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ABSTRACT
While interaction techniques that use the temporal dimension
have been used for a long time, such as multiple clicks
or spring-loaded widgets, more advanced uses of rhythmic
patterns have received little attention in HCI. Using such
temporal structures to convey information can be particularly
useful in situations where the visual channel is overloaded
or even not available. In this paper we introduce Rhythmic
Interaction as the use of rhythms for input. We report the
results of two experiments that show that (i) rhythmic patterns
can be efficiently reproduced by novice users and recognized
by computer algorithms, and (ii) rhythmic patterns can be
memorized as efficiently as traditional shortcuts when asso-
ciating them with visual commands. Overall, these results
demonstrate the potential of Rhythmic Interaction and open
the way to a richer repertoire of interaction techniques.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User Inter-
faces. - Graphical user interfaces.

Author Keywords
Rhythm; taping; hotkeys; learning; patterns; Morse code

INTRODUCTION
Rhythm plays an important role in our everyday life. Tempo-
ral patterns are of course critical in experiencing music, but
they also underlie periodic actions such as walking, breathing
or chewing, and they are even necessary for understanding
speech prosody. Rhythm is so deeply embedded in our
experience of living that it can be used to cure some diseases
such as stress or sleep disorders [29].

While perceiving and reproducing rhythm is recognized as
a fundamental human ability by physiologists and neuropsy-
chologists, it is still underused as an interactive dimension
in HCI. In common desktop environments, interaction relies
heavily on manipulating graphical widgets, simple mouse
clicks and keyboard shortcuts. This basic vocabulary, how-
ever, is often extended by using spatial or temporal features,
as with mouse gestures or multiple clicks.
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Although the spatial dimension has been the focus of much
HCI research on interaction techniques based on hand pos-
tures or gestures, e.g. [1, 3, 16], the temporal dimension has
received little attention so far. We propose to use rhythm
as an input method and introduce Rhythmic Interaction as a
complementary way to control interactive systems. Rhythmic
Interaction can be used in any event-driven environment for
a variety of input modalities: clicking the mouse, hitting
keyboard keys or a touch-sensitive surface, moving a motion-
sensing device, etc. However, it has competitive advantages
for tactile screens, since it requires less screen space than
gestural interaction and no visual attention [33]. This article
presents a first exploration of the design space of Rhythmic
Interaction in order to address the following questions:

• Feasibility. Even if perceiving and performing rhythm is
quite natural, are users able to reproduce, learn and memo-
rize patterns? Can they use them to trigger commands?

• Interaction design. The number of possible rhythmic pat-
terns is virtually infinite and they can be presented in
several ways. Which patterns make sense for interaction
and how to design a vocabulary? What feedback helps
executing and learning patterns?

• Technical issues & Integration. Like most continuous high-
level input methods, e.g. voice, marks, gestures, Rhythmic
Interaction relies on a recognizer to segment and interpret
user input. How to design effective recognizers that do not
require training?

In the rest of this paper, we survey related work and then
define a framework for Rhythmic Interaction, narrowing the
scope of our study to vocabularies of rhythmic patterns that
are relevant in the context of HCI. Then, we report on two
experiments where the patterns are rhythmic sequences of
taps performed on a tactile trackpad to trigger commands.
The first one tests the ability of novice users to reproduce
individual patterns, while the second one compares the abil-
ity of users to memorize the association of commands to
rhythmic patterns vs. keyboard shortcuts. We also describe
the recognizers that we created for these two experiments,
and draw some conclusions regarding the design of pattern
vocabularies and appropriate feedback.

BACKGROUND & RELATED WORK
The literature in cognitive science has studied the percep-
tion, reproduction and use of rhythm from several perspec-
tives: physiology, e.g., perception and action [13, 19], knowl-
edge and learning, e.g., language [24], artistic applications,
e.g., music [23], etc. Two major studies on the psychology
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of rhythm in music are reported by Fraisse [12] and by
Clarke [7]. In this section, we give an overview of the lit-
erature in cognitive science that is most relevant to Rhythmic
Interaction and then focus on the few studies of using time
and rhythm to control interactive systems.

Rhythm in Music and Games
For musicians, rhythm is one of the most important features in
music, together with melody and harmony. Many traditional
forms of music combine simple rhythmic structures played in
parallel to build up higher level aggregated rhythms, called
“polyrhythms” [2]. From a cognitive point of view, these
practices suggest that the cognitive load required to deal with
an elementary rhythmic pattern is light enough to allow their
combination in more complex structures.

Highly trained musicians are able to create and play an
incredible amount of rhythmic variations. Simple patterns,
however, can be reproduced by everyone, as illustrated by
the success of popular musical games such as Guitar Hero,
TapTap or Donkey Kong, where rhythmic structures are rec-
ognized and reproduced by non-musicians of all ages.

Rhythm in Cognitive Sciences
In physiology and neuropsychology, numerous studies report
that humans have a natural perception of rhythm, thanks
to rhythmic mechanisms that are involved in the internal
functioning of our organism (heart beat, sleep cycles, etc.)
[13] and their relation with periodic external phenomena
(day/night, seasons, etc.). When listening to music, we
constantly try to infer the beat, i.e., to perceive regular and
salient events, or to group events into rhythms [18]. In fact,
we systematically try to perceive rhythm even when none is
present [25] or when being told to avoid it [12].

