N
N

N

HAL

open science

Evaluation of Modeling Tools Adaptation

Amine El Kouhen, Cedric Dumoulin, Sébastien Gérard, Pierre Boulet

» To cite this version:

Amine El Kouhen, Cedric Dumoulin, Sébastien Gérard, Pierre Boulet. Evaluation of Modeling Tools

Adaptation. 2012. hal-00706701v2

HAL Id: hal-00706701
https://hal.science/hal-00706701v2

Submitted on 11 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00706701v2
https://hal.archives-ouvertes.fr

Evaluation of Modeling Tools Adaptation

Amine El Kouherr 2 Cédric Dumoulif, Sébastien GératdPierre Boulét

! commissariat & I'Energie Atomique (CEA) LIST, Labtorg of Model Driven Engineering
for Embedded Systems (LISE) Point Courrier 94, 91 18f sur Yvette, France
{am ne. el kouhen, sebastien. gerard}@ea.fr
2 Laboratoire d’'Informatique Fondamentale de LilléHL) CNRS UMR 8022
U.S.T.L Cité Scientifique, F-59655 Villeneuve d’As€gdex, France
{am ne. el - kouhen, cedric.dunmoulin, pierre.boulet}@ifl.fr

Abstract. This paper proposes an evaluation for modelimjg@daptation by
observing how well they can be used to customizplycal editors for a
sample DSML proposed as a case study. It also sissuthe current state of the
art, and compares what was done in every tool #athave evaluated,
according to relevant criteria. It was perceivegking our research that there is
a clear need in term of criteria that supports watahg Editor's customization
quality. For this aim, we propose such criteriatiis paper. We review tool's
adaptation approaches, adaptation categories iagattdferent points of view
and evaluate tools, with respect to their proditgtiand expressivity according
to the proposed evaluation criteria.

Keywords: MDE, modeling tools, customization, assesnt, quality, metrics

1 Introduction

Models are powerful tools to express the structbedavior, and other properties
in all areas of engineering and each of the haiehses [17]. While models are very
widespread, an explicit definition of a Domain-SfiedModeling Language (DSML)
and an explicit manipulation of its models are elgsconnected to some support
tools, called Computer-Aided Software Engineerimgjg or simply “CASE tools”.

The design and generation of such tools can be diiher using program-based
environment or applying model-based tools calledaM@ASE tools [12]. The intent
of meta-CASE tools is to capture the specificabbthe required CASE tool and then
generate automatically the tool. In general, meASE tools provide generic CASE
tool components that can be customized and inatadtiinto particular CASE tools
[11].

In the past years, a strong interest in model-drigagineering has resulted in
many Domain-Specific Languages (DSL's). Among thdvamtages of DSLs
identified in [44], is that DSML allows focusing dhe concepts of the considered
domain. This also implies that designers who areadly acquainted with the domain
will use more intuitively the language and tools iabh support this language.
However, these approaches have obvious drawbariengwhich the main one is
the additional efforts to design modeling languafgem scratch [45]. Consequently,
this has resulted in various Meta-CASE tools, wipcbmise to reduce these efforts,
and support, in different ways, customization ofdeling environmentsThe purpose

2 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

of this paper is to evaluate the most relevanttfatenodeling tools customization,

which is the graphical editors’ customization, byaleating some of these
tools/technologies, namely the IBM Rational Softevérchitect (RSA), the Generic

Modeling Environment (GME), MetaEdit+, Obeo Designend the Graphical

Modeling Framework (GMF). A common case study, Ham®a simplified version of

the Business Process Modeling Notation (BPMN),seduto assess the maturity of
these tools.

In Section 3 we evaluate such tools by observing well they can be used and/or
reused (adapted) to customize graphical editoraaf@PMN diagram, for which a
simplified metamodel is provided, we discuss alsstamization capabilities and
features, for each tool. But before that, we inticel an overview of the evaluation
workbench, and retained criteria and metrics tesssools. In Section 4, we discuss
the evaluation criteria, results, and lessons kxhduring the creation of editors with
these tools. Finally, we discuss our future worll aanclude respectively in Sections
5 and 6.

2 Evaluation Workbench

We introduce in this section, an overview of thealaation context and criteria
chosen to assess tools quality.

21 Case Study

The Business Process Management Initiative (BPMI) has developed a standard
Business Process Modeling Notation (BPMN). BPMN is dedicated to provide a
notation that is readily understandable by all bess users, from the business
analysts that create the initial drafts of the psses, to the technical developers
responsible for implementing the technology that perform those processes, and
finally, to the business people who will manage amhitor those processes [21].

For the purpose of this assessment, we have craati#dple metamodel that includes
a subset of the language concepts (Figure 2). feimmodel is not meant to be a
realistic representation of BPMN (this is outsile scope of this study). A complete
specification of the BPM notations and semanticslmafound in [4].

Swimlane Connecting Object frem Flow Object R

to

=T =

Sequence Flow Association Gateway

type
(&3]
OR OR AND

Fig. 1. Simplified BPMN metamodel

Date Object

X Event Type

5t
Intermediate
End

Evaluation of Modeling Tools Adaptation 3

BPMN defines aBusiness Process Diagram (BPD), which is based on a
flowcharting technique tailored for creating graghi models of business process
operations. A Business Process Model, then, iswaank of graphical objects, which
are activities (i.e., tasks) and the flow contrthlat define their order of performance
[21].

In terms of concrete syntax elements, there are lfagic categories of elements:

Flow Objects, Connecting Objects, Swimlanes, andifaots. The symbols
corresponding to them are summarized in Figure 3.

Core Set of BPMN Elements

Flow Connecting
. N Swimlanes Artifacts
Objects Object
Data Object
Pool
Events Sequence B
Flow
(
s
O Sl
Text
Activities Message Flow Annotation

T by
addi
Lanes (within a Pool)

G

ys

o o,

Fig. 2. Graphical elements of BPMN - Copyright © ZODE’IG.org

— ==y

2.2 Evaluation criteria and metrics

Two evaluation approaches were suggested by P. ghelggi and @. Haugen in [1]:

Qualitative approaches cover case studies, analysaslanguage and the tool by
experts for various characteristics, and monitogngterviewing users.

For the quantitative evaluation, they identified vesal metrics dffort,
understandability, Usability...etc). In our study we put a particular emphasis on the
following evaluation criteria, which are most redéw in our context. For each
criterion we propose some metrics to quantify amkceetize this evaluation:

» Customization level criterionwhat is the proportion of customizable partsha t
tool?

As metric, we propose the adaptability le(l) equals to:
AL =100 x (C_functions / S_functions) (1)

Where:

C_functions is the number of customizable functions in a tool

S functions the total number of functions. This number is edetined by
identifying the components of the system as seethéyend-user. There are three
steps in the process of counting tool functions:

— ldentify the scope and boundary of the count: regme the boundary of the
evaluated application.

4 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

— Determine the primary process areas. An elememptargess is the smallest unit
of activity that is meaningful to the user.

— Identify for each process, data functions (externplts, external outputs and
external inquiries) and transactional functiongdjifaces to other systems, and
internal logical files). They must be unique, ussrognizable and non-repeated
field functions.

This methodology is based on the best known metfi@bunting functions which
is the Function points Analysis. It was definedlBiv9 by Allan Albrecht at IBM
[29]. Function points (FPs) can be used to estirtteaelative size and complexity
of software [36].

