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Abstract—This paper presents a method to virtualize the
communications into a distributed heterogeneous embedded
Multiprocessor Systems-on-Chip (MPSoC) platform containing
reconfigurable hardware computing units. We propose a new
concept of middleware, implemented in software and in hard-
ware to provide the designer a single programming interface.
The middleware offers some mechanisms like the accesses to
distant operating system (OS) services and the interprocess
communication. It abstracts both implementation and mapping.
The embedded application then executes regardless of where or
how processes are implemented. We are currently validating the
concept on a real-time image processing application.

Index Terms—FPGA, Partial and dynamic reconfiguration,
virtualization, RTOS, Middleware.

I. INTRODUCTION

A MPSoC is an integrated circuit customized for an applica-

tion domain. It contains most hardware components of general-

purpose computing system such as processors, memories,

buses, inputs-outputs (I/Os) and specialized hardware devices.

MPSoCs are composed of heterogeneous processing elements

which are more and more complex to integrate and program.

In fact, they have different specifications and implementation

languages, simulation/execution environments, interaction se-

mantics and communication protocols.

This work takes place in the case of the french ANR

FOSFOR (Flexible Operating System FOr Reconfigurable

platforms) [1] project, the objective of FOSFOR project is

to lay the groundwork for a Real Time Operating System

(RTOS) to a new kind of more flexible and scalable OS

for software and hardware tasks. In the first break with

conventional approaches, this OS will be fully distributed and

appear homogeneous in terms of the application on the whole

platform. Although application tasks are deployed either on

hardware or software processing unit, they can equally access

to every services on the platform. This solution offers to the

developer an embedded platform which is more scalable and

flexible. The OS will be deployed in a modular architecture:

an operating system kernel and a middleware (MW) instance

for each execution unit. With the proposed virtualization

mechanisms application tasks run and communicate without

a priori knowledge on their assignment.

In the literature, there are different middleware definitions.

The most popular is the following: “The middleware is the

software which allows an application to interact or commu-

nicate with other applications, networks, hardware, and/or

operating systems. This piece of software assists program-

mers by relieving them of complex connections needed in a

distributed system. It provides tools for improving quality of

service (QoS), security, message passing, directory services,

etc. that can being visible to the user” [2]. Middleware

provides a higher-level abstraction layer for programmers than

Application Programming Interfaces (APIs) such as sockets

that are provided by the operating system. It reduces signif-

icantly the burden on application programmers by relieving

them of this kind of tedious and error-prone programming.

Middleware is designed to mask some of the of heterogeneity

that programmers of distributed systems must deal with [1],

such as networks heterogeneity and hardware processing units.

The rest of the paper is organized as follow: section II

describes the architecture of the FOSFOR platform. The

related works are introduced in section III. In section IV we

present the middleware dedicated to this platform. Finally,

the last section introduces the results on an image processing

application. We conclude our work in section V.

II. THE FOSFOR ARCHITECTURE

The goal of the FOSFOR project is to define an architecture

supporting a new kind of OS more flexible and more scalable.

Unlike classical approaches, this OS can be totally distributed

and the associated middleware makes the whole platform

homogeneous from the application point of view. Moreover

it allows application tasks to be deployed either in software

(on processors) or in hardware (on reconfigurable units) [3].

The architecture of the platform is depicted in Figure 1, and

is composed of:

• A set of general purpose processors (GPP) : a processor

can support the execution of OS services and is in

charge, on decision of the OS scheduler, of the execution

of software threads. All the GPPs are not necessarily

homogeneous in terms of instruction set architecture and

number of offered services.
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Fig. 1. The FOSFOR Architecture OS composed of 2 heterogeneous domains
executing///// a shared memory paradigm

• A set of dynamically reconfigurable areas (called Recon-

figurable Region or RR). A RR is an area which is in

charge of the simultaneous or sequential execution of a

set of hardware tasks. As for a GPP, a RR can support

the execution of OS services thanks to a hardware OS

(HwOS). These regions can correspond to fine-grained

(FPGA) or coarse-grained (reconfigurable processor) ar-

chitectures.

