
IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
0

0
9

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8009
July 2012

Project-Team Vertecs

Frequencies in forgetful

timed automata

Amélie Stainer

RESEARCH CENTRE

RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu

35042 Rennes Cedex

Frequencies in forgetful timed automata

Amélie Stainer

Project-Team Vertecs

Research Report n° 8009 — July 2012 — 25 pages

Abstract: A quantitative semantics for infinite timed words in timed automata based on the
frequency of a run is introduced in [BBBS11]. Unfortunately, most of the results are obtained only
for one-clock timed automata because the techniques do not allow to deal with some phenomenon
of convergence between clocks. On the other hand, the notion of forgetful cycle is introduced
in [BA11], in the context of entropy of timed languages, and seems to detect exactly these con-
vergences. In this paper, we investigate how the notion of forgetfulness can help to extend the
computation of the set of frequencies to n-clock timed automata.

Key-words: timed automata, frequencies, infinite words

Fréquences dans les automates temporisés

forgetful

Résumé : Une sémantique quantitative pour les mots temporisé infini basée
sur la fréquence d’une exécution a été introduite dans [BBBS11]. Malheureuse-
ment, la plupart des résultat sont obtenus pour des automates temporisés une
seule horloge parce que les techniques ne permettent pas de traiter certains
phénomnes de convergences entre horloges. D’autre part, la notion de cycle for-
getful a été introduite dans [BA11], dans le contexte de calcul de l’entropie des
langages temporisés. Cela semble capter exactement ces convergences. Dans
ce papier, nous cherchons comment cette notion de forgetfulness peut aider
à étendre le calcul de l’ensemble des fréquences aux automates temporisés à
plusieurs horloges.

Mots-clés : automates temporisés, fréquences, mots infinis

3

1 Introduction

Timed automata have been introduced in [AD94]. This model is commonly
used to represent real-time systems. A timed automaton is roughly a finite
automaton equipped with a finite set of continuous clocks which evolve syn-
chronously, are used in guards and can be reset along the transitions. The usual
semantics of timed automata for infinite timed words is the Büchi semantics
also presented in [AD94]. Recently, several works propose to add quantitative
aspects in verification problems, such as costs [ATP01, BFH+01] or probabili-
ties [KNSS02, BBB+08].

In particular, one can refine the acceptance condition by considering the
proportion of time elapsed in accepting locations. A quantitative semantics for
infinite timed words based on this notion of frequency has thus been introduced
in [BBBS11]. Lower and upper bounds of the set of frequencies of one-clock
timed automata are computed using the corner-point abstraction, a refinement
of the classical region abstraction, introduced in [BBL08]. These bounds can
be used to decide the emptiness of the languages with positive frequencies and
the universality for deterministic timed automata. Furthermore, the univer-
sality problem is proved to be non primitive recursive for non-deterministic
timed automata with one clock and undecidable with several clocks. The tech-
niques from [BBBS11] do not extend to timed automata with several clocks, and
all counterexamples rely on some phenomenon of convergence between clocks
along cycles. Beyond zenoness (when time converges along a run), other con-
vergence phenomena between clocks were first discussed in [CHR02]. Similarly
to zenoness, these convergences correspond to behaviors that are unrealistic
from an implementability point of view. A way to detect cycles with no such
convergences (called forgetful cycles) has been recently introduced in [BA11].
This notion of forgetfulness was used to characterize timed languages with a
non-degenerate entropy.

In this paper, we naturally propose to investigate how forgetfulness can be
exploited to compute frequencies. First, we show that forgetfulness of a cycle in
a one-clock timed automaton is equivalent to not forcing the convergence of the
clock, that is the clock is reset or not bounded. Note that forgetfulness does not
imply that all runs are non-Zeno. With this assumption, the set of frequencies
can be exactly computed using the corner-point abstraction. Then, we show
that in n-clock forgetful timed automata where time diverges necessarily along
a run, the set of frequencies can also be computed thanks to the corner-point
abstraction. On the one hand, the result for timed automata for which all cycles
are forgetful (strong forgetfulness) is as constructive as the theorem of [BBBS11]
over one-clock timed automata. On the other hand, to relax strong forgetfulness
and consider timed automata whose simple cycles are forgetful, the proof relies
on a set of canonical runs whose frequencies cover the set of all frequencies in
the timed automaton.

Our contribution can also be compared with that of [BBL08] on double
priced timed automata, that is, timed automata with costs and rewards. Indeed,
frequencies are a particular case of cost and reward functions. In [BBL08], either

4 2 PRELIMINARIES

a run of minimal ratio or an optimal family (i.e. ε-optimal runs for all ε > 0) is
computed, whereas, assuming forgetfulness, the exact set of frequencies can be
computed, not only the optimal ones. Our techniques might thus prove useful
for double priced timed automata and maybe more generally in other contexts.

The paper is structured as follows. In the next section we introduce the
model of timed automata, the quantitative semantics based on frequencies, for-
getfulness and the corner-point abstraction as a tool to study frequencies. In
Section 3, we propose a characterization of forgetfulness in one-clock timed au-
tomata and provide an expression for the set of frequencies for this restricted
class. Last, Section 4 deals with n-clock timed automata and explains how to
use forgetfulness to ensure that, when time diverges, the set of frequencies of a
timed automaton and the set of ratios in its corner-point abstraction are equal.

All the details omitted, due to space constraints, in this paper, can be found
in the Appendix.

2 Preliminaries

In this section, we recall the definition of timed automata with the quantitative
semantics based on frequencies introduced in [BBBS11]. Then the corner-point
abstraction is presented, firstly to define forgetfulness, and secondly as a tool
to compute frequencies in timed automata.

2.1 Timed automata and frequencies

Given a finite set X of clocks, a valuation is a mapping v : X → R+. The
valuation associating 0 with all clocks is written 0 and v + t is the valuation
defined, for every clock x of X by (v + t)(x) = v(x) + t. For X ′ ⊆ X, v[X′←0]

denotes the valuation equal to 0 for the clocks of X ′ and equal to v for the other
clocks. On the other hand, a guard over X is a finite conjunction of constraints
of the form x ∼ c where x ∈ X, c ∈ N and ∼∈ {<,≤,=,≥, >}. The set of
guards over X is noted G(X). Moreover, for a valuation v and a guard g, v
satisfies g with the usual definition, is written v |= g.

Definition 1 (timed automaton) A timed automaton is a tuple A = (L,L0,

F,Σ, X,E) such that: L is a finite set of locations, L0 ⊆ L is the set of initial
locations, F ⊆ L is the set of accepting locations, Σ is a finite alphabet, X is a
finite set of clocks and E ⊆ L×G(X)× Σ× 2X × L is a finite set of edges.

The semantics of a timed automaton A is given as a timed transition system
TA = (S, S0, SF , (R+ × Σ),→) where S = L × R

X
+ is the set of states, S0 =

L0 × {0} is the set of initial states, SF = F × R
X
+ is the set of accepting

states and →⊆ S × (R+ × Σ) × S is the transition relation composed of all

moves of the form (ℓ, v)
τ,a
−−→ (ℓ′, v′) such that τ > 0 and there exists an edge

(ℓ, g, a,X ′, ℓ′) ∈ E with v + τ |= g and v′ = (v + τ)[X′←0].
A run of a timed automaton A is a finite or infinite sequence of moves

starting in an initial state. In the sequel, unless otherwise stated, the run is

2.2 Corner-point abstraction and forgetfulness 5

assumed to be infinite. Thus, an infinite run ρ = s0
τ0,a0
−−−→ s1

τ1,a1
−−−→ s2

τ2,a2
−−−→ · · ·

is said to be Zeno if (
∑

0≤j≤i τj)i∈N is bounded.

Definition 2 (frequency) Given A = (L,L0, F,Σ, X,E) a timed automaton

and ρ = (ℓ0, v0)
τ0,a0
−−−→ (ℓ1, v1)

τ1,a1
−−−→ (ℓ2, v2) · · · an infinite run of A, the fre-

quency of F along ρ, denoted freqA(ρ), is defined as lim supn→∞

∑
{i≤n|ℓi∈F} τi
∑

i≤n
τi

.