» Graphical expressiveness and completeness crite@an we represent all the
notation elements? Can we use the full range afaVigariables [28]? And what's
their complexity?

For theGraphical expressiveness we apply the D. Moody’s scale [9] to our context
to measure this criterion; it consists in assesekdapability to represent the eight

visual following variables: retinal variables (skagexture, brightness, size and
color) - planar variables (Horizontal position avektical position).

For theGraphical completeness we assess the tools capability to represent ai sor
of shapes weighted on a scale of 0 — graphs neepte (textual editors), 1 - minor

graphical completeness, to 5 - strong graphicalptetaness.

» Tool openness criteriaThis criterion is composed of four sub criteria

o Tool building approaches: what are the approaches used to describe
the semantic and graphical parts of the editord, (Broprietary
languages, standard language, open language...)

o Extensihility: is it possible to add additional languages or iratg
with other tools? And How?

0 Reusability: Can we reuse existing parts/functionalities of tmal?
The tool support separation of concerns?

0 Maintainability: this aspect was not thoroughly studied in our
evaluation; it was difficult to provide metrics éassess this criterion.
However, there are some approaches in the softwaverse
engineering and software quality fields which pdviestimations
of the tools maintainability (e.g. Total number obde lines,
number of code lines per object, methods numberopgact, total
number of methods, ratio of code lines/number ofhods, ratio of
code lines/number of objects, Ratio comment liregc lines),
specialization index, level of abstraction, cycldimecomplexity
etc.).

» Tool Usability criteria Does the generated tool’s editor support featweshieve
the specific goal of the context of use?

There are many metrics and categorizations that mrused to measure Ul
usability [31]. Usability is discussed also in [15effah et al. define usability as
“whether a software product enables a particularofeisers to achieve specific
goals in a specific context of use” and cover & wsability factors: efficiency,

effectiveness, productivity, satisfaction, learfighi safety, trustfulness,

accessibility, universality and usefulness for savproblems. Braz et al. in [33]
sort some of these metrics in two categories:

Evaluation of Modeling Tools Adaptation 5

— Countable metrics: they are extracted from datdéectdd from observations,
interviews, survey, logs...

— Calculable metrics: represent the result from nadteal calculations,
algorithms, or heuristics with observational datd aountable metrics.

Constantine and Lockwood [32] propose also someusHbility metrics and
classify them in three main categories:

1. Structural metric: based on the Ul surface propsrti
2. Semantic metrics: based on the Ul content.
3. Procedural metrics: based on the tasks (user tedgasks or automatic tasks)

In [15] Seffah et al. identify more than 127 metrio measure usability. We retain
the most used factors of usability and their metfar our evaluation, which are:
efficiency, effectiveness and accessibility. Wevide also a feedback for the
learnability and satisfaction factors, which arpeledents to users’ preferences.

a. For efficiency we have chosen the Essential Efficie[EE) [32]:
EE = 100 x (S_essential / S_enacted) (2)

Where:
EE: Estimates how closely a given user interface gresipproximates the ideal
expressed in the use case model
S _essential= the number of user steps in the essential use cerrative
(conceptual steps).
S_enacted= the number of steps needed to perform the use wéth the user
interface design. Rules for counting the numberthaf enacted steps [32] are
following:

— Entering data into one field by continuous typihgttis terminated by an enter,
a tab, or some other field separator.

— Skipping over an unneeded field or control by tabbdr by means of any other
navigation key.

— Selecting a field, an object, or a group of itemclicking, double-clicking, or
sweeping with a pointing device.

— Selecting a field, an object, or a group of itenmthva keystroke or series of
connected keystrokes.

— Switching from keyboard to pointing device or fropointing device to
keyboard.

— Triggering an action by clicking or double-clickimgith a pointing device on a
tool, a command button, or some other visual object

— Selecting a menu or a menu item by a pointing aevic

— Triggering an action by typing a shortcut key ory keequence, including
activating a menu item through keyboard access.keys

— Dragging-and-dropping an object with a pointingidev

b. For effectiveness we have chosen the formula pexpby Bevan and Macleod
in [34] for calculating task effectivenesEE):
TE = Quantity x Quality / 100 3)

Where:
Quantity is a measure of the amount of a task completeal iser. It is defined
as the proportion of the task goals representethénoutput of the task and
Quality is a measure of the degree to which the outputaehkithe task goals.

6 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

c. For accessibility we have chosen both next mettiestask visibility TV) [32]
and the visual coherenc€Q) [35] metrics.

TV =100 x &V, / S_total))

Where:
TV: The proportion of interface objects or elemem@sassary to complete a task
those are visible to the user.
S_total= total number of enacted steps to complete thecase.
V; = Feature visibility (O or 1) of enacted step i.eTVisibility depends on the
types of enacted steps. There are four differeteipoaies of enacted steps:

1. Hidden: hidden operations draw on the user's internal Kadge of the
application and its use apart from any informattommunicated by the visible
user interface. Hidden steps include:

0 Typing a required code or shortcut in the abserfcany visual
prompting or cue.

0 Accessing a feature or features having no visibfEesentation on
the user interface.

0 Any action involving an object or a feature thatyntee visible but
the choice of which is neither obvious nor evideased on visible
information on the user interface.

Opening a generic context menu by clicking on blaakkground with the right
mouse button or typing a keyboard shortcut withbaing prompted is an
example of hidden step. Hidden enacted steps aignasl a visibility of 0.

2. Exposing: An enacted step is exposing if its function isg&in access to or
make visible some other needed feature withouticgus resulting in a change
of interaction context. Exposing actions include:

Opening a drop-down list.

Opening a menu or submenu.

Opening a context menu by right-clicking on somgcb
Opening a property sheet dialogue for an object.
Opening an object or drilling down for detail.

Opening or making visible a tool palette.

Opening an attached pane or panel of a dialogue.
Switching to another page or tab of a tabbed diadog

O O0OO0OO0OO0OO0OO0OOo

Exposing actions have an intermediate effect ok v¥&sbility and are assigned
a visibility of 0.5, unless they are or must be aaoplished using hidden
features, in this case, they are classified asdmdohd given a visibility of 0.

3. Suspending: An enacted step is suspending if its function igdam access to or
make visible some other needed feature and it samseesults in a change of
interaction context. Suspending actions include:

o0 Opening a dialogue box.

o Closing a dialogue or message box.

o0 Switching to another window.

o Switching to or launching another application.

Suspending or context-switching actions that oasuthe first or last enacted
step of extensions or other optional interactioagehan intermediate effect on
task visibility since they provide access to feasuthat may not be needed in all

Evaluation of Modeling Tools Adaptation 7

enactments; they are assigned a visibility of Quless they are or must be
accomplished using hidden features, in this cds®y are classified as hidden
and their visibility is set to 0. Context changkattare non-optional, that are
required in most or all enactments, have a strdfegteon task visibility; these
are assigned a visibility of O.

4. Direct: An enacted step is a direct action if it is notds&d, exposing, or
suspending. In other words, direct actions are raptished through visible
features whose choice is evident and which do aptesto gain access to or
make visible other objects. These are assignesilility of 1.

The visual coherencgVC): shows how well a user interface keeps related
components together and unrelated components apart.

