
HAL Id: hal-00706701
https://hal.science/hal-00706701v2

Submitted on 11 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of Modeling Tools Adaptation
Amine El Kouhen, Cedric Dumoulin, Sébastien Gérard, Pierre Boulet

To cite this version:
Amine El Kouhen, Cedric Dumoulin, Sébastien Gérard, Pierre Boulet. Evaluation of Modeling Tools
Adaptation. 2012. �hal-00706701v2�

https://hal.science/hal-00706701v2
https://hal.archives-ouvertes.fr

Evaluation of Modeling Tools Adaptation

Amine El Kouhen1, 2, Cédric Dumoulin2, Sébastien Gérard1, Pierre Boulet2

1 Commissariat à l’Energie Atomique (CEA) LIST, Laboratory of Model Driven Engineering
for Embedded Systems (LISE) Point Courrier 94, 91191, Gif sur Yvette, France

{amine.elkouhen, sebastien.gerard}@cea.fr
2 Laboratoire d’Informatique Fondamentale de Lille (LIFL) CNRS UMR 8022

U.S.T.L Cité Scientifique, F-59655 Villeneuve d’Ascq Cedex, France
{amine.el-kouhen, cedric.dumoulin, pierre.boulet}@lifl.fr

Abstract. This paper proposes an evaluation for modeling tool’s adaptation by
observing how well they can be used to customize graphical editors for a
sample DSML proposed as a case study. It also discusses the current state of the
art, and compares what was done in every tool that we have evaluated,
according to relevant criteria. It was perceived; during our research that there is
a clear need in term of criteria that supports evaluating Editor's customization
quality. For this aim, we propose such criteria in this paper. We review tool’s
adaptation approaches, adaptation categories regarding different points of view
and evaluate tools, with respect to their productivity and expressivity according
to the proposed evaluation criteria.

Keywords: MDE, modeling tools, customization, assessment, quality, metrics

1 Introduction

Models are powerful tools to express the structure, behavior, and other properties
in all areas of engineering and each of the hard sciences [17]. While models are very
widespread, an explicit definition of a Domain-Specific Modeling Language (DSML)
and an explicit manipulation of its models are closely connected to some support
tools, called Computer-Aided Software Engineering tools or simply “CASE tools”.

 The design and generation of such tools can be done either using program-based

environment or applying model-based tools called Meta-CASE tools [12]. The intent
of meta-CASE tools is to capture the specification of the required CASE tool and then
generate automatically the tool. In general, meta-CASE tools provide generic CASE
tool components that can be customized and instantiated into particular CASE tools
[11].

In the past years, a strong interest in model-driven engineering has resulted in

many Domain-Specific Languages (DSL’s). Among the advantages of DSLs
identified in [44], is that DSML allows focusing on the concepts of the considered
domain. This also implies that designers who are already acquainted with the domain
will use more intuitively the language and tools which support this language.
However, these approaches have obvious drawbacks, among which the main one is
the additional efforts to design modeling languages from scratch [45]. Consequently,
this has resulted in various Meta-CASE tools, which promise to reduce these efforts,
and support, in different ways, customization of modeling environments. The purpose

2 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

of this paper is to evaluate the most relevant facet of modeling tools customization,
which is the graphical editors’ customization, by evaluating some of these
tools/technologies, namely the IBM Rational Software Architect (RSA), the Generic
Modeling Environment (GME), MetaEdit+, Obeo Designer and the Graphical
Modeling Framework (GMF). A common case study, based on a simplified version of
the Business Process Modeling Notation (BPMN), is used to assess the maturity of
these tools.

In Section 3 we evaluate such tools by observing how well they can be used and/or

reused (adapted) to customize graphical editors for a BPMN diagram, for which a
simplified metamodel is provided, we discuss also customization capabilities and
features, for each tool. But before that, we introduce an overview of the evaluation
workbench, and retained criteria and metrics to assess tools. In Section 4, we discuss
the evaluation criteria, results, and lessons learned during the creation of editors with
these tools. Finally, we discuss our future work and conclude respectively in Sections
5 and 6.

2 Evaluation Workbench

We introduce in this section, an overview of the evaluation context and criteria
chosen to assess tools quality.

2.1 Case Study

The Business Process Management Initiative (BPMI) has developed a standard
Business Process Modeling Notation (BPMN). BPMN is dedicated to provide a
notation that is readily understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the technical developers
responsible for implementing the technology that will perform those processes, and
finally, to the business people who will manage and monitor those processes [21].
For the purpose of this assessment, we have created a simple metamodel that includes
a subset of the language concepts (Figure 2). This metamodel is not meant to be a
realistic representation of BPMN (this is outside the scope of this study). A complete
specification of the BPM notations and semantics can be found in [4].

 Fig. 1. Simplified BPMN metamodel

Evaluation of Modeling Tools Adaptation 3

BPMN defines a Business Process Diagram (BPD), which is based on a

flowcharting technique tailored for creating graphical models of business process
operations. A Business Process Model, then, is a network of graphical objects, which
are activities (i.e., tasks) and the flow controls that define their order of performance
[21].

In terms of concrete syntax elements, there are four basic categories of elements:

Flow Objects, Connecting Objects, Swimlanes, and Artifacts. The symbols
corresponding to them are summarized in Figure 3.

Fig. 2. Graphical elements of BPMN - Copyright © 2005 OMG.org

2.2 Evaluation criteria and metrics

Two evaluation approaches were suggested by P. Mohagheghi and Ø. Haugen in [1]:

Qualitative approaches cover case studies, analysis of a language and the tool by

experts for various characteristics, and monitoring or interviewing users.

For the quantitative evaluation, they identified several metrics (effort,

understandability, Usability...etc). In our study we put a particular emphasis on the
following evaluation criteria, which are most relevant in our context. For each
criterion we propose some metrics to quantify and concretize this evaluation:

• Customization level criterion: what is the proportion of customizable parts in the
tool?

As metric, we propose the adaptability level (AL) equals to:

 AL = 100 × (C_functions / S_functions) (1)

Where:
C_functions: is the number of customizable functions in a tool.
S_functions: the total number of functions. This number is determined by
identifying the components of the system as seen by the end-user. There are three
steps in the process of counting tool functions:

─ Identify the scope and boundary of the count: represent the boundary of the
evaluated application.

4 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

─ Determine the primary process areas. An elementary process is the smallest unit
of activity that is meaningful to the user.

─ Identify for each process, data functions (external inputs, external outputs and
external inquiries) and transactional functions (interfaces to other systems, and
internal logical files). They must be unique, user recognizable and non-repeated
field functions.

This methodology is based on the best known method of counting functions which
is the Function points Analysis. It was defined in 1979 by Allan Albrecht at IBM
[29]. Function points (FPs) can be used to estimate the relative size and complexity
of software [36].