Rhythm perception is deeply related to the motor system [5].
Since childhood, humans are used to tap their feet, clap their
hands, snap their fingers and move in synchrony with music.
These activities are common and seem simple, even though
they involve complex rhythmic structures. Outside music,
periodic activities of different frequencies are pervasive in our
everyday life. For example, chewing or walking are known to
have universally preferred rates [13, 19].

While these studies attempt to explain how and why we
perceive and produce periodicities, they rarely deal with the
reproduction and memorization of rhythmic patterns associ-
ated to tasks that we address in this article.

Rhythm as an Input Method in HCI
Rhythm is built on the temporal dimension, which is com-
monly used in interactive software. For example, long clicks
are often distinguished from short clicks to trigger differ-
ent commands based on temporal criteria. The concept
of “dwelling”—freezing the interaction for a short amount
of time—is also used to segment gestural interaction [15]
or to explicitly switch mode [10]. Rhythmic Menus [22]
successively highlight items at a given rate while the mouse
button is pressed. When the user releases the button, the
current item is selected.

Some techniques are based on the temporal grouping of
events. Double click is the simplest and most common case,
but some studies also explored rhythmic motion: Motion
Pointing [11] assigns different periodic motions to graphical
objects in a scene or items in a pie menu; The user selects the
object or menu item of interest by performing the correspond-
ing motion. In Cyclostar [20], the user controls continuous
parameters, such as the speed of zooming, by performing
elliptical oscillatory gestures. The rate of the circling motion
controls a parameter of the resulting command.

In the above cases, rhythmic aspects are reduced to period-
icity. To the best of our knowledge, only a few techniques
involve the reproduction of rhythmic patterns. Five-key [31]
is a text entry system based on rhythmic sequences, where
letters can be entered with only five keys. However, efficiency
and learning were not studied systematically. In [9], tempo
reproduction is used to select a particular song in a music
library by tapping on a mobile device or shaking it. But
relying only on tempo raises some scalability issues that
were not assessed. Finally, Tapsongs [33] is an alternative
to textual passwords where users tap a rhythmic pattern that
they have registered with the system for authentication.

MOTIVATION
Our goals are more general than Five-key and Tapsongs:
we want to design vocabularies of rhythmic patterns that
users can learn easily and perform reliably in order to trigger
commands. This approach is somewhat similar to the use of
Morse code for encoding characters. However, the design
of Morse code was driven by information theoretic issues
rather than usability, and while early computers were able to
decode human-produced Morse code [4], it has rarely been
used in HCI [6]. Our objective is to propose a comprehensive
framework to design rhythmic patterns for interaction, with
efficient recognizers that do not need training.

Advantages of Using Rhythms for Input
The design of new techniques based on Rhythmic Interaction
is not the main focus of the present article. However, we have
identified a number of potential advantages of using rhythm
to interact with computer systems. First, as evidenced by
research in Cognitive Science, there is a direct correspon-
dence between performing a rhythm (action) and listening to
a rhythm (potential audio stimulus and feedback). Second,
rhythms can be performed in a variety of situations: while
performing a rhythm requires as little as a single degree of
freedom of one finger, many movements can be performed
rhythmically and captured using different sensors, e.g., tap-
ping fingers, tapping feet, or nodding the head.

Gestural interaction typically requires space to perform the
gestures, and often interferes with the display space on a
small touchscreen. By contrast, Rhythmic Interaction only
uses temporal features. Rhythms can be performed on a small
area of a tactile device, even in an eye-free context.

Finally, rhythmic structures can be designed in a hierarchical
way. By using common prefixes among different patterns, a
natural hierarchy emerges that can be internalized by users,
facilitating memorization and recall.
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Applications of Rhythmic Patterns
Rhythmic patterns are not meant to replace more conven-
tional command input methods. Instead, it is an alternative
that may be more adapted to specific situations, such as
eye-free operation. It is also a way to enhance existing
methods with a richer vocabulary. For example rhythmic
patterns could give access to a restricted set of commands
such as speed-dialing a phone number, navigating an e-book
or switching mode in an application.

In some situations, rhythmic patterns can simplify interaction.
For example, bookmarks, menu items or contacts are often
organized hierarchically. Rhythmic patterns could match this
hierarchy or provide an alternate hierarchy such as organizing
contacts by their first name. Also, since rhythmic patterns can
be performed without visual attention, they can be used with
a tactile device in the pocket or while driving, or in the dark,
e.g. to shut down an alarm clock, or even with devices that do
not have a display.

Rhythmic Interaction also offers novel solutions to well-
known problems. Tapping on the back of a hand-held device
can be captured without extra sensors, thanks to built-in ac-
celerometers or microphones [28]. For example, a rhythmic
pattern performed while receiving a phone call could add the
caller to the contact list, or display extra information such as
battery life or signal level. Patterns could also be performed
with the non-dominant hand or another part of the body such
as the feet [30], to switch mode or ignore an incoming call.