• A global communication medium between the two

domains, software and hardware, based on a dedicated

Network-on-Chip [4]. As we have a uniform memory

access, all the execution units share the physical memory

uniformly. That means that any memory block can be

used as either configuration memory or program and

data memory.

III. RELATED WORKS

Middlewares are used in architectures to address the

problems encountered today by MPSoCs: heterogeneity,

execution environment, interaction semantics and

communication protocols. When programming heterogeneous

platforms, differences between hardware and software have to

be hidden, so a virtual layer has to be added. DNA Operating

System [5] proposed a component-based system framework.

Components are described to manage hardware dependent

issues such as endianness, multiprocessor management,

memory allocation, synchronizations and exceptions, or

task context management. The proposed interface has been

developed in order to provide homogeneous interface for all

applications. Petrot et. al in [6] addressed the same issue

and proposed a POSIX API running on top of the Mutek

operating system. This layer called Hardware dependent

Software offers a homogeneous API for all the software

processing elements in the platform. When dealing with the

heterogeneity of hardware-software co-design, and so that the

application is defined as a set of hardware and software tasks,

a solution to face the management of tasks in a homogeneous

way, is proposed by [7]. BORPH is a Linux based operating

system which provides software drivers allowing to execute

hardware tasks like the software ones. Agron et. al go

further and offers a complete implementation of a POSIX

thread in hardware. However, teh generation of the thread

was done with a dedicated compiler from C to RTL, what

is very limited in terms of portability and maintenance

[8]. To abstract the heterogeneity, the reconfigurable data-

stream hardware software architecture (Redsharc) [9] is a

programming model and Network-on-Chip solution designed

for MultiCore System-on-Programmable-Chip (MCSoPC).

This programming model relies on both a high level API,

and lower level mechanisms directly implemented in the

network interfaces. Two NoCs are used: one for control and

the other for data transfer. Every interfaces on the platform

are not homogeneous in terms of invocation services, for

both HW and SW domain: for IPs interfaces they were

defined uniformly, but it is different in the software domain.

Our contribution in this paper is to extend this approach

to the hardware reconfigurable domain, and to provide a

higher abstraction layer which masks the operating system

communication resources. To do so we offer a virtual channel

API permitting the tasks to communicate directly. Moreover,

in the same way that what has been done at high level in the

OverSoC project [10], where the objective was to develop

a model of heterogeneous platform for managing dynamic

and reconfigurable platforms, we propose a programming

model dedicated to this kind of platform, which abstract the

developer from both the heterogeneity and the location of the

application tasks.

IV. MIDDLEWARE

The middleware approach has emerged as a promising

solution for heterogeneity and distribution problems in the

complex distributed systems. It provides a standard program-

ming interface and protocols to the application layer. We

are interested in the FOSFOR project, by providing a global

communication framework.

The middleware must provide a set of system features avail-

able to the application to access to the execution resources,

communications and memory in a transparent way. The role

of the middleware layer is the virtualization of the access to

needed operating system services. This transparency is reached

by a standard API which homogenizes the communication

process (Fig. 2). The application can then access those services

regardless their physical location within the platform. This

layer can request any service from the OS despite their location

and the mechanism of invocation.

Therefore, the middleware must provide the lesser

functionality of virtualization communications (control and

data), that is an essential support to access services on the

entire platform. Its role is to enable communication between

system resources ensuring synchronization of data exchange.

The concept of control includes synchronization aspects,



events sending and receiving or access to mutual exclusion

semaphores.

Fig. 2. The programming model for the FOSFOR platform is based on
abstraction layers, from the HAL to the application description

Our innovation is reflected in the virtual channels, which

offer both in hardware and software additional services on the

top of the existing operating system services. Tasks can use

these services by subscribing to one or more channels.

