
HAL Id: hal-00719038
https://hal.science/hal-00719038

Submitted on 18 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BareMichael: A Minimalistic Bare-metal Framework for
the Intel SCC

Michael Ziwisky, Dennis Brylow

To cite this version:
Michael Ziwisky, Dennis Brylow. BareMichael: A Minimalistic Bare-metal Framework for the Intel
SCC. The 6th Many-core Applications Research Community (MARC) Symposium, Jul 2012, Toulouse,
France. pp.66-71. �hal-00719038�

https://hal.science/hal-00719038
https://hal.archives-ouvertes.fr

http://sites.onera.fr/scc/marconera2012

Proceedings of the 6th Many-core
Applications Research Community

(MARC) Symposium

July 19th–20th 2012

ISBN

978-2-7257-0016-8

http://sites.onera.fr/scc/marconera2012
http://hal.archives-ouvertes.fr/MARCONERA2012
http://www.onera.fr

BareMichael: A Minimalistic Bare-metal

Framework for the Intel SCC

Michael Ziwisky

Department of Electrical and

Computer Engineering

Marquette University

Milwaukee, WI 53233

Email: michael.ziwisky@mu.edu

Dennis Brylow

Department of Mathematics,

Statistics, and Computer Science

Marquette University

Milwaukee, WI 53233

Email: brylow@mscs.mu.edu

Abstract—The many-core Intel SCC processor is one of a
class of emerging, highly parallel computer architectures. Intel
provides a modern Linux kernel which, running on the SCC
as a separate instance per core, is able to load and launch
user applications. However, there is a lack of open-source tools
to facilitate development of “bare-metal” SCC applications –
applications that are run directly on the chip without the support,
overhead, or restrictiveness of an underlying operating system.

To help fill this void, we present BareMichael, a minimalistic
framework for compiling, loading, and launching mixed C and
assembly code on the bare-metal Intel SCC. The framework also
includes MikeTerm, a one-way pseudo-terminal for displaying
output from an application as it executes on the chip. We share
our solution in the hope that it will lower the barrier for others
to begin development in a bare-metal environment on the SCC.
Furthermore, we demonstrate the utility of BareMichael through
two applications: supporting the use of the RCCE message-
passing library, and serving as the foundation for a port of the
Embedded Xinu operating system.

I. INTRODUCTION

The Single-Chip Cloud Computer (SCC) experimental pro-

cessor is a “concept vehicle” created by Intel Labs as a

platform for many-core software research [1], [2]. It features

48 processing cores based on the P54C architecture and a 256

Gb/s bisection bandwidth mesh network-on-chip (NoC). The

chip is organized into 24 tiles, each of which contains two

cores, a router, and 16 kB of shared memory that is accessible

to all cores via the NoC. This fast, on-chip memory is referred

to as the “message-passing buffer” (MPB).

Intel provides support software for SCC development in-

cluding SCC Linux, a modern Linux kernel, and sccKit, a

suite of tools for interacting with the chip via an attached

“management console PC” (MCPC). While the environment of

SCC Linux offers many convenient features, such as access to

common Linux system services and the ability to interact with

cores via an ssh session, it is also a restrictive environment,

forcing developers to either run their SCC applications within

a low CPU privilege level, or to modify the kernel itself to

enable more advanced functionality.

It is thus desirable to be able to run applications in a “bare-

metal” environment with neither the support nor the overhead

and restrictions of an operating system. However, the barrier

to get bare-metal C code running on the SCC and to get

feedback from its execution is a significant one. We have

overcome this barrier, and we share our solution, BareMichael,

in the hopes that it will spare others the tedium and difficulty

of coding the initialization and support routines necessary to

begin development of bare-metal SCC applications.

The BareMichael framework enables a developer to execute

bare-metal code on the SCC with supervisor-level access to

all aspects of the chip. The framework is lightweight, mini-

malistic, and open-source. In the remainder of this paper, we

describe the framework’s platform initialization process, list

the tools upon which it relies, describe a couple of applications

for which we have used the framework, and discuss the other

offerings for bare-metal SCC development.