VC =100 x G/ (2'Ng x (Nc- 1)/ 2) (5)
Where:
Gy: the number of related visual component pair©iingroup k. With:
Gk =2'R; (6)

Ri,j = semantic relatedness between components iiargtgup k, <R <1

In practice, semantic relatedness can be simplifiefist two valuesR;; = 1 if
components i and j belong to the same semanticteclusnd are, therefore,
substantially relatedR;;= 0, otherwise.

Ny = the number of visual components in the grouf isual component is:

0 Any user interface widget.
0 An external label not on or embedded in a userfaute widget.
0 A pane, panel, or frame around any one or more etidgr labels.

Simple lines separating one part of the visualrfatee from another are not
considered to be visual components in themselves.

» Required resources criterianHow much Time and effort is required to model,
debug, and generate artefacts [8]?

We may also add time and effort to understand nsodéde adequate metric unit
for this criterion is the man-day unit. This measuent was done by a single
researcher with a background in modeling field ittnecessarily an expert of the
evaluated tools.

e License nature criterion what is the kind of license required to use the?oo
(Commercial, Proprietary, Open Source, Freeware...)

» Produced Artefacts criteriawhat are characteristics of artefacts produced thigh
graphical editor?

0 Analysis capabilities: Can we easily analyze or transform models
produced with the graphical editor?

o Artefect quality: what is the quality level of models produced with
the graphical editor? One quality benchmark thatowed useful is
described by T. Clarks et al. in [30]. The authde§ine five levels
of produced artefact quality:

1. The lowest level: a simple abstract syntax is dafinbut not
implemented yet in a tool. The static and dynaneimantics of
the language is informal and incomplete. Therenispecific tool

8 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

support: an existing language is repurposed, campdi with the
DSL is manually maintained and models are mosttgrpreted
by users.

2. The abstract syntax and static semantics have leeely
defined, implemented in a tool and validated. Thaaghic
semantics is still informally defined.

3. The abstract syntax is completely implemented aested.
Concrete syntax has been defined for the langubge,not
implemented yet. Optimization of the language detture has
started.

4. The concrete syntax of the language has been ingpitsd and
tested. Users create models either visually antuadly. The
language architecture has been optimized for reasd
extensibility. Tool support for dynamic semanticegins to
appear.

5. The topmost level: all aspects of the language hheen
modeled, including its semantics. Models writterihia language
can be processed by the tool. Examples thereofideclcode
generation, execution, simulation, verification. eTtlanguage
architecture is well optimized for reuse.

o Artefact format: What kind of persistence format of these models?
(Open format, structured support, binary files...)

3 Evaluation Results

We have chosen in this evaluation, only tools whpcbvide the characteristics of a
Meta-CASE tool (i.e. they generate modeling tool3hese tools present a
representative sample of adaptable tools accordiiiferent approaches (proprietary
languages, model-based approach...): RSA represdint®ads supporting UML
extension mechanism and using the iconic representaof stereotypes (as
MagicDraw, Enterprise Architect...). MetaEdit+ and GMepresent tools which use
proprietary languages to build editors. Obeo Demigrepresents a model-driven
approach to specify modeling tools and finally wavén chosen the open source
framework GMF, because it is the most known andl usehnology to build editors
(used in Papyrus...)

3.1 IBM Rational Software Architect (RSA)

IBM's Rational Software Architect (version 8.0) is a UML 2.0 compliant
integrated software development environment, tanlttop of the Eclipse platform
[27]. RSA provides the UML extension mechanism with theesigypes for defining
profiles, and allows generating editors for sucbfifgs. UML's Profiles mechanism
makes RSA’s strength: based on UML, it benefitsnfrits genericity, its reputation
and its concrete syntax. At the same time, it makss its weakness: UML contains a
lot of concepts not always appropriate to particakeds of the DSML.

Creating a profile for a BPMN diagram REA is quite simple. A user needs to
create a UML profile project (directly supportedahgh the Eclipse New Project
wizards), select metaclasses to be stereotypetipfafly) specify icons and images,

Evaluation of Modeling Tools Adaptation 9

and release the profile. In our example, as shoviigure 4, BPMN Process elements
are stereotypes of the UML Activity metaclass, BlBMN Activity elements are
stereotypes of the UML Action metaclass, and BPMd¢$dtiation are stereotypes of
the UML Dependency metaclass. The actual BPMN diagis simply a UML class
diagram with the extra BPMN stereotypes. For th#BRelements, custom icons and
shapes were used, but no such graphical custoonzakists for link styles
(Connecting Objects). The transformation betweenMRP DSL and UML
metamodels was based on the OMG RFP (request épogpal) [5] discussing the
construction of a UML profile for BPMN.

Fig. 3. UML Profile for BPMN simplified metamodel iRSA

The tool environment offers many features, inclgdinading/saving, multiple
undo/redo, filters, elements drag and drop fromla®ps to editors, validation,
printing, zooming, property sheet, etc. The docuat@m is very good and abundant
in the web. However, the usability of the editoesigrated ifRSA is rather weak.

Other issues have been observB8A does not support custom restrictions on
links’ styles, and custom relationship types canhet created (and hence class
diagram elements can get mixed to the BPMN diagfaninstance multiplicities are
shown by default, as shown in the red circles muFé 5) because the generated edit
parts extends GMF's “ConnectionNodeEditPart” whiaglheady defines a default
figure (a line with a name label and multiplicigblel).

10 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boule

Fig. 4. Iconic representation of BPMN elements WRBA

RSA also refers to a diagram editor, called Toolingdelp to create custom palette
entries, menu items, creation assistants (wizaese) property sheets. However, RSA
confronts some gaps, on offered possibilities tst@mmize the field’s graphical
presentations; it was among the reasons which iexply RSA pushes users to
create a UML profile for their domain, since in thackground, the possibilities of
graphical customization can be summarized as:

— By default, the reuse of the concrete syntax of UfL the specific domain
concepts (each concept is represented by the vimtation of its associated
metaclass).

— The use of iconic representations of stereotypese@type-associated image).

— Therefore, when generating custom shapes for natieeship edit parts
(nodes), a simple edit part, figure, and view ia $ihhape of a standard rectangle
is generated [10].

— For relationship edit parts (Links), code for a gienconnector and label are
generated.

However, if the user needs more complex formstabéoffers only to modify the
generated files and that requires a solid knowledfighe Graphical Modeling
Framework (GMF), theGraphical Editing Framework (GEF), theEclipse Modeling
Framework (EMF) and the Eclipse development.

The user interface cannot be customized direcidythie profile. But SInC&RSA is
based on Eclipse IDE, it inherits all Eclipse cusization capabilities via its API.

3.2 Generic Modeing Environment (GME)

The Generic Modeling Environment (GME) is a configurable Meta-CASE tool
developed in C++ at Vanderbilt University, providitoolkits for creating a Domain
Specific modeling environment. Configuration is doby specifying the modeling
paradigm metamodel that represents the modelirguiege of the application domain
(in our case BPMN metamodel). The modeling paradigmtains, besides semantic
parts; presentation informations regarding the doriat].

Evaluation of Modeling Tools Adaptation 11

The vocabulary of the domain-specific languageslemented by differenGME
configurations is based on a set of generic coscbpilt into GME itself. Folders,
First-Class Objects (FCO) like Models (which cawé@nner parts and structures),
Atoms (elementary objects), Sets (similar to UMLgegations), References,
Connections (relationship between two objects withne model), Roles, Constraints
and Aspects (provide primarily visibility contradye the main concepts that are used
to define a modeling paradigm (figure 6). In othesrds, the DSL is made up of
instances of these concepts. The choice of theserigeconcepts is certainly, the
most critical design decision. ModelsBME are similar to classes in Java; they can
be instantiated. When a particular model is creat€8ME, it becomes a type (class).
It can be subtyped and instantiated as many timéiseauser wishes [16].