Note that, as in [BBBS11], the limit sup is an arbitrary choice. In the sequel, our
goal is to compute the set of frequencies of the infinite runs ofA, which is written
Freq(A). To do so, we sometimes distinguish FreqZ(A) and FreqnZ(A) which
respectively denote the sets of frequencies of the Zeno and non-Zeno runs of A.
For example, Fig. 1 represents a timed automaton A with F = {ℓ1} (accepting
locations are colored in gray), such that Freq(A) = FreqnZ(A) = [0, 1[. Indeed,
there is no Zeno runs in A and there is an underlying constraint along the cycle
which ensures that delays elapsed in the accepting location are decreasing. This
implies that frequencies of an infinite run in A is of the form 1−ε

ε
with ε ∈]0, 1].

ℓ0 ℓ1 ℓ2

0<x<1,a,{y}

0<x<1,a,{x}

y=1,a,{y}

Figure 1: A timed automaton A to illustrate the notion of frequency.

2.2 Corner-point abstraction and forgetfulness

Given the maximal constant M appearing in a timed automaton A, the usual
region abstraction forms a partition of the valuations over X, the clocks of A.
In the following definition, ⌊t⌋ and {t} are respectively the integer part and the
fractional part of the real t. The region equivalence ≡A over valuations of X is
defined as follows: v ≡A v′ if (i) for every clock x ∈ X, v(x) ≤ M iff v′(x) ≤ M ;
(ii) for every clock x ∈ X, if v(x) ≤ M , then ⌊v(x)⌋ = ⌊v′(x)⌋ and {v(x)} = 0
iff {v′(x)} = 0 and (iii) for every pair of clocks (x, y) ∈ X2 such that v(x) ≤ M

and v(y) ≤ M , {v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)}. The equivalence classes
of this relation are called regions and RegA denotes the set of regions for the
timed automaton A. For each valuation v of the clocks of A, there is a single
region containing v, denoted by R(v). A region R′ is a time-successor of a
region R if there exists v ∈ R and t ∈ R+ such that v + t ∈ R′ and R′ 6= R.
The set of the time-successors of a region is naturally ordered, and the mapping
timeSucc : RegA → RegA associates with any region, its first time-successor.
The particular case of the region {⊥X} where all the clocks are larger than M

is fixed as follows : timeSucc({⊥X}) = {⊥X}.
Given a timed automaton, one can build a timed automaton having only

region guards while preserving the set of frequencies. In fact, we need to extend

6 2 PRELIMINARIES

the guards with constraints of the form x − y ∼ c where x, y ∈ X, c ∈ N and
∼∈ {<,≤,=,≥, >}, but both models are known to be equivalent. In the sequel,
timed automata are thus assumed to be split in regions and all the transitions
can be fired. Moreover, in order to take into account that zero delays are not
allowed in the semantics, transitions with a constraint of the form x = 0 are
removed and transitions with a punctual constraint (of the form x = c) arrive
directly in the time-successor (with constraint x > c) if x is not reset.

The corner-point abstraction is a refinement of the region abstraction, where
states are formed of a region with one of its extremal points. Thus, an A-pointed
region (pointed region for short) is a pair (R,α) where R is a region and α an
integer valuation (∈ (N≤M ∪⊥)X , ⊥ if the clock is not bounded in this region)
belonging to the closure of R (for the usual topology), in this case, α is said to
be a corner of R. The set of A-pointed regions is written Reg•A. The operations
defined on the valuations of a set of clocks are extended in a natural way to the
corners, with the convention that M+1 = ⊥ and ⊥+1 = ⊥. Then the timeSucc
function can be extended to pointed regions:

timeSucc(R,α) =

{

(R,α+ 1) if α+ 1 is a corner of R
(timeSucc(R), α′) otherwise

where ∀x, α′(x) = α(x) if x is bounded in timeSucc(R) and else α′(x) = ⊥.

Using this mapping, the construction of the corner-point abstraction is very
similar to the usual region automaton.

Definition 3 (corner-point abstraction) The corner-point abstraction of a
timed automaton A (corner-point of A for short) is the finite automaton Acp =
(Lcp, L0,cp, Fcp,Σcp, Ecp) where Lcp = L × Reg•A is the set of states, L0,cp =
L0×{({0}, 0)} is the set of initial states, Fcp = F×Reg•A is the set of accepting
states, Σcp = Σ∪{ε}, and Ecp ⊆ Lcp×Σcp×Lcp is the finite set of edges defined
as the union of discrete transitions and idling transitions:

• discrete transitions: (ℓ, R, α)
a
−→ (ℓ′, R′, α′) if there exists a transition

ℓ
g,a,X′

−−−−→ ℓ′ in A, such that R = g and (R′, α′) = (R[X′←0], α[X′←0]),

• idling transitions: (ℓ, R, α)
ε
−→ (ℓ, R′, α′) if (R′, α′) = timeSucc(R,α).

In particular, as a consequence of ⊥ + 1 = ⊥, there is an idling loop on each
state whose region is {⊥X}. The projection of a (finite or infinite) run ρ =

(ℓ0, v0)
τ0,a0
−−−→ (ℓ1, v1)

τ1,a1
−−−→ · · · of A, denoted by Proj(ρ), is the set of runs of

Acp such that for all indices i, the i-th discrete transition goes from a state
(ℓi, R(vi + τi), α) to a state (ℓi+1, R(vi+1), α

′) and for all clocks x ∈ X, the

number µi(x) of idling transitions of the form (ℓ, R, α)
ε
−→ (ℓ, R, α+1) since the

last reset of x has to be equal to ⌊vi(x) + τi⌋ or ⌈vi(x) + τi⌉. Note that if x is
bounded in a region R(vi+ τi), then µi(x) can be recovered from the associated
corner α. Given ε > 0, we say that a (finite or infinite) run ρ mimics up to
ε > 0 a (finite or infinite) run π in Proj(ρ) if, for all indices i, the i-th discrete

2.2 Corner-point abstraction and forgetfulness 7

transition of π goes from a state (ℓi, R(vi), α) such that, for all clock x ∈ X, if
α(x) 6= ⊥ then |vi(x) + τi − α(x)| < ε and otherwise |vi(x) + τi − µi(x)| < ε

(written ||vi + τi − α|| < ε abusing notations).
In the sequel we often consider cycles of the graph of A (cycles of A for

short), that is some sequences ℓ0ℓ1 · · · ℓn = ℓ0 such that for all 0 ≤ i ≤ n − 1
there exists an edge from ℓi to ℓi+1 in A. Similarly to runs, we define the
projection of a cycle C of A, denoted by Proj(C). If C is a simple cycle with
no region ⊥X , Proj(C) is the subgraph of Acp covered by the projection of any
finite run of A along C. If C is a simple cycle with some regions ⊥X , we simply
add the idling loops associated with each states of the form (ℓ, {⊥X},⊥X). To
define the projection of a cycle C which is not simple, we first unfold the timed
automaton A to obtain an equivalent simple cycle.

Forgetfulness was originally defined in [BA11] using the orbit graph. We
choose here to give an alternative definition of forgetfulness based on the corner-
point abstraction, which is less succinct, but will show useful for computing
frequencies.

Definition 4 (forgetfulness) • A cycle C in a timed automaton is for-
getful if Proj(C) is strongly connected;

• A timed automaton is forgetful if all its simple cycles are forgetful;

• A timed automaton is strongly forgetful if all its cycles are forgetful.

Roughly speaking, forgetful cycles are cycles where some choices of current de-
lays cannot impact forever on the future delays. These cycles can forget previous
delays in their long term behaviors. Fig. 1 represents a timed automaton, in-
spired by [CHR02], that is not forgetful. Indeed, the projection of the single
cycle of this timed automaton is the subgraph with bold edges in its corner-
point represented in Fig. 2, it is clearly not strongly connected. In fact, if from
location ℓ1 an a is read with x close to 0, it becomes impossible to read an a

with x close to 1 in the future. More precisely, delays in ℓ1 are smaller and
smaller. Note that in Fig. 2, we did not draw the edges labelled by ε which lead
to states from which no discrete transition can be fired in the future.