II. THE BAREMICHAEL FRAMEWORK

BareMichael is a minimalistic framework to support bare-

metal programming on the SCC. It is primarily a boot loader,

not an operating system. Thus, it does not provide operating

system functionality, but it may serve as a foundation upon

which an operating system (or any other program) may be

built. Along with a series of routines for initial configuration

of an SCC core, BareMichael is packaged with libxc, a

subset of the standard C library originally implemented for the

Embedded Xinu kernel [3]. Upon the framework, developers

may implement bare-metal code in C, x86 assembly, or a

combination of the two. The framework also includes some

SCC-specific helper functions and definitions to do things

like reading the local core ID, reading mesh and tile clock

frequencies, addressing MPBs and configuration registers,

acquiring and releasing tile lock registers, and triggering inter-

core interrupts. As BareMichael is an open-source tool, the

implementations of all of these functions are exposed to the

developer who is free to modify, remove, or reimplement them

at will.

A. Platform Initialization

The following is a brief walkthrough of the code path

BareMichael steps through to initialize an SCC core. This

description, accurate for the latest versions (4, 5, 6, and 7) of

the framework, illuminates the BareMichael startup process

so that a developer may understand both how it works and

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

BareMichael: A Minimalistic Bare-metal Framework for the Intel SCC 66

boot/startup.S

startup:

 # define & load GDT

 # initialize stack

 # clear bss

 call platforminit

 call main

system/platforminit.c

void platforminit() {

 init_idt();

 init_APIC();

 enable_caching();

}

boot/initPaging.c

void initPaging() {

 // priv mem cached

 // MPB cached + PMB

 // rest uncached

}

boot/getprotected.S

getprotected:

 # define & load GDT

 # get into 32-bit

 # protected mode

 call initPaging

 # jump to startup

boot/reset_vector.S

backabit:

 # load seg regs

 # jump getprotected

_start: # @0xFFFFFFF0

 jmp backabit

text/main.c

void main() {

 // your code here

}

Fig. 1. Per-core initialization procedure of BareMichael.

how it may be modified to suit particular needs. Paragraph

headers identify the location of the code being discussed, and

a schematic representation of the entire process is illustrated

in Figure 1.

a) boot/reset vector.S: Based on the Intel P54C, each

SCC core boots in “real mode,” and consequently has access

to just a 20-bit address space. In spite of this limitation, the

first instruction a core executes after its reset pin is released

is loaded from memory address 0xFFFFFFF0, sixteen bytes

from the end of a 32-bit address space. We put a short relative

jump instruction here, which takes us back just far enough to

initialize the core’s segment registers and stack pointer, then

far-jump down to a getprotected() routine located within

the first mebibyte of memory.

b) boot/getprotected.S: The getprotected() routine

takes the processor into 32-bit “protected mode” by setting up

the necessary CPU configuration data structures and registers,

including a global descriptor table (GDT) to define flat code

and data segments. Then a page table is created for virtual

memory management.

c) boot/initPaging.c: The default look-up table (LUT)

for an SCC core, which maps core addresses into a larger

system address space, splits the core’s address space into

sections including private memory, shared memory, message

passing buffer space, and configuration register space. Our

page table flatly maps all of this space with cache disabled for

all but private RAM and message passing buffers. Message

passing buffer pages also have the PMB flag set to enable

special caching features of the SCC [2]. With the page table

configured and enabled, the core jumps to the startup()

routine.

d) boot/startup.S: The startup() code gets linked

together with libxc and the rest of the developer’s bare-

metal code to create the main image, which may be located in

private memory wherever the developer chooses (specified via

a Makefile variable). The startup() routine defines and

loads a new (but identical) GDT within the main image to

allow for easier addressing of the data structure should the

developer wish to access it later. Space then is allocated for

an interrupt descriptor table (IDT) which will be loaded with

descriptors momentarily. After initializing a stack, clearing the

bss section of the image, and initializing the floating point

unit, the core calls platforminit().