• Graphical expressiveness and completeness criteria: Can we represent all the
notation elements? Can we use the full range of visual variables [28]? And what’s
their complexity?

For the Graphical expressiveness we apply the D. Moody’s scale [9] to our context
to measure this criterion; it consists in assess tool capability to represent the eight
visual following variables: retinal variables (shape, texture, brightness, size and
color) - planar variables (Horizontal position and Vertical position).
For the Graphical completeness we assess the tools capability to represent all sorts
of shapes weighted on a scale of 0 – graphs not presents (textual editors), 1 - minor
graphical completeness, to 5 - strong graphical completeness.

• Tool openness criteria: This criterion is composed of four sub criteria
o Tool building approaches: what are the approaches used to describe

the semantic and graphical parts of the editor? (e.g, Proprietary
languages, standard language, open language…)

o Extensibility: is it possible to add additional languages or integrate
with other tools? And How?

o Reusability: Can we reuse existing parts/functionalities of our tool?
The tool support separation of concerns?

o Maintainability: this aspect was not thoroughly studied in our
evaluation; it was difficult to provide metrics to assess this criterion.
However, there are some approaches in the software reverse
engineering and software quality fields which provide estimations
of the tools maintainability (e.g. Total number of code lines,
number of code lines per object, methods number per object, total
number of methods, ratio of code lines/number of methods, ratio of
code lines/number of objects, Ratio comment lines/code lines),
specialization index, level of abstraction, cyclomatic complexity
etc.).

• Tool Usability criteria: Does the generated tool’s editor support features to achieve
the specific goal of the context of use?

There are many metrics and categorizations that can be used to measure UI
usability [31]. Usability is discussed also in [15]. Seffah et al. define usability as
“whether a software product enables a particular set of users to achieve specific
goals in a specific context of use” and cover the ten usability factors: efficiency,
effectiveness, productivity, satisfaction, learnability, safety, trustfulness,
accessibility, universality and usefulness for solving problems. Braz et al. in [33]
sort some of these metrics in two categories:

Evaluation of Modeling Tools Adaptation 5

─ Countable metrics: they are extracted from data collected from observations,
interviews, survey, logs…

─ Calculable metrics: represent the result from mathematical calculations,
algorithms, or heuristics with observational data and countable metrics.

Constantine and Lockwood [32] propose also some UI usability metrics and
classify them in three main categories:

1. Structural metric: based on the UI surface properties.
2. Semantic metrics: based on the UI content.
3. Procedural metrics: based on the tasks (user triggered tasks or automatic tasks)

In [15] Seffah et al. identify more than 127 metrics to measure usability. We retain
the most used factors of usability and their metrics for our evaluation, which are:
efficiency, effectiveness and accessibility. We provide also a feedback for the
learnability and satisfaction factors, which are dependents to users’ preferences.

a. For efficiency we have chosen the Essential Efficiency (EE) [32]:

 EE = 100 × (S_essential / S_enacted) (2)

Where:
EE: Estimates how closely a given user interface design approximates the ideal
expressed in the use case model
S_essential = the number of user steps in the essential use case narrative
(conceptual steps).
S_enacted = the number of steps needed to perform the use case with the user
interface design. Rules for counting the number of the enacted steps [32] are
following:

─ Entering data into one field by continuous typing that is terminated by an enter,
a tab, or some other field separator.

─ Skipping over an unneeded field or control by tabbing or by means of any other
navigation key.

─ Selecting a field, an object, or a group of items by clicking, double-clicking, or
sweeping with a pointing device.

─ Selecting a field, an object, or a group of items with a keystroke or series of
connected keystrokes.

─ Switching from keyboard to pointing device or from pointing device to
keyboard.

─ Triggering an action by clicking or double-clicking with a pointing device on a
tool, a command button, or some other visual object.

─ Selecting a menu or a menu item by a pointing device.
─ Triggering an action by typing a shortcut key or key sequence, including

activating a menu item through keyboard access keys.
─ Dragging-and-dropping an object with a pointing device.

b. For effectiveness we have chosen the formula proposed by Bevan and Macleod
in [34] for calculating task effectiveness (TE):

 TE = Quantity × Quality / 100 (3)

Where:
Quantity is a measure of the amount of a task completed by a user. It is defined
as the proportion of the task goals represented in the output of the task and
Quality is a measure of the degree to which the output achieves the task goals.

6 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

c. For accessibility we have chosen both next metrics: the task visibility (TV) [32]
and the visual coherence (VC) [35] metrics.

 TV = 100 × (∑∑∑∑ Vi / S_total) (4)

Where:
TV: The proportion of interface objects or elements necessary to complete a task
those are visible to the user.
S_total = total number of enacted steps to complete the use case.
Vi = Feature visibility (0 or 1) of enacted step i. The visibility depends on the
types of enacted steps. There are four different categories of enacted steps:

1. Hidden: hidden operations draw on the user’s internal knowledge of the
application and its use apart from any information communicated by the visible
user interface. Hidden steps include:

o Typing a required code or shortcut in the absence of any visual
prompting or cue.

o Accessing a feature or features having no visible representation on
the user interface.

o Any action involving an object or a feature that may be visible but
the choice of which is neither obvious nor evident based on visible
information on the user interface.

Opening a generic context menu by clicking on blank background with the right
mouse button or typing a keyboard shortcut without being prompted is an
example of hidden step. Hidden enacted steps are assigned a visibility of 0.

2. Exposing: An enacted step is exposing if its function is to gain access to or
make visible some other needed feature without causing or resulting in a change
of interaction context. Exposing actions include:

o Opening a drop-down list.
o Opening a menu or submenu.
o Opening a context menu by right-clicking on some object.
o Opening a property sheet dialogue for an object.
o Opening an object or drilling down for detail.
o Opening or making visible a tool palette.
o Opening an attached pane or panel of a dialogue.
o Switching to another page or tab of a tabbed dialogue.

Exposing actions have an intermediate effect on task visibility and are assigned
a visibility of 0.5, unless they are or must be accomplished using hidden
features, in this case, they are classified as hidden and given a visibility of 0.

3. Suspending: An enacted step is suspending if its function is to gain access to or
make visible some other needed feature and it causes or results in a change of
interaction context. Suspending actions include:

o Opening a dialogue box.
o Closing a dialogue or message box.
o Switching to another window.
o Switching to or launching another application.

Suspending or context-switching actions that occur as the first or last enacted
step of extensions or other optional interactions have an intermediate effect on
task visibility since they provide access to features that may not be needed in all

Evaluation of Modeling Tools Adaptation 7

enactments; they are assigned a visibility of 0.5, unless they are or must be
accomplished using hidden features, in this case, they are classified as hidden
and their visibility is set to 0. Context changes that are non-optional, that are
required in most or all enactments, have a strong effect on task visibility; these
are assigned a visibility of 0.

