
HAL Id: hal-00641108
https://hal.science/hal-00641108v2

Submitted on 19 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast parallel kriging-based stepwise uncertainty
reduction with application to the identification of an

excursion set
Clément Chevalier, Julien Bect, David Ginsbourger, Emmanuel Vazquez,

Victor Picheny, Yann Richet

To cite this version:
Clément Chevalier, Julien Bect, David Ginsbourger, Emmanuel Vazquez, Victor Picheny, et al.. Fast
parallel kriging-based stepwise uncertainty reduction with application to the identification of an excur-
sion set. Technometrics, 2014, 56 (4), pp.455-465. �10.1080/00401706.2013.860918�. �hal-00641108v2�

https://hal.science/hal-00641108v2
https://hal.archives-ouvertes.fr


Fast parallel kriging-based

stepwise uncertainty reduction

with application to the identification of an

excursion set

Clément Chevalier, IMSV, University of Bern
Julien Bect, Supelec

David Ginsbourger, IMSV, University of Bern
Emmanuel Vazquez, Supelec
Victor Picheny, CERFACS

Yann Richet, IRSN

April 2, 2012

Abstract

Stepwise Uncertainty Reduction (SUR) strategies aim at constructing a sequence of
sampling points for a function f : Rd → R, in such a way that the residual uncertainty
about a quantity of interest becomes small. In the context of Gaussian Process-based
approximation of computer experiments, these strategies have been shown to be par-
ticularly efficient for the problem of estimating the volume of excursion of a function f

above a threshold. However, these strategies remain difficult to use in practice because
of their high computational complexity, and they only deliver at each iteration a single
point to evaluate. In this paper we introduce parallel sampling criteria, which allow
selecting several sampling points simultaneously. Such criteria are of particular interest
when the function f is expensive to evaluate and many CPUs are available. We also
manage to drastically reduce the computational cost of these strategies using closed
form expressions. We illustrate their performances in various numerical experiments,
including a nuclear safety test case.

Keywords: Computer experiments, Gaussian processes, Sequential design, Probability of
failure, Active learning, Inversion
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1 Introduction

Whether in natural sciences, engineering, or economics, the study of complex phenomena is

increasingly relying on numerical simulations. From an end user’s perspective, a numerical

simulator can often be considered as a black box taking a number of real-valued parameters

as inputs and returning one or several quantities of interest after a post-processing stage.

Formally, the space of inputs is a set X ⊂ R
d and the simulator can be viewed as a function

f : X → R that maps the inputs to a cost or a performance indicator. In many practical

applications, the objective is to obtain information about the simulator from a number of

runs, or, in other words, to infer a quantity of interest from a number of evaluations of f . A

problem that is often at stake is the estimation of the probability that a cost exceeds a given

threshold. This problem corresponds to the estimation of the volume α⋆ of the excursion

set Γ⋆ = {x ∈ X : f(x) ≥ T}, with T a given threshold, under a measure PX on X. In

safety analysis, PX typically models the uncertainty on input parameters. If f is expensive

to evaluate, the estimation of α⋆ must be performed with a limited number of evaluations of

f , which naturally excludes brute-force approaches like Monte Carlo sampling.

A popular approach consists in constructing a response surface (also known as surrogate

or meta-model) based on available evaluations of f , together with an uncertainty measure

about this surface. Using this uncertainty measure is one of the key concepts in the design

and analysis of computer experiments [see, e.g., Santner et al., 2003, Fang et al., 2006,

Bayarri et al., 2007, Forrester et al., 2008, and references therein]. It has been found to

be a convenient and powerful tool, providing efficient answers to the issues of designing

experiments (Sacks et al. [1989]) or global optimization (Jones et al. [1998]) for instance.

