

matrix C .

Degrees of freedom. Note that an assumption which is usually made is C = σ2I; the variance

term then takes the form σ2

n trK2(K+nλI)−2 and trK2(K+nλI)−2 is referred to as the degrees

of freedom (Wahba, 1990; Hastie and Tibshirani, 1990; Gu, 2002; Hsu et al., 2011) (note that an

alternative definition is often used, i.e., trK(K + nλI)−1, and that as shown in Appendix C, they

often behave similarly). In ordinary least-squares estimation from d variables, the variance term is

equal to σ2d/n, and thus the degrees of freedom play the role of an implicit number of parameters.

In this paper, we show that a proxy to this statistical quantity also plays a role in optimization: the

number of columns needed to approximate the kernel matrix precisely enough to incur no loss of

performance is linear in the degrees of freedom.

More precisely, we define the maximal marginal degrees of freedom d as

d = n
∥∥diag

(
K(K + nλI)−1

)∥∥
∞. (5)

We have trK2(K + nλI)−2 6 trK(K + nλI)−1 =
∥∥ diag

(
K(K + nλI)−1

)∥∥
1
6 d, and thus d

provides an upper-bound on the regular degrees of freedom. It may be significantly larger in situa-

tions where there may be outliers and the vector diag
(
K(K+nλI)−1

)
is far from uniform—precise

results are out of the scope of this paper. Moreover, the diagonal elements ofK(K+nλI)−1 are re-

lated to statistical leverage scores introduced for best-rank approximations (Mahoney and Drineas,

2009); it would be interesting to see if this link could lead to non-uniform sampling schemes with

better behavior.

In Section 4.3, we study in detail how the degrees of freedom vary as a function of λ and n:

in order to minimize predictive performance, the best choice of λ depends on n (as a decreasing

function), typically smaller than a constant times 1/
√
n, and the degrees of freedom typically grow

as a slow function of n, reflecting the non-parametric nature of kernel methods.

4.2. Predictive performance of column sampling

We consider sampling p columns (without replacement) from the original n columns. We consider

the column sampling approximation defined in Eq. (4) and provide sufficient conditions (a lower-

bound on p) to obtain the same predictive performance than with the full kernel matrix.
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Theorem 1 (Generalization performance of column sampling) Assume z ∈ R
n and K ∈ R

n×n

are respectively a deterministic vector and a symmetric positive semi-definite matrix, and λ > 0.

Let d = n
∥∥diag

(
K(K+nλI)−1

)∥∥
∞ andR2 = ‖diag(K)‖∞. Assume ε ∈ R

n is a random vector

with finite variance and zero mean, and define the smoothed estimate ẑK = (K + nλI)−1K(z +
ε). Assume that I is a uniform random subset of p indices in {1, . . . , n} and consider L =
K(V, I)K(I, I)†K(I, V ), with the approximate smoothed estimate ẑL = (L + nλI)−1L(z + ε).
Let δ ∈ (0, 1). If

p >
(32d
δ

+ 2
)
log

nR2

δλ
, (6)

then
1

n
EIEε‖ẑL − z‖2 6 (1 + 4δ)

1

n
Eε‖ẑK − z‖2. (7)

Proof sketch. The proof relies on approximating the expected error directly, and not through

bounding the error ‖K −L‖. This is done by (a) considering a regularized version of L, i.e.,

Lγ = K(V, I)
[
K(I, I) + pγI

]−1
K(I, V ), (b) using a Bernstein inequality for an appropriately

rescaled covariance matrix and (c) using monotonicity arguments to obtain the required bound. See

more details in Appendix B.

Sharp relative approximation. The bound in Eq. (7) provides a relative approximation guaran-

tee: the predictions ẑL are shown to perform as well as ẑK (no kernel matrix approximation). Small

values of δ impose no loss of performance, while δ = 1/4 impose that the prediction errors have

a similar behavior (up to a factor of 2). Note that relative bounds may be more easily obtained

by eigenvalue thresholding of the kernel matrix, i.e., through replacing soft-shrinkage by hard-

thresholding (Blanchard et al., 2004; Dhillon et al., 2011). However, these bounds do not allow the

proportionality constant to go arbitrarily close to one, and they depend on the full knowledge of the

kernel matrix.

Lower bounds. The lower bound for the rank p in Eq. (6) shows that the maximal marginal de-

grees of freedom provides a quantity which, up to logarithmic terms, is sufficient to scale with, in

order to incur no loss of prediction performance. Note that the previous result also allows the deriva-

tion of an approximation guarantee δ given a rank p, by inverting Eq. (6). Moreover, Theorem 1

provides a sufficient lower-bound for the required rank p. Deriving precise necessary lower-bounds

is outside the scope of this paper. However, given that with a reduced space of p dimensions,

we can achieve a prediction error of O(p/n) from ordinary least-squares, we should expect p to

be larger than the known minimax rates of estimation for the problem at hand (Johnstone, 1994;

Caponnetto and De Vito, 2007; Steinwart et al., 2009). In Section 4.3, we show that in some situa-

tions, it turns out that d is of the order of the minimax rate; therefore, we could expect that in certain

settings, d is also a necessary lower-bound on p (up to constants and logarithms).

