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Abstract We present a novel and robust method for

modeling cities from 3D-point data. Our algorithm pro-
vides a more complete description than existing ap-

proaches by reconstructing simultaneously buildings,
trees and topologically complex grounds. A major con-
tribution of our work is the original way of model-

ing buildings which guarantees a high generalization

level while having semantized and compact represen-

tations. Geometric 3D-primitives such as planes, cylin-

ders, spheres or cones describe regular roof sections, and

are combined with mesh-patches that represent irregu-
lar roof components. The various urban components in-
teract through a non-convex energy minimization prob-

lem in which they are propagated under arrangement

constraints over a planimetric map. Our approach is ex-

perimentally validated on complex buildings and large

urban scenes of millions of points, and is compared to

state-of-the-art methods.

Keywords 3D-modeling · shape representation ·
urban scenes · point data · energy minimization ·
Markov Random Field

1 Introduction

1.1 Problem statement

The 3D-modeling of urban scenes is a topic of major

interest in computer vision. Driven by new virtual ap-

plications, this research domain has considerably pro-
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gressed during the last decade as underlined in recent

studies (Zhu and Kanade, 2008; Mayer, 2008; Haala and

Kada, 2010).

A part of the existing methods is devoted to street
level modeling from ground or oblique-view data. These
works propose accurate facade 3D-models which are

particularly useful for the ground based navigation sys-

tems. They can be obtained from various types of data

such as multi-view images (Dick et al., 2004; Strecha

et al., 2008; Furukawa et al., 2009; Sinha et al., 2009;

Vu et al., 2009; Vanegas et al., 2010), laser scans (Banno

et al., 2008; Chen and Chen, 2008; Frueh and Zakhor,

2004) or video (Pollefeys et al., 2008; Gallup et al.,

2010). Recently, several works have addressed the chal-

lenging problem of scene reconstruction from internet

photo collections (Agarwal et al., 2009; Frahm et al.,

2010; Furukawa et al., 2010). They generate impressive

clouds of 3D-points which, nevertheless, contain outliers

and have spatial distributions highly heterogeneous.

Other works propose large city descriptions and offer

complementary advantages to the street level represen-

tations, in particular fine roof descriptions. Such city

descriptions are usually obtained either from airborne

data for reconstructing in 3D existing landscapes, or

from urban grammars in order to artificially create re-

alistic cities as, for example, the procedural model pro-

posed by Muller et al. (2006). These works are crucial
for a large range of applications, from virtual globe vis-
its to urban planning through to video games. We focus
here on large-scale city modeling problems from aerial

data, in particular from point set data generated by

airborne geo-located acquisition systems. Note that, for

such problems, the scene scale is supposed to be known

as input point clouds are generated in the metric sys-

tem.
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1.2 Related works from point set data

Most of the existing city modeling approaches directly
or indirectly tackle the problem through point cloud

analysis.

Digital Surface Models (DSM), which are 2.5D repre-

sentations depending on a Z-direction, constitute struc-

tured point clouds having a regular point distribution

in the XY-plane well adapted to aerial-based city mod-
eling. Zebedin et al. (2008) and Lafarge et al. (2010a)
generate DSMs from Multi-View Stereo (MVS) imagery

in order to model buildings by polyhedral structures.

The latter use a Constructive Solid Geometry (CSG)

based approach by reconstructing a building as an as-

sembling of parametric 3D-blocks, the former propose

to partition a building in small 2D-polygons which are

then labeled by graph-cut optimization.

Other approaches consider unstructured point clouds

directly generated from laser/Lidar systems (Vosselman

et al., 2005; Tse et al., 2007; Matei et al., 2008; Poullis

and You, 2009; Toshev et al., 2010; Zhou and Neu-

mann, 2010) or MVS imagery (Chauve et al., 2010).
Such data have spatially heterogeneous point distribu-
tions without induced neighborhood relationships be-
tween the points, and contain outliers, especially when

generated from MVS imagery. Vosselman et al. (2005)

present a semi-automatic approach using an interac-

tive segmentation of the parcel boundaries on which

are fitted flat, gable, or hip roofs. Matei et al. (2008)
and Poullis and You (2009) propose flat roof models
adapted to Manhattan World environments (Coughlan

and Yuille, 2000). Both approaches focus on segmenting
the buildings and simplifying their boundaries, either
by estimating building orientations (Matei et al., 2008)
or by using statistical considerations (Poullis and You,

2009). Tse et al. (2007) identify some building compo-
nents from a Delaunay triangulation of the point data
which are then combined to model simple roof struc-

tures. A more general building representation is pro-

posed by Zhou and Neumann (2010) who use a mesh

simplification procedure based on dual contouring. Al-

though this approach wins in terms of generalization,

semantic information is lost: a simple planar roof sec-
tion can be described by many mesh facets with differ-
ent normal orientations.

1.3 Motivations

These approaches provide convincing 3D-models but

have some important limitations. Firstly, strong urban

prior on orthogonality, symmetry and roof typology are

frequently introduced to reduce the solution space, and

thus the problem complexity. These assumptions are

usually efficient forManhattan World environments but

become penalizing for less well-organized urban land-
scapes having high variations of roof structures such as
the areas presented in Section 6. Secondly, these meth-

ods provide a sparse description of urban scenes. They

are focused on the building modeling task and disregard

all the other objects which can be found in an urban

scene such as trees, or even sometimes ground surfaces

by assuming a constant altitude over the global scene.

Thirdly, these models are each designed for a specific

type of input data, and the resulting quality generally

falls down when modifying data specifications. For in-

stance, the mesh simplification algorithm proposed by

Zhou and Neumann (2010) is of limited interest with

point clouds of low densities, as well as the CSG-based

approach of Lafarge et al. (2010a) with unstructured

point sets generated from laser or MVS.

1.4 Contributions

We propose an algorithm which brings solutions to ad-

dress the problems mentioned above. Our method presents

several significant contributions to the field.

• More complete models of unspecified urban environ-

ments: we do not simply reconstruct the buildings: a
more complete representation is provided by modeling

vegetation and topologically complex grounds. More-

over, our method is adapted to various types of urban

landscapes, from financial districts of big cities to small

mountainous villages, including historical towns with

old buildings of architectural interest. Besides, it is ro-

bust on a large range of point data having different
point densities and various sensor characteristics.