RHYTHMIC PATTERNS FOR INTERACTION
Our definition of a rhythmic pattern comes from music: The
elementary structure in music is called a motif, which is
defined as a “melodic, rhythmic, or harmonic cell” [21].
A rhythmic motif represents the temporal structure of a set
of notes and consists of the relative durations of notes and
silences. Notes and silences can have eight different durations
in standard musical pieces, and motifs can contain many
notes, leading to a huge number of possible rhythmic motifs.

Considering the number of commands and actions often used
when interacting with computers, such an expressive power
is not required. Therefore we propose a restricted definition
of rhythmic pattern (or simply pattern) more adapted to HCI.
A rhythmic pattern is a sequence of taps1 and breaks whose
durations are counted in beats. The beat is the basic unit
of time and its duration is defined below). We define the
complete set of possible patterns with the following rules:

• Taps can be of three types: impulse (a hit on a touch device
or a click), short tap (one beat) or long tap (two beats). A
tap starts at the beginning of a beat, and there cannot be
more than one tap per beat.

• Breaks can be of two types: short (one beat) or long (two
beats). A pattern cannot begin or end with a break, and
there cannot be two successive breaks.

This definition of taps and breaks is based on our empirical
observation that computer users are familiar with the distinc-
tion between instantaneous and long clicks or taps. By adding
1The word “tap” reflects our focus on using a tactile device for input.

Figure 1. The 16 three-beat patterns defined by our rules. Each
rectangle represents a tap. The thin gray lines show the beats.

a third duration and by taking breaks into account, we offer
designers more possibilities for selecting a set of patterns
among the possible combinations. In comparison to Morse
code, we do not need the “intra-character”, “inter-character”
and “inter-word” breaks that are specific to the coding of
language, and we do not allow more than one tap per beat.

The length of a pattern is the sum of the durations of its
taps and breaks. To simplify reproduction and memorization,
we focus on patterns between two and six beats long. The
rules above define 5 two-beat patterns, 16 three-beat patterns
(Figure 1), 53 four-beat patterns, 171 six-beat patterns and
554 six-beat patterns. By comparison, the total number of
patterns with n taps is 32n−1, i.e. 199, 290 patterns with up to
six taps.

In this entire study, beats occur at the tempo of 120 BPM
(2Hz). Thus, the onsets of two consecutive taps are separated
by at least 500 ms, i.e. a beat is half a second. This cor-
responds to a common tempo of human motor actions, e.g.
walking [19], and of contemporary music [23].

As a first step, we only consider rhythmic patterns performed
by tapping on a touch-sensitive surface. While keyboards,
accelerometers [17, 9] or eye blinks [32] can probably be used
for Rhythmic Interaction, it is out of the scope of this article.
We also do not address the segmentation of patterns from
other input. Simple solutions that should be tested include
segmenting in time by preceding each pattern with a specific
short sequence of taps, or segmenting in space by performing
patterns on a specific location of a device.

A key aspect of this research is to design a recognizer that
can reliably identify the patterns produced by users. In a
first experiment, we used a structural recognizer to assess
users’ ability to produce patterns accurately. Based on the
results, we designed a pattern classifier that accounts for
user inaccuracies while still discriminating the patterns in the
vocabulary. This classifier was used in a second experiment
where we assessed users’ ability to memorize associations
between patterns and commands in an applicative context.

EXPERIMENT 1: RHYTHMIC PATTERN REPRODUCTION
In order to assess the potential of Rhythmic Interaction, we
conducted a first experiment where novice users were asked
to replicate patterns presented to them in visual and/or audio
form by tapping on a touch surface. The goal was to assess
the accuracy of the reproduction and to compare the effects
of several feedback mechanisms while performing patterns.
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(a) (b)
Figure 2. The stimulus in Experiment 1. A static representation is
displayed (a) and fills up in synchrony with the audio playback (b).

Recognizer
The recognizer that we designed for this experiment is based
on the above rules for defining the patterns. It first extracts the
rhythmic structure as a list of taps and breaks and infers their
respective types (impulse, short and long) using autonomous
heuristics. The reconstructed pattern is then checked against
the vocabulary used for the study.

In order to identify the type of every tap and break in the
sequence, the recognition algorithm uses k-means cluster-
ing iterated 500 times on duration values. The algorithm
builds clusters corresponding to the possible types of taps and
breaks: impulse, short and long2. A minimum distance of
200ms between the duration clusters is enforced, correspond-
ing to a maximum tempo for the pattern to be recognized. If
two clusters are closer than that distance, they are merged and
will be recognized as a single tap type. Thus, if the pattern is
performed too fast, events of different types may be confused
by the recognizer. For cluster identification, the reference
durations for short and long taps or breaks are set to 500ms
and 1000ms respectively, and the maximum duration of an
impulse or release is set to 180ms.

After clustering, breaks that correspond to the rest of a beat
after an impulse are removed from the reconstructed pattern.
The resulting pattern is then looked up in the vocabulary to
check if it matches the stimulus provided to the participant.