We then define the notion of aperiodicity of a forgetful cycle and forgetful
aperiodic timed automata.

Definition 5 (aperiodicity) • A forgetful cycle C in a timed automaton
is aperiodic if for all k ∈ N, the cycle obtained by the concatenation of k
iterations of C is forgetful.

• A forgetful timed automaton is aperiodic if all its simple cycles are aperi-
odic;

Strong forgetfulness trivially implies aperiodicity, whereas forgetfulness does
not. Indeed Fig. 3 represents a timed automaton which is forgetful and periodic.
The summary of its corner-point illustrates the periodicity. The cycle formed of
two iterations of the simple cycle is not strongly connected, it has two distinct

8 2 PRELIMINARIES

ℓ0,{0}, r

ℓ0,((0,1)
2,{x}={y}), ��

r

ℓ0,((0,1)
2,{x}={y}), ��r

ℓ1,((0,1)
2,{x}>{y}), ��r

ℓ1,((0,1)
2,{x}>{y}), ��

r

ℓ1,((0,1)
2,{x}>{y}), ��r

ℓ1,(0,1)×{0}, r

ℓ1,(0,1)×{0}, r

ℓ2,{0}×(0,1),
r

ℓ2,{0}×(0,1), r

ℓ2,((0,1)
2,{y}>{x}), ��r

ℓ2,((0,1)
2,{y}>{x}), ��

r

ℓ2,((0,1)
2,{y}>{x}), ��

r

ℓ2,(0,1)×{1}, r

ℓ2,(0,1)×{1}, r

ε

ε
a

a
ε

a
ε

εεa

ε ε

a

a

εε

a

Figure 2: Corner-point of the timed automaton from Fig. 1.

ℓ1

ℓ2

ℓ3

y=1,{y,z} x=1,{x,y}

z=1,{x,z}

ℓ2,(0,1)×{0}×{0},
rℓ1,{0}×(0,1)×{0},

r

ℓ1,{0}×(0,1)×{0},
r

ℓ3,{0}×{0}×(0,1),
rℓ3,{0}×{0}×(0,1),

r

ℓ2,(0,1)×{0}×{0},
r

Figure 3: A forgetful and periodic timed automaton.

connected components. The projection of a forgetful cycle C in Acp is strongly
connected, then given any state s of Acp in Proj(C), there are some simple cycles
containing s. Intuitively, such a cycle corresponds to a number of iterations of
C in A, this is the number of non-consecutive occurrences of states sharing the
same location of A as s. Thus, we can characterize the aperiodicity of a forgetful
cycle by a notion of pseudo aperiodicity of its projection.

Proposition 1 A forgetful cycle C is aperiodic if and only if (∗) the greatest
common divisor, over the simple cycles D of Proj(C), of the numbers of itera-
tions of C corresponding to D, is 1.

The characterization (∗) of aperiodicity allows one to check it in the corner-
point abstraction. The notion of aperiodicity will be a key for the relaxation of
strong forgetfulness in the second part of Section 4.3.

2.3 The corner-point abstraction as a tool for frequencies

In the corner-point, the idling transitions which do not change the current region
correspond to an elapse of one time unit. In the same way as in [BBBS11], these
abstract delays are used to abstract the frequencies in a timed automaton by
ratios in its corner-point abstraction. To do so, the corner-point is equipped
with costs and rewards as follows:

2.3 The corner-point abstraction as a tool for frequencies 9

• the reward of a transition is 1 if it is of the form (ℓ, R, α)
ε
−→ (ℓ, R, α′) and

0 otherwise;

• the cost of a transition is 1 if the reward is 1 and the location ℓ is accepting
and 0 otherwise.

In particular, the loops on the states whose region is {⊥X} have reward 1.
Thanks to these costs and rewards, the ratio of an infinite run of the corner-
point can be defined, similarly to the frequency in the timed automaton, as the
limit sup of the ratios of the accumulated costs over the accumulated rewards.
An infinite run in the corner-point is said reward-converging (resp. reward-
diverging) if the accumulated reward is finite (resp. not bounded). This notion
is close to zenoness of runs in a timed automaton even if some Zeno runs could be
projected to reward-diverging runs in the corner-point abstraction and, the other
way around, non-Zeno runs could be projected to reward-converging runs. Thus,
we write Rat(Acp), Ratr−d(Acp) and Ratr−c(Acp) for the sets of the ratios of the
infinite runs in Acp, the reward-diverging runs in Acp and the reward-converging
ones. We also say reward-diverging for a cycle of Acp whose accumulated reward
is positive.

A cycle of Acp is said accepting (resp. non-accepting) if all its locations are
accepting (resp. non-accepting) and it is said mixed if it has both accepting and
non-accepting locations.

In the sequel, we often use the following results established in [BBBS11]
and [BBL08].

Lemma 1 ([BBBS11]) For every run ρ in a one-clock timed automaton A,
there are two runs π and π′ in Proj(ρ) respectively minimizing and maximizing
the ratio such that: Rat(π) ≤ freqA(ρ) ≤ Rat(π′).
These runs are respectively called the contraction and the dilatation of ρ.

Lemma 2 ([BBBS11]) Let {S1, · · · , Sk} be the set of SCCs of Acp. The set
Ratr−d(Acp) of ratios of reward-diverging runs in Acp is equal to

⋃

Si∈SCC [mi,Mi]
where mi and Mi are the minimal and the maximal ratios for reward-diverging
cycles in Si.
Moreover, if A has a single clock, then FreqnZ(A) = Ratr−d(Acp).

Lemma 3 ([BBL08]) Consider a transition (ℓ, R, α) → (ℓ′, R′, α′) in Acp,
take a valuation v ∈ R such that δ(v) < ε and |v(x) − α(x)| = µv(x) with
µv(x) = min{|v(x) − p| |p ∈ N}, νv(x, y) = min{|v(x) − v(y) − p| |p ∈ N} and
δ(v) = max({µv(x)} ∪ {νv(x, y)}). There exists a valuation v′ ∈ R′ such that
(ℓ, v) → (ℓ′, v′) in A, δ(v′) < ε and |v′(x)− α′(x)| = µv′(x).

In particular, the latter lemma implies by induction that any run in Acp can be
mimicked in A up to any ε > 0.

10 3 FREQUENCIES IN ONE-CLOCK TIMED AUTOMATA

3 Computation of the set of frequencies in a one-

clock timed automaton

One-clock timed automata have simpler clock behaviors than the general model.
In fact, having a single clock in a timed automaton is quite close to forgetfulness
in the sense that each time the clock is reset, the timed automaton forgets all
the timing information. In this section, we present a new characterization of
forgetfulness and we show the equivalence between forgetfulness and strong
forgetfulness when there is a single clock. Last, we propose an expression for
the set of frequencies of forgetful one-clock timed automata.

In a one-clock timed automaton, a reset of the clock along a cycle is linked
to forgetfulness. The following lemma states the precise characterization of
forgetful cycles inspired by this observation.

Proposition 2 Let C be a cycle of a one-clock timed automaton. Then, C is
forgetful if and only if the clock is reset or not bounded along C.

In fact, Proposition 2 implies that the cycle obtained by concatenation of
any sequence of forgetful cycles in a one-clock timed automaton is also forgetful.
Indeed, if the clock is reset or not bounded along each cycle of the sequence, it
is clearly the case for the sequence itself.

Corollary 1 A one-clock timed automaton is forgetful iff it is strongly forgetful.

Recall that, as illustrated in Fig. 1, Corollary 1 (as well as Proposition 2) does
not hold for n-clock timed automata.

Let us now consider the set of the frequencies in a one-clock timed automa-
ton. By Lemma 2, if there are only non-Zeno runs in a timed automaton, then
the set of the frequencies equals to the set of the ratios in the corner-point.
Firstly, the particular case where a timed automaton has a reward-converging
cycle in its corner-point containing both accepting and non-accepting locations
is easy to treat as stated in the following proposition.