4. Direct: An enacted step is a direct action if it is not hidden, exposing, or
suspending. In other words, direct actions are accomplished through visible
features whose choice is evident and which do not serve to gain access to or
make visible other objects. These are assigned a visibility of 1.

The visual coherence (VC): shows how well a user interface keeps related
components together and unrelated components apart.

 VC = 100 × Gk / (∑∑∑∑ Nk × (Nk - 1) / 2) (5)

Where:
Gk: the number of related visual component pairs in the group k. With:

 Gk = ∑∑∑∑ Ri,j (6)

Ri,j = semantic relatedness between components i and j in group k, 0 ≤ Ri,j ≤ 1
In practice, semantic relatedness can be simplified to just two values: Ri,j = 1 if
components i and j belong to the same semantic cluster and are, therefore,
substantially related; Ri,j= 0, otherwise.
Nk = the number of visual components in the group k. A visual component is:

o Any user interface widget.
o An external label not on or embedded in a user interface widget.
o A pane, panel, or frame around any one or more widgets or labels.

Simple lines separating one part of the visual interface from another are not
considered to be visual components in themselves.

• Required resources criterion: How much Time and effort is required to model,
debug, and generate artefacts [8]?

We may also add time and effort to understand models. The adequate metric unit
for this criterion is the man-day unit. This measurement was done by a single
researcher with a background in modeling field but not necessarily an expert of the
evaluated tools.

• License nature criterion: what is the kind of license required to use the tool?
(Commercial, Proprietary, Open Source, Freeware…)

• Produced Artefacts criteria: what are characteristics of artefacts produced with the
graphical editor?

o Analysis capabilities: Can we easily analyze or transform models
produced with the graphical editor?

o Artefect quality: what is the quality level of models produced with
the graphical editor? One quality benchmark that we found useful is
described by T. Clarks et al. in [30]. The authors define five levels
of produced artefact quality:

1. The lowest level: a simple abstract syntax is defined, but not
implemented yet in a tool. The static and dynamic semantics of
the language is informal and incomplete. There is no specific tool

8 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

support: an existing language is repurposed, compliance with the
DSL is manually maintained and models are mostly interpreted
by users.

2. The abstract syntax and static semantics have been largely
defined, implemented in a tool and validated. The dynamic
semantics is still informally defined.

3. The abstract syntax is completely implemented and tested.
Concrete syntax has been defined for the language, but not
implemented yet. Optimization of the language architecture has
started.

4. The concrete syntax of the language has been implemented and
tested. Users create models either visually and textually. The
language architecture has been optimized for reuse and
extensibility. Tool support for dynamic semantics begins to
appear.

5. The topmost level: all aspects of the language have been
modeled, including its semantics. Models written in the language
can be processed by the tool. Examples thereof include code
generation, execution, simulation, verification. The language
architecture is well optimized for reuse.

o Artefact format: What kind of persistence format of these models?
(Open format, structured support, binary files…)

3 Evaluation Results

We have chosen in this evaluation, only tools which provide the characteristics of a
Meta-CASE tool (i.e. they generate modeling tools). These tools present a
representative sample of adaptable tools according different approaches (proprietary
languages, model-based approach…): RSA represents all tools supporting UML
extension mechanism and using the iconic representation of stereotypes (as
MagicDraw, Enterprise Architect…). MetaEdit+ and GME represent tools which use
proprietary languages to build editors. Obeo Designer represents a model-driven
approach to specify modeling tools and finally we have chosen the open source
framework GMF, because it is the most known and used technology to build editors
(used in Papyrus…)

3.1 IBM Rational Software Architect (RSA)

IBM’s Rational Software Architect (version 8.0) is a UML 2.0 compliant
integrated software development environment, built on top of the Eclipse platform
[27]. RSA provides the UML extension mechanism with the stereotypes for defining
profiles, and allows generating editors for such profiles. UML's Profiles mechanism
makes RSA’s strength: based on UML, it benefits from its genericity, its reputation
and its concrete syntax. At the same time, it makes also its weakness: UML contains a
lot of concepts not always appropriate to particular needs of the DSML.

Creating a profile for a BPMN diagram in RSA is quite simple. A user needs to

create a UML profile project (directly supported through the Eclipse New Project
wizards), select metaclasses to be stereotyped, (optionally) specify icons and images,

Evaluation of Modeling Tools Adaptation 9

and release the profile. In our example, as shown in figure 4, BPMN Process elements
are stereotypes of the UML Activity metaclass, the BPMN Activity elements are
stereotypes of the UML Action metaclass, and BPMN Association are stereotypes of
the UML Dependency metaclass. The actual BPMN diagram is simply a UML class
diagram with the extra BPMN stereotypes. For the BPMN elements, custom icons and
shapes were used, but no such graphical customization exists for link styles
(Connecting Objects). The transformation between BPMN DSL and UML
metamodels was based on the OMG RFP (request for proposal) [5] discussing the
construction of a UML profile for BPMN.

Fig. 3. UML Profile for BPMN simplified metamodel in RSA

The tool environment offers many features, including loading/saving, multiple

undo/redo, filters, elements drag and drop from explorers to editors, validation,
printing, zooming, property sheet, etc. The documentation is very good and abundant
in the web. However, the usability of the editors generated in RSA is rather weak.

Other issues have been observed. RSA does not support custom restrictions on

links’ styles, and custom relationship types cannot be created (and hence class
diagram elements can get mixed to the BPMN diagram, for instance multiplicities are
shown by default, as shown in the red circles in Figure 5) because the generated edit
parts extends GMF’s “ConnectionNodeEditPart” which already defines a default
figure (a line with a name label and multiplicity label).

10 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

Fig. 4. Iconic representation of BPMN elements with RSA

RSA also refers to a diagram editor, called Tooling Model, to create custom palette

entries, menu items, creation assistants (wizards), and property sheets. However, RSA
confronts some gaps, on offered possibilities to customize the field’s graphical
presentations; it was among the reasons which explain why RSA pushes users to
create a UML profile for their domain, since in the background, the possibilities of
graphical customization can be summarized as:

─ By default, the reuse of the concrete syntax of UML for the specific domain
concepts (each concept is represented by the visual notation of its associated
metaclass).

─ The use of iconic representations of stereotypes (stereotype-associated image).
─ Therefore, when generating custom shapes for non-relationship edit parts

(nodes), a simple edit part, figure, and view in the shape of a standard rectangle
is generated [10].

─ For relationship edit parts (Links), code for a simple connector and label are
generated.