A. Types of communication within the platform

Communications can be respectively homogeneous or het-

erogeneous. The first type is related to communications be-

tween two application tasks implemented simultaneously in

the hardware domain (Hw/Hw) or simultaneously in software

(Sw/Sw). The second type concerns communication between

two application tasks implemented separately in the hardware

domain and in the software one. For our project we took as

a starting point the existing middlewares, and the principle

of the Object Request Broker (ORB) which, in our case, will

be represented by a virtual channel (VC). A VC is a channel

designation indicating a particular virtual circuit on a network

that will use the local and the distant services of the OS. Two

approaches are possible for the communications:

A-The first one is when the two tasks are present during the

communication, in which case the exchange or transmission of

data is done by directly sending data packets from transmitter

to receiver.

B-The second type of communication occurs between two

application tasks, one of which is not present in the system

at the time of communication. There are then two possible

scenarios:

B1-The first one is that the current task waits for the other

one (either the transmitter or the receiver). However when a

timeout (defined as a parameter) is reached, the control is

handed back to the system through the middleware, so that it

continues its normal execution.

B2-The second allows the MW to temporarily store data in

global memory and share it in order to free resources from

the first task once the copy is complete.

B. Implementation

The platform includes many components of different

nature (hardware/software). Operating systems are also

heterogeneous because the hardware part executes on a

hardware OS. This HW OS is composed of the same services

existing in the software part, which executes on top of the

Real Time Executive for Multiprocessor Systems (RTEMS)

software OS. This OS was chosen for its MPCI layer,

(MultiProcessor Communication Interface), which offers low

level services to synchronize distant services in the software

domain. This layer has been extended to the hardware

domain in order to allow a low-level communication protocol

between the two operating systems [1]. Each instance of

the middleware is on the top of operating systems. The

middlewares communicate by control messages thanks to

the Message Queue service of their respective OSs, and are

thus synchronized. This is done thanks to the distribution of

the task tables and the virtual channels laid out all over the

platform (in the shared memory for the software side and in

the memory on the hardware OS for the hardware domain).

In Fig. 3 we illustrate the separation between middleware

services and OS services in the hardware domain. For the

demonstrator, we choose the Xilinx ML605 board. The

RTEMS OS allows the communication between two Leon3

[11] processors. There are two different types of calls: ones

dedicated to the hardware OS and others dedicated to the

hardware middleware.
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Fig. 3. The FOSFOR OS Mw Services are defined as a set of independent
components allowing communication and synchronization between HW and
SW tasks

As shown in Fig. 3, communications can allowing

communication and synchronization between HW and SW

tasks be done between heterogeneous tasks:

A-When the two tasks are present during the communication,

there is two possibilities:

A1-If the receiving task is a software one, the data are always

transferred using a buffer in the global memory. This buffer

is allocated by the middleware service using the memory

allocation service provided by the operating system.

A2-Else if the receiving task is a hardware one, we can take



advantages of the fact that a hardware task manages its own

private memory. So, data are transferred from the sender to

the receiver through the network-on-chip, without any copy.

B-When one of the tasks is not present in the system at

the time of communication. There are then two possible

scenarios:

B1-When the timeout is reached, the middleware returns the

appropriate status code to the present task.

B2-Otherwise, if no timeout has been requested, the

middleware allocates a buffer in the global memory for the

sender. Once the receiver is ready, the buffer address is

directly transmitted to this task which will get the data back

in its private memory.

The middleware consists in a table of virtual channels, a

static task, a FIFO and a finite state machine (FSM). The

FIFO manages the backup service request that comes from

the Hw tasks. The Hw middleware is seen as a traditional

service of the OS, which can access to the other services, as

depicted in c.
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Fig. 4. The Hardware Middleware service interacts with HWOS services in
order to update the VC tables distributed all over the platform

The request manager recognizes the identifier of the

middleware service and then routes the calls to it. Then,

the internal FSM must decode the request. To initiate a

communication, the task uses the same API as its software

counterpart. This results in the User FSM task by a system

call to the same interface as for conventional calls. When the

request is read by the Request Manager, it is forwarded to

the Hw Mw which provides the location information for the

other task. This information can be found in the VC table,

composed of several fields that may made of other fields

themselves. Fig. 5 shows the VC tables organization.