Proposition 3 Let A be a forgetful one-clock timed automaton. If there is a
mixed reward-converging cycle in its corner-point Acp, then FreqZ(A) =]0, 1[
and FreqnZ(A) = [0, 1].

Now, for the general case, it is possible to consider only timed automata which
do not have such cycles in their corner-point. This allows us to give a general
expression for the set of frequencies of a forgetful one-clock timed automaton.
For readability, let us define some notations. Given C a cycle of A having a
reward-converging cycle in its projection, we write p(C) for the set of ratios of
cycle-free prefixes ending in reward-converging cycles of Proj(C) and c(C) for
the set of ratios of co-reachable reward-diverging cycles. By convention, we let
max(∅) = −1 and min(∅) = 2. Then, we define M(C) = max(p(C) ∪ c(C)),
m(C) = min(p(C) ∪ c(C)),

M(Acp) = max{M(C) | C acc. cycle of A with a r.-c. cycle in Proj(C)} and

m(Acp) = min{m(C) | C non-acc. cycle of A with a r.-c. cycle in Proj(C)}.

11

ℓ0

ℓ1

ℓ′1

ℓ2

x=1,a,x:=0x=100,a,x:=0

x=100,a,x:=0x=1,a,x:=0

0<x<1,a

Figure 4: A non-forgetful counterexample for Theorem 1.

Theorem 1 Let A be a forgetful one-clock timed automaton. If there is a mixed
reward-converging cycle in Acp, then FreqZ(A) =]0, 1[and FreqnZ(A) = [0, 1].
Otherwise: Freq(A) = Ratr−d(Acp) ∪

[

0,M(Acp)
[

∪
]

m(Acp), 1
]

.

Proof The first part of Theorem 1 is established in Proposition 3, let us now
assume that there is no mixed reward-converging cycles in Acp. By Lemma 2,
for non-Zeno runs: FreqnZ(A) = Ratr−d(Acp). The rest of the proof is based on
the following lemma dealing with plain reward-converging cycles.

Lemma 4 Let C be a cycle of a one-clock forgetful timed automaton A:

• If Proj(C) contains a non-accepting reward-converging cycle, then the set
of frequencies of the infinite runs of A ending in C is

[

0,M(C)
[

.

• If Proj(C) contains an accepting reward-converging cycle , then the set of
frequencies of the infinite runs of A ending in C is

]

m(C), 1
]

.

Back to the proof of the second part of Theorem 1, the inclusion from right
to left is straightforward from the non-Zeno case and Lemma 4.

Thanks to the equality in the non-Zeno case, the inclusion from left to right
is only needed for the subset FreqZ(A). Let thus ρ be a Zeno run. It can
be projected on a reward-converging run in the corner-point. This projection
necessarily ends in a strongly connected subgraph of the corner-point having zero
rewards and containing only accepting locations or only non-accepting locations.
We study the case where all the locations of the end are non-accepting, the other
case is symmetric. By Lemma 4, the prefix of ρ corresponding to the prefix of
the projection before the infinite suffix in the subgraph has a frequency smaller
than M(C) for a cycle C having a reward-converging projection. To conclude,
the frequency of ρ is smaller than the prefix because all the locations of the
suffix are non-accepting. �

Note that if the timed automaton is not forgetful, the form of the set of
the frequencies can be very different from the expression given in Theorem 1.
Fig. 4 gives an example of non-forgetful timed automaton such that Freq(A) =
]

1
101 ,

2
102

[

∪
]

100
101 ,

101
102

[

. There is no reward-diverging run in Acp, M(Acp) = −1
because there is no accepting reward-converging cycle in Acp and m(Acp) =

1
101 ,

hence the expected set of frequencies would be] 1
101 , 1]. The difference with

forgetful timed automata is that the accumulated delays in ℓ2 cannot diverge,
therefore it is not possible to increase the frequency as much as necessary. In
particular, there is no infinite run of frequency 1. More generally, this example

12 4 EXTENSION TO N -CLOCK TIMED AUTOMATA

illustrates a simple manner to obtain, for the set of frequencies, any finite union
of open intervals included in [0, 1].

4 Extension to n-clock timed automata

There is a real gap between one-clock timed automata and n-clock timed au-
tomata. For example, in [LMS04], the reachability problem for one-clock timed
automata is proved to be NLOGSPACE-complete, whereas it becomes NP-hard
with two clocks. As an other example, the language inclusion problem which
is undecidable in the general case [AD94], becomes decidable with at most one
clock [OW04]. In this section, we use forgetfulness and time divergence to
compute the set of frequencies in n-clock timed automata. Note that these
assumptions are strong but can be justified by implementability concerns.

4.1 Forgetfulness in n-clock timed automata

The goal is to find some reasonable assumptions to obtain a class of timed
automata whose sets of frequencies are exactly sets of ratios of their corner-point
abstractions. We do not want to complicate our problem dealing with Zeno runs
as we did in one-clock timed automata for which the Zeno case is already non-
trivial. More precisely, we want to extend the result FreqnZ(A) = Ratr−d(Acp)
of [BBBS11], from one-clock timed automata to n-clock timed automata. To
do so, we first assume that timed automata are strongly non-Zeno, that is in
every cycle there is one clock which is reset and lower guarded by a positive
constant. This implies that there is no reward-converging run in its corner-
point (strong reward-divergence [BBL08]). For one-clock timed automata strong
non-zenoness is strictly stronger than forgetfulness and implies that Freq(A) =
FreqnZ(A) = Ratr−d(Acp). Unfortunately, this assumption is not sufficient for
n-clock timed automata. For example, the timed automaton in Fig. 5, taken
from [BBBS11], is strongly non-Zeno and such that Freq(A) =]0, 1] 6= {0} ∪
{1} = Rat(Acp). In fact, this timed automaton is a typical example of forgetful

ℓ0 ℓ1 ℓ2
0<x<1,a,y:=0

x>1,a,x:=0

y=1,a,y:=0

Figure 5: A non-forgetful strongly non-Zeno timed automaton.

timed automaton. Delays in ℓ1 have to be larger and larger along cycles, which
ensures that frequency 0 cannot be reached in A. On the contrary, in Acp, either
the accumulated reward in ℓ1 is 0 (ratio 0) or there is one idling transition with
reward 1 from a state of Acp with location ℓ1 and in the future, there always
are such transitions in states of the form (ℓ1, R, α) (ratio 1). Therefore, except

4.2 Techniques to compute the frequencies 13

over one-clock timed automata, forgetfulness and strong reward-divergence are
not comparable.

The following theorem is the first illustration of the utility of forgetfulness
to compute the set of frequencies in timed automata with several clocks.

Theorem 2 Let A be a strongly non-Zeno and forgetful timed automaton. Then
Freq(A) ⊆ Rat(Acp).

sketch The idea is that the infinite run consisting in an infinite iteration of
the cycle of minimal ratio in Acp has a ratio smaller than the frequency of
any infinite run in A. Symmetrically, there is a run of ratio larger than the
frequency of any infinite run in A. The theorem is thus straightforward if there
is a single SCC in Acp. Otherwise, forgetfulness is the key to obtain the inclusion
Freq(A) ⊆ Rat(Acp) instead of simple bounds. Indeed, given an infinite run ρ

ending in an SCC of A, by forgetfulness of the cycles, all the projections of ρ end
in the same SCC of Acp. The proof can thus be done in this SCC by neglecting
the prefix thanks to time divergence. �

In the sequel, we see how strongly non-zenoness and forgetfulness can be useful
to obtain the other inclusion. The problem is not trivial even under these
assumptions and the proof techniques could certainly be interesting in different
contexts. This section allows to understand several subtleties of forgetfulness.

4.2 Techniques to compute the frequencies

In this section, we explain the technical aspects which allow the extension to
n-clock timed automata. First, thanks to Lemma 3 we know that any infinite
run in a corner-point Acp can be mimicked up to any ε > 0. This lemma implies
that respective lower and upper bounds of the sets of ratios and frequencies are
equal, but as seen with the timed automaton in Fig. 5, Freq(A) can be very
different from Rat(Acp) when A is not forgetful. Second, the following lemma
established in [Pur00] expresses the preservation of some barycentric relations
between valuations along cycles.