However, if the user needs more complex forms, the tool offers only to modify the
generated files and that requires a solid knowledge of the Graphical Modeling
Framework (GMF), the Graphical Editing Framework (GEF), the Eclipse Modeling
Framework (EMF) and the Eclipse development.

The user interface cannot be customized directly via the profile. But since RSA is
based on Eclipse IDE, it inherits all Eclipse customization capabilities via its API.

3.2 Generic Modeling Environment (GME)

The Generic Modeling Environment (GME) is a configurable Meta-CASE tool
developed in C++ at Vanderbilt University, providing toolkits for creating a Domain
Specific modeling environment. Configuration is done by specifying the modeling
paradigm metamodel that represents the modeling language of the application domain
(in our case BPMN metamodel). The modeling paradigm contains, besides semantic
parts; presentation informations regarding the domain [14].

Evaluation of Modeling Tools Adaptation 11

The vocabulary of the domain-specific languages implemented by different GME
configurations is based on a set of generic concepts built into GME itself. Folders,
First-Class Objects (FCO) like Models (which can have inner parts and structures),
Atoms (elementary objects), Sets (similar to UML aggregations), References,
Connections (relationship between two objects within one model), Roles, Constraints
and Aspects (provide primarily visibility control) are the main concepts that are used
to define a modeling paradigm (figure 6). In other words, the DSL is made up of
instances of these concepts. The choice of these generic concepts is certainly, the
most critical design decision. Models in GME are similar to classes in Java; they can
be instantiated. When a particular model is created in GME, it becomes a type (class).
It can be subtyped and instantiated as many times as the user wishes [16].

This concept supports the reuse and maintenance of models because any change in

a type automatically propagates down the type hierarchy. Also, this makes it possible
to create libraries of type models that can be used in multiple applications in the given
domain.

Fig. 5. GME modeling concepts

BPMN metamodel elements match directly to FCOs, Atoms and Connections in the
GME metamodel (figure 7). Aspects can be used to control visibility of parts in the
editor.

12 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

Fig. 6. BPMN metamodel represented as GME paradigm.

Once a paradigm is created and the decorators defined, it can be registered in GME
as a new paradigm and then used as an editor, as shown in Figure 8. The tool provides
many features: loading/saving (XMI), undo/redo, drag and drop interface for the
creation of model elements, metamodel validation against multiplicities and OCL
constraints, printing, zooming, overviews, property views, etc. We can also use the
Aspect mechanism to create a sort of perspectives who restrict the metamodel
concepts’ viewing. The project is very well documented [14]. However, we have
found it difficult to create custom styles for links; there are only two available styles
(solid line, dash line) and arrows shapes are limited to ten. For nodes representations,
we cannot create complex shapes besides iconic representations (Bitmap Image).

Fig. 7. BPMN editor produced using GME

GME has a modular, extensible architecture that uses MS COM for integration.
GME is easily extensible; external components can be written in any language that
supports COM (C++, Visual Basic, C#, Python etc.). GME has many advanced
features. A built-in constraint manager enforces all domain constraints during model
building. GME supports multiple aspect modeling. It provides metamodel

Evaluation of Modeling Tools Adaptation 13

composition for reusing and combining existing modeling languages and language
concepts. It supports model libraries for reuse at the model level. All GME modeling
languages provide type inheritance. Model visualization is customizable through
decorator interfaces [13], [14]. GME supports the visual drawing of an object with a
COM object called decorator. This allows (with several limitations) one to associate
the BPMN shapes and symbols of Figure 3 to their respective concept in the
paradigm.

GME provides a major advantage which is the “modeling paradigms”. It supports

the reuse and maintenance of models (any change in a type automatically propagates
down the type hierarchy). It is possible to create our own transformation, but at the
cost of heavy C++ programming.

3.3 MetaEdit +

MetaEdit+ is a completely integrated environment/Meta-CASE tool developed in
Jyväskylä University, as part of the MetaPHOR project [18] for building and using
Domain-Specific Modeling (DSM) solutions. MetaEdit+ provides the standard set of
CASE tool functionality, including graphical editors, design data management, and
integration with other tools via its API.

As GME, MetaEdit+ is based on a proprietary metamodeling language which is the

GOPPRR metamodeling language [19]. GOPPRR is an acronym formed from
language’s base types which are Graph, Object, Port, Property, Relationship and Role.
Graph is the top-level structure of the metamodel. It defines one language or diagram
technique such as Class Diagram or State Transition Diagram. The actual semantics
of the graph are defined as the bindings of objects, relationships, roles and ports
within the graph. Properties are characterizing attributes that can be attached to each
of these other types [20].

A graph (similar to the “Model” concept in GME) denotes an aggregate concept

which contains a set of objects and their relationships, with specific roles. An example
of a graph in our evaluation context is a whole Business Process Diagram (as a whole
or just one level of it). In use, the Graph concept is fundamentally a generalized
decomposition graph: it can be included in a parent graph, attached to an object, role
or relationship therein [19].

The modeling tool building process in MetaEdit+ is quite simple. First, we design

the modeling language and its concrete syntax with MetaEdit+ Workbench and then
we use the produced editor in MetaEdit+ Modeler (figure 9).

14 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

Fig. 8. MetaEdit+ environment: MetaEdit+ Workbench (left) and MetaEdit+ Modeler (right) -
Copyright © 2011 MetaCase

MetaEdit+ Workbench is a tool for designing modeling languages: their concepts,
rules, graphical notations and generators. The language definition is stored as a
metamodel in the MetaEdit+ repository.

MetaEdit+ Modeler follows the definition of data modeling language defined

previously in MetaEdit+ Workbench by extracting it from the repository and offers
automatically, full functionalities of modeling tools: diagram editors, viewers,
generators, multi-user support, etc...

To create our BPMN editor with MetaEdit+, we defined a Project with a Business

Process Diagram as a MetaEdit graph, we added all concepts of our BPMN
metamodel as MetaEdit's Objects, relationships and properties (names, types…) and
then we proceeded to bind Objects and relationships. Finally, we defined the
graphical notations of each language elements, with the symbols editor which is a
user-friendly drawer of SVG (Scalable Vector Graphics).

Once the Project is created and registered in MetaEdit+ repository as a metamodel

it can be used as an editor, as shown in Figure 10. The tool provides many features
like loading/saving diagrams to a custom XML, undo/redo, printing, diagrams export
to bitmap, GIF, PNG and PICT format, import/export of graphical representations
from/to SVG, zooming, property views, models explorer, editing tools for creating
and modifying new types based on the base type, Symbol Editor tool for drawing
graphical symbols for objects, relationships and roles, constraints and rules definer
tool, it offers also to choose between three different representations (diagram, table,
matrix) without reloading or regeneration. We have succeeded in generating a BPMN
editor in less than a half day which allowed us to evaluate the maturity of this tool and
its user-friendliness. However, we have found a minor limitation in the produced
editor such as the difficulty to move labels, or to rename graphical elements without

Evaluation of Modeling Tools Adaptation 15

using the property popup menu… but this is due to the nature of the graphical
representations that are usually vector graphics (SVG).