This concept supports the reuse and maintenanc®déls because any change in
a type automatically propagates down the type rghga Also, this makes it possible
to create libraries of type models that can be us@dultiple applications in the given
domain.

Constraint Folder — Project

Regnode 0.7 K :|
[[

Attribute

+
FCO Role Part

[T member| [
referred 0.7 0.7
ConnRole

0. !
Set J Reference Atom Connection L Model | Aspect
Sub o.F

—i Tvpe
Base | Inst

Fig. 5. GME modeling concepts

BPMN metamodel elements match directly to FCOss@nd Connections in the
GME metamodel (figure 7). Aspects can be used to obumisibility of parts in the
editor.

12 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boule

2 d A ad - | Yo'/ LDBEXSN:
BPMNParadiom X -
T ane, BPHNFaadon PaadonSheel Aspec [CiasDisgan <] Base: N/A Zoom 0%~ Agrorde | ance | e
SPUNPaadgn

.
Connector

= o
s |\, 83,
QQEQEQQQ‘;‘Q

EI3 B0

Ready CAP NUM SCRL EDIT 1005 MetaGME 05145 PM

Fig. 6. BPMN metamodel represented@8IE paradigm.

Once a paradigm is created and the decoratorsedefincan be registered ®ME

as a new paradigm and then used as an editorpasmsh Figure 8. The tool provides
many features: loading/saving (XMI), undo/redo, gdl@nd drop interface for the
creation of model elements, metamodel validatioairesy multiplicities and OCL
constraints, printing, zooming, overviews, propertgws, etc. We can also use the
Aspect mechanism to create a sort of perspectivies westrict the metamodel
concepts’ viewing. The project is very well docurseh[14]. However, we have
found it difficult to create custom styles for Igikthere are only two available styles
(solid line, dash line) and arrows shapes are dichtb ten. For nodes representations,
we cannot create complex shapes besides iconiesepiations (Bitmap Image).

o Busnerocasii Aspet [

D
o
® Actiy Intermociate
x Activity
2 Start e X @
%
b
DamOBct
Q ety
© DatzObect
Intermediate
~
° @ ¢ e
L A
55 @0

Fig. 7. BPMN editor produced usingME

GME has a modular, extensible architecture that us8sQ@M for integration.
GME is easily extensible; external components can hittew in any language that
supports COM (C++, Visual Basic, C#, Python etGME has many advanced
features. A built-in constraint manager enforcéslamain constraints during model
building. GME supports multiple aspect modeling. It provides ameidel

Evaluation of Modeling Tools Adaptation 13

composition for reusing and combining existing modg languages and language
concepts. It supports model libraries for reusthatmodel level. AIGME modeling
languages provide type inheritance. Model visudibrais customizable through
decorator interfaces [13], [L4BGME supports the visual drawing of an object with a
COM object called decorator. This allows (with seddimitations) one to associate
the BPMN shapes and symbols of Figure 3 to thespeetive concept in the
paradigm.

GME provides a major advantage which is the “modepagadigms”. It supports
the reuse and maintenance of models (any changeyipe automatically propagates
down the type hierarchy). It is possible to create own transformation, but at the
cost of heavy C++ programming.

3.3 MetaEdit +

MetaEdit+ is a completely integrated environment/Meta-CAB& developed in
Jyvaskyla University, as part of tietaPHOR project [18] for building and using
Domain-Specific Modeling (DSM) solutionbetaEdit+ provides the standard set of
CASE tool functionality, including graphical editgrdesign data management, and
integration with other tools via its API.

As GME, MetaEdit+ is based on a proprietary metamodeling languagehvit the
GOPPRR metamodeling language [19]. GOPPRR is apnger formed from
language’s base types which are Graph, Object, Payperty, Relationship and Role.
Graph is the top-level structure of the metamolelefines one language or diagram
technique such as Class Diagram or State Trandlliagram. The actual semantics
of the graph are defined as the bindings of objemsttionships, roles and ports
within the graph. Properties are characterizinghattes that can be attached to each
of these other types [20].

A graph (similar to the “Model” concept IBME) denotes an aggregate concept
which contains a set of objects and their relatijpss with specific roles. An example
of a graph in our evaluation context is a wholeiBess Process Diagram (as a whole
or just one level of it). In use, the Graph conciepfundamentally a generalized
decomposition graph: it can be included in a pageaph, attached to an object, role
or relationship therein [19].

The modeling tool building process MetaEdit+ is quite simple. First, we design
the modeling language and its concrete syntax WigtaEdit+ Workbench and then
we use the produced editorMetaEdit+ Modeler (figure 9).

14 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boule

[Watchapgication: Seawakh, Marth 7, B0, 1500

=¥ Symbol Editor - State [Watch] [T/]
[T —

Bl oD ow QOB
TOONMD] ¢

Stalt—;ij_rlalne

Bli_ DisplayFn

Documentason:
Truidhis staoe e Snowaleh is vinoond and cument
stop B s shivenon the dsply.

Actee: mppad Tate [fant | Subrephiakiors

| o I | Cancel] | Inig... |

Fig. 8. MetaEdit+ environmentMetaEdit+ Workbench (left) andMetaEdit+ Modeler (right) -
Copyright © 2011MetaCase

MetaEdit+ Workbench is a tool for designing modeling languages: tleeincepts,
rules, graphical notations and generators. Theuageg definition is stored as a
metamodel in the MetaEdit+ repository.

MetaEdit+ Modeler follows the definition of data modeling languagefided
previously inMetaEdit+ Workbench by extracting it from the repository arfters
automatically, full functionalities of modeling tiso diagram editors, viewers,
generators, multi-user support, etc...

To create our BPMN editor witletaEdit+, we defined a Project with a Business
Process Diagram as a MetaEdit graph, we added atepts of our BPMN
metamodel as MetaEdit's Objects, relationships @ogerties (names, types...) and
then we proceeded to bind Objects and relationshifisally, we defined the
graphical notations of each language elements, thighsymbols editor which is a
user-friendly drawer of SVG (Scalable Vector Graghi

Once the Project is created and registerddataEdit+ repository as a metamodel
it can be used as an editor, as shown in Figurérth®.tool provides many features
like loading/saving diagrams to a custom XML, umddb, printing, diagrams export
to bitmap, GIF, PNG and PICT format, import/expoftgraphical representations
from/to SVG, zooming, property views, models exptorediting tools for creating
and modifying new types based on the base type,b8ligditor tool for drawing
graphical symbols for objects, relationships anésoconstraints and rules definer
tool, it offers also to choose between three diffémrepresentations (diagram, table,
matrix) without reloading or regeneration. We haueceeded in generating a BPMN
editor in less than a half day which allowed us\aluate the maturity of this tool and
its user-friendliness. However, we have found aamilimitation in the produced
editor such as the difficulty to move labels, orémame graphical elements without

Evaluation of Modeling Tools Adaptation 15

using the property popup menu... but this is dueh® nature of the graphical
representations that are usually vector graphiv&{S

[sobarphtonore - G oen Elow D [0 v 0|

Fig. 9. The BPMN Editor Produced usimdetaEdit+

MetaEdit+ offers an advanced advantage which is GOPPRR roelaing
language. The goal of such languages is to sugherreuse and maintenance of
models: any change in a conceptual Graph (semarditel) is propagated between
different representational Graphs (graphical regmtgions model), and both types
and instances of object, relationship, role, prgpand graph can be reused within
other graphs or projects.