For the problem of estimating a probability of failure, several sampling strategies based

on a kriging metamodel have already been proposed [see Bect et al., 2011, for a review]. Note

that some of these strategies were initially designed to estimate the boundary of the excursion

set (and not its volume) but, as these problems are quite close, we expect these criteria to have

fairly good performances for the problem of estimating a probability of failure. The sampling

criteria proposed by Ranjan et al. [2008], Bichon et al. [2008] and Echard et al. [2010]consist of

heuristic modifications of the famous Expected Improvement criterion of Jones et al. [1998].

They compute a pointwise trade-off between predicted closeness to the threshold T , and
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high prediction uncertainty. In contrast, Stepwise Uncertainty Reduction (SUR) strategies

[Vazquez and Bect, 2009, Bect et al., 2011] rely on global measures of uncertainty about the

excursion set Γ⋆ and take into account the important fact that sampling at a point x also

brings useful information on the neighbourhood of x. Numerical experiments [reported by

Bect et al., 2011] showed that SUR criteria widely outperform pointwise criteria in terms of

quickly estimating the true volume of excursion α⋆.

Perhaps the most natural SUR sampling criterion, for the problem of estimating a prob-

ability of failure, is the expected posterior variance of the volume of the random excursion

set Γ = {x ∈ X : ξ(x) ≥ T}, where ξ is a Gaussian process modeling our current (prior)

knowledge about f . This criterion has been considered impractical in previous publications

[Vazquez and Bect, 2009, Bect et al., 2011], since its computation seems to require condi-

tional simulations of the Gaussian process ξ, which are very expensive. Alternative SUR

strategies were proposed instead: in short, they consist in defining a measure of uncertainty

dedicated to the problem at hand, and then sampling sequentially at the location that will

reduce the most, in expectation, this uncertainty.

An example of application of a SUR strategy is shown on Figure 1, on a real test case.

Here a simulator f calculates whether a storage facility of plutonium powder presents risks of

nuclear chain reactions or not, as a function of two variables, the mass and the concentration

of Plutonium. A sequential sampling of this 2-dimensional “expensive” function, using a SUR

strategy, manages to identify with very few evaluations the set of “dangerous” configurations.

Despite their very good performances in applications, SUR strategies still have important

drawbacks. Computing the value of a SUR criterion at a single point xn+1 ∈ X is indeed

very computer demanding since it relies on numerical integration. Besides, these strategies

where designed to sample one point at a time while practionners often the have the capacity

to run r > 1 simulations in parallel. This very high numerical complexity to simply compute

the value of a sampling criterion at one point mainly explains why, despite their very good

performances on numerical experiments, SUR strategies based on kriging are not yet widely

used by practitioners for the problem of estimating a probability of failure.

In this paper, we bring new solutions to the issues mentioned above. We first introduce

new parallel SUR sampling criteria and provide methods and algorithms allowing to run
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Figure 1: SUR strategy (first and last iteration) applied to a nuclear criticality safety simula-

tor. The black triangles stand for the design points at the current iteration. The red square

is the point sampled using the SUR criterion. Areas in black (resp. white) correspond to

excursion probabilities near 0 (resp. 1). The dotted line indicates a fine approximation of

the true but unknown excursion set’s boundary.

them in a very reasonable time. In particular, we show that the unaffordable (one step look-

ahead) optimal criterion presented in Bect et al. [2011] can be computed quickly, without

simulating any Gaussian Process realization. Furthermore, we illustrate the use of parallel

criteria in real-life applications, and investigate their performances on several test cases.

The paper is organised as follows: Section 2 introduces notations and gives two examples

of SUR criteria (including the optimal onse-step-lookahead criterion) with their new parallel

versions. The theoretical basis of our methods to quickly compute the criteria are detailed

in Section 3 and our new algorithms are tested in Section 4 on different test cases, including

a nuclear safety application. For the sake of brevity, basic notions about kriging and details

about the choice of the integrations points are presented in appendix. In addition, detailed

computational complexity calculations are provided as Supplementary Material.
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2 Kriging-based Stepwise Uncertainty Reduction

A Stepwise Uncertainty Reduction (SUR) strategy aims at constructing a sequenceX1, X2, . . .

of evaluation points of f in such a way that the residual uncertainty about a quantity of inter-

est given the information provided by the evaluation results becomes small. More precisely,

SUR strategies are based on three main ideas. The first (Bayesian) idea is to consider f as

a sample path of a random process ξ, which is assumed Gaussian for the sake of tractability.