High-probability results. The bound in Eq. (7) provides a result in expectation, both with respect

to the data (i.e., Eε) and the sampling of columns (i.e., EI ). While results in high probability with

respect to I are readily obtained since the proof is based on such results (see Eq. (13) in Appendix B

for details), doing so with respect to ε would require additional assumptions, which are standard in

the analysis in ridge regression (Hsu et al., 2011; Arlot and Bach, 2009), but that would make the

results significantly more complicated.
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Avoiding terms in 1/λ. Theorem 1 focuses on average predictive performance; this is different

from achieving a good approximation of the kernel matrix (Mahoney and Drineas, 2009). Previous

work (Cortes et al., 2010; Jin et al., 2001) considers explicitly the use of kernel matrix approxima-

tion bounds within classifiers or regressors, but obtains bounds that involve multiplicative terms of

the form 1/λ or 1/λ2, which, as we show in Section 4.3, would grow as n grows. More precisely,

the bound from Cortes et al. (2010, Eq. (5)) has a term of the form 1/λmin(K + λI)2; however, for

the non-parametric problems we are considering in this paper, the lowest eigenvalue of K is often

below machine precision and hence the bound behaves as 1/λ2. Moreover, the subsequent bound

of Cortes et al. (2010, Theorem 2) has a term of the form 1/(λ2p) which can only be small if p is

larger than 1/λ2, which, according to our analysis in Section 4.3, is typically larger than n since

λ should typically decrease at least as 1/
√
n (however, note that their bound has a stronger nature

than the one in Theorem 1, as it states a guarantee in high probability).

Our proof technique, that focuses directly on prediction performance and side-steps the explicit

approximation of the kernel matrix, avoids these terms in 1/λ, and, beyond the dependence on λ
through the degrees of freedom (which we cannot avoid), our dependence is only logarithmic in λ
(see details in the proof in Appendix B).

Instance-based guarantees. Theorem 1 shows that in the specific instance that we are faced with,

we do not lose any average predictive performance. As opposed to Jin et al. (2001), the bound is

not on the worst-case predictive performance (obtained from optimizing over λ, and with worst-case

analysis overK), but for given λ andK (however, the bound of Jin et al. (2001) is a high-probability

result while ours is only in expectation). Moreover, even in this worst-case regime, Jin et al. (2001)

state that for polynomial decays of the eigenvalues of K such that the optimal prediction perfor-

mance is of the form O(n−1n1/(γ+1)) (and for binary classification rather than regression), the rank

to achieve this optimal prediction is p = n2γ/(γ
2−1), which may be larger than n and is significantly

higher than n1/(γ+1) (which corresponds to our result since the degrees of freedom are then equal

to n1/(γ+1)).

Link with eigenvalues. In the existing analysis of sampling techniques for kernel methods, an-

other source of inefficiency which makes our result sharper is the proof technique for bounding

‖K − L‖. Indeed, most analyses use a linear algebra lemma from Mahoney and Drineas (2009);

Boutsidis et al. (2009), that relies on the (p + 1)-th eigenvalue to be small; hence it is adapted to

matrices with sharp eigenvalue decrease, which is not the case for kernel matrices (see an illustrative

example in Figure 1). We provide a new proof technique based on regularizing the column sampling

approximation and optimizing the extra regularization parameter using a monotonicity argument.

Additional regularization effect. In our experiments, we have noticed that the low-rank approx-

imation may have an additional regularizing effect leading to a better prediction performance than

with the full kernel matrix.

Beyond square loss. The notion of degrees of freedom can be extended to smooth losses like the

logistic loss. However, the simple bias/variance decomposition only holds asymptotically, forcing a

control of the two terms, which would lead to significant added complexity.

Beyond fixed design. In order to extend our analysis to random design settings, we would need to

additionally control the deviation between covariance operators and empirical covariance operators,

with quantities like the degrees of freedom that depend on the decay of non-zero eigenvalues and

not on their number. This could be done using tools from Hsu et al. (2011, 2012).
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4.3. Optimal choice of the regularization parameter

As seen in Sections 4.1 and 4.2, the computational and statistical properties of kernel ridge regres-

sion depend heavily on the choice of the regularization parameter λ as n increases, which we now

tackle.

For simplicity, in this section, we assume that the noise variables ε are i.i.d. (i.e., C = σ2I). Our

goal is to study simplified situations, where we can derive explicit formulas for the bias, the variance,

and the optimal regularization parameter. Throughout this section, we will consider specific decays

of certain sequences, which we characterize with the notation un = Θ(vn), which means that there

exist strictly positive constants A and B such that Aun 6 vn 6 Bvn for all n.

We assume that the kernel matrixK has eigenvalues of the form Θ(nµi), i = 1, . . . , n, for some

summable sequence (µi)—so that trK = Θ(n), and that the coordinates of z on the eigenbasis ofK
have the asymptotic behavior Θ(

√
nνi) for a summable sequence (νi)—so that 1

nz
⊤z = Θ(1). In

Table 1, we provide asymptotic equivalents of all quantities for several pairs of sequences (µi) and

(νi) (see proofs in Appendix C), with polynomial or exponential decays.

Note that for decays of νi which are polynomial, i.e., νi = O(i−2δ), then the best possible pre-

diction performance is known to be O(n1/2δ−1) (Johnstone, 1994; Caponnetto and De Vito, 2007)

and is achieved if the RKHS is large enough (lines 2 and 4 in Table 1). For exponential decay, the

best performance is O(log n/n). See also Steinwart et al. (2009).

Given a specific decay (νi) for expected outputs z = Ey, then depending on the decay (µi) of

the eigenvalues of the kernel matrix, the final prediction performance and the optimal regularization

parameter may be different. Usually, the smaller the RKHS, the faster the decay of eigenvalues of

the kernel matrix K—this is true for translation-invariant kernels (Schölkopf and Smola, 2002), and

the kernels considered in Section 5. Thus there are two regimes:

– The RKHS is too large, for lines 1 and 3 in Table 1: the eigenvalues of K , which depend

linearly on µi, do not decay fast enough. In other words, the functions in the RKHS are not

smooth enough. In this situation, the prediction performance is suboptimal (do not attain the

best possible rate).