34 Obeo Designer

Obeo Designer is an adaptive tool led by points of view. It pises a setting
environment to configure viewpoints and their vasagepresentations. It is based on
the Eclipse Modeling technological base from whithtakes part in these
expandability capacities and modularity. It is thes the frameworks EMF, GEF
and GMF that offer all the elements to build mode[&].

Obeo Designer (Version 5.0) allows architects to create the biegd modeling
workbenches that support their own language, rmtaprocess and technical target.
It provides a tooling to easily define graphicapnesentations such as diagrams,
tables or trees with rich user interactions hidimg complexity. IMObeo Designer, an
editor is described in three principle steps:

1. Domain vocabulary definition: It consists to defindgomain concepts,
relationships, and properties by creating a metainimdecore Obeo Designer
offers an advanced graphical editor for this airfteAthe DSL definition, the
architect uses ecore to generate the metamodediinguitation and releases it.

16 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boule

s - - - R

@ B -0 -Q-ifrif -Gl oar
7| 52 BoMN pckage eniesEPackage B 3 5 5P genmo
B e g e x %[B 1 A

{E comectingorect
C—1

Fig. 10. BPMN metamodel in ecore usifpeo Designer

Designer description: the aim of this descriptiantdo define viewpoints, their
representations and graphical elements’ parameters each one of these
representations.

The notion of viewpoints is an abstraction thatvides a specification of a system,
limited to a particular set of problems. It wasraaluced in the specification IEEE
1471 [6]. InObeo Designer, viewpoints were used to provide users a set sdiali
representations focused on a particular concegnréi 7). A point of view provides a
set of representations. This concept defines agption used to view or edit a set of
semantic concepts. I®beo Designer, a representation may be presented as a
diagram, a table or tree. The same concept isingh@é RSA, known as "Layers" and

in GME under the name of “Aspect”.

2. Semantic model creation and visualization: Aftex thescription of our editor
has been done, we can create a semantic model isndlize its graphical
representation as diagrams, tables, trees...etc.

Concern A

Concern B

Fig. 11. Viewpoints notion

Evaluation of Modeling Tools Adaptation 17

3. Graphical representations description: this islése step of the editor building
process. Obeo Designer offers a tree-styled etlitatescribe concrete syntax
(figure 12). In this editor we can create many thags, trees or tables for the
same DSL. The configuration starts with the definitof graphical elements,
with custom styles (figures, colors, size ...) and bHinding with the abstract
syntax (semantic part).

File Edit Mavigete Search Project Run Viewpoint Specification Editor Window Help

Y~ @ BRI P -5l eth & - [[[=. Design
[Project Explorer &2 = 5 ¥ T 0| @ modelbpmn | BPMN.odesign I3 =0
& BPMN B ResourceSet &
GLLSFPMN odesign | platform:/resource/BPMIN/BPMN.odesign =
7 model.aird (= Group
& model.bpmn * | BPMMN
{# BPMNDiagram
= ['] Default
@ Model Content &% g £ DataObjectNode
T {9 ActivityNode
= Square 0
(= Local Session: model.aird {9 Start Event Node
(= Representations per resource 5 XOr Gateway
& Representations per category @ Lozenge 0 i
[model.bpmn - [platform:/resource/ 9 Or Gateway
4 Business Process Diagram {9 And Gateway
D Intermediate Event Node
{9 End Event Node
. Association
& Section Core Elements
Section Events
Section Gateways
i
‘ 2 E 88 Decorations
o T a Mapping Besed Decoration xorDeco

o Mapping Based Decoration orDeca g
| platform:/resource/BPMN/BPMN.odesign

B EiTreE it =l Properties 3 | () Model requests interpreter| |21 Problems PR]

% BPMNDiagram

General I; () BPMNDiagram Label: @

It Initialization”: @ @ 1
Documentation i

Behavior Domain class® (@) BusinessProcessDiagram

Advanced .
Enable Pobuo Bars: 2]
il it] f

Fig._12. Obajesigner: Concrete syntax description

In this step, we can make specific validators, radenparators, define tools like
palette and layers for filtering the graphical edielements and we can also create
custom code generators using Acceleo.

Once these steps were performed for our simpl@iedIN metamodel, the designer
can be used in Obeo Designer as a BPMN editoh@srsin Figure 9.

The BPMN Editor implemented with Obeo Designer getne functionalities,
including Undo/Redo, outline viewer, image expshortcuts, links routing, diagram
elements Show/hide, XMI export, domain classes Awmpletion, Syntax
highlighting, direct name edit in diagram, diagramalidation, real-time request,
zooming, printing, Customizable behavior of creatideletion, drag and drop...etc.

However, there are some required improvements @ dtitor’'s designer; the
editor's designer offers advanced functionalities add parameters and OCL
expressions in the editor’'s graphical syntax, whigmot user-friendly for simple
users. There are also some bugs in the designéch wie have reported to Obeo's
developers.

18 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boule

As RSA, Obeo Designer is based on Eclipse Platftipi; it inherits also, all
Eclipse customization capabilities via its API.

Fig. 13. BPMN Editor produced b@beo Designer

Obeo Designer did well in the graphical editorsstaumization. However, we have
found several limitations for the graphical synsagpport:

The editor’s designer doesn’t allow using the falhige of visual variables [9]; it's
not possible to create complex graphical shapesnfmies (e.g. compartments,
complex polygons, 3D shapes ...), there are also dachks in basic shapes; we can
only use six principal shapes (square, lozengipsell triangle, dot, and ring), besides
iconic representations (images). However, the tmolvides a mechanism to create
multiple conditional graphical styles for the sammde. For edges, it is possible to
create custom link styles, but we can only choose between eleven arrow
decorations.

Obeo designer offers a good interactivity during tlevelopment of the domain
model and of the editor description. Additionalthe editor's building process is
incremental and there are no need to generate wqoate modifications, the advanced
transformation engine (in the same context that Aloeeleo engine) interprets
modifications, and apply them at runtime in thedwoed editor, which accelerates
the development and the handling of editors.

35 EclipseGMF

Eclipse is an open source and extensible Java-h@addrm that provides many
useful services for the creation of textual andpgieal editors. Indigo M7 release
(Version 3.7) modeling pack was used for our eu@una For building graphical
editors, three others Eclipse plug-ins are esgdgaialevant. TheGraphical modeling
Framework (GMF) is a framework for developing domain specifinguages. GMF is
built on the Eclipse Modeling Framework (EMF) [2&hd the Graphical Editing
Framework (GEF) [23].

The Eclipse Modeling Framework (EMF) is a framework and code generation
facility for building tools and other applicatiof@sed on a structured data model.
From a metamodel specification described as an >3dhema or as a class diagram

Evaluation of Modeling Tools Adaptation 19

in Papyrus [24] (such as the one in Figure 2), EWivides tools and runtime support
to produce a set of Java classes for the metamadel, of adapter classes that enable
viewing and command-based editing of the model, arhsic tree editor. In the
context of GMF, EMF is used to define the metamadelbstract syntax of languages
(expressed in Ecore), and for generating code fleating, editing, and accessing
models.