e) system/platforminit.c: Among the duties of the

platforminit() routine are calls to initialize and en-

able the local advanced programmable interrupt controller

(APIC), load the IDT with some default descriptors, and

enable caching. As of version 3, the framework includes

real-time clock support using the local APIC timer. If this

feature is enabled (via a definition in include/conf.h),

its initialization function is called here. Interrupt vectors 0x00

through 0x1F are reserved for CPU faults and exceptions, and

the default handlers BareMichael assigns to these vectors print

out information about the state that the system was in when

the interrupt occurred. Such information is useful for debug-

ging. After platforminit() returns, BareMichael calls the

main() function in text/main.c, which is assumed to be

the starting point of the developer’s code.

To summarize, we now describe the state of an SCC

core after BareMichael initialization. The setup routine brings

the SCC core to 32-bit protected mode at privilege level 0

(supervisor level). Virtual memory management is enabled

with page table entries present only for the core addresses

that are mapped to actual system addresses by the default

LUT configuration. Private memory is configured to have

cache enabled, MPB-mapped pages have cache enabled and

the SCC-specific PMB flag set, and all other sections have

cache disabled. The local APIC is enabled and, by default,

its periodic timer is set up to trigger a handler (found in

system/clock.c) every millisecond. If the framework is

configured for RCCE support (see Section III), the core’s MPB

space is initialized to zeros and a heap is initialized to allow

dynamic management of private memory.

B. MikeTerm

BareMichael applications can print text back to the MCPC

through a call to printf(). This function simply writes

data to a circular buffer in memory where it can be seen and

retrieved by the MCPC via the SCC’s system interface. Each

core has a different buffer allocated for this purpose. Running

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

BareMichael: A Minimalistic Bare-metal Framework for the Intel SCC 67

[00]: Hello, World -- I'm core 0!

[01]: Hello, World -- I'm core 1!

[05]: Hello, World -- I'm core 5!

[24]: Hello, World -- I'm core 24!

[47]: Hello, World -- I'm core 47!

[00]: I'm going to trigger core 47's LINT0 now.

[47]: I've been interrupted!
[47]: (SCC has been booted for 2 seconds)

[00]: Now I'm toggling core 47's LINT1.

[47]: Another interruption!
[47]: (SCC has been booted for 5 seconds)
^C
Thanks for flying MikeTerm!

Fig. 2. Sample output from MikeTerm. In this sample program, each booted
core says “Hello.” Then, after a short delay, core 0 toggles each of core 47’s
APIC interrupt pins with a delay in between. Core 47 has set these interrupt
vectors to point to handlers that print out the total time passed since boot up.
That time is kept track of by the real-time clock which operates based on the
APIC timer and the tile clock frequency.

on the MCPC, a utility called MikeTerm acts as a one-way

pseudo terminal, periodically polling each of the 48 buffers

and printing any text found therein. All output from MikeTerm

is preceded by a core identifier. Because MikeTerm scans the

shared memory buffers sequentially, it is not guaranteed that its

output will be printed in the order in which the cores wrote to

their respective buffers. The output from any given core will be

delivered in the order in which the core printed it, but ordering

of output between any two cores is not necessarily preserved.

Additionally, if a core is writing to its buffer faster than

MikeTerm is retrieving it, old data will be overwritten and lost

without being printed. No protections are built in to prevent

this. The default configuration of the framework allocates

64 KiB buffers which get polled by MikeTerm roughly once

per second, so data is likely to be lost when output rates are

greater than about 64,000 characters per second. BareMichael

currently offers no mechanism for interacting with running

SCC programs by feeding data in the other direction, from

the MCPC to the chip.