– The RKHS is too small, for lines 2, 4, and 6 in Table 1: the eigenvalues of K decay fast

enough to get an optimal prediction performance. In other words, the functions in the RKHS

are potentially smoother than what is necessary. In this situation however, the required value

of λ may be very small (much smaller than O(n−1)), leading to potentially harder optimization

problems (since the condition number that depends on 1/λ may be very large).

There is thus a computational/statistical trade-off: if the RKHS is chosen too large, then the

prediction performance is suboptimal (i.e., even with the best possible regularization parameter, the

resulting error is not optimal); if the RKHS is chosen too small, the prediction performance could

be optimal, but the optimization problems are harder, and sometimes cannot be solved with the

classical precision of numerical techniques (see examples of such behavior in Section 5). Indeed, for

least-squares regression, where a positive semi-definite linear system has to be solved, its condition

number is proportional to 1/λ and for the best choice of λ in line 4 of Table 1, it grows exponentially

fast in n (if λ is chosen larger, then the bias term will lead to sub-optimal behavior).

10
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(µi) (νi) var. bias optimal λ pred. perf. d.f. dave condition

i−2β i−2δ n−1λ−1/2β λ2 n−1/(2+1/2β) n1/(4β+1)−1 n1/(4β+1) if 2δ>4β+1

i−2β i−2δ n−1λ−1/2β λ(2δ−1)/2β n−β/δ n1/(2δ)−1 n1/(2δ) if 2δ<4β+1

i−2β e−κi n−1λ−1/2β λ2 n−1/(2+1/2β) n1/(4β+1)−1 n1/(4β+1)

e−ρi i−2δ n−1 log 1
λ (log 1

λ)
1−2δ exp(−n1/(2δ)) n1/(2δ)−1 n1/(2δ)

e−ρi e−κi n−1 log 1
λ λ2 n−1/2 log n/n log n if κ > 2ρ

e−ρi e−κi n−1 log 1
λ λκ/ρ n−ρ/κ log n/n log n if κ < 2ρ

Table 1: Variance, bias, optimal regularization parameter, corresponding prediction performance

and degrees of freedom dave = trK2(K +nλI)−2, for several decays of eigenvalues and

signal coefficients (we always assume δ > 1/2, β > 1/2, ρ > 0, κ > 0, to make the series

summable). All entries are functions of i, n or λ and are only asymptotically bounded

below and above, i.e., correspond to the asymptotic notation Θ(·).

4.4. Optimization algorithms with column sampling

Given a rank p and a regularization parameter λ, we consider the following algorithm to solve

Eq. (1) for twice differentiable convex losses:

1. Select at random p columns of K (without replacement).

2. Compute Φ ∈ R
n×p such that ΦΦ⊤ = K(V, I)K(I, I)†K(I, V ) using incomplete Cholesky

decomposition (see details in Shawe-Taylor and Cristianini, 2004).

3. Minimize minw∈Rp
1
n

∑n
i=1 ℓ(yi, (Φw)i)+

λ
2‖w‖2 using Newton’s method (i.e., a single linear

system for the square loss).

The complexity of step 2 is already O(p2n), therefore using faster techniques for step 3 (e.g., accel-

erated gradient descent) does not change the overall complexity, which is thus O(p2n). Moreover,

since we use a second-order method for step 3, we are robust to ill-conditioning and in particular to

small values of λ (though not below machine precision as seen in Section 5). This is not the case for

algorithms that relies on the strong convexity of the objective function, whose convergence is much

slower when λ is small (as seen in Section 4.3, when n grows, the optimal value of λ can decay

very rapidly, making these traditional methods non robust).

According to Theorem 1, at least for the square loss, the dimension p may be chosen to be

linear in the maximal marginal degrees of freedom d defined in Eq. (5); it is in practice close to the

traditional degrees of freedom dave, which, as illustrated in Table 1, is typically smaller than n1/2.

Therefore, if p is properly chosen, the complexity is subquadratic. Given λ, d (and thus p) can be

estimated from a low-rank approximation of K . However, our current analysis assumes that λ is

given. Selecting the rank p and the regularization parameter λ in a data-driven way would make the

prediction method more robust, but this would require extra assumptions (see, e.g., Arlot and Bach,

2009, and references therein).

5. Simulations

Synthetic examples. In order to study various behaviors of the regularization parameters λ and

the degrees of freedom d, we consider periodic smoothing splines on [0, 1] and points x1, . . . , xn

11
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uniformly spread over [0, 1], either deterministically or randomly. In order to generate problems

with given sequences (µi) and (νi), it suffices to choose k(x, y) =
∑∞

i=1 2µi cos 2iπ(x− y), and a

function f(x) =
∑∞

i=1 2ν
1/2
i cos 2iπx. For µi = i−2β , we have k(x, y) = 1

(2β)!B2β(x−y−⌊x−y⌋),
where B2β is the (2β)-th Bernoulli polynomial (see details in Appendix D).

Optimal values of λ. In a first experiment, we illustrate the results from Section 4.3, and compute

in Figure 2 the best value of the regularization parameter (left) and the obtained predictive perfor-

mance (middle), for a problem with νi = i−2δ for δ = 8, and for which we considered several

kernels, for which µi = i−2β , for β = 1, β = 4 and β = 8.

– For β = 1, the rate of convergence of n1/(4β+1)−1 happens to be achieved (line 1 in Table 1),

with a certain asymptotic decay of the regularization parameter, and it is slower than n1/(2δ)−1.

– For β = 4, the optimal rate of n1/(2δ)−1 is achieved (line 2 in Table 1), as expected.