• Hybrid reconstruction of buildings: the modeling of

the buildings combines geometric 3D-primitives such

as planes, cylinders, spheres or cones to represent stan-

dard roof sections and mesh-patches to describe more

irregular roof components. Thus, 3D-models provide ur-
ban details while being semantized and compact. These
two different types of 3D-representation tools interact

through a non-convex energy minimization problem.

This idea has been originally proposed in former works

(Lafarge et al., 2010b) in order to reconstruct facades

from MVS images and has revealed a high potential.

• 2.5D-arrangement scheme for the urban structures:

a general formulation for the roof section arrangement

problems is presented, the first to date to our knowledge

which works in non-restricted contexts, i.e. with (i)

unspecified primitives, (ii) various types of urban ob-

jects interacting in the scene, and (iii) unknown build-
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Fig. 1 Overview of the proposed approach - Our algorithm digests large amounts of 3D-points in order to provide a compact and

semantized representation of urban environments including atypical buildings, trees, and topologically complex grounds.

ing contours. This 2.5D-arrangement scheme allows the

combination of parametric 3D-shapes as well as unspec-

ified urban components in a planimetric label map while

imposing structural constraints.

A four-step strategy, illustrated in Fig. 1, is adopted.

First, the point cloud is classified using an unsuper-

vised method presented in Section 2. Four classes are

distinguished: ground, building, vegetation and clutter.
The second step, detailed in Section 3, consists in ex-

tracting geometric primitives such as 3D-line segments,
planes or cylinders from the point set classified as build-

ing by a fast process. Section 4 constitutes the key

element of the system in which the geometric primi-
tives and the other urban components are arranged in a
common planimetric map through a multi-label energy

minimization formulation. In the last stage, the vari-

ous urban objects are represented in 3D using template

fitting and meshing procedures explained in Section 5.

Experimental results on complex urban structures and

various types of large urban scenes are presented and

commented in Section 6, as well as a comparison from

laser-based and MVS-based input data. This paper ex-

tends the work presented in (Lafarge and Mallet, 2011)

by detailing the different steps of the method and its

implementation, by presenting new results and compar-

isons as well as analyzing the impact of parameters and

input types on the result quality.

2 Point cloud classification

Four classes of interest are defined: building, vegeta-

tion, ground and clutter. The class vegetation repre-

sents the trees which have a non negligible size at the

city scale, i.e. with a height of several meters, excluding

the shrubs. The class clutter corresponds to the out-

liers contained in the data, to small urban components

which temporarily perturb the scene (e.g. cars, fences,

wires, roof antennas, cranes), and to the vertical struc-
tures such as facades because these have a sparse and
irregular point repartition penalizing the scene under-

standing. This class also includes water corresponding

to river networks for which the point distribution is

very sparse. Note that, in the case of urban scenes con-

taining non-negligible sea areas, a fifth class is required

to efficiently extract water since the point distribution

is denser and needs to be discriminated by additional

attributes (Carlberg et al., 2009).
A neighboring relationship is defined to create spatial
dependencies between the 3D-points. Two points are
neighbors if their Euclidean distance is inferior to a cer-

tain value, in practice 2 m (spherical neighborhood).

2.1 Discriminative features

For each point, several geometric attributes are com-

puted in order to distinguish the four classes of interest.

• Local non-planarity fp represents the quadratic dis-

tance between the point and the optimal 3D-plane com-

puted among its neighbors. Low values typically corre-

spond to ground and building roofs.

• Elevation fe allows the distinction between the ground

and the other classes. This feature corresponds to the
height difference between the point and its planimetric
projection on an elevation map of the ground estimated

by a standard algorithm (Briese et al., 2002).
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Fig. 2 Behavior of the discriminative features- (from left to right) an aerial picture of the scene (not used) containing a building and
its surrounding area, input clouds with the points colored according to the response of the features [color code: white=low response,
blue=high response], and the classification result [color code: blue=building, red=vegetation, yellow= ground and white= clutter ].
Each feature brings a specific type of information such that the combinations of the features allow the distinction of the different
classes in the input point cloud. In particular, note the differences between fs and fp: the former gives high responses just for trees

whereas the latter also considers small urban components (e.g. cars, fences, roof superstructures) and, more moderately, roof edges.
Note also how the points corresponding to trees and facades are correctly labeled as vegetation and clutter respectively.

• Scatter fs measures the local height dispersion of the

points. It provides a high value in the case of trees and
also some undesirable urban components. This feature
is usually defined as the minimal principal curvature
mean of the considered point and its neighbors (Toshev

et al., 2010). In the case of point sets generated from

full waveform topographic Lidar systems, an alternative

way to compute the scatter attribute fs is considered

using the echo number information (Mallet and Bretar,

2009). The feature fs is then defined as the ratio be-

tween the number of neighbors whose echo number is

strictly superior to 1 and the total number of neighbors.

This alternative allows the improvement of the feature

accuracy (see Section 6).

• Regular grouping fg is dedicated to outliers and unde-
sirable urban components having a linear structure such

as wires, facade parts, cranes or fences. This feature cor-

responds to the quadratic distance between the consid-

ered point and the optimal 3D-line computed among its

neighbors, weighted by the number of neighbors. The

response is low in the case of small isolated sets of points

and linear layouts of points.

In order to tune the sensitivity of each feature, four

parameters σe, σp, σs and σg are introduced. The fea-

tures are then normalized by a linear projection on the

interval [0, 1] of the form

f. ← min(1,
f.
σ.
) (1)

Fig. 2 shows the behavior of these features on a small

area, and underlines their complementarity in order to

discriminate our four classes of interest. For example,

the building roofs can be distinguished from the other

urban elements as the areas having a high response to
the elevation feature fe while having low responses to

the scatter and local non-planarity features, fs and fp.