The second idea is to introduce a measure of the uncertainty about the quantity of inter-

est conditioned on the σ-algebra An generated by {(Xi, ξ(Xi)), 1 ≤ i ≤ n}. We will denote

by Hn such a measure of uncertainty, which is an An-measurable random variable. The third

idea is to choose evaluation points sequentially in order to minimize, at each step n, the ex-

pected value of the future uncertainty measure Hn+1 with respect to the random outcomes

of the new evaluation of ξ:

Xn+1 = argmin
xn+1∈X

Jn(xn+1) (1)

where

Jn(xn+1) := En

(
Hn+1

∣∣ Xn+1 = xn+1

)
, (2)

and En ( · ) stands for the conditional expectation E ( · | An).

Depending of the definition given to the measure of uncertainty, many sequential SUR

strategies can be designed in order to infer any quantity of interest. For the question of

estimating a probability of failure, two SUR strategies are presented in this section.

Example 1: criterion J
(α)
n . Recall that we denote by Γ the random excursion set {x ∈

X : ξ(x) ≥ T} and α its volume, α = PX(Γ). The conditional variance Varn
(
α
)
of α is a

natural choice for Hn to quantify the (residual) uncertainty about α⋆ given An. In the rest

of the paper, we denote this uncertainty by H
(α)
n . A possible SUR strategy to estimate α⋆

would consist, at step n, in choosing as next evaluation point an optimizer of the criterion:

J (α)
n (xn+1) := En

(
V arn+1(α)

∣∣ Xn+1 = xn+1

)
(3)

A quite natural parallel extension of this criterion is now introduced. The following criterion

depends indeed on r > 0 points (xn+1, . . . , xn+r) ∈ X
r:

J (α)
n (xn+1, . . . , xn+r) := En

(
V arn+r(α)

∣∣ Xn+1 = xn+1, . . . , Xn+r = xn+r

)
(4)
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Note that the latter criterion, is considered intractable in Bect et al. [2011] for r = 1 because

its computation has a very high numerical complexity (it requires the simulation of a large

number of Gaussian Process realizations). We will see in the next sections that both parallel

and non parallel versions of this criterion can be computed quickly and used in applications.

Example 2: criterion J
(Γ)
n . The excursion volume can be characterized by the random

variable {ξ(x)>T}. This random variable has conditional expectation:

pn(x) := En {ξ(x)>T} = P(ξ(x) > T |An) = Φ

(
mn(x)− T

sn(x)

)
,

where mn(x) and sn(x) are the kriging mean and variance at point x at time n (see the

Appendix for a brief reminder about kriging and the notations used throughout the paper),

and Φ denotes the cumulative distribution function (c.d.f.) of the standard Gaussian dis-

tribution. The random variable {ξ(x)>T} has conditional variance pn(x)(1− pn(x)), so that
∫
X
pn(1 − pn)dPX can serve as a measure of global uncertainty about α⋆. We denote this

uncertainty measure by H
(Γ)
n , and the corresponding SUR sampling criterion is

J (Γ)
n (xn+1) := En

(∫

X

pn+1(1− pn+1)dPX

∣∣ Xn+1 = xn+1

)
. (5)

This criterion was first introduced by Bect et al. [2011]. Again, a natural extension is the

following new parallel criterion:

J (Γ)
n (xn+1, . . . , xn+r) = En

(∫

X

pn+r(1− pn+r)dPX

∣∣ Xn+1 = xn+1, . . . , Xn+r = xn+r

)
. (6)