C. Build Environment and Dependencies

1) Dependencies: BareMichael leverages some open-

source utilities for image compilation, image loading, and

delivering output through MikeTerm. The framework uses

the i386-unknown-linux-gnu cross-compiler tools from

gcc version 3.4.5 to produce flat binary object files. sccKit is

a suite of utilities, provided by Intel, that run on the MCPC

and interact with the SCC. BareMichael is compatible with

sccKit version 1.4.1, and it uses the bin2obj, sccMerge,

sccBoot, and sccReset tools for loading binaries into

SCC memory and toggling reset pins of individual cores.

MikeTerm uses sccDump and sccWrite to access print

buffers in shared memory.

2) Compilation and Execution: Compilation of both

MikeTerm and the SCC image is managed using Makefiles

written for the GNU make utility. MikeTerm is written in

C++ and located in the miketerm directory. To compile it,

simply change to that directory and invoke make.

BareMichael expects the directory containing sccKit bina-

ries to be included in the user’s PATH environment variable.

Paths to the cross-compiler and bin2obj tool must be

specified in the framework’s Makefile, which is located at

compile/Makefile. The Makefile also includes a config-

uration variable for specifying a list of cores to boot. After

defining these few variables, compiling and running a bare-

metal application is very simple and straightforward. The

default make target builds the image; the run target loads

that image into SCC memory and releases the resets of the

specified cores. The main() function in test/main.c is

the entry point for the developer’s code, and if all of the

developer’s code is contained in that file (or in any set of files

already in the framework), a simple ‘make; make run’ is

all that is needed to get the code running on the SCC. Follow it

up with ‘../miketerm/miketerm’ to view output from

the cores. If additional source files need to be linked, one must

add them to one of two lists in the Makefile: C source files

get added to the C_FILES list, while assembly files belong

in the S_FILES list.

3) Advanced Capabilities: Though most developers proba-

bly will be satisfied with the default configuration of the build

environment, additional customization is possible. One simple

example is changing the memory address to which the main

image gets loaded onto the core. This is easy to modify as it

is already defined by a variable (IMG_ADDR) in the Makefile.

However, the framework has other potential capabilities – such

as loading and booting different images on different cores –

that are possible to realize but not as simple to exploit. For

this reason, we disclose the roles of a few files that the build

process creates along the way to creating a loadable SCC

image.

Initially, the source is compiled into three flat binary

object files: the reset vector, the “get protected” and

paging initialization code, and the main image. The file

compile/load.map is created and populated with the

names of these three objects, each preceded by the mem-

ory address (32-bit core address, not a memory controller

address) to which it is to be loaded. This file serves as

the input to the bin2obj tool, which creates a text file,

compile/battle.obj, that represents a composite of the

three objects. The sccMerge tool decides where to load the

composite image into SCC memory and how to set initial core

LUT configurations. The tool makes these decisions based

on three arguments: the number of cores to be served by

each memory controller (12 by default), the size per memory

controller in GiB (8 by default), and the contents of a .mt in-

put file. BareMichael creates the file compile/battle.mt

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

BareMichael: A Minimalistic Bare-metal Framework for the Intel SCC 68

and populates it with 48 lines, each of which identifies a

core, a memory controller, a “memory slot” (between 0 and

47, inclusive), and a .obj file. By default, this file assigns

to each core: the nearest memory controller; a memory slot

between 0 and 12, which is assigned in increasing numerical

order to the 12 cores sharing a memory controller; and the

object file that was built earlier, compile/battle.obj.

The output of sccMerge is a directory, compile/obj/,

and files therein that define the SCC memory contents and

the LUT configurations. This directory is provided as an

argument to sccBoot, which does the actual loading of SCC

memory and configuring of LUTs. Finally, the framework is-

sues the command ‘sccReset -r <list of cores>’

to release the reset pins of the desired cores.