Fig. 9. The BPMN Editor Produced using MetaEdit+

MetaEdit+ offers an advanced advantage which is GOPPRR metamodeling

language. The goal of such languages is to support the reuse and maintenance of
models: any change in a conceptual Graph (semantic model) is propagated between
different representational Graphs (graphical representations model), and both types
and instances of object, relationship, role, property and graph can be reused within
other graphs or projects.

3.4 Obeo Designer

Obeo Designer is an adaptive tool led by points of view. It provides a setting
environment to configure viewpoints and their various representations. It is based on
the Eclipse Modeling technological base from which it takes part in these
expandability capacities and modularity. It is based on the frameworks EMF, GEF
and GMF that offer all the elements to build modelers [7].

Obeo Designer (Version 5.0) allows architects to create the graphical modeling

workbenches that support their own language, notation, process and technical target.
It provides a tooling to easily define graphical representations such as diagrams,
tables or trees with rich user interactions hiding the complexity. In Obeo Designer, an
editor is described in three principle steps:

1. Domain vocabulary definition: It consists to define domain concepts,
relationships, and properties by creating a metamodel in ecore, Obeo Designer
offers an advanced graphical editor for this aim. After the DSL definition, the
architect uses ecore to generate the metamodel implementation and releases it.

16 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

Fig. 10. BPMN metamodel in ecore using Obeo Designer

Designer description: the aim of this description is to define viewpoints, their
representations and graphical elements’ parameters for each one of these
representations.

The notion of viewpoints is an abstraction that provides a specification of a system,
limited to a particular set of problems. It was introduced in the specification IEEE
1471 [6]. In Obeo Designer, viewpoints were used to provide users a set of visual
representations focused on a particular concern (figure 7). A point of view provides a
set of representations. This concept defines a projection used to view or edit a set of
semantic concepts. In Obeo Designer, a representation may be presented as a
diagram, a table or tree. The same concept is used in the RSA, known as "Layers" and
in GME under the name of “Aspect”.

2. Semantic model creation and visualization: After the description of our editor
has been done, we can create a semantic model and visualize its graphical
representation as diagrams, tables, trees...etc.

Fig. 11. Viewpoints notion

Evaluation of Modeling Tools Adaptation 17

3. Graphical representations description: this is the last step of the editor building

process. Obeo Designer offers a tree-styled editor to describe concrete syntax
(figure 12). In this editor we can create many diagrams, trees or tables for the
same DSL. The configuration starts with the definition of graphical elements,
with custom styles (figures, colors, size …) and the binding with the abstract
syntax (semantic part).

Fig. 12. Obeo Designer: Concrete syntax description

In this step, we can make specific validators, model comparators, define tools like
palette and layers for filtering the graphical editor elements and we can also create
custom code generators using Acceleo.

Once these steps were performed for our simplified BPMN metamodel, the designer
can be used in Obeo Designer as a BPMN editor, as shown in Figure 9.

The BPMN Editor implemented with Obeo Designer get some functionalities,
including Undo/Redo, outline viewer, image export, shortcuts, links routing, diagram
elements Show/hide, XMI export, domain classes Auto-completion, Syntax
highlighting, direct name edit in diagram, diagram validation, real-time request,
zooming, printing, Customizable behavior of creation, deletion, drag and drop…etc.

However, there are some required improvements in the editor’s designer; the

editor’s designer offers advanced functionalities to add parameters and OCL
expressions in the editor’s graphical syntax, which is not user-friendly for simple
users. There are also some bugs in the designer, which we have reported to Obeo's
developers.

18 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

As RSA, Obeo Designer is based on Eclipse Platform IDE; it inherits also, all
Eclipse customization capabilities via its API.

Fig. 13. BPMN Editor produced by Obeo Designer

Obeo Designer did well in the graphical editors’ customization. However, we have
found several limitations for the graphical syntax support:

The editor’s designer doesn’t allow using the full range of visual variables [9]; it’s
not possible to create complex graphical shapes for nodes (e.g. compartments,
complex polygons, 3D shapes …), there are also some lacks in basic shapes; we can
only use six principal shapes (square, lozenge, ellipse, triangle, dot, and ring), besides
iconic representations (images). However, the tool provides a mechanism to create
multiple conditional graphical styles for the same node. For edges, it is possible to
create custom link styles, but we can only choose one between eleven arrow
decorations.

Obeo designer offers a good interactivity during the development of the domain

model and of the editor description. Additionally, the editor's building process is
incremental and there are no need to generate code upon modifications, the advanced
transformation engine (in the same context that the Acceleo engine) interprets
modifications, and apply them at runtime in the produced editor, which accelerates
the development and the handling of editors.

3.5 Eclipse GMF

Eclipse is an open source and extensible Java-based platform that provides many
useful services for the creation of textual and graphical editors. Indigo M7 release
(Version 3.7) modeling pack was used for our evaluation. For building graphical
editors, three others Eclipse plug-ins are especially relevant. The Graphical modeling
Framework (GMF) is a framework for developing domain specific languages. GMF is
built on the Eclipse Modeling Framework (EMF) [22] and the Graphical Editing
Framework (GEF) [23].

The Eclipse Modeling Framework (EMF) is a framework and code generation

facility for building tools and other applications based on a structured data model.
From a metamodel specification described as an XML Schema or as a class diagram

Evaluation of Modeling Tools Adaptation 19

in Papyrus [24] (such as the one in Figure 2), EMF provides tools and runtime support
to produce a set of Java classes for the metamodel, a set of adapter classes that enable
viewing and command-based editing of the model, and a basic tree editor. In the
context of GMF, EMF is used to define the metamodel or abstract syntax of languages
(expressed in Ecore), and for generating code for creating, editing, and accessing
models.

The Graphical Editing Framework (GEF) is a framework that allows developers to

take an existing application model and quickly create a rich graphical editor for it. It
can easily be hooked to EMF metamodels. GEF is a framework that supports the
development of graphical editors. In the context of GMF, GEF is used to implement
the concrete graphical syntax of languages and for editing of concrete syntax.

To clarify the shaded ideas on GMF and its related projects (runtime, tooling and
notation) is held to detail the meaning of each. The GMF project is composed of three
interconnected subprojects [40]:

1. GMF Runtime: The GMF Runtime project is an industry proven application
framework for creating graphical editors using EMF and GEF. The GMF
Runtime provides many features that one would have to code by hand if using
EMF and GMF directly.