The Graphical Editing Framework (GEF) is a framework that allows developers to
take an existing application model and quickly teemrich graphical editor for it. It
can easily be hooked to EMF metamodels. GEF isamdwork that supports the
development of graphical editors. In the contexGdF, GEF is used to implement
the concrete graphical syntax of languages andditing of concrete syntax.

To clarify the shaded ideas on GMF and its relggegjects (runtime, tooling and
notation) is held to detail the meaning of eache @MF project is composed of three
interconnected subprojects [40]:

1. GMF Runtime: The GMF Runtime project is an induspnpven application
framework for creating graphical editors using EMRd GEF. The GMF
Runtime provides many features that one would haveode by hand if using
EMF and GMF directly.

— A set of reusable components for graphical editstgh as printing, image
export, actions and toolbars and much more.

— A standardized model to describe diagram elemevtigch separates between
the semantic (domain) and notation (diagram) eleésnen

— A command infrastructure that bridges the differemthnmand frameworks used
by EMF and GEF.

— An extensible framework that allows graphical editdo be open and
extendible.

2. GMF Tooling: The GMF Tooling project provides a nebdriven approach to
generating graphical editors in Eclipse. By definia tooling, graphical and
mapping model definition, one can generate a ffulyctional graphical editor
based on the GMF Runtime.

3. GMF Notation: The GMF Notation Project providestanslard EMF notational
metamodel. The notational metamodel is a standaahmfor persisting diagram
information separately from the domain model. Isvbased on the principles in
the OMG Diagram Interchange Specification [41]

So the creation of a graphical editor with GMF asme with the tools of GMF tooling
in an execution environment that is GMF runtime aimel diagrams produced with
this editor will be persisted according the Diagrarterchange standard defined on
GMF notation.

Based on the separation of concerns paradigm, GMVitomposed of four basic
models for the generation of the graphical edi@omain model (Semantic model
based on EMF), Graphical definition model (based GEF), Tooling definition
model which define tools used in the editor (pakettcontextual menus...) and the
Mapping model that make the binding of semantia$ giraphical representations as
shown in the figure 15.

20 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boule

Develop Domain
Madal

= econ

Develop Graphical

Create GMF Project Lo

Develop Mapping
Mode!

*.gmigragh gmiman

Developg Tooling Create Generatos
Definition Madel

* gmlecal * gmigen

Cenerate Diagram
Plug-in

Fig. 14. GMF: Editors building process - Copyright 20B6rland.com

Much effort is required to learn GMF and to undenst how to make an editor
with it. Documentation (including tutorials and Iksd and useful discussion forums
are however available [25]. The quality of the téisg editor is very high, especially
from a usability point of view. The Eclipse platfiorwith GMF, offers several useful
services that can be used with little effort: leadsaving (in XMI), zooming, tool
palettes, overviews, exporting to images, offeringtension points for other
applications to access the models created, andi-ptatform support. However,
much programming effort is required to implemen #arious shapes and connectors,
multiple undo/redo, label editing, and propertyetbe

Therefore, and also to homogenize their toolingP$ilt a framework that hides
GMF's complexities from the developer to ease gmekad up the development of
graphical editors. This framework was called theaghical Tooling Infrastructure
(Graphiti) [42]. After SAP AG decided in 2009 tordde the framework to the eclipse
community and then the framework was in the 0.Adulbation release in October,
2010.

We were unable to evaluate this framework in ttapgy for space reasons, but we
summarize basic differences [43] between Graphidi @MF in the following table.

Table 1. Graphiti vs. GMF

Graphiti GMF
Architecture Runtime Oriented Generative
API Self-contained (independent) GEF-Dependent
Client Logic Centralized distributed functionality

Sophisticated look defined
by SAP usability specialists Simple (highly customizable
(highly customizable to the in the generated code)

requirements of the tool)

Look & Fedl

Evaluation of Modeling Tools Adaptation 21

As paramount differences between the architectofébe frameworks, we observe
the two major advantages of Graphiti:

1. Graphiti is strictly focused on the API; a usertbé Framework only needs to
know how to use the Framework EMF. To build an @adino knowledge of
Draw2D-GEF (or any other graphical framework usedgquired.

2. We observe that GMF follows a generative approadhile in Graphiti no
generated source code must be manipulated to #uamditor — in contrast to
GMF where one has to change generated sources,hwban cause
incompatibilities problems when regenerating.

Fig. 15. BPMN Editor generated bgMF

Once a basic editor is in place, adding new funetities becomes efficient. Also,
adapting the editor to changes in the metamod@&iily simple. If new attributes,
class, or associations are added to the metamibael,the editor can still open files
created with the previous version. However, degetinrenaming classes or attributes
can lead to backward incompatibility problems. Hinait is important to note that
such a plug-in enables the integration of the editith other modeling and
programming tools offered for the Eclipse platforms

4 Comparison Summary

The current section provides a brief summary wiHigtonal highlights and remarks
based on our experience with these tools. We whkddto point out that all tools
used in this evaluation are used on a large saadehave notoriety in the MDE
community; each one of these tools provides inriegatoncepts and methodologies
in this field.

— Customization level: Obeo Designer and MetaEdit + are the tools thlatva
customizing their critical parts easily and thorblyg(semantics, behaviors,
visual notation, validation tools, editor's palletavithout generating code or
reload the model. Actually the customization is el@m a dynamic way for the
tools following metamodelling paradigms (GME arslribtion of Aspect). RSA
is doing well for this criterion, it provides a gtscal editor to customize the
tool, but in terms of ability to adapt the graphépresentation, it remains rather
low. GME is clearly the weakest tool in terms ofltaustomization; it doesn’t

22

A. El Kouhen, C. Dumoulin, S. Gerard and P. Boule

support any alternative way to represent concegssdbs iconic representation
(images), which is discriminating for it on thistegory. In terms of user
interface (Ul) customization, Eclipse-based tooks @early the most advanced
tools in this area, their API allows them to creB&rspectives, menus, views,
property sheets... except that until the momeist dlone programmatically, and
there's no mechanisms to automate this adaptaditep(the tool according to
the need for the user, the environment and plaffanmto restrict it as needed,
thus offers opportunities to future researches.

Graphical expressiveness and completeness: According to [9], the visual
expressiveness is defined as the number of visarddhles used in a notation.
The visual variables are: shape, texture, briglsinsize, color and the planar
positions (horizontal and vertical). The graphicampleteness is defined by the
capability to use fully the shape variable (the wdeany kind of shapes:
complex, composites, 2D/3D...). We evaluated thestardpacity to use the full
range of these variables; MetaEdit+ and GMF are dhly two tools that
allowed reproducing the BPM notation with fidelignd flexibility. Obeo
Designer did well in general, except for a few tations. GMF required
substantial additional programming. GME and RS/Aedtl the least flexibility
for this criterion.