Lemma 5 ([Pur00]) Let A be a timed automaton and an edge (ℓ, g, a,X ′, ℓ′)
such that (ℓ, v) → (ℓ′, v′) and (ℓ, w) → (ℓ′, w′) with R(v) = R(w) and R(v′) =
R(w′), then for any λ ∈ [0, 1] (ℓ, λv + (1− λ)w) → (ℓ′, λv′ + (1− λ)w′).

Naturally, this lemma can be extended to finite sequences of edges by induction.

The combination of both lemmas helps us to prove that if along a given
cycle one can go from every corner to a fixed corner α, then along this cycle one
can go as close to α as necessary in A. This way of reducing the distance to
corners is the key for the extension to n-clock timed automata. Indeed, when
time diverges (non-zenoness), if an infinite run ρ in A mimics an infinite run π

of Acp up to ε converging to 0 along ρ (i.e. for all ε there is a suffix of ρ which
mimics the corresponding suffix of π up to ǫ), then freqA(ρ) = Rat(π).

14 4 EXTENSION TO N -CLOCK TIMED AUTOMATA

Lemma 6 Let A be a timed automaton and ρ = (ℓ0, v0)
τ0,a0
−−−→ (ℓ1, v1)

τ1,a1
−−−→

· · ·
τn−1,an−1

−−−−−−−→ (ℓ0, vn) with R(v0) = R(vn) =: r be a finite run of A. If given a
corner αn of the region r and for all (ℓ0, r, α) there is a finite run from (ℓ0, r, α)

to (ℓ0, r, αn) in Proj(ρ), then for all ε > 0, there exists ρ′ = (ℓ0, v0)
τ ′
0,a0

−−−→

(ℓ1, v
′
1) · · ·

τ ′
n−1,an−1

−−−−−−−→ (ℓ0, v
′
n) such that Proj(ρ′) = Proj(ρ) and ||v′n − αn|| < ε.

Proof Let us start by fixing, for all corners α, a valuation vεα in r which is very
close to α. Thanks to these valuations, we then define a barycentric expression
for v0. Let Ωr the set of the corners of r. As the closure of r is the convex
hull of Ωr (for the usual topology of RX), there exists (vεα ∈ r)α∈Ωr

and (λα ∈
[0, 1])α∈Ωr

such that
∑

α∈Ωr
λα = 1, v0 =

∑

α∈Ωr
λαv

ε
α and ||vεα − α|| < ε. By

assumptions, there are some paths in Proj(ρ) going from each α to αn. Thanks
to Lemma 3, there are some finite runs from each of our valuations vεα very
close to the corners α to some valuations vεα,αn

very close to a common corner
αn. Formally, there exists (vεα,αn

∈ r)α∈Ωr
and some finite runs (ρα)α∈Ωr

from
(ℓ0, v

ε
α) to (ℓ0, v

ε
α,αn

) in A with ||vεα,αn
− αn|| < ε. Then, by Lemma 5, there

is a finite run ρ′ from (ℓ0, v0) to the state with location ℓ0 and the valuation
equal to the barycenter of the valuations vεα,αn

which is very close to αn by the
triangle inequality. Formally, there is a finite run ρ′ from (ℓ0, v0 =

∑

α∈Ωr
λαv

ε
α)

to (ℓ0,
∑

α∈Ωr
λαv

ε
α,αn

). To conclude, ρ′ is as needed because, by the triangle
inequality, ||

∑

α∈Ωr
λαv

ε
α,αn

− αn|| ≤
∑

α∈Ωr
λα||v

ε
α,αn

− αn|| < ε. �

To use Lemma 6, we need to find a cycle in Acp which allows, in some sense,
to synchronize all the corners of a region to a common one. Indeed, each run
in Acp corresponds to a run in A, the existence of ρ is not a real constraint.
Moreover, Lemma 6 does not depend on forgetfulness of timed automata. The
following lemma illustrates how forgetfulness can help to use Lemma 6.

Lemma 7 Let A be a timed automaton, X its set of clocks and a sequence
(ci)1≤i≤K with K = 2|X|+1, of forgetful cycles containing the location ℓ of A
such that all the cycles obtained by concatenation of the cycles of a subsequence
(ck)1≤i≤k≤j≤K are forgetful. Then for all pairs of corners (α, α′) of the region

R associated to ℓ, there is a finite run of the form (ℓ, R, α)
π1−→ (ℓ, R, α1)

π2−→

· · · (ℓ, R, αK−1)
πK−−→ (ℓ, R, α′) such that for all indices i, πi corresponds to one

iteration of ci.

Proof Abusing notations we write π ∈ Proj(c) for ”π corresponds to one
iteration of c” Consider the subset construction with s0 = {(ℓ, R, α)} and

si+1 = {(ℓ, R, β′) | ∃(ℓ, R, β) ∈ si, ∃π
′
i ∈ Proj(ci), s.t. (ℓ, R, β)

π′
i−→ (ℓ, R, β′)}.

First, there are at most |X| + 1 corners in R, hence there are at most
K = 2|X|+1 subsets of (ℓ, R, all) := {(ℓ, R, α) |α corner of R}. Second, by for-
getfulness of the ci’s, if si = (ℓ, R, all) then for all j > i, sj = (ℓ, R, all). Third,
there is no other cycles in the subset construction. Indeed, if there exists in-
dices i < j such that si = sj 6= (ℓ, R, all) := {(ℓ, R, α) |α corner of R} then
the cycle obtained by concatenation of cycles ci+1, · · · , cj is not forgetful, which
contradicts strong forgetfulness.

4.3 Frequencies in n-clock forgetful timed automata 15

As a consequence, the subset construction loops in (ℓ, R, all) forever after a
cycle-free prefix whose length is thus smaller than K. Hence, there is a finite
run of the form (ℓ, R, α)

π1−→ (ℓ, R, α1)
π2−→ · · · (ℓ, R, αK−1)

πK−−→ (ℓ, R, α′) such
that for all indices i, π ∈ Proj(ci). �

In the next sections we use these two lemmas to prove that our assumptions are
sufficient to ensure the existence of such synchronizing cycles along infinite runs
that we want to mimic in A.

4.3 Frequencies in n-clock forgetful timed automata

We first consider the case of strongly forgetful timed automata. Thanks to
Lemma 6 and by observing the consequences of forgetfulness of all the cycles
in a timed automaton, we obtain a theorem which is as constructive as the
corresponding result for one-clock timed automata from [BBBS11].

Theorem 3 Let A be a strongly non-Zeno strongly forgetful timed automaton.
Then, for every infinite run π in the corner-point of A, there exists an infinite
run ρπ in A such that π ∈ Proj(ρπ) and freqA(ρπ) = Rat(π).

The idea is to prove, for every run π in Acp, the existence of synchronizing cycles
infinitely often along π which allow to mimic it up to an ε converging to 0.