─ A set of reusable components for graphical editors, such as printing, image
export, actions and toolbars and much more.

─ A standardized model to describe diagram elements, which separates between
the semantic (domain) and notation (diagram) elements.

─ A command infrastructure that bridges the different command frameworks used
by EMF and GEF.

─ An extensible framework that allows graphical editors to be open and
extendible.

2. GMF Tooling: The GMF Tooling project provides a model-driven approach to
generating graphical editors in Eclipse. By defining a tooling, graphical and
mapping model definition, one can generate a fully functional graphical editor
based on the GMF Runtime.

3. GMF Notation: The GMF Notation Project provides a standard EMF notational
metamodel. The notational metamodel is a standard means for persisting diagram
information separately from the domain model. It was based on the principles in
the OMG Diagram Interchange Specification [41]

So the creation of a graphical editor with GMF is done with the tools of GMF tooling
in an execution environment that is GMF runtime and the diagrams produced with
this editor will be persisted according the Diagram Interchange standard defined on
GMF notation.

Based on the separation of concerns paradigm, GMF is composed of four basic
models for the generation of the graphical editor: Domain model (Semantic model
based on EMF), Graphical definition model (based on GEF), Tooling definition
model which define tools used in the editor (palettes, contextual menus…) and the
Mapping model that make the binding of semantics and graphical representations as
shown in the figure 15.

20 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

Fig. 14. GMF: Editors building process - Copyright 2006 Borland.com

Much effort is required to learn GMF and to understand how to make an editor
with it. Documentation (including tutorials and books) and useful discussion forums
are however available [25]. The quality of the resulting editor is very high, especially
from a usability point of view. The Eclipse platform, with GMF, offers several useful
services that can be used with little effort: loading/saving (in XMI), zooming, tool
palettes, overviews, exporting to images, offering extension points for other
applications to access the models created, and multi-platform support. However,
much programming effort is required to implement the various shapes and connectors,
multiple undo/redo, label editing, and property sheets.

Therefore, and also to homogenize their tooling, SAP built a framework that hides

GMF's complexities from the developer to ease and speed up the development of
graphical editors. This framework was called the Graphical Tooling Infrastructure
(Graphiti) [42]. After SAP AG decided in 2009 to donate the framework to the eclipse
community and then the framework was in the 0.7.0 incubation release in October,
2010.

We were unable to evaluate this framework in this paper for space reasons, but we
summarize basic differences [43] between Graphiti and GMF in the following table.

Table 1. Graphiti vs. GMF

 Graphiti GMF
Architecture Runtime Oriented Generative

API Self-contained (independent) GEF-Dependent

Client Logic Centralized distributed functionality

Look & Feel

Sophisticated look defined
by SAP usability specialists
(highly customizable to the
requirements of the tool)

Simple (highly customizable
in the generated code)

Evaluation of Modeling Tools Adaptation 21

As paramount differences between the architectures of the frameworks, we observe
the two major advantages of Graphiti:

1. Graphiti is strictly focused on the API; a user of the Framework only needs to

know how to use the Framework EMF. To build an editor, no knowledge of
Draw2D-GEF (or any other graphical framework used) is required.

2. We observe that GMF follows a generative approach, while in Graphiti no
generated source code must be manipulated to adapt the editor – in contrast to
GMF where one has to change generated sources, which can cause
incompatibilities problems when regenerating.

Fig. 15. BPMN Editor generated by GMF

Once a basic editor is in place, adding new functionalities becomes efficient. Also,
adapting the editor to changes in the metamodel is fairly simple. If new attributes,
class, or associations are added to the metamodel, then the editor can still open files
created with the previous version. However, deleting or renaming classes or attributes
can lead to backward incompatibility problems. Finally, it is important to note that
such a plug-in enables the integration of the editor with other modeling and
programming tools offered for the Eclipse platforms.

4 Comparison Summary

The current section provides a brief summary with additional highlights and remarks
based on our experience with these tools. We would like to point out that all tools
used in this evaluation are used on a large scale and have notoriety in the MDE
community; each one of these tools provides innovative concepts and methodologies
in this field.

─ Customization level: Obeo Designer and MetaEdit + are the tools that allow
customizing their critical parts easily and thoroughly (semantics, behaviors,
visual notation, validation tools, editor's pallete), without generating code or
reload the model. Actually the customization is done in a dynamic way for the
tools following metamodelling paradigms (GME and its notion of Aspect). RSA
is doing well for this criterion, it provides a graphical editor to customize the
tool, but in terms of ability to adapt the graphic representation, it remains rather
low. GME is clearly the weakest tool in terms of tool customization; it doesn’t

22 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

support any alternative way to represent concepts besides iconic representation
(images), which is discriminating for it on this category. In terms of user
interface (UI) customization, Eclipse-based tools are clearly the most advanced
tools in this area, their API allows them to create Perspectives, menus, views,
property sheets... except that until the moment it is done programmatically, and
there's no mechanisms to automate this adaptation (adapt the tool according to
the need for the user, the environment and platform) or to restrict it as needed,
thus offers opportunities to future researches.

─ Graphical expressiveness and completeness: According to [9], the visual
expressiveness is defined as the number of visual variables used in a notation.
The visual variables are: shape, texture, brightness, size, color and the planar
positions (horizontal and vertical). The graphical completeness is defined by the
capability to use fully the shape variable (the use of any kind of shapes:
complex, composites, 2D/3D…). We evaluated the tools’ capacity to use the full
range of these variables; MetaEdit+ and GMF are the only two tools that
allowed reproducing the BPM notation with fidelity and flexibility. Obeo
Designer did well in general, except for a few limitations. GMF required
substantial additional programming. GME and RSA offered the least flexibility
for this criterion.

─ Tool openness: The tool openness includes extensibility, reusability and
maintainability.

o Tool building approaches: MetaEdit+, GME and RSA are
metamodeling-language-based tools, they force users to describe
semantic concepts in particular languages: proprietary languages for
MetaEdit+ and GME (GOPPRR, GME modeling paradigm), and a
standard language for RSA (UML). For graphical description,
MetaEdit+ and GME don’t allow the separation of concerns, so the
user defines the graphical particularities in the proprietary language,
and then registers the editor in the case of MetaEdit+ and GME or
generate code for RSA. Obeo Designer and GMF are model-based
tools, they propose to describe the semantics and graphics as
separated models (which is well for reusability) and then users can
generate code for GMF, or interpret the model in the case of Obeo
Designer.

o All evaluated tools propose extensibility. Eclipse-based tools offer
extensibility through the mechanism of extension points. GME with
its MS COM interfaces is able to be extensible with other tools and
languages. MetaEdit+ provides the interface to read, create and
update model elements via its SOAP/Web Services API, making
MetaEdit+ functions accessible from almost any programming
language. However, extensibility appears to be weak with all
commercial tools on their Editor’s generation engines which are the
most isolated parts.

o In term of reusability, MetaEdit+ and GME have a great potential,
respectively with the GOPRR language and the GME
metamodeling paradigm, being designed for this aim; they are
among the best tools which promote reusability. All tools
supporting separation of concerns are doing well for this criterion.
GMF and Obeo designer offer MDE approaches for editors’ design,
so they provide possibility to reuse existing models. However, there

Evaluation of Modeling Tools Adaptation 23

is till now, no solution that provides settings inheritance or
factorization.