– For β = 8, the rate of convergence should be n1/(2δ)−1 (line 2 in Table 1), however, as seen in

the left plot, the regularization parameter saturates as n grows at the machine precision, leading,

because of numerical errors, to worse prediction performance. The problem is so ill-conditioned

that the matrix inversion cannot be algorithmically robust enough.

Performance of low-rank approximations. In this series of experiments, we compute the rank p
which is necessary to achieve a predictive performance at most 1% worse than with p = n, and

compute2 the ratio with the marginal degrees of freedom d = n
∥∥diag

(
K(K + nλI)−1

)∥∥
∞ and

the traditional degrees of freedom dave = trK2(K + nλI)−2. In the right plot of Figure 2,

we consider data randomly distributed in [0, 1] with the same kernels and functions than above,

while in Figure 3, we considered three of the pumadyn datasets from the UCI machine learn-

ing repository (there we compute the classical generalization performance on unseen data points

and estimate λ by cross-validation). For further experimental evaluations, see Cortes et al. (2010);

Talwalkar and Rostamizadeh (2010).

On all datasets, the ratios stay relatively close to one, illustrating the results from Theorem 1.

Moreover, the two different versions d and dave of degrees of freedom are within a factor of 2.

Moreover, using pivoting to select the columns does not change significantly the results, but may

sometimes reduce the number of required columns by a constant factor. Note that the sudden in-

crease (of magnitude less than 2 in the middle and right plots of Figure 3) is due to the chosen

criterion (ratio of the sufficient rank to obtain 1% worse predictive performance), which may be

unstable.

6. Conclusion

In this paper, we have provided an analysis of column sampling for kernel least-squares regression

that shows that the rank may be chosen proportional to properly defined degrees of freedom of

the problem, showing that the statistical quantity characterizing prediction performance also plays

a computational role. The current analysis could be extended in various ways: First, other col-

umn sampling schemes beyond uniform, such as presented by Boutsidis et al. (2009); Kumar et al.

(2012), could be considered with potentially better behavior. Moreover, while we have focused

2. Note that in practice, computing the degrees of freedom exactly requires to know the full matrix. However, it could

also be approximated efficiently, following for example Drineas et al. (2012).
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Figure 2: Left and middle: Effect of size of RKHS in predictive performance. Right: Ratio of

the sufficient rank to obtain 1% worse predictive performance, over the degrees of free-

dom (plain: random column sampling, dashed: incomplete Cholesky decomposition with

column pivoting).

2 2.5 3 3.5
0

0.5

1

1.5

2

log
10

(n)

ra
nk

 / 
de

gr
ee

s 
of

 fr
ee

do
m

 

 

rank/d
rank/d

ave

2 2.5 3 3.5
0

0.5

1

1.5

2

log
10

(n)

ra
nk

 / 
de

gr
ee

s 
of

 fr
ee

do
m

 

 

rank/d
rank/d

ave

2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

log
10

(n)
ra

nk
 / 

de
gr

ee
s 

of
 fr

ee
do

m
 

 

rank/d
rank/d

ave

Figure 3: Ratio of the sufficient rank to obtain 1% worse predictive performance, over the degrees of

freedom (plain: random column sampling, dashed: incomplete Cholesky decomposition

with column pivoting). From left to right: pumadyn datasets 32fh, 32nh, 32nm.

on a fixed design, it is of clear interest to extend our results to random design settings using

tools from Hsu et al. (2011). The analysis may also be extended to other losses than the square

loss, such as the logistic loss, using self-concordant analysis (Bach, 2010) or the hinge loss, using

eigenvalue-based criteria (Blanchard et al., 2008) or tighter approaches to sample complexity anal-

ysis (Sabato et al., 2010). Finally, in this paper, we have considered a batch setting and extending

our results to online settings, in the line of Tarrès and Yao (2011), is of significant practical and

theoretical interest.

Acknowledgments

This work was supported by the European Research Council (SIERRA Project). The author would

like to thank the reviewers for suggestions that have helped improve the clarity of the paper.

13



BACH

Appendix A. Duality for kernel supervised learning

In this section, we review classical duality results for kernel-based supervised learning, which ex-

tends the dual problem of the support vector machine to all losses. For more details and examples,

see Rifkin and Lippert (2007). We consider the following problem, where F is an RKHS with

feature map φ : X → F :

min
f∈F

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2,

which may be rewritten with the feature map φ as:

min
f∈F ,u∈Rn,

1

n

n∑

i=1

ℓ(yi, ui) +
λ

2
‖f‖2 such that ui = 〈f, φ(xi)〉.

We may then introduce dual parameters (Lagrange multipliers) α ∈ R
n and the Lagrangian

L(f, u, α) = 1

n

n∑

i=1

ℓ(yi, ui) +
λ

2
‖f‖2 + λ

n∑

i=1

αi(ui − 〈f, φ(xi)〉).

Minimizing with respect to (f, u), we get f =
∑n

i=1 αiφ(xi) and the dual problem:

max
α∈Rn

−g(−λα) − λ

2
α⊤Kα,

where, for z ∈ R
n, g(z) = maxu∈Rn − 1

n

∑n
i=1 ℓ(yi, ui) + uizi is the Fenchel-conjugate of the

empirical risk.

Appendix B. Proof of Theorem 1

We first prove a lemma that provides a Bernstein-type inequality for subsampled covariance matri-

ces. The proof follows Tropp (2011, 2012) and Gittens (2011).

B.1. Concentration of subsampled covariance matrices

Given the matrix Ψ ∈ R
n×r and I ⊂ {1, . . . , p}, we denote by ΨI the submatrix of Ψ composed of

the rows of Ψ indexed by I .