In Bect et al. [2011], the numerical computation of J
(Γ)
n in (6) is considered only for r = 1

and is based on quadrature formulas written as

J (Γ)
n (xn+1) ≈

1

M

Q∑

q=1

M∑

m=1

w(q)vn+1(x
(m); xn+1, y

(q)
n+1). (7)

Q is the number of points used to approximate the conditional expectation with respect to

the random outcome of the evaluation at xn+1, which has a N (mn(xn+1), s
2
n(xn+1)) distribu-

tion. M is the number of points used to obtain a Monte-Carlo approximation of H
(Γ)
n+1. The

x(m)’s are i.i.d. according to PX; (y
(1)
n+1, . . . , y

(Q)
n+1) and (w(1), . . . , w(Q)) stand for the quadra-

ture points and quadrature weights of the Gauss-Hermite quadrature. Here the computation

of vn+1(x
(m); xn+1, y

(q)
n+1) in (7) involves the calculation of the kriging mean and the kriging
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variance at x(m) from the evaluations of ξ at X1, . . . , Xn and xn+1. It follows (See supplemen-

tary materialfor more detail about algorithmic complexities) that the computation of J
(Γ)
n

at one point has a O(n3 +Mn2 +MQ) complexity. Since we need to evaluate J
(Γ)
n several

times to carry out the minimization in (1), the computational cost of this SUR sampling

strategy implemented using (7) can be very large.

The problem becomes even more difficult for r > 1, which requires a higher value for Q.

Indeed, when r > 1, we have to approximate a conditional expectation with respect to the

random outcome of the Gaussian vector (ξ(xn+1), . . . , ξ(xn+r))
⊤, which requires a discretiza-

tion of an integral over Rr. As a consequence, the complexity to compute the parallel SUR

criterion presented above is expected to rise quickly with r, which makes it impractical even

for small r.

The next section brings useful properties allowing to circumvent these issues. In partic-

ular, new analytical formulas allow us to get rid of the cumbersome integral over R
r and

make it possible to compute efficiently both parallel and non-parallel criteria.

3 Efficient calculation of parallel SUR criteria

In this section, we provide new expressions allowing to efficiently compute the two parallel

SUR strategies introduced in the previous section.

3.1 Criterion J
(Γ)
n

As explained in the previous sections, the proposed parallel criterion J
(Γ)
n is the conditional

expectation given An of the future uncertainty H
(Γ)
n+r, assuming that r new points will be

evaluated. Such a future uncertainty is an An+r-measurable random variable, meaning that

the computation of its conditional expectation given An requires to discretize an integral

over R
r. It turns out that the complexity for computing J

(Γ)
n can be drastically reduced,

using the new analytical expressions given below.

Proposition 1.

J (Γ)
n (xn+1, . . . , xn+r) =

∫

X

Φ2




 a(x)

−a(x)


 ,


 c(x) 1− c(x)

1− c(x) c(x)




PX(dx), (8)
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where:

• Φ2(.,M) is the c.d.f. of the centered bivariate Gaussian with covariance matrix M

• a(x) := (mn(x)− T )/sn+r(x),

• b(x) := 1
sn+r(x)

Σ−1(kn(x, xn+1), . . . , kn(x, xn+r)
⊤

• c(x) := 1 + b(x)⊤Σb(x) = s2n(x)/s
2
n+r(x)

• Σ is the r × r covariance matrix of (ξ(xn+1), . . . , ξ(xn+r))
⊤ conditional on An.

Proof. First, an interchange of integral and expectation (Fubini-Tonelli theorem) delivers

J (Γ)
n (xn+1, . . . , xn+r) =

∫

X

En (pn+r(x)(1− pn+r(x)))PX(dx), (9)

where the conditioning on Xn+i = xn+i’s is not explicitely reproduced, to alleviate notations.