Note that this recognizer is intentionally very strict, in order
to assess the participants’ ability to precisely reproduce the
patterns. In particular, if the reconstructed pattern is not in the
vocabulary, the recognizer will systematically return an error.
With minimal knowledge about our definition of rhythmic
patterns, the algorithm is able to identify the type of every
tap and break in a sequence even in tricky situations, such as
when there is just one type of events. Thanks to clustering,
the recognizer adapts to the tempo (the overall tempo can be
inferred by comparing the centroids of the clusters.)

Apparatus and Participants
The experiment was implemented in Java and conducted on
a 13" Apple MacBook (Intel processor). Participants tapped
the rhythmic patterns on the embedded multitouch trackpad.

Twelve unpaid volunteers (six female) participated in this
experiment, with age ranging from 23 to 53 (mean 29, median
27). Five of them had never practiced music.

Stimulus
The pattern to reproduce is presented to the participant with
a stimulus combining a static graphical representation of the
pattern, visual animation and audio (Figure 2). The visual
2A break with a duration of an impulse is called a release. It occurs
between two adjacent taps.

Figure 3. Visual feedback while tapping a pattern.

stimulus is a stationary shape depicting the whole rhythmic
pattern, where each rectangle represents an event (Figure 2a).
This shape is then progressively filled (Figure 2b) in syn-
chrony with audio playback. Beats are marked with thin gray
lines to visualize the durations of events.

For audio playback and animation, impulses last 125ms and
the tempo is set to 120 BPM or 2Hz (500ms period). This
value is above the “synchronization threshold” [27] for both
visual and auditive stimulus, ensuring that participants can
perceive and perform it accurately. The audio stimulus is a
440Hz A, played by the General MIDI Instrument “English
Horn” and held at a constant sound level. We chose this
sound as it is soft enough for the subjects to endure during
the experiment, but has clear onset and release.

Feedback
Participants are presented with 4 input FEEDBACK conditions
while reproducing rhythmic patterns. The Audio feedback
plays the same sound as the stimulus as long as the participant
is touching the surface of the trackpad. The V isual feedback
is based on the graphical representation of the stimulus.
The rectangles representing the events appear dynamically
while the subject is tapping on the trackpad (Figure 3). The
AudioV isual feedback combines the two previous methods,
and there is no feedback at all in the None condition.

The Audio, V isual and AudioV isual feedback methods are
expected to help learning, e.g. in novice mode. Conversely,
the None condition corresponds to the situation where an
expert user is performing patterns in an eyes-free manner
without audio feedback.

Vocabulary
For this experiment, we selected 30 rhythmic patterns among
the 799 patterns with two to six beats generated by the rules
described earlier. This vocabulary (Figure 4) contains 4 two-
beats patterns, 8 three-beats patterns, 8 four-beats patterns,
6 five-beats patterns and 4 six-beats patterns. We explicitly
featured fewer patterns for the extreme situations (two, five
and six beats). Among the patterns with the same duration,
we tried to balance the number of events. For example, for
the 8 four-beat patterns, 2 contain two events, 3 contain three
events and 3 contain four events.

Task
A trial consists in reproducing a rhythmic pattern according
to the FEEDBACK condition, right after it is presented twice in
a row. The participant performs the pattern by tapping on the
trackpad with the index finger of her dominant hand. The
recognizer then computes the temporal structure of the input
and matches it with that of the stimulus. At the end of the
trial, the participant is notified about the success or the failure
of the match before advancing to the next trial.
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Figure 4. Vocabulary used in the first experiment.

Design and Procedure
The experiment is a 2×30 within-subject design with factors:
(i) FEEDBACK: Audio, V isual, AudioV isual and None; and
(ii) PATTERN: P1 – P30 (Figure 4).

At the beginning of the session, each FEEDBACK condition is
introduced to the participant with a short block of 15 random
trials. Then, the participant is asked to perform two warm-up
blocks of 15 trials in the AudioV isual feedback condition,
which we hypothesize provides the best feedback to become
familiar with the task. The 3 first trials of the first warm-up
block are performed by the experimenter to demonstrate the
feedback condition to the participant. The second warm-up
block is interrupted if the participant reports to be confident
enough to start the experiment.

During the main session, measured trials are grouped into
blocks according to the FEEDBACK factor. The presentation
order for FEEDBACK is counterbalanced across participants
with a Latin square. Within each block, the 30 patterns are
repeated twice in randomized order. A practice block of 15
randomly selected patterns is performed prior each measured
block and participants are allowed to have breaks between
and in the middle of each block. Thus, we collected 12
participants × 4 FEEDBACK × 30 PATTERN × 2 repetitions =
2880 measured trials. Participants were instructed to be as
accurate as possible by paying attention to the discrimination
of different types of taps and breaks. Each participant took
about one hour to complete the sessions, after which they
were asked to rank the feedback methods according to the
difficulty of the task on a 5-point Likert’s scale.

Quantitative Results
The overall success rate is 64.3%. This may seem low, but
recall that our recognizer is deliberately very strict regarding
the temporal structure of patterns, and that it can recognize all
799 patterns with two to six beats, not just the 30 patterns in
the study. The precise reproduction of the rhythmic patterns
in the study is similar to playing a percussion instrument, a
task that musicians can take years to master.