Proof Along the infinite run π of Acp, there is a pair (ℓ, R) which appears
infinitely often, possibly with different corners. Let (ℓ, R, αi)i∈N be a sequence
of the occurrences of (ℓ, R) and (πi)i∈N the sequence of factors of π leading
respectively from (ℓ, R, αi) to (ℓ, R, αi+1). Each πi corresponds to a forgetful
cycle ci in A hence by Lemma 7, for all pairs (α, α′) of corners of the region R,

there is a finite run of the form (ℓ, R, α)
π′
1−→ (ℓ, R, α1)

π′
2−→ · · · (ℓ, R, αK−1)

π′
K−−→

(ℓ, R, α′) with K = 2|X|+1 and such that for all indices i, π corresponds to
one iteration of ci. In particular, this finite run belongs to the projections of
exactly the same runs as π1 · π2 · · ·πK . As a consequence, for any finite run

ρ = (ℓ, v0)
τ0,a0
−−−→ (ℓ1, v1)

τ1,a1
−−−→ · · ·

τn−1,an−1

−−−−−−−→ (ℓ, vn) with R(v0) = R(vn) = R

and such that π0.π1 · · ·πK ∈ Proj(ρ), for any corner βn of the region R and for
all (ℓ, R, α) there is a finite run from (ℓ, R, α) to (ℓ, R, βn) in Proj(ρ). Hence,
Lemma 6 can be applied to such finite runs. Then, for any ε and given ρi a
mimicking of π until (ℓ, R, αi), Lemma 6 ensures the existence of a extension of
ρi to ρi+K mimicking π until (ℓ, R, αi+K), such that ||v − αi+K || < ε where v

is the last valuation of ρi+K . In words, it is possible to fix some finite factors
along π which allow to go as close as necessary from a corner of π along a
mimicking ρ. Out of these factors, the distance to the corners of π can be
preserved (Lemma 3). To conclude, these factors can be placed infinitely often
to allow the convergence of the distance to the corner of π to 0, but as rarely
as necessary to be neglected in the computation of the frequency. �

Theorem 3 implies that the set of ratios Rat(Acp) is included in the set of fre-
quencies Freq(A). This implies, together with Theorem 2, that if A is a strongly

16 4 EXTENSION TO N -CLOCK TIMED AUTOMATA

non-Zeno and strongly forgetful timed automaton, then Freq(A) is equal to
Rat(Acp). Strong forgetfulness is a realistic assumption from an implementabil-
ity point of view, but is not satisfactory because of its difficulties to be checked.
Indeed, checking if a cycle is forgetful can be done thanks to the corner-point,
but there is an unbounded number of cycles in a timed automaton and we do
not know any property which would allow, in general, to avoid to check them
all. As a consequence, it is important to relax this assumption. We did not
succeed in proving that strong forgetfulness can be relaxed in Theorem 3. Nev-
ertheless, the inclusion Rat(Acp) ⊆ Freq(A) still holds when strong forgetfulness
is replaced by forgetfulness and aperiodicity, both of which can be checked on
the corner-point abstraction.

Theorem 4 Let A be a strongly non-Zeno, forgetful and aperiodic timed au-
tomaton. Then, Rat(Acp) ⊆ Freq(A).

sketch The idea is to prove that, for every rat ∈ Rat(Acp), there exists an
infinite run πrat in Acp of ratio rat and such that there exists a infinite run
ρπ of A with freqA(ρπ) = Rat(πrat) and πrat ∈ Proj(ρπ). Thanks to Lemma 2
and by reward-divergence, we have the following expression for the set of the
ratios Rat(Acp) = Ratr−d(Acp) =

⋃

Si∈SCC [mi,Mi]. In fact, for all i, each value
rat ∈ [mi,Mi] is the ratio of a run πrat in Acp which alternates with the suitable
proportions some cycles ci of ratio mi and Ci of ratio Mi in Si. The prefix
to go to ci and the finite runs to go from a cycle to the other are neglected in
the computation of the ratio by performing sufficiently many iterations at each
step. Such a πrat can be mimicked up to any ε > 0 (Lemma 3). We thus use
Lemmas 7 and 6 to decrease ε. The finite runs to go from Ci to ci are simply
concatenated with 2|X|+1 iterations of ci. The cycle ci corresponds, in Acp to a
cycle (simple or a concatenation of a single simple cycle) ĉi. Aperiodicity entails
that the concatenations of ĉi are forgetful. Hence, Lemma 7 ensures that the
finite run constituted of 2|X|+1 iterations of ci is synchronizing and Lemma 6
that ε can decrease each time that πrat goes from Ci to ci. �

We thus obtain the following result as a corollary of Theorems 2 and 4.

Corollary 2 Let A be a strongly non-Zeno, forgetful and aperiodic timed au-
tomaton. Then, Freq(A) = Rat(Acp).

Strong forgetfulness implies aperiodicity, hence Theorem 3 cannot help to estab-
lished this equality in a more general case. However, note that Theorem 4 does
not imply Theorem 3. In Theorem 3, not only the inclusion Rat(Acp) ⊆ Freq(A)
is established, but also for all infinite runs π in Acp there exists an infinite run ρ

in A with π ∈ Proj(ρ) and freqA(ρ) = Rat(π). In Theorem 4, this is only proved
for some infinite runs π of Acp.

4.4 Discussion about assumptions

As explained above, our will to relax the strong forgetfulness is due to its diffi-
culties to be checked. Strong forgetfulness clearly implies at once forgetfulness

17

and aperiodicity, but a first open question is whether the other implication is
true. Indeed, we did not find any example of forgetful aperiodic timed automa-
ton which is non-strongly forgetful. We think that, either there are some one
but probably with more than two clocks which is difficult to visualize, or the im-
plication is true and proving this statement could lead to fundamental advances
in the understanding of the corner-point abstraction.

An other open question is whether the hypothesis of aperiodicity in Theo-
rem 4 can be relaxed. We use this hypothesis in the proof, but could not find
counterexamples. We built some examples of periodic timed automata as in
Fig. 3 , but periodic timed automata seem to be degenerated and in particular,
based on punctual guards which implies bijections between runs in the timed
automaton and those in its corner-point abstraction.

5 Conclusion

A quantitative semantics based on frequencies has recently been proposed for
timed automata in [BBBS11]. In this paper, we used the notion of forgetfulness
introduced in [BA11] to extend the results about frequencies in timed automata.
On the one hand, thanks to forgetfulness we can compute the set of frequencies
in one-clock timed automata even with Zeno behaviors, whereas only the bounds
of this set was computed in [BBBS11]. On the other hand, with forgetfulness
and time-divergence inspired by [BBL08], we compute the set of frequencies
in a class of n-clock timed automata, whereas techniques of [BBBS11] were
not applicable. In the future, we would like to investigate more deeply the
difference between forgetfulness and strong forgetfulness with the hope to extend
Theorem 3. Moreover, Theorem 2 is less constructive than the equivalent result
for one-clock timed automata which use notions of contraction and dilatation of
a run. It would be interesting to see if forgetfulness could help to extend these
constructions to n-clock timed automata. Finally, our main tool presented in
Lemma 6 can be easily used for the scheduling problem in timed automata with
costs and rewards studied in [BBL08]. Thus, we can prove that in strongly
non-Zeno forgetful timed automata, there is always an infinite run whose ratio
is optimal. We hope that Lemma 6, which is fundamental, will be useful for a
lot of problems for which the corner-point is suitable.

Acknowledgements: I am very grateful to Nathalie Bertrand for useful dis-
cussions and detailed proofreadings of this paper. Moreover, I would like to
thank the anonymous reviewers for their very interesting remarks which allowed
me to significantly improve this paper.

References

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

18 REFERENCES

[ATP01] R. Alur, S. L. Torre, and G. J. Pappas. Optimal paths in weighted
timed automata. In Proceedings of the 4th International Workshop
on Hybrid Systems: Computation and Control (HSCC’01), vol. 2034
of Lecture Notes in Computer Science, pp. 49–62. Springer, 2001.

[BA11] N. Basset and E. Asarin. Thin and thick timed regular languages. In
Proceedings of the 9th International Colloquium on Formal Modeling
and Analysis of Timed Systems (FORMATS’11), vol. 6919 of Lecture
Notes in Computer Science, pp. 113–128. Springer, 2011.

[BBB+08] C. Baier, N. Bertrand, P. Bouyer, Th. Brihaye, and M. Größer.
Almost-sure model checking of infinite paths in one-clock timed au-
tomata. In Proceedings of the 23rd Annual IEEE Symposium on
Logic in Computer Science (LICS’08), pp. 217–226. IEEE, 2008.

[BBBS11] N. Bertrand, P. Bouyer, T. Brihaye, and A. Stainer. Emptiness and
universality problems in timed automata with positive frequency.
In Proceedings of the 38th International Colloquium on Automata,
Languages and Programming (ICALP’11), vol. 6756 of Lecture Notes
in Computer Science, pp. 246–257. Springer, 2011.

[BBL08] P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal infinite schedul-
ing for multi-priced timed automata. Formal Methods in System
Design, 32(1):3–23, 2008.