Now, using the kriging update formula (see, e.g., Barnes and Watson [1992], Gao et al. [1996],

Emery [2009], as well as Chevalier and Ginsbourger [2012]), we obtain:

mn+r(x) = mn(x) + (kn(x, xn+1), . . . , kn(x, xn+r))Σ
−1ycentered, (10)

where ycentered := (ξ(xn+1)−mn(xn+1), . . . , ξ(xn+r)−mn(xn+r))
⊤, so that

pn+r(x) = Φ
(
a(x) + b(x)⊤ycentered

)
(11)

A plug-in of expression (10) in the integrand of expression (6) gives:

En (pn+r(x)(1− pn+r(x))) =

∫

Rr

Φ(a(x) + b(x)⊤u)Φ(−a(x) − b(x)⊤u)Ψ(u)du (12)

where Ψ is the N (0,Σ) density of ycentered knowing An. By definition of Φ, we then get

En (pn+r(x)(1− pn+r(x))) = Pn(N1 < a(x) + b(x)⊤ycentered, N2 < −a(x)− b(x)⊤ycentered)

= Pn(N1 − b(x)⊤ycentered < a(x), N2 + b(x)⊤ycentered < −a(x)),

where (N1, N2)
T ∼ N (0, I2) independently of ycentered. Finally, N1 − b(x)⊤ycentered and

N2 +b(x)⊤ycentered form a Gaussian couple with componentwise variances equal to c(x) and

covariance 1− c(x), so that the anounced result directly follows by integration over X.

8



Remark 1. For the latter Proposition 1, we managed to get rid of an integral over R
r.

Moreover, the given formula is “exact” in the sense that we no longer have to compute an

estimate (relying on quadrature points) of such integral over R
r. Besides, the computation

of J
(Γ)
n is now available for r > 1 at a cost that is not quickly increasing with r. For n

observations and M discretization points for the integral over X , the complexity to compute

J
(Γ)
n for one batch of r points is mainly of O(rMn) if we assume that r << n << M (which

is often the case in practice) and that some quantities have been pre-computed (see algorithms

in the Supplementary Material for more details). This means that the complexity is roughly

linear in r, which ensures that batches with large values for r can be used in applications.

Remark 2. When the integral over X is discretized based on M integration points, the

computation of the J
(Γ)
n criterion requires to calculate the updated kriging variance s2n+r(x)

for each of the M points. The updated kriging variance can be efficiently calculated using a

kriging variance update formula given and proven in Chevalier and Ginsbourger [2012].

Remark 3. By reducing equation (6) to equation (8), we achieved to reduce the integral

over R
r to an integral over R

2 (Φ2). Moreover, although calculating Φ2 is not trivial, this

bivariate integral is standard, and there exist very efficient numerical procedures to compute

it. For instance, Genz [1992] wrote routines in Fortran77 which have been wrapped in many

R Packages (e.g., mnormt, pbivnorm, mvtnorm, available on CRAN).

3.2 Criterion J
(α)
n

In the kriging framework and conditionally on An, the conditional expectation of the volume

of excursion α is given by α̂ :=
∫
X
pndPX. As explained before, the conditional variance

Varn
(
α
)
of α given An is a very natural choice to quantify the uncertainty about α but,

even for r = 1, it was considered intractable so far. In fact, with the help of the kriging update

formulas (See Eq. 10) and the calculation schemes introduced in the proof of Proposition 1,

we will now show that this criterion can be expressed in a numerically tractable form, for

both parallel and non-parallel versions.
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Proposition 2.

J (α)
n (xn+1, . . . , xn+r) = γn−

∫

X×X

Φ2




 a(z1)

a(z2)


 ,


 c(z1) d(z1, z2)

d(z1, z2) c(z2)




PX(dz1)PX(dz2),

(13)

where

• Φ2, a,b, and Σ are defined as in Proposition 1,

• d(z1, z2) := b(z1)
⊤Σb(z2)

• γn is a constant, in the sense that it does not depend on (xn+1, . . . , xn+r).