Lemma 2 (Concentration of subsampled covariance) Let Ψ ∈ R
n×r, with all rows of ℓ2-norm

less than R. Let I be a random subset of {1, . . . , n} with p elements (i.e., p elements chosen

without replacement uniformly at random). Then, for all t > 0,

PI

(
λmax

[ 1
n
Ψ⊤Ψ− 1

p
Ψ⊤

I ΨI

]
> t

)
6 r exp

( −pt2/2
λmax(

1
nΨ

⊤Ψ)(R2 + t/3)

)
.

Proof Let ψ1, . . . , ψn ∈ R
r be the n rows of Ψ. We consider the matrix ∆ ∈ R

r×r defined as:

∆ =
1

n
Ψ⊤Ψ− 1

p
Ψ⊤

I ΨI =
1

n

n∑

i=1

ψiψ
⊤
i − 1

p

∑

i∈I
ψiψ

⊤
i .
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By construction, we have E∆ = 0, and, as shown by Tropp (2011, 2012) and Gittens (2011), we

have

E tr exp(s∆) 6 E tr exp(sΞ),

where Ξ is obtained by sampling independently p rows with replacement, i.e., is equal to

Ξ =
1

n

n∑

i=1

ψiψ
⊤
i − 1

p

p∑

j=1

n∑

i=1

zjiψiψ
⊤
i ,

where zj ∈ R
n is a random element of the canonical basis of Rn such that P(zji = 1) = 1

n for

all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. This result extends to the matrix case the classical result

of Hoeffding (1963).

We thus have:

Ξ =
1

p

p∑

j=1

(
1

n

n∑

i=1

ψiψ
⊤
i −

n∑

i=1

zjiψiψ
⊤
i

)
=

p∑

j=1

Mj ,

with Mj =
1
p

(∑n
i=1 z

j
i (

1
nΨ

⊤Ψ−ψiψ
⊤
i )

)
. We have EMj = 0, λmax(Mj) 6 λmax(

1
nΨ

⊤Ψ)/p, and

λmax

( p∑

j=1

EM2
j

)
=

1

p2
λmax

( p∑

j=1

n∑

i=1

n∑

k=1

Ezji z
j
k

( 1
n
Ψ⊤Ψ− ψiψ

⊤
i

)( 1
n
Ψ⊤Ψ− ψkψ

⊤
k

))

=
1

p
λmax

(
1

n

n∑

i=1

( 1
n
Ψ⊤Ψ− ψiψ

⊤
i

)2
)

because Ezji z
j
k =

1

n
δi=k,

=
1

p
λmax

( 1
n

n∑

i=1

ψiψ
⊤
i ψiψ

⊤
i −

( 1
n
Ψ⊤Ψ

)2)
6

1

p
λmax

( 1
n

n∑

i=1

ψiψ
⊤
i ψiψ

⊤
i

)

6
R2

p
λmax

( 1
n
Ψ⊤Ψ

)
because ψiψ

⊤
i ψiψ

⊤
i 4 R2ψiψ

⊤
i .

We can then apply the matrix Bernstein inequality of Tropp (2012, Theorem 6.1) to obtain the

probability bound:

r exp

(
− t2/2

R2

p
λmax

( 1
n
Ψ⊤Ψ

)
+

1

p
λmax

( 1
n
Ψ⊤Ψ

) t
3

)
,

which leads to the desired result.

B.2. Proof of Theorem 1

Proof principle. Let Φ ∈ R
n×n be such that K = ΦΦ⊤. Note that if K had rank r, we could

instead choose Φ ∈ R
n×r.

We consider the regularized low-rank approximation Lγ = ΦNγΦ
⊤, with

Nγ = Φ⊤
I (ΦIΦ

⊤
I + pγI)−1ΦI = Φ⊤

I ΦI(Φ
⊤
I ΦI + pγI)−1 = I − γ(Φ⊤

I ΦI/p+ γI)−1 (8)
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(obtained using the matrix inversion lemma). We have L = L0 but we will consider Lγ for γ > 0
to obtain a bound for γ = 0, using a monotonicity argument.

Following the same reasoning than in Section 4.1, the in-sample prediction error 1
nEε‖ẑLγ −z‖2

is equal to

1

n
Eε‖ẑLγ − z‖2 = nλ2‖(ΦNγΦ

⊤ + nλI)−1z‖2 + 1

n
trC

[
ΦNγΦ

⊤(ΦNγΦ
⊤ + nλI)−1

]2

= bias(Lγ) + variance(Lγ).

The function γ 7→ Nγ is matrix-non-increasing (i.e., if γ > γ′, then Nγ 4 Nγ′). Therefore, we have

0 4 Nγ 4 N0 4 I . Since the variance term variance(Lγ) =
1
n trC

[
ΦNγΦ

⊤(ΦNγΦ
⊤+nλI)−1

]2
is non-decreasing in Nγ , this implies that the variance term with Nγ is smaller than the one with N0

and then less then the one with Nγ replaced by I (which corresponds to the variance term without

any approximation). For the bias term we have:

bias(Lγ) = nλ2‖(ΦNγΦ
⊤ + nλI)−1z‖2 = nλ2z⊤(ΦNγΦ

⊤ + nλI)−2z, (9)

which is a non-decreasing function of γ. Therefore, if we prove an upper-bound on the bias term

for any γ > 0, we have a bound for γ = 0. This requires lower-bounding Nγ .

Lower-bounding Nγ . Let Ψ = Φ( 1nΦ
⊤Φ + γI)−1/2 ∈ R

n×n. We may rewrite Nγ defined in

Eq. (8) as

Nγ = I − γ(
1

p
Φ⊤
I ΦI + γI)−1

= I − γ
( 1
n
Φ⊤Φ+ γI − 1

n
Φ⊤Φ+

1

p
Φ⊤
I ΦI

)−1

= I − γ(
1

n
Φ⊤Φ+ γI)−1/2

[
I − 1

n
Ψ⊤Ψ+

1

p
Ψ⊤

I ΨI

]−1

(
1

n
Φ⊤Φ+ γI)−1/2.