[BFH+01] G. Behrmann, A. Fehnker, Th. Hune, K. G. Larsen, P. Petters-
son, J. Romijn, and F. W. Vaandrager. Minimum-cost reachabil-
ity for priced timed automata. In Proceedings of the 4th Inter-
national Workshop on Hybrid Systems: Computation and Control
(HSCC’01), vol. 2034 of Lecture Notes in Computer Science, pp.
147–161. Springer, 2001.

[CHR02] F. Cassez, T. A. Henzinger, and J.-F. Raskin. A comparison of
control problems for timed and hybrid systems. In Proceedings of
the 5th International Workshop on Hybrid Systems: Computation
and Control (HSCC’02), vol. 2289 of Lecture Notes in Computer
Science, pp. 134–148. Springer, 2002.

[KNSS02] M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Au-
tomatic verification of real-time systems with discrete probability
distributions. Theoretical Computer Science, 282:101–150, 2002.

[LMS04] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking
timed automata with one or two clocks. In Proceedings of the 15th In-
ternational Conference on Concurrency Theory (CONCUR’04), vol.
3170 of Lecture Notes in Computer Science, pp. 387–401. Springer,
2004.

REFERENCES 19

[OW04] J. Ouaknine and J. Worrell. On the language inclusion problem for
timed automata: Closing a decidability gap. In Proceedings of the
19th IEEE Symposium on Logic in Computer Science (LICS’04), pp.
54–63. IEEE, 2004.

[Pur00] A. Puri. Dynamical properties of timed automata. Discrete Event
Dynamic Systems, 10(1-2):87–113, 2000.

20 REFERENCES

Appendix for Section 2

Equivalence of notions of forgetfulness

Let us recall the context of [BA11] to detail the equivalence of definitions of
forgetful cycle. Timed automata are assumed to be split in regions and regions
are open and bounded. The orbit graph is then defined in the following way.

For a closed region r, let us denote by V (r) = {S1, ..., Sp} its vertices.
Any point x in the region is uniquely described by its barycentric coordinates
λ1, · · · , λp, i.e. non-negative numbers such that Σp

i=1λi = 1; x = Σp
i=1λiSi.

Given two regions r and r′, we call orbit graph any graph G with vertices
V (r) ⊔ V (r′) if r and r′ are different and V (r) otherwise, and with edges going
from V (r) to V (r′). Informally, an edge from S to S′ means that the clock
vector at the vertex S can reach the clock vector at S′ along some transition or
path. Orbit graphs compose in the natural way: for G1 on regions r1 and r′1,
and G2 on regions r2 and r′2, their product G = G1 · G2 is defined if r′1 = r2.
In this case, G is an orbit graph on r1 and r′2. There is an edge from S to
S′′ in G if and only if there exists S′ such that (S, S′) and (S′, S′′) are edges
of G1 and G2 respectively. Whenever r′1 6= r2, we put G1 · G2 equal to some
special (absorbing) element 0. The set G of orbit graphs, augmented with 0 and
a neutral element 1 has a structure of finite monoid.

An orbit graph G can be represented by its adjacency matrix M of size
|V (r)| × |V (r′)|. Products in the monoid of orbit graphs are easy to compute
using matrices: M(G1 ·G2) = M(G1)⊗M(G2) where the ”product” ⊗ is defined
by

(A⊗B)ij = max
k

min(Aik, Bkj).

There exists a natural morphism γ : E∗ → G from paths to orbit graphs defined
as follows. For a transition e between r and r′, we define the orbit graph γ(e)

on r and r′ with edges {(S, S′) ∈ V (r) × V (r′)|∃t, S
(e,t)
−−−→ S′}. For a path

π = e1...en, we define γ(π) = γ(e1)...γ(en) (it will be called the orbit graph of
the path π). For the empty path we have γ(ε) = 1, and for any non-consecutive
path γ(π) = 0.

Then there are 4 equivalent characterizations of the forgetful cycles. The
definition which is easily compared with ours is the completeness of the orbit
graph of this cycle. In fact, by definition of the projection in the corner-point
abstraction, the orbit graph of a cycle c on a region r corresponding to the
location ℓ can be computed from Proj(c). The vertices of r are the corners of r.
c being a cycle, γ(c) has only the vertices V (r). Thus, there is an edge from a
vertex S of r to a vertex S′ of r in γ(c) iff there is a finite run in Proj(c) from
(ℓ, r, S) to (ℓ, r, S′). Hence, γ(c) is complete iff Proj(c) is strongly connected.

REFERENCES 21

Appendix for Section 3

Proof of Proposition 1

Let us assume that (∗) is false, and prove that C is aperiodic. Let d 6= 1 be
the greatest common divisor defined in (∗). It implies, in particular, that for all
states s of Acp in Proj(C), there is a cycle (not necessarily simple) in Proj(C)
containing s and corresponding to md iterations of C for m ∈ N. The goal is to
prove that the cycle Cd of A constituted by d iterations of C is not forgetful.
Let us fix s = (ℓ, R, α) and s′ = (ℓ, R, α′), two states such that an iteration
allows to go from s to s′, that is there is a finite run in Proj(C) corresponding to
a single iteration of C in A (with the same correspondence as for cycles). If Cd

is forgetful, then there exists a finite run from s′ to s in Proj(C) corresponding
to md iterations of C in A. Then, by cutting the cycles along this finite run,
we obtain a finite cycle-free run from s′ to s in Proj(C) corresponding to m′d

iterations of C in A with m′ ≤ m. Hence, there is a simple cycle containing s

(and s′) and corresponding to m′d + 1 iterations of C in A, which contradicts
the definition of d.

On the other hand, if there is a set of pairs (si, di) of states of Acp in Proj(C)
and numbers of iterations of C corresponding to a simple cycle containing si,
such that the greatest common divisor of di’s is 1, then we want to prove that,
for all k, we can go from any state s = (ℓ, R, α) to any state s′ = (ℓ, R, α′)
of Acp in Proj(C) with a finite run corresponding to a number of iterations
multiple of k. Let us consider a finite run of Acp in Proj(C) corresponding to k′

iterations which visits all the si. Thus, we can add k′′ iterations from these si
such that k′ + k′′ = k′′′k because the greatest common divisor is 1. Therefore
C is aperiodic. �

Proof of Proposition 2

Let A be a timed automaton with a single clock x:

⇒: Let us prove the contraposition of this first implication. Let C be a cycle
in which x is bounded and not reset. Then, any region guard r along C

is bounded and not punctual (only positive delays are allowed, see the
explanations of the splitting in regions Section 2.2). Let α and α + 1 be
the two corners of r. There is no reset along C hence α is not reachable
from α+ 1 in Proj(C). Thus, the cycle C is not forgetful.

⇐: Let us prove this second implication by inspecting two cases. First, let C
be a cycle in which x is not bounded. Then, all the corners are ⊥. The
projection of C is thus trivially strongly connected, hence C is forgetful.
Second, let D be a cycle in which x is reset. Then, let s = (ℓ, {0}, 0) be a
state of Proj(D). From s, all the states of Proj(D) are reachable, because
there is a single clock (regions have at most two corners, and the second
corner can be reached from the first one by one idling transition). More-
over, s is reached at each iteration of the cycle D. Hence, the projection

22 REFERENCES

of D is strongly connected, thus D is forgetful. �

Proof of Proposition 3

The considered cycle is in the projection of a cycle C which is forgetful, then by
Proposition 2, either x is reset or x is not bounded along C. As the guards of
C are some regions and there is a reward-converging cycle in Proj(C), either all
the guards are 0 < x < 1 (if x is reset) or all the guards are x > M (if x is not
bounded). Then, the accumulated delay can be as small as necessary, but a delay
close to 1 can be elapsed at each iteration because x is bounded and hence x is
reset. Moreover, zero delays being forbidden, this delay can be elapsed in any
location along C. As a consequence, by alternating delays in accepting and non-
accepting locations with the appropriate proportions before ending by a very
small accumulated delay, we can construct a Zeno run with any frequency in
]0, 1[. For the same reason, the two runs respectively maximizing and minimizing
the ratio along C (dilatation and contraction) are reward-diverging and are
respectively of frequency 1 and 0. Thanks to Lemma 2 which expresses the set
of frequencies of non-Zeno runs, the set of frequencies FreqnZ(A) is equal to
[0, 1]. To conclude, note that frequencies 0 and 1 are not possible for Zeno runs
because zero delays are forbidden, cycles in Proj(C) are mixed and no delay can
be neglected in Zeno runs. �

Proof of Lemma 4

Let C be a cycle such that Proj(C) contains a non-accepting reward-converging
cycle. C being forgetful and zero delays being forbidden, there is also a reward-
diverging cycle in Proj(C). In particular, there is some non-Zeno runs ending
in C and they all have frequency 0. As a consequence, only Zeno runs are
considered in the sequel of the proof.