2.2 Non-supervised classification formulation

An energy minimization is proposed to classify the point

set. Let x = (xi)i=1..Nc
be a potential classification re-

sult with Nc the number of points of the cloud, and

xi ∈ {building, vegetation, ground, clutter} the class

of the ith point. The energy E(x) is defined as a sum
of partial data terms Edi(xi) and pairwise interactions

defined by the standard Potts model (Li, 2001) which

introduces spatial coherence between neighboring ele-

ments:

E(x) =
∑

i=1..Nc

Edi(xi) + γ
∑

i∼j

1{xi 6=xj} (2)

where γ > 0 is the parameter of the Potts model, i ∼ j

represents the pairs of neighboring points, and 1{.}, the

characteristic function. The partial data term Edi(xi)

measures the coherence of the class xi at the ith point.

It is defined as a combination of the normalized features

defined above given by

Edi(xi) =





(1− fe) · fp · fs if xi = building

(1− fe) · (1− fp) · (1− fs) if xi = vegetation

fe · fp · fs if xi = ground

(1− fp) · fs · fg if xi = clutter

(3)
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A Graph-Cut based algorithm (Boykov et al., 2001) is

used to quickly reach an approximate solution close to

the global optimum of our energy. One can easily check

that our model fits the requirements for this algorithm.

In our experiments, the initial configuration is chosen

as the configuration minimizing the partial data terms.

The energy has five parameters: γ, σe, σp, σs and σg.

The parameter γ which balances the Potts interaction
with respect to the partial data terms, is set to (2.p̂)−1

where p̂ is the average point surface density of the dataset

with respect to the XY-components. σe is set to 6 m

(i.e. the height of two floors), σs to 0.5, σp to 0.5 m,

and σg to 0.25 m. One can imagine tuning these pa-
rameters using a learning procedure, as for example in

the works of Golovinskiy et al. (2009) or Munoz et al.

(2009). However, we notice that these values are sta-

ble on a wide range of input data. Thus, this would

unnecessarily make the system heavier.

2.3 Comments

The energy model has a relatively simple formulation
and provides convincing results in practice. Fig. 3 shows
the potential of the model on two difficult examples, in

particular, with the retrieval of two thin towers in the

middle of a dense wood. Note also that the eventual

local errors do not necessarily have consequences on

the final result. In fact, they can be corrected during

the planimetric arrangement procedure detailed later

in Section 4 by using urban structure layout considera-

tions.

Fig. 3 Point cloud classification on two small areas - (top) aerial
pictures, and (middle) top and (bottom) profile views and of the
classified cloud [color code: blue=building, red=vegetation, yel-
low= ground and white= clutter ]. Note that the two towers in

the middle of a dense vegetation are correctly detected as build-
ing despite their small size (right) and how the crane, the cars,

the facades and the outliers are well classified as clutter (left).

3 Geometric shape extraction

The second step consists in extracting 3D-primitives
from the point set classified as building. As the classi-

fication proposed in Section 2 rejects outliers from the
building point set, the use of Ransac-based algorithms,

which are more computationally expensive for similar
problems (Schnabel et al., 2007; Toshev et al., 2010),

is not required. Two types of elements are detected:
3D-line segments to locate the building contours, and
surface primitives to identify the roof sections. In order

to be fitted by a 3D-line segment or a surface primi-

tive, a subset of points has to verify the two following

requirements:

• Minimum quality of fitting: the quadratic error ǫ be-
tween the set of the considered points and a 3D-line

segment (respectively a surface primitive) is required

to be inferior to a reference error ǫs (resp. ǫa). The

quadratic error ǫ between a subset of points (pk)k=1..K

and a manifoldM is defined by

ǫ =

√√√√ 1

K

K∑

k=1

d(pk,M)2 (4)

where d(pk, S) is the Euclidean distance from the point

pk to the manifoldM.

•Minimum number of points: for each primitive, a min-

imun number of matched points is imposed in order to

guaranty robust fittings and to exclude non-significant

small structures. The number of points fitted by a 3D-

line segment (respectively by a surface primitive) has to

be superior to a certain parameter Ns (resp. Na) whose

value is fixed according to the input data characteristics

(see Section 6).

3.1 3D-line segments

Segments are used to locate the building contours. Our
concern is not to describe the contour of a building as

a set of perfectly connected segments (which is a dif-

ficult task requiring urban assumptions and geometric

approximations), but rather to have an accurate posi-

tioning of the main edges with potentially small parts

missing between them (see Fig. 4). Indeed, our strategy

consists in filling in the eventual missing parts further

in Section 4 during the planimetric arrangement proce-

dure.

First, the points located on the building borders are

selected from the point set classified as building. The

selection is performed by testing whether the Euclidean

distance of the considered point to the optimal 3D-line
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among its neighbors is inferior to a certain threshold

which depends on the point density of the input data.

Indeed the spatial distribution of the neighbors of a

building border point roughly describes a thin semi-

elliptic shape, close to a 3D-line. In practice, the thresh-

old is equal to (2
√
p̂)−1.

Then, 3D-lines are detected from the selected points

by a clustering procedure. The process finds successive
clusters of points whose quadratic error to the opti-
mal 3D-line is inferior to ǫs and whose the number is

superior to Ns. Note that the point aggregation is per-

formed among the neighbors of the points already con-
tained in the cluster. It allows us to detect a 3D-line
formed by a compact set of points without holes. The

3D-line segments are finally obtained by projecting the

two extreme points of each cluster on the corresponding

optimal 3D-line.

3.2 Planar, spherical, cylindrical, and conoidal shapes

The surface primitives allow the detection of the regu-

lar roof sections.

The planar structures, which constitute the most com-

mon shape of roofs, are extracted first. A region growing

allows the fast detection of 3D-planes. The propagation

criterion tests whether the direction of the normal of the

considered point is similar to those of the points in the

region. When the propagation stops, the optimal 3D-

plane is computed from the points of the region. The

plane is then selected as a primitive if both the num-

ber of points in the region is superior to Np and the

quadratic distance to the points of the region is inferior

to ǫp. This procedure is iteratively performed on the
unfitted points.