S5

S4

P21 P27

S3

S1
a

b

c

d e

Figure 5. Two stimuli (P21 and P27) with reproductions errors by
subjects of Experiment 1. S4: the last break is too long (a); S5: the
last tap is too long (b); S1: the last break is too short (c); S3: the first
break is too long (d), the last break is too short (e).

None Audio Visual AudioVisual

Feedback

S
u
c
c
e
s
s
 R

a
te

 (
%

)

0
2
0

4
0

6
0

8
0

1
0
0

Figure 6. Success rate for each FEEDBACK condition.

Figure 5 shows typical reproduction errors by study partici-
pants, such as release breaks that are too long and recognized
as short breaks, or breaks or taps that are too similar to
be separated during clustering. Interestingly, errors seem
more frequent with breaks than with taps, which is consistent
with the finding that users tend to be more precise when
performing notes than pauses [26].

A one-way ANOVA for FEEDBACK (with participant as a ran-
dom variable) reveals a significant effect on success rate
(F3,33 = 15.4, p < 0.0001). This effect can be observed in
Figure 63. Post-hoc t-tests with Bonferroni correction show
that the None condition is significantly worse than all other
feedback conditions. It is not surprising that the absence of
feedback while performing the pattern significantly degrades
the accuracy of rhythm reproduction.

3In all figures, error bars show the 95% confidence interval.
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Figure 7. Success rate by number of taps and by length in beats.

Regarding PATTERN, a one-way ANOVA reveals a significant
effect on success rate (F29,319 = 25.1, p < 0.0001). We observe
a large deviation of the success rate for some patterns: from
16% with P27 to 98% for P10. Fifteen patterns have a success
rate of at least 70%: P1–P7, P9–P13, P19, P20, and P29. All
have at least 3 taps and all but P29 are less than four-beats
long. However, some three-tap patterns have a low success
rate (below 50%): P14 and P18 (both with 4 beats).

We could not identify similarities among the patterns that
were difficult to reproduce. However, the number of taps and
beats are the most obvious characteristics that can influence
the ease of reproduction. In fact, we found a significant effect
on success rate for taps (F4,44 = 54.1, p < 0.0001) and beats
(F4,44 = 85.5, p < 0.0001), without significant interaction with
FEEDBACK. Post-hoc t-tests support this hypothesis since, in
most cases, the highest recognition rates were achieved for
patterns with a small number of taps or beats (Figure 7).

Qualitative Results
Six participants out of 12 preferred the Audio feedback, 3
the V isual feedback, 2 the AudioV isual feedbacks and 1
no feedback. Moreover, 6 participants ranked AudioV isual
second and 8 ranked the None condition last. Note that many
participants pointed out that AudioV isual was confusing,
providing too much information. They explained that in
most cases, they chose one feedback (visual or auditive) and
tried to ignore the other. Half of them preferred the Audio
feedback because it was more related to rhythm than graphics.

We assessed the subjective difficulty of the task with the state-
ment “I found it difficult to reproduce rhythmic patterns”.
Seven participants disagreed or strongly disagreed, 4 neither
disagreed nor agreed, and only one agreed, but at the same
time disagreeing for the None and V isual feedbacks.

Overall, both quantitative and qualitative results are encour-
aging and support our hypothesis that rhythmic patterns,
as defined by our framework, is a viable input technique
for interactive tasks. While quantitative results support the
need to provide feedback while performing input, qualitative
results inform on the type of appropriate feedback. Finally, an
analysis of recognition errors gives insights on how to create
a recognizer that would be more suitable for real applications.

A PATTERN CLASSIFIER
The goal of the structural recognizer in Experiment 1 was to
assess how accurately participants could reproduce a stimulus
pattern. This recognizer is deliberately strict, accounting
only for variations in the overall tempo of the pattern, and
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Figure 8. Revised success rate by FEEDBACK for the pattern classifier.
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Figure 9. Revised success rate by number taps and length in beats for
the pattern classifier.

it does not take advantage of the fact that the input patterns
are assumed to be part of a known vocabulary. We designed a
second recognizer for use in actual applications, that classifies
an input pattern against a vocabulary.

In order to recognize a sequence of taps, this pattern classifier
first counts the number of taps in the sequence and considers
the subset of the vocabulary with that number of taps. Then,
it calculates a score for each candidate pattern. First, it infers
the duration of a beat by considering the duration of the
sequence of taps and the number of taps of the candidate.
Using this value, it scales the pattern to match the duration
of the input sequence and sums the temporal differences of
events onsets and durations. A duration of a quarter beat is
used for impulses and releases between consecutive events
(when lifting the finger from the device). Finally, the score is
weighted by the ratio between the inferred beat duration and
the 120 BPM reference (500ms).

This classifier is less strict than the structural recognizer
because it will always match an input pattern to a pattern in
the vocabulary if it is the only one with the same number
of taps, unless a threshold is set on the lowest acceptable
score. Moreover, normalization makes the recognizer match
patterns that are homothetic of each other. This is the reason
for weighing the score by the relative beat durations.