─ Tool usability: The best usability is offered by far by the Obeo Designer editor
in terms of efficiency, accessibility, satisfaction and overall number of features.
All tools support multiple undo/redo and loading/saving of models. The
manipulation of elements is somewhat awkward in RSA and GME.

─ Required resources: All these tools require some effort/time for learning the
technology and for creating our use case editor. The editor creation and usage
mechanism in MetaEdit+ is likely the easiest one among the five studied here,
followed by Obeo Designer and GME. GMF followed by RSA are definitely the
worsts.

─ License Nature: for this evaluation we have chosen three commercial tools, a
free tool and an open source one. We can distinguish that commercial tools have
an advanced degree of maturity comparing to the others. For commercial tools
MetaEdit+ and Obeo Designer propose the best quality/price ratio.

─ Artefact characteristics: criteria for artefacts produced by the tools
o Analysis and transformation: MetaEdit+ provides models’ access

interface via its SOAP/Web Services API. GME offers an interface
(Ms COM) to access and transform models. Eclipse environment
provides Java interfaces to easily access models, but
transformations are manual. Obeo designer is probably the most
promising environment in this category, with a specific language
for transformation (Acceleo), which is based on the OMG MTL
standard [26]. It provides also capabilities to produce editors’
validators where models are checked against the OCL constraints.
However, such capabilities appear to be weak in RSA.

o Artefact quality level: all evaluated tools provide overall excellent
metamodeling capabilities that enable metadevelopers produce level
5 quality metamodels. However, GME has some limitations in the
concrete syntax, for this reason the metamodels products by its
editors has a level 3.

o Artefact format: MetaEdit+ is based on a model repository to save
editors, this repository has a proprietary format, but the tool
provides a web service interface for all external manipulation on it.
As MetaEdit+, GME has a particular format of models persistence,
the models produced by the GME editors are persisted on binary
files. All Eclipse-based tools, have an open format of files which is
based on XMI standard, in the case of RSA, there are some
particular files which are binary and other that depend to UML
syntax.

The following table provides a quick overview of the strengths and weaknesses of
each tool, proved by metrics presented in section 2.

Table 2. Comparison overview

 RSA GME MetaEdit+
Obeo

Designer

Eclipse

GMF

Customization level 38 % 35 % 51 % 57 % 70 %

Graphical expressiveness 8/8 2/8 5/8 8/8 8/8

Graphical completeness 2/5 1/5 5/5 3/5 4/5

24 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

Openness

Settings approach*

 Std

language:

UML

Proprietary

language:

MModeling

paradigm

Proprietary

language:

GOPPRR

Open

Model:

EMF

Open

Model:

EMF

Extensibility Yes No No Yes Yes

Reusability No No Yes No No

Usability

Efficiency (EE) 30 % 37 % 30 % 75 % 60 %

Accessibility

(TV & VC)

Tasks

visibility
56 % 43 % 42 % 81 % 81 %

visual

coherence
38 % 31 % 59 % 75 % 41 %

Required resource (man-day) 12 6 0.5 5 25

License Nature* Cial. freeware Cial. Cial. EPL

Artefact

characteristics

Analysis capability Yes No** Yes Yes Yes

Artefact quality level 4/5 3/5 5/5 5/5 5/5

Artefact Format XML Binary Repository XML XML

* Std.: Standard, MModeling: metamodeling, Cial.: Commercial, EPL: Eclipse Public License
**GME allows models transformation and analysis but at cost of heavy C++ programming

5 Conclusion

The quality of modeling tools has been subject of some research by now. An

Evaluation of domain specific language (DSL) solutions according different
stakeholders can be found in [1]. Both [37] and [38] compare domain specific
language tools to each others, but there are no empirical studies with measurable
metrics to evaluate such tools. Based on a literature analysis and our experience with
developing modeling environments in research projects (Papyrus Project [24],
Gaspard [39]…) we have identified several evaluation criteria and metrics. We tried
in this paper to compare five different tools, producing graphical modeling editors.
Editors were created with each tool, and our experiments helped us compare the
approaches against such metrics. These criteria and metrics allowed us to assess
productivity, usability, reliability, reuse and stability through a real case study
involving a simple subset of the Business Process Modeling Notation (BPMN) whose
abstract syntax is specified with a metamodel.

Given the limitations found in the different tools which we have evaluated and

others that we haven’t discussed in this paper for space reasons, it turned out that
there are many research perspectives for this work, including tools’ customization
using the Model-Driven approach. IBM RSA has made great progress on this issue: it
provides a graphical editor to customize tools; but the final graphical rendering
remains poor. MetaEdit+ and Obeo Designer have also unrivaled potentials compared
to other tools, they provide user-friendly environments for building editors without
difficulties and in a shorter time, but there's always limitations in the concrete syntax
definition language which leads us to propose solutions on Papyrus modeling tool,
benefiting from all evaluated tools advantages and reducing their drawbacks. This
will be reflected by the specification of some metamodels which describe all parts of
a modeling tool (UI, abstract and concrete syntaxes…), approaches to compose and
reuse models and a metamodel representing the methodology that describes the
process of tools usage to restrict the environment according to user needs.

Evaluation of Modeling Tools Adaptation 25

References

1. Mohagheghi, P. and Haugen, Ø.: Evaluating Domain-Specific Modelling Solutions,
Advances in Conceptual Modeling – Applications and Challenges, Lecture Notes in
Computer Science, 2010, Volume 6413, , Pages 212-221

2. Collins English Dictionary, 2011.
3. Lazovik, A. and Ludwig, H.: Managing Process Customizability and Customization:

Model, Language and Process, Lecture Notes in Computer Science, 2007, Volume 4831,
Web Information Systems Engineering – WISE 2007, Pages 373-384

4. OMG, 2011. Business Process Modeling Notation (BPMN), version 2.0.
http://www.omg.org/spec/BPMN/2.0/

5. OMG, 2010. UML Profile for BPMN Processes RFP. http://www.omg.org/cgi-
bin/doc?ab/10-06-01.pdf

6. IEEE 1471: http://en.wikipedia.org/wiki/IEEE_1471
7. Juliot, E. and Benois, J.: How to build Eclipse DSM without being an expert developer?,