Thus, in order to obtain a lower-bound on Nγ , it suffices to have an upper-bound of the form

λmax

( 1
n
Ψ⊤Ψ− 1

p
Ψ⊤

I ΨI

)
6 t, (10)

which would imply

I −Nγ 4
γ

1− t

( 1
n
Φ⊤Φ+ γI

)−1
,

K − Lγ = Φ(I −Nγ)Φ
⊤
4

γ

1− t
Φ(

1

n
Φ⊤Φ+ γI)−1Φ⊤ =

nγ

1− t
(K + nγI)−1K 4

nγ

1− t
I.

Assume
γ/λ
1−t 6 1. We then have, using the previous inequality:

(Lγ+nλI)
−1

4
(
K− nγ

1− t
I+nλI

)−1
=

(
K+nλ

[
1− γ/λ

1 − t

]
I
)−1

4 (1− γ/λ

1 − t
)−1(K+nλI)−1.

Thus, the bias term in Eq. (9) is less than the original bias term times (1 − γ/λ
1−t)

−2. If the bound

defined in Eq. (10) is not met, then we can upper-bound the bias term by 1
nz

⊤z, which is itself upper-

bounded by the unapproximated bias term times (1+R2

λ )—indeed, we have nλ2z⊤(K+nλI)−2z >
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nλ2z⊤z(nλ + nR2)−2 = 1
nz

⊤z(1 + R2/λ)−2. Thus if we define πt = PI

(
λmax

[
1
nΨ

⊤Ψ −
1
pΨ

⊤
I ΨI

]
> t

)
, then, EI

[
bias(Lγ)

]
is upper-bounded by

B = πt(1 +R2/λ) + (1− πt)
(
1− γ/λ

1− t

)−2
, (11)

times bias(K).

Probabilistic control. We need to upper-bound the largest eigenvalue of 1
nΨ

⊤Ψ− 1
pΨ

⊤
I ΨI , where

I is a random subset of {1, . . . , n} of cardinality p. This is the difference between an empirical

second-order moment and the empirical moment of a subset of p random elements. In order to

apply Lemma 2, we need to upper-bound the squared ℓ2-norm as (assuming γ 6 λ):

max
i∈{1,...,n}

(
ΨΨ⊤)

ii
= max

i∈{1,...,n}

(
Φ(

1

n
Φ⊤Φ+ γI)−1Φ⊤)

ii

= λγ−1 max
i∈{1,...,n}

(
Φ(

1

n
(λγ−1)Φ⊤Φ+ λI)−1Φ⊤)

ii

6 λγ−1 max
i∈{1,...,n}

(
Φ(

1

n
Φ⊤Φ+ λI)−1Φ⊤)

ii
because γ 6 λ,

= nλγ−1
∥∥diag

(
K(K + nλI)−1

)∥∥
∞ = λγ−1d.

Thus for γ 6 λ, all rows of Ψ have a squared ℓ2-norm upper-bounded by λγ−1d, and 1
nΨ

⊤Ψ 4 I ,

we can apply Lemma 2, to obtain that:

πt = PI

(
λmax

[ 1
n
Ψ⊤Ψ− 1

p
Ψ⊤

I ΨI

]
> t

)
6 n exp

( −pt2/2
λγ−1d+ t/3

)
. (12)

Using the bound from Eq. (11), we get, given δ ∈ (0, 1), t = 1/2, and γ = λδ
4 (which satisfy

γ 6 λ and
γ/λ
1−t = δ/2 6 1),

B =
(
1 +

R2

λ

)
πt + (1− πt)

[(
1− γ/λ

1− t

)−2 − 1

]

6 1 +
nR2

λ
exp

( −p/8
4d/δ + 1/6

)
+

[
(1− δ/2)−2 − 1

]

6 1 +
nR2

λ
exp

( −p
32d/δ + 2

)
+

[
δ − δ2/4

(1− δ/2)2

]

= 1 +
nR2

λ
exp

( −p
32d/δ + 2

)
+ δ

[
1− δ/4

(1− δ/2)2

]

6 1 +
nR2

λ
exp

( −p
32d/δ + 2

)
+ δ

[
3/4

1/4

]
= 1 +

nR2

λ
exp

( −p
32d/δ + 2

)
+ 3δ.

Thus, if p >
(
32d
δ + 2

)
log nR2

δλ , we obtain that B 6 1 + 4δ.
Thus,

EI

[
bias(L) + variance(L)

]
6 EI

[
bias(Lγ) + variance(K)

]
by monotonicity

= EI

[
bias(Lγ)] + variance(K)

6 (1 + 4δ)bias(K) + variance(K)

6 (1 + 4δ)
[
bias(K) + variance(K)

]
,
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which is the desired result. Note that

– We could improve the bound by expliciting the reduction of the variance term.

– In some situations, the prediction performance for the approximated version may in fact be

smaller than the non-approximated version.

– The proof technique relies on a high-probability bound with respect to the sampling of columns.

More precisely, from Eq. (11) and Eq. (12), with t = 1/2 and γ = λδ
4 , we get:

P
(1
n
Eε‖ẑL − z‖2 >

(
1− δ

2

)−2 1

n
Eε‖ẑK − z‖2

)
6 n exp

( −p
32d/δ + 2

)
. (13)

Appendix C. Asymptotics of bias and variance terms

In this appendix, we consider various decays of eigenvalues nµi of K and components
√
nνi (in

magnitude) of the signal z to estimate. We follow the reasoning of Harchaoui et al. (2008), i.e.,

replacing sums by integrals. Given our assumptions, we have:

bias = n2λ2
n∑

i=1

nνi
(nµi + nλ)2

= nλ2
n∑

i=1

νi
(µi + λ)2

,

n

σ2
variance =

n∑

i=1

n2µ2i
(nµi + nλ)2

=

n∑

i=1

µ2i
(µi + λ)2

.