Clearly, the build procedure may be altered in a few ways

– most notably through modifications to the .mt file – to

customize how SCC memory gets loaded and distributed

among cores. As an example, one may arbitrarily assign .obj

files to cores in the .mt file to boot heterogeneous images

among the cores. Of course, this requires building multiple

.obj images, so multiple load maps must be defined and fed

to bin2obj. Implementation of such alterations is left to the

interested developer.

III. INTEGRATION WITH RCCE

RCCE [4] is a message-passing software library that Intel

Labs designed and implemented in conjunction with the SCC

hardware. The current version of the library, V2.0, may be

compiled for use in SCC Linux, a kernel port also supplied

by Intel, or for use in a bare-metal environment. However,

because bare-metal RCCE is a library and not an environment

itself, it does not provide the execution framework needed to

run bare-metal applications on its own. In addition to a CPU

initialization process, RCCE demands:

• POSIX functions mmap() and munmap() for virtual

memory management,

• file operations such as open(), flush(), and

fprintf(),

• malloc() and free() for dynamic memory manage-

ment, and

• various additional C library functions.

These gaps are filled by the v6 release of BareMichael,

allowing the developer to use the unmodified bare-metal

RCCE library with BareMichael “out of the box.” While some

features such as dynamic memory management are properly

implemented for general use, others, including virtual memory

management functions and file operations, are tailored to be

compatible with RCCE, though not fully implemented to fulfil

their intended duties. These functions are not necessarily safe

for use outside of the purpose of supporting RCCE V2.0.

We now present some performance results for RCCE V2.0

running in the BareMichael environment. The simple “ping-

pong” benchmark [5] was run on cores 0 and 1 with the SCC

mesh and memory running at 800 MHz and core clocks of

533 MHz. As seen in Figure 3, the benchmark exhibits nearly

identical performance regardless of whether it is run within

 0

 20

 40

 60

 80

 100

 120

 140

 160

2
0

2
5

2
10

2
15

2
20

B
a
n
d
w

id
th

 [
M

iB
/s

]

Message Size [bytes]

iRCCE bare-metal
iRCCE SCC Linux
RCCE bare-metal
RCCE SCC Linux

Fig. 3. Ping-pong benchmark results for RCCE and iRCCE running in SCC
Linux and BareMichael environments.

SCC Linux or BareMichael. The same is seen when running

the benchmark with the pipelining send and receive functions

of iRCCE V1.2 [6] in both environments.

IV. IMPLEMENTATION OF XIPX OS

Due to its minimalistic nature, BareMichael is a suitable

foundation not only for running individual parallel applica-

tions, but also for launching operating system kernels. We

demonstrate this with Xipx, an SCC port of the Embedded

Xinu operating system that leverages the BareMichael frame-

work for hardware initialization [7]. The following section

presents the Xipx MPB device, which stands as an asyn-

chronous alternative to the RCCE/iRCCE way of managing

the SCC’s message passing hardware.

A. The Xipx MPB Device

Xipx exposes the SCC message passing buffers via the

standard Xinu device API [8]. Several instances of an MPB

device are created at boot time, and each one acts as a

two-way message passing channel. As an asynchronous and

interrupt-driven driver, the Xipx MPB device facilitates inter-

core communications in a way that is fundamentally different

than RCCE. The basic RCCE API uses a symmetric name

space model, meaning all cores access shared variables in the

same way – using a variable name and the core ID of the

MPB where the variable is stored. In order to preserve this

symmetry, certain RCCE routines must be encountered jointly

by all cores involved in the system. These routines are referred

to as “collective operations,” and saying they are “encountered

jointly” means that they get called in the same order with

respect to each other on all cores in the system. For example,

the RCCE_malloc(size) routine, which allocates size

bytes in the local MPB, is a collective operation – any core

calling RCCE_malloc(size) is counting on all other cores

to do the same in the same order with respect to other

collective operations. This ensures that all cores are returned

a pointer with the same offset from the beginning of their

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

BareMichael: A Minimalistic Bare-metal Framework for the Intel SCC 69

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 4 16 64 256 1024 4096

B
a
n
d
w

id
th

 [
M

iB
/s

]