Tool openness: The tool openness includes extensibility, redggbiand
maintainability.

o0 Tool building approaches: MetaEdit+, GME and RSAe ar
metamodeling-language-based tools, they force userdescribe
semantic concepts in particular languages: prapydanguages for
MetaEdit+ and GME (GOPPRR, GME modeling paradigamd a
standard language for RSA (UML). For graphical dision,
MetaEdit+ and GME don'’t allow the separation of c@ms, so the
user defines the graphical particularities in theppietary language,
and then registers the editor in the case of Méataksthd GME or
generate code for RSA. Obeo Designer and GMF aidehizased
tools, they propose to describe the semantics amaphips as
separated models (which is well for reusability)l dhen users can
generate code for GMF, or interpret the model & d¢hse of Obeo
Designer.

o All evaluated tools propose extensibility. Ecligs@sed tools offer
extensibility through the mechanism of extensiom{z GME with
its MS COM interfaces is able to be extensible wither tools and
languages. MetaEdit+ provides the interface to readate and
update model elements via its SOAP/Web Services, ARking
MetaEdit+ functions accessible from almost any paogming
language. However, extensibility appears to be wedth all
commercial tools on their Editor's generation eeginvhich are the
most isolated parts.

o In term of reusability, MetaEdit+ and GME have a&ajrpotential,
respectively with the GOPRR language and the GME
metamodeling paradigm, being designed for this diney are
among the best tools which promote reusability. Adlols
supporting separation of concerns are doing welltics criterion.
GMF and Obeo designer offer MDE approaches foioeslitlesign,
so they provide possibility to reuse existing madélowever, there

Evaluation of Modeling Tools Adaptation 23

is till now, no solution that provides settings énitance or
factorization.

— Tool usability: The best usability is offered by far by the Oligesigner editor
in terms of efficiency, accessibility, satisfactiand overall number of features.
All tools support multiple undo/redo and loadingisg of models. The
manipulation of elements is somewhat awkward in R84 GME.

— Required resources. All these tools require some effort/time for leiag the
technology and for creating our use case editoe d&tlitor creation and usage
mechanism in MetaEdit+ is likely the easiest oneagnthe five studied here,
followed by Obeo Designer and GME. GMF followedRS$A are definitely the

WOrsts.

— License Nature: for this evaluation we have chosen three commetols, a
free tool and an open source one. We can distihghe commercial tools have
an advanced degree of maturity comparing to therstiFor commercial tools
MetaEdit+ and Obeo Designer propose the best glmiite ratio.

— Artefact characteristics: criteria for artefacts produced by the tools

(0]

Analysis and transformation: MetaEdit+ provides models’ access
interface via its SOAP/Web Services API. GME offarsinterface
(Ms COM) to access and transform models. Eclipséremment
provides Java interfaces to easily access modelst b
transformations are manual. Obeo designer is pfghile most
promising environment in this category, with a sfiedanguage
for transformation (Acceleo), which is based on @G MTL
standard [26]. It provides also capabilities to duee editors’
validators where models are checked against the @gEistraints.
However, such capabilities appear to be weak in RSA

Artefact quality level: all evaluated tools provide overall excellent
metamodeling capabilities that enable metadevetoperduce level

5 quality metamodels. However, GME has some linoitet in the
concrete syntax, for this reason the metamodelslyots by its
editors has a level 3.

Artefact format: MetaEdit+ is based on a model repository to save
editors, this repository has a proprietary formatit the tool
provides a web service interface for all externahipulation on it.
As MetaEdit+, GME has a particular format of modedssistence,
the models produced by the GME editors are pedsiste binary
files. All Eclipse-based tools, have an open forofdfiles which is
based on XMI standard, in the case of RSA, thee some
particular files which are binary and other thapeled to UML
syntax.

The following table provides a quick overview oktktrengths and weaknesses of
each tool, proved by metrics presented in section 2

Table 2. Comparison overview

) Obeo Eclipse
RSA GME MetaEdit+ .
Designer GMF
Customization level 38 % 35 % 51 % 57 % 70 %
Graphical expressiveness 8/8 2/8 5/8 8/8 8/8
Graphical completeness 2/5 1/5 5/5 3/5 4/5

24 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boule

Proprietary .
Sd Proprietary Open Open
. language:
Settings approach* language: MModdi language: Model: Model:
in
Openness UML) 9 GOPPRR EMF EMF
paradigm
Extensibility Yes No No Yes Yes
Reusability No No Yes No No
Efficiency (EE) 30% 37% 30% 75% 60 %
Tasks
- - - 56 % 43 % 42 % 81 % 81 %
Usability | Accessibility visibility
(TV & VC) visual
38% 31% 59 % 75 % 1%
coherence
Required resource (man-day) 12 6 0.5 5 25
License Nature* Cial. freeware Cial. Cial. EPL
Artefact Analysis capability Yes No** Yes Yes Yes
rtefac
L Artefact quality level 4/5 3/5 5/5 5/5 5/5
characteristics
Artefact Format XML Binary Repository XML XML

* Std.: Standard, MModeling: metamodeling, Cial.: Goencial, EPL: Eclipse Public License
*GME allows models transformation and analysis autost of heavy C++ programming

5 Conclusion

The quality of modeling tools has been subject aihe research by now. An
Evaluation of domain specific language (DSL) sao$ according different
stakeholders can be found in [1]. Both [37] and][8®8mpare domain specific
language tools to each others, but there are ndriealpstudies with measurable
metrics to evaluate such tools. Based on a litezadnalysis and our experience with
developing modeling environments in research ptsjed@apyrus Project [24],
Gaspard [39]...) we have identified several evalumtidgteria and metrics. We tried
in this paper to compare five different tools, proihg graphical modeling editors.
Editors were created with each tool, and our expenis helped us compare the
approaches against such metrics. These criterianzettics allowed us to assess
productivity, usability, reliability, reuse and bility through a real case study
involving a simple subset of the Business Procesddling Notation (BPMN) whose
abstract syntax is specified with a metamodel.

Given the limitations found in the different toakhich we have evaluated and
others that we haven't discussed in this papersf@ce reasons, it turned out that
there are many research perspectives for this wodkiding tools’ customization
using the Model-Driven approachBM RSA has made great progress on this issue: it
provides a graphical editor to customize tools; thé final graphical rendering
remains poorMetaEdit+ andObeo Designer have also unrivaled potentials compared
to other tools, they provide user-friendly envirants for building editors without
difficulties and in a shorter time, but there's @ limitations in the concrete syntax
definition language which leads us to propose &miston Papyrus modeling tool,
benefiting from all evaluated tools advantages esttlicing their drawbacks. This
will be reflected by the specification of some nme¢alels which describe all parts of
a modeling tool (Ul, abstract and concrete syntaXesapproaches to compose and
reuse models and a metamodel representing the dudtiyy that describes the
process of tools usage to restrict the environraecdrding to user needs.