Non-planar shapes are then detected from the points

which have not been fitted by a plane. Extracting spheres,

cylinders or cones has no obvious solution when the

points only represent an unknown portion of the whole

shape. One can use Monte Carlo sampling but it re-

quires high computing time (Han et al., 2004). We pre-

fer extracting these non-planar primitives using an iter-

ative non-linear minimization, typically by a Levenberg-

Marquardt optimization. The parametrization and the

first order Euclidean distance approximation to spheres,

cylinders and cones proposed by Marshall et al. (2001)

are used to achieve numerically stable fittings. The ex-
tracted primitives are kept if the conditions on the min-
imal number of points per primitive and the maximum

quadratic error are validated.

Extracting non-planar shapes subsequently to the 3D-

planes avoids both high computing times and typical

confusions between large non-planar primitives and planes

which could have the same fitting error.

Fig. 4 Shape extraction from the building of Fig. 2 - Both (b)
3D-line segments and (c) surface primitives are extracted from
(a) the set of points classified as building. The main regular roof
sections of the buildings are detected as well as the global building
contours. The cropped part with (d) top and (e) bottom views
show the primitives in the middle of the point set. Note that the
planes are visually represented by their convex envelopes.

4 Planimetric arrangement

The third step represents the key part of the system.

It consists in arranging both the geometric shapes ex-

tracted in Section 3 and the other urban components

identified in Section 2 in a common dense representa-

tion. Several efficient methods of roof section arrange-

ment have been proposed in restricted contexts. A model

for planar sections is presented by Baillard and Zis-

serman (1999) for simple houses. Revolution sections

are also taken into account by Zebedin et al. (2008),

but this graph-cut based approach does not address

the building contouring problem and requires building

masks as input. It remains an open issue when (i) the

primitives are unspecified, (ii) different types of urban

objects interact in the scene, and (iii) the building con-

tours are not given. We propose an original solution by

propagating the point labels in a grid of X and Y axis

under structure layout constraints (see Fig. 5). Perform-

ing the arrangement on such a grid, called a planimetric

map in the following, allows us to substantially reduce

the problem complexity by assuming a 2.5D representa-

tion of urban scenes, and also to combine two different

types of 3D-geometry tools, i.e. primitives and mesh
patches, in a common framework.

4.1 Point labels and 2D-grid

Each point of the cloud is associated with the label

ground, vegetation, clutter, plane(l), cylinder(m), sphere(n),
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Fig. 5 The labels of the 3D-points are first projected onto a
2D-grid G, and then propagated under arrangement constraints.

cone(o) or roof. The points labeled as clutter are not

taken into account in the following. The label roof cor-

responds to the points classified as building in Section

2, which have not been fitted to planar, spherical, cylin-

drical or conoidal shapes.
The labels of the 3D-points are projected on a 2D-grid
G as illustrated on Fig. 5. We denote by G(proj), the

subset of G composed of the cells on which at least

one point label has been projected, and G(empty), the

complementary subset of G(proj) on G, i.e. the subset
composed of the empty cells:

G = G(proj) ∪G(empty) (5)

under the condition G(proj) ∩G(empty) = ∅.
Then, the projected labels are extended to the empty

cells of G(empty) by a basic isotropic diffusion in or-
der to have a dense labeling on the entire grid G, as

illustrated in Fig. 8, second column. This first label

map, denoted by l(ini), constitues the initial configura-

tion of the propagation process under smoothness and

structure arrangement constraints described in the next

part.

4.2 Label propagation under geometric constraints

The label propagation procedure is performed using

a Markov Random Field (MRF) with pairwise inter-

actions, whose sites are specified by the cells of the

2D-grid G, and whose adjacency set E is given by a

breakline-dependent neighborhood. l = (li)i∈G ∈ L rep-

resents a configuration of labels of the MRF, where L
is the configuration space:

L = {ground, vegetation, plane(l), cylinder(m), sphere(n),

cone(o), roof}card(G)

(6)

The quality of a configuration l is measured by the en-

ergy U of the standard form:

U(l) =
∑

i∈G

Di(li) + β
∑

{i,j}∈E

Vij(li, lj) (7)

whereDi and Vij constitute the data term and propaga-

tion constraints respectively, balanced by the parameter
β > 0.

4.3 Breakline-dependent neighborhood

The neighborhood relationship is not defined by an

isotropic area, but takes into account the 3D-line seg-

ments extracted in Section 3 in order to stop the prop-

agation beyond building contours. It is given by:

{i, j} ∈ E ⇔

{
‖i− j‖2 ≤ r

O(i,Lk) = O(j,Lk)
(8)

where Lk is the 2D-line obtained by projecting the kth

3D-line segment interacting with the pair {i, j} (see Fig.
6). O(i,L) is the oriented side in which the cell i is lo-
cated with respect to the line L, and r is the maximal

distance between two neighboring cells. This breakline-
dependent neighborhood allows us to efficiently address
the building contouring problem, which is usually a crit-

ical point in existing methods.

Fig. 6 Breakline-dependent neighborhood- The neighbors of the
cell i are contained in the yellow area. {i, j1} ∈ E but {i, j2} /∈ E.

Note that the 3D-line segments do not have to be connected as the
yellow area is computed by intersecting the 2D-lines supporting
the segments.

4.4 Data term

The term Di checks the coherence of the label li at the

cell i with respect to the input point cloud. The term

is given by

Di(li) =





c if li = roof

min(1, |zli − zpi
|) else if i ∈ G(proj)

0 otherwise

(9)

where c ∈ [0, 1] is a coefficient penalizing the labels

roof in order to favor the primitive-based description
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of buildings. zli is the height associated with li, and zpi

the maximal height of the input 3D-points contained in
the cell i.

4.5 Propagation constraints

The potential Vij allows both the label smoothness and
a coherent arrangement of the structures. To do so, an

arrangement law, denoted by ⋊⋉, is introduced to test
whether two labels, li and lj , of neighboring cells, i and

j, are spatially coherent:

li ⋊⋉ lj ⇔ O(i, Ili,lj ) 6= O(j, Ili,lj ) (10)

where Ili,lj is the XY-intersection between the two ob-
jects li and lj , and O(i, I) is the oriented side in which

the cell i is located with respect to the curve I. In other

words, the intersection of the two objects must be spa-

tially located in between the two cells i and j.

Fig. 7 Principle of the ⋊⋉-law on two examples - The blue (re-
spectively red) junctions between neighboring cells correspond to
spatially coherent (resp. non-coherent) labels.