The table is composed of the following fields: Name: this

is the name given to the channel which is opened on the

first call of the primitive OPEN at the allocation of the
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Fig. 5. The Virtual Channel Table stores the informations related to the tasks
location

channel. The identifier (ID): this is the identifier that is

automatically assigned when the channel is opened for the

first time. The source table (Src): this is the space reserved

for the sending task, it’s necessary to store its name and

address. The recipient table (Dest): this is the placeholder

for receiving tasks, several tasks can register as receiver on

the same channel. Flags will be used to separate allowance

(Open Service) and request to receive (Receive Service). The

number of recipients (Nb Dest): it will be incremented each

time a new task allocation will be received. This allows to

quickly determine the number of receiving tasks in the case

of broadcast transfers.

C. The Virtual Channel Services

In addition to the historical services of the OS, the virtual

channel services are currently viewed as additional services

that are mapped on existing OS services beyond those offered

by the MPCI layer, which does not cover services such as the

naming service or the migration of tasks.

It includes the opening primitive OpenVirtualChannel,

which establishes a point to point communication between

tasks and determines the type of communication (with or

without copy). The primitives of sending and receiving from

the virtual channel: VirtualchannelSend and Virtualchan-

nelReceive, which allows sending and receiving messages

on the VC, from memory when copying the contents of

transfer, or directly on the AMBA bus otherwise. The primitive

EndCommunication, used to indicate the end of data transfer

to make tasks preemptable again and the possibility of a future

use of the channel. The primitive CloseVirtualChannel allows

the closure of a channel. A call to these primitives available on

this platform requires an update of the virtual channel tables

distributed both in software and hardware.

V. APPLICATION

The proposed application represents a target tracking appli-

cation. The application detects tracks and recognizes moving

targets in a scene. This application has been selected for its

dynamicity characteristics that will validate the ability of the

OS to manage the proposed partial dynamic reconfiguration

under real time constraints. The acquisition part reads the



video stream frame after frame in a buffer named M1 (Fig. 6).

The detection part carries out the research and the labelling

of the areas in the new frames, writes resulting blobs in the

M1 memory, then writes characteristics of the areas in shared

memory blob list (Track list). Finally, it activates the connected

components management (CCM) task and the tracking tasks.

Following these processing: filtering, detection of contours,

closing of contours, labelling, the image is summarized with

a list of areas with three characteristics: number of label,

coordinates in the image of the center of the area and the

height, width of the area. The CCM task is in charge of the

maintenance of consistency between the detected areas for

each frame. The tracking tasks are activated in broadcast by

the detection task. They implement the Camshift algorithm

[12]. In result they write the new coordinates in the shared

memory in a linked list. If a track is lost, the corresponding

target is removed from the list and the task destructs itself. The

CCM task parses the list of the tracks in shared memory, then

posts in the M1 memory a rectangle with the new coordinates

provided by the tracking task. Finally it starts the detection

task to process a new frame.

In order to be able to make an allocation of the functions

on the various executions units, we proceed to the profiling

of the application tasks [3]. According to the execution time

of each of them, tasks with higher execution time will be

put on a hardware component and those taking relatively

less lower execution time will be put on to the processors.

Initially, in order to emphasize the flexibility of the platform

and not wasting time in the development process, only the

tracking component has been ported in hardware. Indeed,

as a tracking task is created for each existing targets in the

scene, the management of these tasks emphasizes the use of

the dynamic and partial reconfiguration in the platform. In

addition, the hardware implementation of this task allows to

get a speedup of X in term of execution time. Table I below

shows the profiling of the resources of the platform built to

support this application.