Message Size [bytes]

iRCCE baremetal ping-ping
RCCE baremetal ping-pong

Xipx kern thr ping-ping
Xipx 2-to-1 kern thr ping-ping

Xipx 2-to-1 kern thr ping-pong
Xipx kern thr ping-pong
Xipx user thr ping-pong

Fig. 4. Benchmark performance of the asynchronous Xipx MPB device.

respective MPBs, and they can therefore safely assume the

correct location of the corresponding variable in any other

remote MPB.

The symmetric name space of a RCCE application is a

convenient and efficient way to manage MPB space for a

single application, but it is not capable of supporting multiple

simultaneous applications on the SCC. With multiple parallel

applications running at a time, one cannot guarantee the order

in which the applications will get CPU time on each core,

and therefore cannot guarantee that collective operations are

encountered jointly by all cores. As a simple example, consider

two different applications running on the SCC. One of them

runs on cores 0 and 1, the other on cores 0 and 2. Because core

0 is involved in both applications, but cores 1 and 2 are only

involved in one each, any collective operation core 0 performs

in one application is not performed by its communicating

partner in the other, therefore the name space symmetry is

broken.

In order to support an arbitrary graph of communicating

threads on SCC cores, the Xipx MPB device does not assume

a symmetric name space. Instead, Xipx treats each MPB as a

FIFO buffer. Messages are written to the receiving core’s MPB

with a header to indicate the core and channel from which it

was sent, the channel to which it should be delivered, and

the length of the payload. These messages can arrive from

any core in any order, and the presence of a new message

is signalled by an interrupt. The handler for this interrupt

searches through the local MPB devices to find one that is

open on the channel indicated by the message header. It then

copies the message to a pre-allocated buffer and sends a signal

to the thread that owns the device so that a subsequent (or

pending) call to read() will retrieve the data.

Figure 4 illustrates the performance of the Xipx MPB device

for a number of scenarios. All benchmarks were run with the

same hardware configuration as described in Section III. In

addition to the basic ping-pong benchmark, we executed the

“ping-ping” benchmark in which two cores each simultane-

ously send a message to each other and then simultaneously re-

write()

read()
write()

read()

Core A Core B

(a) Ping-Pong (b) Ping-Ping

Core A Core B

write()

read()

write()

read()

time

time

Fig. 5. Comparison of the communication patterns for (a) the ping-pong
benchmark and (b) the ping-ping benchmark.

trieve the message they were sent. The communication patterns

of the ping-pong and ping-ping benchmarks are illustrated

in Figure 5. In a two-to-one ping-X test, one core runs two

simultaneous ping-X benchmarks, each with a different partner

core. The measured bandwidth is total data flow in and out

of the shared core. For comparison, the RCCE ping-pong

performance is duplicated here and iRCCE ping-ping data is

introduced.

The Xipx MPB device achieves about 70% of the bandwidth

of RCCE and iRCCE in ping-pong and ping-ping benchmarks,

respectively. Xipx kernel threads slightly outperform user

threads due to the overhead associated with user thread system

calls. Though the Xipx device does not match the two libraries

in raw bandwidth, the two-to-one benchmarks it performs are

not even possible with those libraries. As we have already dis-

cussed, this is because the collective communications on which

the libraries rely prohibit their use in two concurrent programs.

Furthermore, the absence of a RCCE ping-ping benchmark is

due to the fact that the library’s synchronous semantics render

it incapable of implementing that communication pattern.