For example, if two neighboring cells are associated

with two different planar labels, the ⋊⋉-law will check

that the projection in the 2D-grid of the 3D-line in-

tersecting the two 3D-planes is located in between the

two cells. Thus, the exact separation of two connected

planes is constrained as illustrated in Fig. 7.

Finally the pairwise interaction is formulated by:

Vij(li, lj) =





ǫ1 if li ⋊⋉ lj
ǫ2 if li = lj
1 otherwise

(11)

where ǫ1 and ǫ2 are real values in [0, 1] with ǫ1 < ǫ2.
They tune the label smoothness with respect to the

coherent object arrangement considerations.

4.6 Optimization with parallelization scheme

Finding the label configuration which minimizes the en-

ergy U is a non-convex optimization problem. Simu-

lated annealing techniques (Li, 2001), graph-cut based

algorithms e.g. (Boykov et al., 2001) or belief propa-

gation methods e.g. (Weiss and Freeman, 2001) could
provide a good approximation of the solution but at the

expense of high computing time. The scenes are gener-

ally of a large scale and the number of labels is very

high.

In order to reach reasonable computing times, an orig-

inal parallelization scheme is proposed, relying on the
two following assumptions:

• H1: the labels cannot be propagated between two non-

overlapped urban objects in the scene (e.g. the label

corresponding to the roof section of a building cannot
be used for another building),

• H2: the point labels originally projected in the grid

G(proj) are of quality, i.e. they are probably correct (See

Fig. 5).

The grid G is partitioned in an unknown number N

of clusters such that

G = ∪
k∈[1,N ]

Gk (12)

with Gk ∩ Gk′ = ∅, 1 ≤ k < k′ ≤ N . The partition

is obtained from the initial label map l(ini) by sepa-
rating the low-level urban components (e.g. blocks of

buildings and groups of trees) which are supposed to

be independent of each others (H1). The quality of the

partition relies on the initial label map l(ini), and thus

on the point labels originally projected in the 2D-grid

(H2).

Each cluster Gk corresponds to a set of connected cells
labeled as non-ground in the initial label map l(ini), and

whose area is maximal. In particular, it implies that the

outside contour of Gk, denoted by ∂Gk, is labeled as

ground :

∀i ∈ ∂Gk, k ∈ [1, N − 1], li = ground (13)

Note that a morphological erosion is preliminarily per-

formed in the initial label map on the cells labeled as

ground to give robustness to the component separation
and avoid the omission of building pieces. As illustrated

on Fig. 9, the last cluster GN corresponds to the re-
maining cells labeled as ground. Fig. 14 also shows an

example of a grid partitioning on a 1 km2 dense urban

area.

The original configuration space L (see Eq. 6) can be

then significantly reduced by decomposing the mini-

mization of U as a set of N − 1 local independent (and

thus parallelizable) energy minimization problems over
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Fig. 8 Planimetric arrangement from the building of Fig. 2 - (a) the grid G(proj) of the projected point labels, (b) the initial label

map l(ini), (c) the label map after minimizing U, (d) the label map after minimizing a variant of U where the breakline-dependent
neighborhood is substituted by a standard isotropic neighborhood, (e) the label map after minimizing a variant of U where the ⋊⋉-law
is not taken into account, and (f) the label map after minimizing U whose parameter c has been significantly decreased. One can notice
that the label propagation is correctly stopped beyond building contours and neighboring primitives. The ⋊⋉-law allows the optimal
arrangement of the roof sections, and the breakline-dependent neighborhood avoids the wavy building contours. Note also how the
decrease of the parameter c impacts on the apparition of roof labels in order to describe the small irregular roof components [color
code: white=empty cell, yellow=ground, red=vegetation, blue=roof, other colors=primitives].

Fig. 9 Partitioning of the grid on a downtown sample - (a) an
aerial picture of the scene (not used), (b) the initial label map
l(ini), (c) the initial label map l(ini) with a morphological erosion
performed on the cells labeled as ground and illustrated by the
black contours, and (d) the resulting partition where each of the
11 clusters is illustrated by a random color. The last cluster G11

corresponds to the eroded set of ground cells.

the partition of the grid G:

min
l∈L

U(l)⇔





min
l/Gk

∈Lk

U(l/Gk
) , ∀k ∈ [1, N − 1]

l/GN
= {ground}card(GN )

(14)

where l/Gk
is a configuration of labels on the cluster

Gk, and Lk the local configuration space on the cluster
Gk. In order to limit the number of possible labels per

local problem, Lk only contains the labels present in

l
(ini)
/Gk

:

Lk = {li/li ∈ l
(ini)
/Gk
}card(Gk) (15)

Thus the label of a primitive belonging to a certain clus-

ter is not uselessly tested in another cluster (H1). This

decomposition scheme has also another advantage: the

last cluster GN of the remaining cells labeled as ground,
which is usually of big size, is not concerned by the op-

timization. We rely here on the hypothesis H2 which
allows a significant gain of time.

Table 1 Comparisons of different optimization techniques on a
1 km2 dense urban area.

Energy Time

α-expansion 2832.9 402 min
(Boykov et al., 2001)

Belief propagation 3016.6 618 min

(Weiss and Freeman, 2001)

α-expansion with our 2853.3 3.5 min

parallelization scheme

The α-expansion algorithm (Boykov et al., 2001) is used

to solve each local independent optimization problem.
This algorithm is particularly efficient in our context,
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i.e. with a limited number of labels and a good initial

configuration. Confidence is given to the labels origi-
nally projected: the expansions are first performed on
the subset G(empty), i.e. the cells originally considered

as empty, and then on the complementary subsetG(proj)

to readjust the configuration.
As shown in Tab. 1, the parallelization scheme allows

us to reach a good approximation of the solution while

significantly reducing the computing times on an 8-core

computer compared to standard techniques. The energy

reached by our parallelization optimization scheme is

slightly higher than by the conventional α-expansion
minimizing the global energy problem. Indeed, the clus-

tering procedure enforces exterior borders of clusters

to be labeled as ground. Some local errors can then be

generated when the clusters are not ideally separated,

in particular when exterior borders of clusters overlap

with some building components. By enlarging the struc-

ture element of the morphological erosion, this type of

errors decreases but the computation time is increased

as the number of clusters is reduced.