Proof. Neglecting again the conditioning on the Xn+i = xn+i’s in the notations, we have:

J (α)
n (xn+1, . . . , xn+r) := En

(
V arn+r(α)

∣∣ Xn+1 = xn+1, . . . , Xn+r = xn+r

)

= En

(
En+r

(∫

X

( {ξ(x)>T} − pn+r(z))PX(dz)

)2
)

= En

(
En+r

∫∫

X×X

( {ξ(z1)>T} − pn+r(z1))( {ξ(z2)>T} − pn+r(z2))PX(dz1)PX(dz2)

)

= En

(∫∫

X×X

(
En+r( {ξ(z1)>T} {ξ(z2)>T})− pn+r(z1)pn+r(z2)

)
PX(dz1)PX(dz2)

)

By applying the law of total expectation, we see that, for any (z1, z2) ∈ X
2:

En(En+r( {ξ(z1)>T} {ξ(z2)>T})) = En( {ξ(z1)>T} {ξ(z2)>T}) = P (ξ(z1) > T, ξ(z2) > T |An)

Thus, this quantity does not depend on the choice of the r points (xn+1, . . . , xn+r). Writing

γn :=
∫∫

X×X
P (ξ(z1) > T, ξ(z2) > T |An)PX(dz1)PX(dz2), J

(α)
n simplifies to

J (α)
n (xn+1, . . . , xn+r) = γn −

∫∫

X×X

En(pn+r(z1)pn+r(z2))PX(dz1)PX(dz2).

The end result is obtained using similar calculations as in the proof of Property 1.
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Remark 4. This new expression is very similar to the expression found in Proposition 1 and

can be computed with the same complexity. However, in practice, the number of integrations

points M has to be higher because the domain to be discretized is X×X. In the examples of

Section 4, we use importance sampling techniques to choose these M integration points. In

Section 4.1, we empirically demonstrate that using M2 integration points to compute the J
(α)
n

criterion and using M points to compute J
(Γ)
n yields comparable performances for estimating

the true volume of excursion in the case where the unknown function is actually a Gaussian

Process realization.

4 Applications

In this section, we illustrate our sequential sampling strategies on several test cases. The ex-

amples include simulated realizations of two-dimensional Gaussian Processes, a two-dimensional

nuclear safety case study and a six-dimensional test function.

4.1 Benchmark on simulated Gaussian Process realizations

The first objective of this section is to compare the non parallel versions of the J
(Γ)
n and J

(α)
n

criteria. The test functions are 200 independent realizations of a two-dimensional Gaussian

Process (GP) indexed by [0, 1]2. The covariance parameters for the kriging models are fixed

equal to the actual ones of the GP. Besides comparing the two criteria, we want to estimate

the effect of numerical integration erros on the global performance of the SUR strategies.

The criterion J
(α)
n requires to compute an integral over X × X, so is it expected that the

error will be higher than for the criterion J
(Γ)
n , which requires an integration over X only.

Therefore, as a rule of thumb, we use M integration points for J
(Γ)
n and M2 for J

(α)
n .

For each GP realization, we fix the threshold T in order to have a constant volume of

excursion α⋆ = 0.2. The volumes are calculated using 1 000 reference points, so for each

Gaussian Process realization, exactly 200 points are in the excursion set. The initial design

consists of n0 = 12 points using maximin Latin Hypercube Sampling (LHS), and a total of

n1 = 40 points are added to the design using either the J
(Γ)
n criterion or the J

(α)
n criterion.

For all realizations, the performance of both criteria are measured in term of the relative

squared volume error SE := (α̂ − α⋆)2/α⋆2, where α̂ is the estimated volume (equal to the
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average probability of excursion of the reference points).