Registers LUTs BRAMs Memory

Leon3 based
MPSoC

4463
(16,95%)

7951
(11,26%)

9
(52,94%)

-

Hardware OS 11286
(42,86%)

26292
(37,23%)

0 -

Hw Middleware 2412
(9,16%)

9118
(12,91%)

0 -

4 Camshift Hw
tasks

8172
(31,03%)

27256
(38,60%)

8
(47,06%)

-

NoC 8 ports 920
(3,38%)

2902
(3,95%)

0 -

Sw Middleware - - - 123 KB

RTEMS - - - > 400 KB

TABLE I
MIDDLEWARE RESOURCES USAGE FOR 4 ALLOCATED CHANNELS

To validate the concept of heterogeneous system and recon-

figurable platform for soft embedded real-time systems, we

choose to map the tasks over the heterogeneous processing

Fig. 6. Mapping of application Tasks
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Fig. 7. Memory footprint according to the number of allocated VC in the
software table

units as described in Fig. 6. So that communications are

transparent and flexible regardless of the code or implemen-

tation spots on the heterogeneous execution units, and to

provide remote access services on the platform, we virtual-

ized communications on this platform by making a protocol

communication, that will be translated into a dynamic number

of virtual channels.

For the sake of efficiency, we evaluated the impact of the

number of VC offered to the designer on the global resources

utilization. On the software side, we found the corresponding

memory footprint of the Middleware as shown in (Fig. 7).

By default, a value of 2,855 MB corresponds to a simple

application using RTEMS without the middleware. This size

can be reduced to 400 KB for a stripped elf file (symbol

table and debug information are removed) as shown in table

I. The curve shows that the addition of the middleware use

few memory resources on the software side.

Considering the number of needed virtual channels in our

application described in figure (Fig. 6) the overhead over the

RTOS is only about a few percent.

At the hardware level, the impact on the resources occupied

becomes critical for 10 channels. Here, the number of registers
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Fig. 8. Hardware middleware resources

will get closer to 60 thousands, which is almost the size of

the target chip. Even if we just need 4 VC in our current

application, we will be able to deal with this case in near future

since the FPGA size has been constantly increasing for several

years. The amount of resources plotted in figure 8 corresponds

to the total size of the hardware executive, precisely the sum

of the HwOS size and the Hw middleware size.

The Figure 6 depicts the position of the VC in the applica-

tion. After loading the frames from the M1 memory, tracking

can be implemented on hardware or software components.

Depending on the number of detected targets, there will be as

many task as tracked targets, therefore they are created dynam-

ically. The virtual channel between the tasks (Detection, CCM

and Incrustation) are implemented using DMA triggering. The

communication established between the Detection task and the

tracking tasks, is represented by a virtual channel which takes

as argument the size of data transferred, the recipient address

and the sender address, that must first register themselves on

the channel. Once the registration and the synchronization are

established, the data transfer can then be done. The virtual

channel between the tasks of tracking and CCM is opened in

writing mode. At a given time, only one task can represent

the sender, while all other tasks will be recorded.

A profiling of the overhead impacts in terms of execution

time has been realized on this platform. Middleware primitives

are evaluated and results are shown in Table II.

Primitives Perf. sw Perf. hw

OpenVC (VC not yet created) 73 µs 0.343 µs

OpenVC 7 µs 0.345 µs

CloseVC 5 µs 0.358 µs

CloseVC (VC deleted after close) 92 µs 0.358 µs

SendVC 24 µs 0.384 µs

ReceiveVC 77 µs 0.648 µs

TABLE II
EXECUTION TIME OF THE SW (SPARC V8 AT 80MHZ) AND HW

IMPLEMENTATIONS OF THE MIDDLEWARE

Overheads are acceptable in software implementation, and

the hardware implementation allows to not penalize the hard-

ware tasks.

VI. CONCLUSION

We focused in this paper, on the communication aspect of

embedded middlewares. This abstraction layer can be used

to enforce the ease of programming of image processing

application, and so target new hardware/software architectures.

We have seen that this approach is a natural continuation

of established parallel, heterogeneous, distributed computing

systems. For that, we have described the Virtual Channel

approach to virtualize communications into a distributed,

heterogeneous embedded architecture, and we extend this

approach to the dynamically reconfigurable architectures, in

order to provide a uniform programming model for this kind

of system.
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