5 Representation of the urban elements

The three types of elements contained in the scenes

are differently represented in 3D from the obtained la-

bel map. Buildings are modeled by combining arrange-

ments of geometric 3D-primitives and mesh patches,
trees by template matching, and the ground by a mesh-
ing procedure guarantying a continuous surface.

5.1 Buildings

A hybrid representation is used to model the buildings

with a high level of generalization and a good com-

paction. Arrangements of geometric 3D-primitives for

the standard roof sections, and mesh-patches describ-

ing the irregular roof components are combined.
The primitive arrangements are represented by polyhe-
dral structures extracted from the label map obtained

in Section 4. The primitive intersections are directly

computed from the primitive adjacency graph given by

the label map. Note that, in case of non-planar primi-

tives such as spheres or cylinders, the geometric accu-

racy of the polyhedral structure is fixed by a discretiza-

tion parameter.

The mesh-patches are initially created by triangulating

the cells labeled as roof. A Z-component is associated to

the XY-center of these cells so that triangular meshes
are directly obtained from the 8-connexity structure of
cells. The Z-component of the cell i is taken as the

maximal height zpi of the input 3D-points contained

in the cell i if i ∈ G(proj), and as the mean height of

the closest input 3D-points otherwise. As illustrated on
Fig. 10, one of the main advantages of this strategy is
the simplification of the mesh-patches while controlling

the approximation error. A standard mesh simplifica-

tion algorithm (Garland and Heckbert, 1997) can then

be used to obtain more compact and coarser building

representations.

The facades are obtained by projecting vertically the

building contours on the estimated ground. The final

result can be seen as a general triangular mesh in which

the regular roof sections associated to a planar prim-
itive are usually represented by one or two triangular
facets and some finer mesh-patches describe the irreg-
ular components, as illustrated on Fig. 12.

Fig. 10 Simplification of the mesh patches on an irregular roof-

(a) an aerial picture of the scene, (b) the input point set with a
17 pts/m2 density, (c) the extracted 3D-line segments, and the
obtained 3D-models with (d) fine, (e) medium and (f) coarse
mesh-patches. Note that the primitive arrangement and the fa-
cades are not affected by the simplification process.

5.2 Trees

They are reconstructed in 3D using template matching.
The template is a simple ellipsoidal tree model whose
compaction and rendering are well adapted to large ur-

ban scenes (see Fig. 11). For a street-view representa-

tion, one can imagine proposing a more realistic tree

modeling, e.g. (Xu et al., 2007). As directly matching

an ellipsoid to the point set is computationally expen-

sive, the center of mass of trees is first detected using a

watershed algorithm performed on the estimated height

of the cells labeled vegetation. The other parameters of

the template such as the height and the radius of the

crown are then simultaneously found by minimizing the

Euclidean distance from points to an ellipse. The tree

trunk is modeled by a cylinder which makes the link

between the ellipsoid and the ground surface.
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5.3 Ground

A standard meshing procedure is used to model the

ground surface by a continuous surface. A grid of 3D-

points is created from a spatial sub-sampling of the

cells labeled as ground. It allows an accurate descrip-

tion without imposing any geometric constraints on the
surface. Note that, similar to the mesh-patches of the

buildings and the non-planar primitives, the mesh can
be simplified using a decimation algorithm (Garland
and Heckbert, 1997) to gain in compaction as shown in
Fig. 12.

Fig. 11 Object representation - (top) obtained 3D-model and
(bottom) input cloud (2pts/m2) with the points colored according
to their distance to the 3D-model. The high errors correspond to
points from trees (the points of a tree do not obviously describe
a perfect ellipsoidal shape) and from small urban components
such as cars or roof superstructures. The mean error is 0.2 m,

and the number of triangular facets is 205 without including the
trees. Note that the surface primitives are divided into triangular

facets for visual rendering and compaction measurement.

6 Experiments

6.1 Implementation and parameter settings

The algorithm has been implemented in C++ using the

Computational Geometry Algorithms Library (CGAL,

2011). This library provides the basic geometric func-

tions for the analysis of point clouds and the mesh pro-
cessing. For example, this allows the search of neighbors
in the input cloud or the computation of distances from
point to parametric surfaces.

Several parameters are introduced during the four steps

of the algorithm. One of the major strengths of the

algorithm is that the point density of the input data

does not interfere with the planimetric arrangement

in terms of result quality and computation complex-

ity. Thus, most of the parameters are stable on a large

range of input data. The size of a cell sc is usually

chosen in the interval [0.2m,0.4m]. The radius r of the

breakline-dependent neighborhood is fixed to 1.5sc. The

parameters of the pairwise interactions in the planimet-

ric arrangement model proposed in Eq. 11 are chosen

as ǫ1 = 0.5× ǫ2 = 1
3 and β = 0.5.

Other parameters depend on the input data types as

shown in Tab. 2. This concerns the primitive extrac-

tion parameters, i.e. Ns, Np, ǫs and ǫp which are sen-
sitive to the point density of the input cloud and also

to the acquisition type (laser or MVS). The number of
expansion cycles during the optimization of the label
map (see Section 4.2) has also to be set according to

the point density of the input data. More precisely, it

must be set according to the proportion of empty cells

in the map: the lower this ratio, the lower the number

of expansion cycles.

Table 2 Parameter settings in function of the input data type

Ns Np ǫs ǫp Exp. cycles

Lidar, 2 pts/m2 12 15 0.4 0.1 6

Lidar, 17 pts/m2 25 100 0.2 0.1 4

MVS, 16 pts/m2 15 120 0.5 0.5 4

MVS, 100 pts/m2 35 500 0.4 0.5 2

6.2 Visual considerations

Our method has been tested on various types of urban

landscapes. Most of the datasets has been acquired by

laser, more precisely with lidar systems having different

point densities from 2 and 17 pts/m2.

Fig. 18 shows large scenes reconstructed with differ-

ent types of landscapes including business districts with

large and tall buildings, historic towns with a high con-

centration of both small buildings and trees, and hilly

areas with high altimetric variations and dense forests.