Obeo Designer Whitepaper
8. Kennedy, K., Koelbel, C. and Schreiber, R.: Defining and Measuring the Productivity of

Programming Languages. International Journal of High Performance Computing
Applications 18(4), 441–448 (2004)

9. Daniel L. Moody: The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Trans. Software Eng.
35(6): 756-779 (2009)

10.Wayne Diu : Custom Domain Modeling with UML Profiles «The Basics of Generating
Tooling for Elements from a UML Profile», IBM Rational Software 2009

11.Gong, M., Scott, L., Xiao Y., Offen, R.: A rapid development model for meta-CASE tool
design, Conceptual Modeling — ER '97, ISBN 978-3-540-63699-1

12.Nuseibeh, B.: Meta-CASE support for method-based software development. Proc. of 1st
Int. Congress on Meta-CASE, Sunderland, UK, January (1995)

13.J. Davis, “GME: the generic modeling environment” OOPSLA '03: Companion of the
18th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. 2003

14.Institute for Software Integrated Systems: The Generic Modeling Environment (GME),
December 2011. http://www.isis.vanderbilt.edu/Projects/gme/

15.Seffah, A., Donyaee, M., Kline, R.B., Padda, H. K.: Usability Measurement and Metrics:
a Consolidated Model. Software Quality Journal 14, 159–178 (2006)

16.Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment, Workshop on Intelligent
Signal Processing 2001

17.Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Metamodelling - State of the Art
and Research Challenges. Model-Based Engineering of Embedded Real-Time Systems
2007: 57-76

18.MetaPHOR project, Jyväskylä University: http://metaphor.it.jyu.fi/metapubs.html
19.Kelly, S., Lyytinen, K., and Rossi, M., "MetaEdit+: A Fully Configurable Multi-User and

Multi-Tool CASE Environment", Proceedings of CAiSE'96, 8th Intl. Conference on
Advanced Information Systems Engineering, Lecture Notes in Computer Science 1080,
Springer-Verlag, pp. 1–21, 1996.

20.Pohjonen R.: Metamodeling Made Easy – MetaEdit+ (Tool Demonstration), Lecture
Notes in Computer Science, 2005, Volume 3676, Generative Programming and
Component Engineering, Pages 442-446

26 A. El Kouhen, C. Dumoulin, S. Gerard and P. Boulet

21.Stephen A. White, Introduction to BPMN-http://www.bpmn.org/Documents/Introduction
_to_BPMN.pdf

22.Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf/
23.Graphical Editing Framework (GEF), http://www.eclipse.org/gef/
24.Papyrus - Eclipse: http://www.eclipse.org/papyrus/
25.Eclipse Community Forums: GMF (Graphical Modeling Framework):

http://www.eclipse.org/forums/eclipse.modeling.gmf
26.OMG, 2008. MOF Model To Text Transformation Language (MOFM2T), 1.0

http://www.omg.org/spec/MOFM2T/1.0/
27.IBM Rational Software Architect (RSA),

http://www.ibm.com/developerworks/downloads/r/architect/
28.J. Bertin, Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin

Press, 1983.
29.A. J. Albrecht, “Measuring Application Development Productivity,” Proceedings of the

Joint SHARE, GUIDE, and IBM Application Development Symposium, Monterey,
California, October 14–17, IBM Corporation (1979), pp. 83–92.

30.Clark, T., Evans, A., Sammut, P. and Willans, J.: Applied Metamodelling: A foundation
for Language Driven Development. Version 0.1. Xactium Ltd., 2004.

31.Penichet, V., Calero, C., Lozano, M. and Piattini, M.: using WQM For Classifying
Usability Metrics. . ISBN: 972-8924-19-4. 2006

32.Constantine, L.L. and Lockwood, L.A.D. 1999. Software for Use: A Practical Guide to
the Models and Methods of Usage-Centred Design, New York: Addison-Wesley.

33.Braz, C.; Seffah, A and M’Raihi, D. (2007) “Designing a trade-off between usability and
security: A metrics-based model,”Proceedings of the11th IFIP TC 13 Conference on
HumanComputer Interaction, Rio de Janeiro, Brazil, Lecture Notes in Computer Science,
Vol. 4663. Springer, Berlin, pp. 114–126, September 2007

34.Bevan, N. and Macleod, M. 1994. Usability measurement in context, Behavior and
Information Technology 13: 132–145.

35.Seffah, A., Kececi, N., Donyaee, M.: QUIM: A Framework for Quantifying Usability
Metrics in Software Quality Models - APAQS '01 Proceedings of the Second Asia-
Pacific Conference on Quality Software IEEE Computer Society Washington, DC, USA
2001

36.Software engineering -- IFPUG 4.1 Unadjusted functional size measurement method:
ISO/IEC 20926:2003

37.Amyot, D., Farah, H., Roy, J.-F.: Evaluation of Development Tools for Domain-Specific
Modeling Languages. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS, vol. 4320, pp.
183–197. Springer, Heidelberg (2006).

38.Pelechano, V., Albert, M., Mu˜noz, J., Cetina, C.: Building tools for model driven
development. Comparing microsoft dsl tools and eclipse modeling plugins. In: Proc. of
the Actas del Taller sobre Desarrollo de Software Dirigido por Modelos. MDA y
Aplicaciones. CEUR Workshop Proceedings, vol. 227 (2007).

39.Gaspard2, http://www.gaspard2.org/
40.Graphical Modeling Project (GMP), http://www.eclipse.org/modeling/gmp/
41.OMG, 2004. Diagram Interchange Specification, v1.0 http://www.omg.org/cgi-

bin/doc?formal/06-04-04
42.Eclipse, SAP AG, 2011. Graphiti, http://www.eclipse.org/graphiti/
43.Brand, C., Gorning, M., Kaiser, T., Pasch, J. and Wenz, M.: Graphiti : Development of

High-Quality Graphical Model Editor - Eclipse Magazine
44.S. Cook et al, Domain-Specific Development with Visual Studio DSL Tools, Microsoft

.net development series, 2007.

Evaluation of Modeling Tools Adaptation 27

45.Robert, S.; Gerard, S.; Terrier, F.; Lagarde, F.; "A Lightweight Approach for Domain-
Specific Modeling Languages Design," Software Engineering and Advanced
Applications, 2009. SEAA '09. 35th Euromicro Conference on , vol., no., pp.155-161,
27-29 Aug. 2009.

46.Gérard, S.,Dumoulin, C.,Tessier, P.,Selic, B.: Papyrus: A UML2 Tool for Domain-
Specific Language Modeling - Model-Based Engineering of Embedded Real-Time
Systems, Lecture Notes in Computer Science Volume 6100 (2011) P. 361-368