We tested this classifier with the data and vocabulary of
Experiment 1. The overall success rate rose to 93.9%, more
in line with the expectations of an applicative context. As
with the previous recognizer, a one-way ANOVA for FEEDBACK

reveals a significant effect on success rate (F3,33 = 7.2, p =

0.0007) (Figure 8).

Figure 9 shows that unlike the structural recognizer, success
rate does not decrease with pattern “complexity”: there is
no significant effect of the number of taps or the length on
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Shift+E

R4 = P9

CMD5

Ctrl+R

R5 = P19

CMD6

Shift+F

R6 = P4

CMD7

Ctrl+N

R7 = P3

CMD8

Shift+B

R8 = P2

CMD9

Ctrl+D

R9 = P1

CMD10

Shift+T

R10 = P29

CMD11

Ctrl+H

R11 = P18

CMD12

Shift+G

R12 = P6

Ctrl+A

CMD13

R13 = P28

CMD14

Shift+W

R14 = P12

Figure 10. Commands used in Experiment 2. Pxx refers to the patterns of Experiment 1 (see Figure 4).

success rate4. Instead, we observe that success rates are
affected by the similarity between patterns: a complex pattern
can be recognized quite reliably provided that it is sufficiently
different from other patterns with the same number of taps.
For example, P30 is the only pattern made of 6 taps in our
set, making recognition failure occur only when the subject
tapped a wrong number of taps. By contrast, P17 seems to
be more “complex” than the “simple” pattern P20 but the
former has a 100% success rate and the latter 82%. In fact,
the recognizer sometimes confuses P20 with P11. However,
a post-hoc t-test with Holm correction reveals no significant
difference between patterns for success rates.

In summary, we found that this classifier was well adapted
to actual applications. In particular, a designer can create a
vocabulary that minimizes the risk of patterns being confused.

EXPERIMENT 2: RHYTHMIC PATTERNS MEMORIZATION
In order to further validate Rhythmic Interaction, we con-
ducted a second experiment to test whether patterns can be
memorized and recalled in order to be used as an alternative
to standard techniques for triggering commands. We com-
pared rhythmic patterns with standard hotkeys in a “learn and
recall” experiment similar to Appert and Zhai’s comparison
of gesture shortcuts with hotkeys [1], itself inspired by Gross-
man et al’s study of hotkeys [14].

Variables
We compare two techniques for triggering commands (TECH

factor): Hotkey and Rhythm. A third condition, Free, lets
participants choose the technique they prefer.

Each command Ci is a triplet associating an image Ii, used as
a stimulus for this command, and two triggering techniques: a
rhythmic pattern Ri and a hotkey Ki. The command set (CMD

factor) has 14 commands: C1, ..., C14. We chose the images
symbolizing the commands in a set of common objects and
fruits (Figure 10).

For the rhythmic patterns, we selected 14 patterns of varying
complexity from Experiment 1 and randomly assigned each
pattern to a command. For the hotkeys, we created combina-
tions of a modifier (Shift or Ctrl) and a letter. The letters
were chosen so that they did not match the first letter of the
name of the object representing the command, as in [1]. The
goal is to avoid giving an unfair advantage to hotkeys, since
there is no similar mnemonic association between rhythmic
patterns and command names. Furthermore, the mapping
between commands and hotkeys often varies by application
and language. Figure 10 shows the resulting assignment.
4This could be due to the fact that in the vocabulary, there were few
patterns with five taps or beats.

(a)

(b)

(c)

Figure 11. Stimulus in the learning phase for the Rhythm (a) and
Hotkey (b) conditions, and in the testing phase for both conditions (c).

Task
The primary task of the experiment is to activate a command
(Ci), presented by its stimulus image (Ii), with the triggering
technique corresponding to the current TECH condition (Ri or
Ki). The experiment has two phases: learning and testing.

During the learning phase, both the image Ii and the corre-
sponding triggering technique (Ri or Ki) are shown to the
participant. For rhythmic patterns, the static graphical repre-
sentation is displayed next to the image (Figure 11a) and the
audio stimulus is played twice. Hotkeys are presented with
a short animation of the corresponding key-press sequence,
also repeated twice, and text (Figure 11b).

In the testing phase, participants are presented with the image
Ii only (Figure 11b). According to the current TECH condition,
they must perform the corresponding hotkey Ki or rhythmic
pattern Ri. If they forgot which trigger to perform, they are
strongly encouraged to invoke a help screen by pressing the
SPACE key. The task then switches to the learning mode,
presenting the shortcut to perform as described above.

In both phases, the participant must perform the rhythmic pat-
tern or the hotkey. For rhythmic patterns, we use the Audio-
only feedback since Experiment 1 showed that it was effective
and participants preferred it. Also, this avoids interference
with the visual interface. For hotkeys, participants receive
the usual kinesthetic feedback while pressing keys.

After entering each hotkey or pattern, the participants are
asked to indicate which trigger they were trying to perform
(Figure 12). Then, participants are notified of the correctness
of their answer. If the answer is correct, they are given
the result of the recognition. If not, the correct trigger
is presented before moving to the next trial. The reason
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(a) (b) (c)

Figure 12. Confirmation in the Rhythm (a) and Hotkey (b) conditions.
Feedback for a wrong answer in the Rhythm condition (c)).