The input data generated from aerial laser scanning

contain more than ten million of points. The results

are obtained without using prior information on the

landscape type and the object distributions within the

scenes.

The level of detail of the results depends mainly on the

input point density. For example, the roof details such

as the dormer-windows or chimneys in Fig. 11 are de-

scribed by less than 4 points in the 2 pts/m2 density

data. Our method ignores these sets of points in the
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Fig. 12 Hybrid reconstruction of a complex building - (a) aerial picture, (b) extracted 3D-primitives, (c) label map [color code: see

Fig. 8], 3D-models obtained with (d) fine and (f) coarse mesh patch descriptions, input cloud (2 pts/m2) with the points colored
according to their distance to the (e) ”fine” and (g) ”coarse” 3D-models [color code: see Fig. 11], and (h) error graph of the 3D-

models with mesh-patch simplification w.r.t. the input point cloud (red) and the unsimplified 3D-model (blue) in function of the
log-compaction ratio of the unsimplified 3D-model to the simplified one. Our hybrid representation is particularly interesting in such
a case: the building is accurately modeled by planes and a sphere for the regular parts, and by mesh-patches for the atypical surfaces,
i.e. the undulating roofs. The fine (respectively coarse) 3D-model has 46K facets (resp. 864 facets) and a 0.24 m (resp. 0.33 m) mean
error to the input data .

computation of the main roof sections because they are

too small to extract robust information. In Fig. 15, the
input data has a 17pts/m2 density which is high enough

to recover roof details such as the chimney. The build-

ing contours are correctly located, due to the breakline-

dependent neighborhood introduced in the planimetric

arrangement, even when they overlap at different loca-

tions with trees as shown in Fig. 13 (Building #2).

One of the main advantages of this hybrid represen-
tation is that the eventual primitive under-detection
does not necessarily penalize the approach in terms of

results. Indeed the regular roof sections missed dur-

ing the geometric shape extraction stage are completed

by mesh-patches. The final 3D-model remains coher-

ent and correct even if it loses in terms of compaction.
The eventual under-detection of 3D-line segments is
more penalizing, especially when the input cloud has
both a spatially heterogeneous point distribution and

a low point density. In such a case, the building 3D-

models can have wavy contours which correspond to

the shape induced by the bordering points of the build-

ing as shown in Fig. 12. One solution can be then to
simplify the mesh but this engenders a loss of accuracy.
On the other hand, over-detecting primitives would in-

crease the number of labels during the planimetric ar-

rangement, and thus, the computing times as well as

the compaction of the 3D-model.

6.3 Performances

The evaluation of building reconstruction methods is a

difficult task due to the absence of a benchmark in the

field, the problems of data sharing as well as the diffi-

culty in achieving ground truth. In order to measure the

quality of the results, two main criteria are considered:

the distance of the input points to the 3D-model and
the compaction of the 3D-model. The mean distance on
a 2 pts/m2 density point cloud is typically contained in

the interval [0.2 m, 0.35 m] (see Fig. 11 and 12). How-
ever, the mean distance is computed from all the points
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Fig. 13 Results on several buildings with varying point densities (from 2 to 5 pts/m2) - (a) aerial pictures, (b) classified point sets
[color code: see Fig. 3], (c) extracted 3D-line segments, (d) extracted surface primitives, (e) label maps, (f ) top and (g) profile views

of the obtained 3D-models, and (h) input point data with the points colored according to their distance to the associated 3D-models
[color code: see Fig. 11]. Building #1 is an atypical piecewise planar structure with curved footprints. Building #2 is a classic house
surrounded by trees. Note how the building and the trees are correctly reconstructed in spite of the fact they overlap at different
locations. Building #3 is a simple structure with cylindrical parts. Building #4 is a circus with a conoidal shape. Note how the
trucks located around the circus are rejected as clutter during the point set classification. Building #5 represents a set of three north
American skyscrapers which are particularly well adapted to the Manhattan World assumption. Building #6 is a Roman cathedral

with a complex structure including spherical domes, small planar sections and irregular roof parts. Building #7 is a typical set of
industrial structures.

of the input data: this includes the outliers and the un-
desirable points corresponding to cars, fences or wires,

which highly corrupt the obtained mean error. With-
out taking these points into account, the mean error is
usually inferior to 0.1 m.

We compare our method according to these two criteria

to the mesh simplification algorithm proposed by Zhou

and Neumann (2010). The compaction of our model is

almost twice better, for a similar mean error to the in-

put data as shown in Fig. 15.

In addition, we evaluate the altimetric accuracy of the

algorithm with respect to the ground truth obtained by

the topographical measurement on two buildings, and

compare it to a constructive solid geometry approach

and a Digital Surface Model from point cloud as shown

in Fig. 16. From a 2 pts/m2 density input data, we ob-

tain the best mean error, i.e. 0.21 m, on the evaluated

buildings in spite of some high local errors on the con-

tours illustrated by the thin black lines partially sur-

rounding the buildings on the altimetric error maps.
From such a low point density, it is indeed difficult to
perfectly extract the building contours.

In regard to tree detection, the results are satisfactory.

The false alarm rate and the under-detection rate are

respectively estimated to 2% and 6% on the Amiens

dataset. However, certain building contour points as-

sociated with atypical roof sections may be detected
as vegetation, especially when the scatter feature Fs is

computed without using echo information (see Fig. 18,

top right crop).

Around 10 minutes is required to model a 1 km2 dense

urban area using a single computer. The computing

times are competitive compared to most of the large

scale modeling algorithms, e.g. Poullis and You (2009)
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Fig. 14 Result from a 2.3M point set representing a 1 km2

area urban scene (Biberach, Germany) with a 128 m altimet-
ric variation- (a) an aerial picture (not used) of a city center, (b)

the classified point set [color code: see Fig. 3], (c) the extracted
3D-line segments, (d) the extracted surface primitives, (e) the
partition of the grid ∪

k∈[1,N ]
Gk for the optimization decomposi-

tion [each cluster Gk is randomly colored], (f) the label map, the
obtained 3D-model (g) with and (h) without mesh visualization.
The result is obtained in approximatively 10 minutes. Note that,
as the aerial picture has been captured several years before the

point data, some buildings are missing on this picture.