B. Porting an OS with BareMichael

Xipx is, in fact, the precursor of BareMichael; the frame-

work was extracted from Xipx as the initial set of operations

that set up a C execution environment in 32-bit protected

mode. Due to this development history, the authors cannot

comment on the effort required to port another x86-based OS

to the SCC using BareMichael as an aide. However, Xipx

diverges from BareMichael beginning in the startup()

routine, and we believe that the execution path preceding

that point is generic enough to be useful for other operating

systems as hardware initialization code. The initPaging()

routine may be replaced or modified to set up an appropriate

initial pagetable. Furthermore, regardless of the build process

used to generate the OS image, the build environment of

BareMichael should be useful for merging that image with

the framework’s initialization code and loading the resulting

composite image into SCC memory.

V. RELATED WORK

Microsoft has released a Visual Studio add-in and bare-

metal environment package for the SCC [9]. The source

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

BareMichael: A Minimalistic Bare-metal Framework for the Intel SCC 70

code for the minimalistic bare-metal environment is provided,

thereby allowing developers to modify the environment to suit

their needs. However, development options are limited as the

Microsoft tools must be run from a Windows machine that has

a network connection to the MCPC. Furthermore, the license

for this framework allows for non-commercial use only, and it

grants back to Microsoft the right to use, modify, and sell any

modifications to and/or derivative works of their framework.

BareMichael tools are run directly on the MCPC, and its

open-source, BSD-style license is less restrictive, permitting

redistribution and use of the framework and derivative works,

both in source and binary forms, for both commercial and

non-commercial purposes.

ETI provides a beta version of its SCC Development Frame-

work [10] for compiling and launching bare-metal applications

on the SCC. Applications get compiled into an ELF format

binary and are loaded and launched via a utility running on

the MCPC. The ETI framework is closed source, and therefore

lacks certain flexibilities offered by BareMichael such as the

ability to modify the boot process. The current release also

offers no means of specifying which cores to boot up, only

the number of cores. Furthermore, it forces the same image

to be loaded onto all cores at once. In contrast, BareMichael

is able to load different images to different cores with only

minor changes to the build process.

Finally, an Intel internal framework named BareMetalC

exists [5], but it is not released to the public due to licensing

limitations. The bare-metal RCCE library was created specif-

ically to support this framework.

VI. CONCLUSION

We have introduced BareMichael, a minimalistic, open-

source framework for loading and executing bare-metal pro-

grams on the Intel SCC architecture. Our lightweight frame-

work is packaged with a subset of the standard C library, and

features out-of-the-box support for Intel’s message-passing li-

brary, RCCE. A basic benchmark shows that message-passing

bandwidth for RCCE on bare-metal is nearly identical to that

for RCCE in SCC Linux.

A programmer developing in BareMichael is not limited

merely to launching individual parallel applications on the

SCC. The flexibility of the framework is demonstrated by our

implementation of Xipx, a port of the Embedded Xinu operat-

ing system, for which BareMichael serves as the foundation.

In order to allow multiple threads to simultaneously use the

SCC’s message passing buffer in a preemptive environment,

Xipx manages the MPB hardware at the device layer. Though

our simple device implementation does not match the band-

width of RCCE, it allows for asynchronous communications

and allows multiple processes to use the MPB simultaneously,

two features that are not possible with the basic RCCE API.

Future work on Xipx will investigate how to increase message-

passing performance at the device layer.

Typical usage of the SCC involves loading the private

memory of each core with an identical image. However, there

is interest in being able to boot different images on different

cores [11], [12]. The utilities of sccKit allow for this, and

we have been successful in using the BareMichael build

environment to load and boot heterogeneous images on the

SCC. A future release will incorporate this functionality.

The current, simplistic implementation of MikeTerm only

allows one-way serial communication from the SCC to the

MCPC. Two-way communication is desirable, and it may

be realized via the UART support that was introduced with

version 1.4.2 of sccKit. We plan to look into this possibility

for future releases as well.

We provide the BareMichael framework as an open-source

package in the hope that it will lower the entry barrier

for others wishing to develop and run bare-metal applica-

tions on the Intel SCC. The framework is available for

download at http://marcbug.scc-dc.com/svn/repository/trunk/

baremetal/baremichael/.