Day  1

Day  2

Tech-Block  T2Tech-Block  T1

FreeT1 T2

Figure 13. A sample session. Hatched sub-blocks are learning trials,
boxed sub-blocks are sub-sessions.

for this procedure is that we are primarily interested in the
memorization of the associations, not the participants’ ability
to perform the triggers. For rhythmic patterns, it also allows
us to test the recognition rate of the classifier.

Apparatus & Participants
We used the same apparatus as in Experiment 1. We recruited
14 participants (5 female), aged between 22 and 33 (mean 26,
median 26). Five of them had participated in Experiment 1.

Design & Procedure
The experiment is a within-subject design with technique
(TECH) and command (CMD) as primary factors. The exper-
iment is split into two sessions held on two consecutive days.
The first day, all participants are presented with rhythmic
patterns in a 5 minutes practice session based on Experiment
1. We use TECH as a blocking factor, counterbalanced across
participants. The second day, a Free block is added at the end
of the testing phase. In this block, participants can choose to
use Rhythm or Hotkey for each trial, but cannot get help.

Each TECH-block is divided into several sub-blocks of 15
trials: (i) 2 learning sub-blocks with 4 testing sub-blocks
each on the first day; (ii) 4 testing sub-blocks on the second
day. Thus, the testing phase of the experiment is split into
SUBSESSIONs of 60 trials each: two on the first day to evaluate
immediate memorization of triggering commands and one on
the second day to test mid-term recall (Figure 13).

In order to simulate a more realistic setup, where some
commands are more frequently used than others, we assign an
apparition frequency to each of the 14 commands following
a Zipf distribution [14, 1]. For the learning phase we use
the frequencies (6, 6, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1) and
for the testing phase (12, 12, 6, 6, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1).
The 14 commands are combined with these frequencies using
7 different permutations, and each frequency assignment is

1 (day 1) 2 (day 1) day 2

SubSession

R
e
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a
ll 

R
a
te

 (
%

)

0
2
0

4
0

6
0

8
0

1
0
0 Rhythm Hotkey

Figure 14. Recall rate for both techniques by sub-session.
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0

1
5

Rhythm Hotkey

Figure 15. Help usage rate for both techniques for each sub-session.

counterbalanced across participants, resulting in the same
number of trials for each command overall. The presentation
of the trials is randomized across consecutive pairs of sub-
blocks.

The experiment takes about one hour on day 1 and 30 minutes
on day 2, after which participants are given a questionnaire to
collect subjective observations and preferences.

Quantitative Results
Our main measures are (i) recall rate, the percentage of
correct answers in the testing phase without help; and (ii)
help rate, the percentage of trials where the participants used
help in the testing phase. We analyze the results according
to TECH and the three sub-sessions of the experiment by
considering these measures in the model TECH × SUBSESSION

× Rand(PARTICIPANT).

We find a significant effect of SUBSESSION on the recall rate
(F2,26 = 103, p < 0.0001). A post-hoc t-test with Bonferroni
correction shows that the recall rate is significantly lower
only between the first sub-session and the two following ones
(Figure 14). There is no significant effect of TECH on recall
rate (F1,13 = 0.61, p = 0.4474), but the ANOVA reveals a
significant interaction effect TECH × SUBSESSION (F2,26 = 5.36,
p = 0.0113). Post-hoc t-tests with Bonferroni correction
show a significant difference between Rhythm and Hotkey
for the first sub-session (74% and 81% respectively). For
the remaining sub-sessions, the results are extremely close
between the two techniques with a recall rate of about 93%
(Figure 14).

For the use of help, an ANOVA reveals a significant effect
of SUBSESSION (F2,26 = 17.3, p < 0.0001), no effect of TECH

(F1,13 = 0.04, p = 0.8532), and no TECH × SUBSESSION inter-
action effect (F2,26 = 0.62, p = 0.545). We find only one
significant difference among sub-sessions: help was used
more often in the first sub-session than in the two subsequent
ones (see Figure 15).
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Figure 16. Percentage use of Rhythm by participant (Free condition).

Results for rhythmic patterns and hotkeys are quite similar,
suggesting that rhythmic patterns can be memorized as suc-
cessfully as hotkeys without mnemonics. This is a remarkable
result considering how widespread hotkeys are.

Recall rates are consistent across commands. Considering
only the Rhythm condition, we build the model CMD ×
SUBSESSION × Rand(PARTICIPANT) for recall rate and help and
see a significant effect of CMD on recall rate (F13,169 = 1.17,
p = 0.025). A post-hoc t-test with Holm corrections shows
significant differences only between R3 and R13 (recall rate
about 97%) and R10, R11 and R14 (∼80%).