Let ρ be a Zeno run in A ending in C. The cycle C is forgetful, hence
Proj(C) is strongly connected. Let ρ0 be a prefix of ρ whose projection ends
in a state (ℓ, r, α) of a reward-converging cycle in Proj(C). Note that, in this
case, any state (ℓ, r, α′) belongs to a reward-converging cycle of Proj(C) too. In
particular, the dilatation of ρ0, which is the run in Proj(ρ0) which maximizes the
ratio, ends in such a state. The dilatation thus has a ratio smaller than M(C).
As a consequence of Lemma 1, ρ0 has a frequency smaller than M(C).The
locations of C are non-accepting, hence the frequency of ρ is strictly smaller
than M(C) too.

Moreover for any ε > 0, a prefix πε
0 ending in a reward-converging cycle of

Proj(C) and such that M(C)− ε < Rat(πε
0) ≤ M(C) can be built by definition

of M(C). Then, π0 can be mimicked up to ε by a prefix ρε0 (Lemma 3) and
then this prefix can be prolongated with an accumulated delay smaller than ε

to obtain an infinite run ρε ending in C and having a projection ending in a
reward-converging cycle of Proj(C). Such a run can thus be constructed with a
frequency as close as necessary to M(C). As a consequence, the value M(C) is
the strict upper bound of the frequencies of infinite runs ending in C.

REFERENCES 23

Finally, we can construct an infinite run with any frequency in
[

0,M(C)
[

by iterating as much as necessary in C with delays close to 1 (C is forgetful
hence any delay 0 < d < 1 is possible at each iteration) in order to decrease the
frequency as much as necessary.

The second item of the Lemma 4 can be proved in the same way. �

24 REFERENCES

Appendix for Section 4

Proof of Theorem 2

In this proof, we use the following proposition established in [BBL08].

Proposition A ([BBL08]) Let A be a strongly non-Zeno timed automaton,
and let ρ be a infinite run in A. Then, the infinite run π consisting in the
infinite iteration of the cycle of minimal ratio in Acp is such that Rat(π) ≤ ρ.

In the proof of Proposition A, it is shown that the infinite run consisting in an
infinite iteration of the cycle of minimal ratio in Acp has a ratio smaller than the
frequency of any infinite runs in A. Symmetrically, the infinite run consisting
in an infinite iteration of the cycle of maximal ratio in Acp has a ratio larger
than the frequency of any infinite runs in A.

On the other hand, let Si (i ∈ I) be an SCC of Acp. Writing mi (resp.
Mi) the minimum (resp. maximum) of the ratios of cycles in Si, we have
Ratr−d(Acp) =

⋃

Si∈SCC [mi,Mi] (Lemma 2). Also, since A is strongly non-
Zeno hence Rat(Acp) = Ratr−d(Acp). Hence, if m = mini mi and M = maxi Mi,
then Freq(A) ⊆ [m,M].

Let us first consider the case where Acp has a single strongly connected
component (SCC for short). The set of ratios of Acp is thus the interval [m,M]
where m and M are respectively the minimal and maximal ratios for a cycle of
Acp. Therefore, the set of frequencies of A is a subset of the set of the ratios in
Acp.

The general case (strongly non-Zeno and forgetful timed automata with sev-
eral SCC) is more complex because Rat(Acp) is not convex a priori. The key is
the forgetfulness. Let ρ be an infinite run of A. Let π and π′ be two infinite
runs of Acp in Proj(ρ) and S and S′ the respective SCC of Acp in which they
end. The run ρ being infinite, there is a simple cycle of A which is visited
infinitely often. This cycle is forgetful by assumption, hence its projection is
strongly connected and S = S′. Now, let us consider B the sub-automaton of
A containing only the SCC in which ρ ends. The prefix of ρ can be neglected
in the computation of the frequency of ρ, Bcp ⊆ Acp and Bcp has a single SCC,
hence freqA(ρ) ∈ Rat(Bcp) ⊆ Rat(Acp). �

Proof of Theorem 4

We want to prove that for all rat ∈ Rat(Acp), there exists an infinite run πrat

in Acp of ratio rat and such that there exists an infinite run ρπ of A with
freqA(ρπ) = Rat(πrat) and πrat ∈ Proj(ρπ).

By Lemma 2, there is a simple expression for the set of ratios of Acp:
Rat(Acp) =

⋃

Si∈SCC [mi,Mi], where mi (resp. Mi) is the minimum (resp.
maximum) of the ratios of cycles of the SCC Si of the corner-point.

Let [mi,Mi] be the interval associated with the SCC Si of Acp, and a rational
number rat ∈ [mi,Mi]. Then, one can build an infinite run πrat in Acp with ratio
rat and ending in Si by alternating iterations of a cycle ci of ratio mi and a cycle

REFERENCES 25

Ci of ratio Mi in Si with the suitable proportion. The prefix to go to ci and
the finite run to go from a cycle to the other are neglected in the computation
of the ratio by multiplying the number of iterations in both cycles at each step,
by a common integer. If rat is a real number, there exists a rational increasing
sequence converging to it, and the same construction can be done by following
the successive proportions corresponding to the elements of the sequence.

πrat can be mimicked up to ε for any ε > 0 (Lemma 3). However this is not
sufficient to ensure that there exists a run ρπ of A with freqA(ρπ) = Rat(πrat)
and πrat ∈ Proj(ρπ). Then, we extend in πrat, the finite run πCi,ci to go from
Ci to ci by a finite run πcK

i

with K = 2|X|+1 which iterates K times ci in Acp.
We thus want to prove that it allows to mimic πrat up to an ε converging to
0. This finite prolongation has a constant length and will be neglected in the
computation of the ratio in the same way as πCi,ci even if it means to increase
the numbers of iterations of Ci and ci at each step.

The cycle ci is in the projection of a cycle (simple or a concatenation of a
single simple cycle) ĉi. ĉi is forgetful and aperiodic by assumption (the con-
catenation of an aperiodic cycle is aperiodic), that is all the concatenations of
ĉi’s are forgetful. Then, thanks to Lemma 7, for all pairs of states (ℓ, R, α)
and (ℓ, R, α′) of Proj(ĉi), there is a run πα,α′ from (ℓ, R, α) to (ℓ, R, α′) corre-
sponding to 2|X|+1 iterations of ĉi. In particular, πα,α′ and π

c2
|X|+1

i

belong to

the projections of exactly the same runs. As a consequence, for any finite run

ρ = (ℓ, v0)
τ0,a0
−−−→ (ℓ1, v1)

τ1,a1
−−−→ · · ·

τn−1,an−1

−−−−−−−→ (ℓ, vn) iterating 2|X|+1 times ĉi,
for any corner αn of the region R associated to ℓ and for all (ℓ, R, α) there is a
finite run from (ℓ, R, α) to (ℓ, R, αn) in Proj(ρ). In other words, Lemma 6 can
be applied to such finite runs. Hence, by building πrat in Acp as explain above
and replacing the finite runs πCi,ci to go from Ci to ci by the concatenation
πCi,ciπc2

|X|+1

i

, πrat can be mimicked up to an ε decreasing (as much as needed)

at each round (i.e. each time that we go from Ci to ci). �

RESEARCH CENTRE

RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu

35042 Rennes Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