Evaluation of Modeling Tools Adaptation 25
References

1. Mohagheghi, P. and Haugen, @.: Evaluating DomaiecBisc Modelling Solutions,
Advances in Conceptual Modeling — Applications andbal@nges, Lecture Notes in
Computer Science, 2010, Volume 6413, , Pages 212-221

2. Collins English Dictionary, 2011.

3. Lazovik, A. and Ludwig, H.: Managing Process Custmahility and Customization:
Model, Language and Process, Lecture Notes in CanjBaience, 2007, Volume 4831,
Web Information Systems Engineering — WISE 2009eBa873-384

4. OMG, 2011. Business Process Modeling Notation (BPMNersion 2.0.
http://www.omg.org/spec/BPMN/2.0/

5. OMG, 2010. UML Profile for BPMN Processes RFP. Htpyw.omg.org/cgi-
bin/doc?ab/10-06-01.pdf

6. IEEE 1471: http://en.wikipedia.org/wiki/IEEE_1471

7. Juliot, E. and Benois, J.: How to build Eclipse D8Mhout being an expert developer?,
Obeo Designer Whitepaper

8. Kennedy, K., Koelbel, C. and Schreiber, R.: Definamgl Measuring the Productivity of
Programming Languages. International Journal of hHiBerformance Computing
Applications 18(4), 441-448 (2004)

9. Daniel L. Moody: The “Physics” of Notations: Toward Scientific Basis for
Constructing Visual Notations in Software EnginegrilEEE Trans. Software Eng.
35(6): 756-779 (2009)

10.Wayne Diu : Custom Domain Modeling with UML Pief «The Basics of Generating
Tooling for Elements from a UML Profile», IBM Ratidr@oftware 2009

11.Gong, M., Scott, L., Xiao Y., Offen, R.: A rapiévelopment model for meta-CASE tool
design, Conceptual Modeling — ER '97, ISBN 978-3-53699-1

12.Nuseibeh, B.: Meta-CASE support for method-basdidvare development. Proc. of 1st
Int. Congress on Meta-CASE, Sunderland, UK, Jan(l£395)

13.J. Davis, “GME: the generic modeling environmieédOPSLA '03: Companion of the
18th annual ACM SIGPLAN conference on Object-oridnfgogramming, systems,
languages, and applications. 2003

14.Institute for Software Integrated Systems: Then&@ic Modeling Environment (GME),
December 2011. http://www.isis.vanderbilt.edu/Petggme/

15.Seffah, A., Donyaee, M., Kline, R.B., Padda, H.Wsability Measurement and Metrics:
a Consolidated Model. Software Quality Journal B8-1178 (2006)

16.Ledeczi, A., Maroti, M., Bakay, A., Karsai, G.afett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The Generic ModelingviEonment, Workshop on Intelligent
Signal Processing 2001

17.Sprinkle, J., Rumpe, B., Vangheluwe, H., Kar&ai, Metamodelling - State of the Art
and Research Challenges. Model-Based Engineering beé#ued Real-Time Systems
2007: 57-76

18.MetaPHOR project, Jyvaskyla University: http:Aamhor.it.jyu.fi/metapubs.html

19.Kelly, S., Lyytinen, K., and Rossi, M., "MetaEditA Fully Configurable Multi-User and
Multi-Tool CASE Environment", Proceedings of CAISE'9%th Intl. Conference on
Advanced Information Systems Engineering, Lectuodell in Computer Science 1080,
Springer-Verlag, pp. 1-21, 1996.

20.Pohjonen R.: Metamodeling Made Easy — MetaEdltaol Demonstration), Lecture
Notes in Computer Science, 2005, Volume 3676, GémeraProgramming and
Component Engineering, Pages 442-446

26 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boule

21.Stephen A. White, Introduction to BPMN-http:/mvopmn.org/Documents/Introduction
_to_BPMN.pdf

22 Eclipse Modeling Framework (EMF), http://www ipeke.org/emf/

23.Graphical Editing Framework (GEF), http://wwwipse.org/gef/

24 Papyrus - Eclipse: http://www.eclipse.org/pagyru

25.Eclipse Community Forums: GMF (Graphical = ModelingFramework):
http://www.eclipse.org/forums/eclipse.modeling.gmf

26.0MG, 2008. MOF Model To Text Transformation Laage (MOFM2T), 1.0
http://www.omg.org/spec/MOFM2T/1.0/

27.1BM Rational Software Architect (RSA),
http://www.ibm.com/developerworks/downloads/r/atebi/

28.J. Bertin, Semiology of Graphics: Diagrams, NekspMaps. University of Wisconsin
Press, 1983.

29.A. J. Albrecht, “Measuring Application DevelopmieéProductivity,” Proceedings of the
Joint SHARE, GUIDE, and IBM Application DevelopmeB8ymposium, Monterey,
California, October 14-17, IBM Corporation (1979), fB-—92.

30.Clark, T., Evans, A., Sammut, P. and WillansApplied Metamodelling: A foundation
for Language Driven Development. Version 0.1. XactiLtd., 2004.

31.Penichet, V., Calero, C., Lozano, M. and Piattii; using WQM For Classifying
Usability Metrics. . ISBN: 972-8924-19-4. 2006

32.Constantine, L.L. and Lockwood, L.A.D. 1999. 8aite for Use: A Practical Guide to
the Models and Methods of Usage-Centred Design, Xeank: Addison-Wesley.

33.Braz, C.; Seffah, A and M'Raihi, D. (2007) “Dedigga trade-off between usability and
security: A metrics-based model,”Proceedings ofLiitle IFIP TC 13 Conference on
HumanComputer Interaction, Rio de Janeiro, BraziltliecNotes in Computer Science,
Vol. 4663. Springer, Berlin, pp. 114-126, Septenii7

34.Bevan, N. and Macleod, M. 1994. Usability measnat in context, Behavior and
Information Technology 13: 132-145.

35.Seffah, A., Kececi, N., Donyaee, M.: QUIM: A Rrawork for Quantifying Usability
Metrics in Software Quality Models - APAQS '01 Peedings of the Second Asia-
Pacific Conference on Quality Software IEEE Comp&eciety Washington, DC, USA
2001

36.Software engineering -- IFPUG 4.1 Unadjustedctional size measurement method:
ISO/IEC 20926:2003

37.Amyot, D., Farah, H., Roy, J.-F.: Evaluation @\@lopment Tools for Domain-Specific
Modeling Languages. In: Gotzhein, R., Reed, R. (€8Nl 2006. LNCS, vol. 4320, pp.
183-197. Springer, Heidelberg (2006).

38.Pelechano, V., Albert, M., Mu™noz, J., Cetina, Building tools for model driven
development. Comparing microsoft dsl tools and selimodeling plugins. In: Proc. of
the Actas del Taller sobre Desarrollo de Softwaiegibo por Modelos. MDA y
Aplicaciones. CEUR Workshop Proceedings, vol. 22D720

39.Gaspard2, http://www.gaspard2.org/

40.Graphical Modeling Project (GMP), http://www igsk.org/modeling/gmp/

41.0MG, 2004. Diagram Interchange Specification,.Ovlhttp://www.omg.org/cgi-
bin/doc?formal/06-04-04

42 Eclipse, SAP AG, 2011. Graphiti, http://www.psck.org/graphiti/

43.Brand, C., Gorning, M., Kaiser, T., Pasch, J. @hehz, M.: Graphiti : Development of
High-Quality Graphical Model Editor - Eclipse Magae

44.S. Cook et al, Domain-Specific Development witlsél Studio DSL Tools, Microsoft
.net development series, 2007.

Evaluation of Modeling Tools Adaptation 27

45.Robert, S.; Gerard, S.; Terrier, F.; Lagarde,"&.Lightweight Approach for Domain-
Specific Modeling Languages

Design," Software Emeging and Advanced
Applications, 2009. SEAA '09. 35th Euromicro Confere on, vol., no., pp.155-161,

27-29 Aug. 2009.

46.Gérard, S.,Dumoulin, C.,Tessier, P.,Selic, B..yRap A UML2 Tool for Domain-
Specific Language Modeling - Model-Based EngineerofgEmbedded Real-Time
Systems, Lecture Notes in Computer Science Volund® §2011) P. 361-368