Fig. 15 Comparison with a mesh simplification method- (a) 3D-
models obtained (left) by our method and (right) by Zhou and
Neumann (2010), (b) input clouds (17 pts/m2) with the points
colored according to their distance to the associated 3D-models.
Our model presents a better roof component recovery. Although
the mean errors to the input data are similar (0.07 m), the com-

paction of our model is almost twice better (126 vs 228 facets).

with around half an hour per km2, or Muller et al.
(2006) who require several interactive operations per

building.

Fig. 16 Comparison with pixel-based and primitive-based ap-

proaches in terms of altimetric accuracy w.r.t. ground truth -
(from left to right) aerial pictures of two buildings, altimetric er-

ror maps for our method, for a Digital Surface Model from point
cloud, and for the Constructive Solid Geometry approach by La-

farge et al. (2010a). Note how the roof sections from our method
are accurately estimated when compared to the other algorithms.

6.4 Point clouds from laser or MVS?

The acquisition type of the input data impacts on the

result quality provided by our method. Several works,

such as the study of Leberl et al. (2010), compare the

potential of laser and MVS for urban scene analysis.
Such comparisons are usually difficult to realize as the
performances depend strongly on the own characteris-

tics of the acquisition system, and also on the dense

stereo algorithm used to generate the DSM in case of

MVS acquisition.

Contrary to the point sets from MVS, laser-based point

clouds have a high altimetric accuracy but a hetero-

geneous planimetric distribution, and usually a lower

point density. These differences play an important role

during the surface primitive extraction step. As illus-

trated in Tab. 2, the maximal fitting errors and the
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minimal numbers of fitted points per primitive must

be higher in the case of a MVS-based input data in

order to compensate for the approximative altimetric

accuracy of the points. In order to improve the surface

primitive extraction procedure in the case of low res-

olution MVS-based input data, one can substitute the

quadratic error (see Eq. 4) by a softer distance such as

the L1-norm error which is frequently used from MVS-
based DSM computations (Xu and Zhang, 1996).

At low resolutions, the DSM-based point clouds do not

have strongly marked discontinuities on the building

contours as shown on the crops in Fig. 17. This is due to

the dense stereo algorithms used to generate the DSM

which usually introduce smoothness constraints on the

surface. This point penalizes the recovery of the build-

ing contours compared to the laser acquisition.

The tree detection is more efficient from laser-based

point clouds than from MVS-based data. Indeed, the

point diffusion of a tree from laser has a more irregular

geometry than from MVS, and is thus more discrimi-

native for tree recognition. However, the tree detection

from MVS can be easily improved by taking into ac-

count radiometric information contained in the images

(e.g. texture attributes), or by using, when available,

the Near InfraRed channel known to give high responses

for vegetation.

Finally, our algorithm globally provides better results

from laser than from MVS. 3D-models from MVS-based
point sets at low resolution usually have shape approxi-
mation errors. At high resolution, the results are similar
to those obtained from laser but the computation times

of the first and second steps of the algorithm are higher.

6.5 Limitations

First, some urban components are not taken into ac-

count in our representation. In particular, the bridges

and the elevated roads which are local planar structures
elevated above the ground are frequently detected as
buildings (see Fig. 18, top right crop). This problem

can be solved by considering additional urban compo-

nents in the point cloud classification. Note that in this

perspective, the energy formulation of the planimetric

arrangement can be easily adapted. Secondly, the mod-

eling of the trees is restricted to the use of an ellip-
soidal shape template. It is sufficient for large scene
descriptions but too limited for street-view represen-

tations. In light of this, it seems relevant to introduce

a library of tree forms and create more complex de-

pendencies between neighboring elements. Thirdly, our

algorithm is not optimal when both the altimetric accu-

racy of the input points is poor and the point density

Fig. 17 Impact of the acquisition system type on our approach-
(from top to bottom) the classified point clouds, the obtained
3D-models, the input clouds with the points colored according to
their distance to the associated 3D-models [color code: see Fig.
11], and some associated crops. The 3D-model from MVS is less
accurate in terms of structure contouring, but is of similar quality
concerning the surface recovery. The laser-based 3D-model (left)

has a mean error to the input data slightly lower than the MVS-
based 3D-model one (right), i.e. 0.26 m vs 0.33 m.

is weak, typically with low resolution Digital Surface

Models, i.e. >0.5 m. In such cases, it is necessary to

use less generic methods based on very strong urban

assumptions, such as the structural-based approach of

Lafarge et al. (2010a), in order to compensate for the
poor quality of the data. Fourthly, the scene scale must
be known in order to obtain robust results since the

parameter tuning relies on the metric system. For some

MVS datasets roughly geo-located, an estimation of the

scene scale can thus be preliminarily required.

7 Conclusion

We propose an original approach for modeling large ur-

ban environments from 3D-point data. An important

strength of the algorithm compared to existing meth-

ods is the complete and realistic semantized description

of urban scenes by simultaneously reconstructing build-

ings, trees and topologically complex ground surfaces,
but also the original hybrid representation of build-
ings combining a high level of generalization and com-

paction. Moreover, a general mathematical formulation

for roof section arrangement problems is defined, the
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#input points area altimetric variation #primitives #trees computing time compaction
(×106) (km2) (m) (×103) (×103) (hour) (Mo)

Marseille, France (a) 38.67 19.8 192 108.6 35.7 2.52 131

Amiens, France (b) 24.52 11.57 76 56.7 22.8 1.34 93

Mountain area (c) 22.67 3.41 525 0.01 21.1 0.31 34

Fig. 18 Reconstruction of three large scenes with some performance statistics and crops on various types of urban landscapes.

first to date to our knowledge which works in non-

restricted contexts.
In future works, it would be interesting to improve the
parallelization scheme of the energy minimization by

using Graphics Processing Units (GPU). Another in-

teresting challenge is to adapt our approach to point

clouds generated from internet photo collections (Agar-

wal et al., 2009; Frahm et al., 2010; Furukawa et al.,

2010) which contain more outliers and have spatial dis-
tributions highly heterogeneous.
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