For all cases we need to consider, for simplicity, we only provide an upper-bound for µi exactly

equal to its asymptotic equivalent. Considering lower-bounds and a constant times the asymptotic

equivalent may be done in a similar way.

C.1. Variance terms

We consider the only two possible cases (the variance term only depends on (µi)). Moreover we

show that the two traditional definitions of the degrees of freedom, trK(K+nλI)−1 and trK2(K+
nλI)−2, have the same asymptotically equivalents.

Polynomial decay (µi = i−2β , β > 1/2). The renormalized variance term is less than

n∑

i=1

1

(1 + i2βλ)2
6

∫ n

0

1

(1 + t2βλ)2
dt

=

∫ λn2β

0

1

(1 + u)2
λ−1/2βu1/2β−1 1

2β
du with the change of variable u = λt2β,

6

∫ ∞

0

1

(1 + u)2
λ−1/2βu1/2β−1 1

2β
du

= O(λ−1/2β) since the integral is finite.

With the same reasoning, we have trK(K + nλI)−1 6
∫ λn2β

0
1

(1+u)λ
−1/2βu1/2β−1 1

2βdu =

O(λ−1/2β).
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Exponential decay (µi = e−ρi). The renormalized variance term is less than

n∑

i=1

1

(1 + eρiλ)2
6

∫ n

0

1

(1 + eρtλ)2
dt =

∫ n

0

e−2ρt

(e−ρt + λ)2
dt

=
1

ρ

∫ 1

e−ρn

u

(u+ λ)2
du with the change of variable u = e−ρt

6
1

ρ

∫ 1

0

(
1

u+ λ
− λ

(u+ λ)2

)
du 6

1

ρ

∫ 1

0

1

u+ λ
du

=
1

ρ

[
log(1 + λ)− log λ

]
= O(log

1

λ
).

We the same technique, we get bounds on trK(K + nλI)−1 in the same way we just did for

trK2(K + nλI)−2.

C.2. Bias terms

The bias terms depend on both (µi) and (νi) and we consider all combinations.

Polynomial decays (µi = i−2β , νi = i−2δ , β, δ > 1/2). The bias term is less than

nλ2
n∑

i=1

i4β−2δ

(1 + i2βλ)2
6 2nλ2

∫ n

1

t4β−2δ

(1 + t2βλ)2
dt. (14)

If 2δ − 4β > 1, then we have an upper bound of 2nλ2
∫∞
1 t4β−2δdt = O(nλ2), because the

integral is finite.

If 2δ − 4β < 1, then we can further bound Eq. (14) as

2nλ2
∫ n

1

t4β−2δ

(1 + t2βλ)2
dt = 2nλ2

∫ n2βλ

λ

u2−δ/β+ 1

2β
−1λ−2+δ/β− 1

2β

(1 + u)2
1

2β
du

with the change of variable u = λt2β

= O(λ(2δ−1)/2β)

∫ ∞

0

u2−δ/β+ 1

2β
−1

(1 + u)2
1

2β
du = O(λ(2δ−1)/2β),

because the integral is finite (due to the assumptions made on β and δ).

Exponential decays (µi = e−ρi, νi = e−κi, ρ, κ > 0). The bias term is less than

nλ2
n∑

i=1

e(2ρ−κ)i

(1 + eρiλ)2
6 nλ2

∫ n

1

e(ρ−κ)t

(1 + eρtλ)2
eρtdt

=
nλ

ρ

∫ λenρ

λ

(u/λ)1−κ/ρ

(1 + u)2
du with the change of variables u = λeρt.

If κ/ρ > 2, then we have a bound

nλ2

ρ

∫ ∞

1

u1−κ/ρ

(1 + λu)2
du = O(nλ2),
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because the integral is finite and uniformly bounded in λ.

If κ/ρ < 2, then we have a bound

nλκ/ρ

ρ

∫ λenρ

λ

u1−κ/ρ

(1 + u)2
du 6

nλκ/ρ

ρ

∫ ∞

0

u1−κ/ρ

(1 + u)2
du = O(nλκ/ρ).

Mixed decays. For µi with polynomial decays and νi with exponential decays, we are in a situ-

ation where νi is decaying fast enough (faster than i−2δ for any δ > 1/2) so that, given previous

results, the bias is nλ2.

The only remaining result to show is µi = e−ρi and νi = i−2δ, δ > 1/2, which we now consider.

The bias term is equal to

nλ2
n∑

i=1

νi
(µi + λ)2

= nλ2
n∑

i=1

i−2δ

(e−ρi + λ)2

= nλ2
∑

i6 1

ρ
log λ−1

i−2δ

(e−ρi + λ)2
+ nλ2

∑

n>i> 1

ρ
log λ−1

i−2δ

(e−ρi + λ)2

6 nλ2
∑

i6 1

ρ
log λ−1

i−2δ

e−2ρi
+ nλ2

∑

n>i> 1

ρ
log λ−1

i−2δ

λ2

6 n
∑

i6 1

ρ
log λ−1

i−2δ + n
∑

i> 1

ρ
log λ−1

i−2δ

= O(n) +O(n(log λ−1)1−2δ) = O(n(log λ−1)1−2δ).

C.3. Optimal regularization parameters

We can now take all six cases, and compute the optimal λ and the resulting optimal regularization

error.