ACKNOWLEDGMENT

The authors would like to thank the members of the Intel

Many-core Applications Research Community – in particular

Ted Kubaska and Jan-Arne Sobania – for their prompt and

clear responses to questions arising during development on

the SCC. Thanks also to Intel Corporation for access to the

SCC hardware.

REFERENCES

[1] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain,
V. Erraguntla, M. Konow, M. R. M. Gries, G.Droege, T. Lund-Larsen,
S. Steibl, S. Borkar, V. K. De, and R. V. der Wijngaart, “A 48-core IA-32
processor in 45 nm CMOS using on-die message-passing and DVFS for
performance and power scaling,” IEEE Journal of Solid-State Circuits,
vol. 46, no. 1, pp. 173–183, Jan. 2011.

[2] SCC External Architecture Specification (EAS), Intel Corporation, Nov.
2010, revision 1.1.

[3] D. Brylow and B. Ramamurthy, “Nexos: A next generation embedded
systems laboratory,” SIGBED Review, vol. 6, no. 1, Jan. 2009, URL
http://sigbed.seas.upenn.edu/.

[4] T. Mattson and R. van der Wijngaart, “RCCE: A small library for many-
core communication,” Intel Corporation, Jan. 2011, software Version
2.0-release.

[5] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core
SCC processor: The programmer’s view,” in Proceedings of the 2010

ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, ser. SC ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 1–11. [Online]. Available:
http://dx.doi.org/10.1109/SC.2010.53

[6] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
improvements of programming models for the Intel SCC many-core
processor,” in High Performance Computing and Simulation (HPCS),

2011 International Conference on, Jul. 2011, pp. 525–532.
[7] M. W. Ziwisky, “A message-passing, thread-migrating operating system

for a non-cache-coherent many-core architecture,” Master’s thesis, Mar-
quette University, to be published.

[8] D. E. Comer, Operating System Design: The XINU Approach, Linksys

Version. CRC Press, 2011.
[9] (2011, Mar.) Visual Studio add-in and bare-metal environment for Intel

SCC. Microsoft Research. [Online]. Available: http://research.microsoft.
com/en-us/downloads/37ccb116-c67d-4c44-9181-898889b8352d/

[10] (2011, Aug.) ETI’s SCC development framework available. Intel MARC
forums. [Online]. Available: http://communities.intel.com/thread/17643/

[11] (2011, Jun.) Booting custom kernels on the SCC. Intel MARC forums.
[Online]. Available: http://communities.intel.com/message/128484/

[12] (2011, Sep.) rccerun to start different applications on cpu cores.
Intel MARC forums. [Online]. Available: http://communities.intel.com/
message/137635/

6Th MARC Symposium, 19–20 July 2012, ONERA ISBN: 978-2-7257-0016-8

BareMichael: A Minimalistic Bare-metal Framework for the Intel SCC 71

http://marcbug.scc-dc.com/svn/repository/trunk/baremetal/baremichael/
http://marcbug.scc-dc.com/svn/repository/trunk/baremetal/baremichael/
http://sigbed.seas.upenn.edu/
http://dx.doi.org/10.1109/SC.2010.53
http://research.microsoft.com/en-us/downloads/37ccb116-c67d-4c44-9181-898889b8352d/
http://research.microsoft.com/en-us/downloads/37ccb116-c67d-4c44-9181-898889b8352d/
http://communities.intel.com/thread/17643/
http://communities.intel.com/message/128484/
http://communities.intel.com/message/137635/
http://communities.intel.com/message/137635/

	Introduction
	The BareMichael Framework
	Platform Initialization
	MikeTerm
	Build Environment and Dependencies
	Dependencies
	Compilation and Execution
	Advanced Capabilities

	Integration with RCCE
	Implementation of Xipx OS
	The Xipx MPB Device
	Porting an OS with BareMichael

	Related Work
	Conclusion
	References