To test our classifier, we compare the pattern recognized
by the classifier with the answer selected by the participant
using the model TECH × SUBSESSION × Rand(PARTICIPANT). We
find a significant effect of TECH (F1,13 = 5.34, p = 0.038),
with Rhythm having a significant lower success rate than
Hotkey: 85.2% vs. 91.8%. The success rate for Hotkey is
surprisingly low, as we expect few if any errors when entering
hotkeys. This may be due to participants changing their mind
as to which was the right hotkey when they see the answer
sheet. For Rhythm, the rate is also lower than expected,
but the same phenomenon may have occurred. Indeed, the
success rate of Rhythm relatively to Hotkey is 92.8%, close
to the rate obtained on the data for Experiment 1 (94%).

Qualitative Results
Figure 16 shows the percentage of trials where participants
used rhythmic patterns in the Free condition, on the second
day of the experiment. Ten participants (out of 14) used
rhythmic patterns more often than hotkeys. Seven partic-
ipants used rhythmic patterns more than 80% of the time,
while only one participant used rhythmic patterns less than
20% of the time.

The answers to the questionnaire were generally positive,
confirming the previous results. Out of the 14 participants, 9
preferred using the rhythmic patterns, 3 the hotkeys, 2 had no
preference. Those who preferred using rhythmic patterns did
so mostly because of the “fun factor” of tapping rhythms, but
also because it could be performed “in place” on the trackpad,
even for a novice user, without having to visually search the
keys on the keyboard. On the other hand, several participants
noticed that hotkeys are faster to perform and preferred to use
hotkeys when the corresponding pattern is too long.

Regarding memorization, some participants reported using
mnemonics related to the rhythm itself in order to help mem-
orization. For instance, a subject linked the “boxing gloves”

command and the corresponding pattern P9 (Figure 4) to
a “pif paf boom” onomatopoeia that, for him, echoed the
“short short medium” structure of the pattern. Another par-
ticipant also reported linking the pattern structure with the
pronunciation of the object’s name, e.g., “toma-to-to-to-to”
for command 13 and pattern P28. Subjects also used the
graphical representation of patterns to memorize them, which
supports our design for this representation. For example, one
participant stated that “the rhythmic pattern’s visual represen-
tation for the cherry looks like a cherry”.

These comments suggest that users elaborate efficient strate-
gies for the memorization of rhythmic patterns, based on
the rhythm itself or its visualization. Since commands were
assigned to rhythmic patterns randomly, we did not expect
such associations, but this finding opens the way to studying
ways to reinforce these associations. This is commonly done
for gestures, e.g., a question mark for help, and hotkeys, e.g.
Ctrl-S for Save. In particular, various strategies could be
explored to create visual “cheatsheets” for rhythmic patterns
or display them next to menu commands, like hotkeys.

In addition, the complexity of performing rhythmic patterns
can be turned into an advantage for memorization. Since
deeper and greater numbers of levels of encoding and pro-
cessing help memory [8], combining motor and auditive
perception of rhythmic patterns may help users memorize,
i.e., encode, their associations with commands.

SUMMARY AND PERSPECTIVES
In this paper we studied the use of rhythmic patterns in
HCI. We explored Rhythmic Interaction as an opportunity to
generalize the primitive use of rhythm in existing techniques,
e.g., long click and double click, as well as to promote a new
input modality. Since Rhythmic Interaction relies on the time
dimension instead of the spatial and visual dimensions used
by most input methods, it is well suited when space is limited
or when visual attention is not available.

We presented a grammar for creating rhythmic patterns as
well as two recognizers that do not require training. A first
experiment evaluated the ability of casual users to repro-
duce rhythmic patterns very precisely with different feedback
conditions. We found that some complex patterns can be
difficult to reproduce in such a precise way, but that audio
and/or visual feedback improve accuracy. After analyzing
recognition errors, we designed a different recognizer that
reached 94% recognition rate for the 30-pattern vocabulary
of Experiment 1. We ran a second experiment to investigate
the memorization of associations between rhythmic patterns
and commands, i.e., rhythmic shortcuts. The results suggest
that rhythmic patterns are recalled as efficiently as traditional
hotkeys and that users create effective mnemonic strategies to
associate rhythms with commands.

This work demonstrates the potential of rhythmic patterns
as an input method, and contributes a 14-pattern vocabulary
that has proven usable by novice users. Beyond triggering
commands and switching modes in standard desktop envi-
ronments, rhythmic patterns could be used in many contexts:
eye-free control of a mobile device, such as a cellular phone
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or a mobile player; remote control of interactive environ-
ments such as wall-size displays by tapping on wearable
sensors without the need for visual attention; selection of an
object on a tabletop when it is not easily reachable, etc.

Our future work will address issues such as the segmentation
of patterns, the scalability of the vocabularies and the speed
of execution, which are important for the design of Rhythmic
Interactions. Another area for future work is the use of
multiple fingers or both hands to tap patterns and to combine
rhythmic interaction with other interaction techniques. More
complex actions than tapping should also be explored to
enter rhythmic structures, such as performing sequences of
gestures or keyboard taps, as well as the use of the temporal
dimension to convey additional information. Furthermore,
rhythmic output, such as vibration patterns on mobile devices,
seems worth studying since perception and performance of
rhythmic patterns are tightly linked. Finally, the power of
rhythmic interaction could be expanded by exploiting syntac-
tic features used in music such as performing sequential or
parallel combinations of patterns.
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