– µi = i−2β , νi = i−2δ (2δ > 4β + 1): we need to minimize with respect to λ the function

n−1λ−1/2β + λ2, which leads to λ ≈ n−1/(2+1/2β) and an optimal value of n1/(4β+1)−1.

– µi = i−2β , νi = i−2δ (2δ < 4β + 1): we need to minimize with respect to λ the function

n−1λ−1/2β + λ(2δ−1)/2β , which leads to λ ≈ n−β/δ and an optimal value of n1/(2δ)−1.

– µi = i−2β , νi = e−κi: same computation as the first one.

– µi = e−ρi, νi = i−2δ: we need to minimize with respect to λ the function n−1 log 1
λ +

(log 1
λ)

1−2δ , which leads to log 1
λ ≈ n1/2δ and an optimal value of n1/2δ−1.

– µi = e−ρi, νi = e−κi (κ > 2ρ): we need to minimize with respect to λ the function

n−1 log 1
λ + λ2, which leads to λ ≈ n−1/2 and an optimal value of log n/n.

– µi = e−ρi, νi = e−κi (κ < 2ρ): we need to minimize with respect to λ the function

n−1 log 1
λ + λκ/ρ, which leads to λ ≈ n−ρ/κ and an optimal value of log n/n.
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Appendix D. Kernels on [0,1]

In this appendix, we consider kernels on X = [0, 1] that lead to closed-form expressions (or asymp-

totic equivalents) for eigenvalues of K and components of z. These are used in simulations.

Kernels. For a positive summable sequence (µi)i>1, we consider k(x, y) =
∑∞

i=1 2µi cos 2iπ(x−
y). It is defined for any (x, y) ∈ [0, 1]2 and is 1-periodic in x and y. It is a function g of x − y −
⌊x− y⌋, i.e., k(x, y) = g(x− y − ⌊x− y⌋). Moreover k(x, x) is independent of x.

For µi = 1
i2β

, we have k(x, y) = 1
(2β)!B2β(x − y − ⌊x − y⌋), where B2β is the (2β)-th

Bernoulli polynomial (Wahba, 1990). For example, we have B2(x) = x2 − x + 1
6 and B6(x) =

x6 − 3x5 + 5
2x

4 − 1
2x

2 + 1
42 .

For µi = e−ρi, we have, k(x, y) = 2 eρ cos 2π(x−y)−1
e2ρ−2eρ cos 2π(x−y)+1 . Indeed, we have

k(x, y) = Re

( ∞∑

i=1

2e−ρi+2iωπ(x−y)

)
with ω2 = −1,

= 2Re

( ∞∑

i=1

ei(−ρ+2ωπ(x−y))

)
= 2Re

(
e−ρ+2ωπ(x−y)

1− e−ρ+2ωπ(x−y)

)

= 2Re

(
1

eρ−2ωπ(x−y) − 1

)
= 2

eρ cos 2π(x− y)− 1

e2ρ − 2eρ cos 2π(x− y) + 1
.

Data and eigenvectors. If we consider n data points xi = i−1
n , i = 1, . . . , n, then the kernel

matrix K has components Kij = k( i−1
n , j−1

n ). It is a circulant matrix, thus it is diagonalizable in

the discrete Fourier basis (Gray, 2006), with eigenvalues equal to the discrete Fourier transform of

the first column of the matrix, i.e., (g(0), g(1/n), . . . , g(1 − 1/n))⊤.

Thus, the i-th eigenvector has j-th component 1√
n
e2ωi(j−1)π/n (with ω2 = −1) and the i-th

eigenvalue is

λi =

n∑

j=1

e−2ωi(j−1)π/ng((j − 1)/n)

=
n∑

j=1

e−2ωi(j−1)π/n
∞∑

s=1

2µs cos 2sπ(j − 1)/n

=

n∑

j=1

e−2ωi(j−1)π/n
∞∑

s=1

µs[e
2sωπ(j−1)/n + e−2sωπ(j−1)/n]

= n

∞∑

s=1

µs
[
δs=i[n] + δ−s=i[n]

]
because of the orthonormality of the Fourier basis,

= nµi + n
∞∑

h=1

µi+hn + n
∞∑

h=1

µ−i+hn.

If n is large and µi tends to zero when i tends to +∞, then an asymptotic equivalent for λi is nµi.
For data sampled from the uniform distribution in [0, 1], then similar equivalents hold (see, e.g.,

Harchaoui et al., 2008).
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Functions. Let f(x) =
∑∞

i=1 2ν
1/2
i cos 2iπx, for νi a non-negative summable sequence. We

consider zi = f(xi) = f((i−1)/n). The component of z on the i-th eigenvector ofK is (following

the same reasoning as above):

n∑

j=1

1√
n
e−2ωi(j−1)π/nf((j − 1)/n)

=
√
n

(
ν
1/2
i +

∞∑

h=1

ν
1/2
i+hn +

∞∑

h=1

ν
1/2
−i+hn

)
,

and the asymptotic equivalent is (nνi)
1/2.

Link with Sobolev spaces. The kernel k(x, y) defined above corresponds for µi = i−2β to certain

Sobolev spaces (Wahba, 1990; Gu, 2002). Indeed, for β integer, the associated RKHS is the Sobolev

space of periodic functions which are β-times differentiable.

Moreover, when νi = i−2δ, then for δ > δ0, then the corresponding function is (δ0−1/2)-times

differentiable, and the minimax rate of estimation is known to be exactly O(n1/2δ0) (Speckman,

1985; Johnstone, 1994). Thus, up to logarithmic terms, the best possible rate is O(n1/2δ), and is

achieved if β is large enough (Section 4.3).
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