Two strategies are considered for numerical integration: first, we use M = 50 and 100

integration points to compute J
(Γ)
n obtained using a Sobol sequence; note that the integration

points are not bound to lie among the 1 000 reference points. In that case, theM2 points used

to compute J
(α)
n correspond to a M ×M grid. We also test the use of M = 50 points chosen

using a specific instrumental distribution (and renewed at each iteration) versus M2 = 2500

points over X×X chosen using some other distribution on X×X. In this last case, the M2

points are not on a grid. Further details about the choice of the integration points are given

in the Appendix, section B.

Figure 2 draws the evolution of SE, the average of the SE values over the 200 realizations,

as a function of the number of observations. First, one can see that the number of integration

points has a direct impact on the performance of both SUR strategy, since the experiments

corresponding toM = 50 with quasi-Monte Carlo sampling –based here on a Sobol sequence–

provide the worst results (bold curves with the MC legend on Figure 2).

Besides, the J
(Γ)
n criterion with M integration points has roughly the same performance

as the J
(α)
n criterion with M2 integration points. This suggests that, in high dimension, the

criterion J
(Γ)
n should be chosen since it requires a significantly lower computational effort.

A third conclusion is that the use of importance sampling (with a well chosen instrumental

distribution) has a significant impact on the performance of these strategies, especially after

a high number of iterations. Indeed, as the algorithm progresses, the criterion becomes more

difficult to calculate with a good accuracy as explained in Appendix B. In that case, a

clever choice of the integration points has a crucial impact on the global performance of the

strategy.

From this application we can conclude that the criterion J
(Γ)
n roughly achieves the same

performances as J
(α)
n at a lower computational cost. This is why, in the next applications,

we will mostly focus our attention on the J
(Γ)
n criterion and its parallel extension.

4.2 Nuclear safety test case

In this section, we illustrate a batch-sequential SUR strategy on an engineering problem,

and provide an efficient strategy for optimizing J
(Γ)
n when the batch size r is large.

A system involving fissile materials may produce a chain reaction based on neutrons,
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Figure 2: Performance (measured in term of mean squared relative error) of two SUR strate-

gies based on the J
(Γ)
n and J

(α)
n criteria, in function of the number of integration points and

the method for choosing them (importance sampling or quasi Monte Carlo).

which are both a product and an initiator of fission reactions. Nuclear criticality safety

assessment aims at avoiding “criticality accidents” (overproduction of neutrons) within the

range of operational conditions. In order to check subcriticality of a system, the neutrons

multiplication factor, keff, is estimated using a costly simulator. In our case, the system is a

storage facility of plutonium powder, whose keff depends on two input parameters: the mass

of plutonium (MassePu) and the concentration of plutonium (logConcPu). We aim at finding

the set of “dangerous” configurations {(MassePu, logConcPu) : keff(MassePu, logConcPu) >

T}, where T is threshold fixed at 0.95. The main issue lies in the high cost to evaluate keff

at one single configuration. Many CPU are available to evaluate points in parallel, which

means that our sampling strategy has to provide us, at each iteration, a number of points

r > 1 at which to evaluate the simulator simultaneously.
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In this section, we run our stepwise algorithms on this two-dimensional problem. The

J
(Γ)
n sampling criterion is used with an initial design of experiment of n = 6 points. The

criterion is computed using M = 600 integration points renewed at each iteration, sampled

from a specific instrumental distribution (See Appendix B for more detail). At each iteration,

batches of r = 4 points are evaluated in parallel. Instead of performing the optimization of

J
(Γ)
n directly on the X

r space, we propose the following heuristic:

• find the point xn+1 optimizing the criterion for r = 1;

• while k < r, consider the points xn+1, . . . , xn+k as fixed, find xn+k+1 such that the set of

points (xn+1, . . . , xn+k, xn+k+1) optimizes the criterion for r = k+1, and set k ← k+1.

This heuristic is of course sub-optimal but it allows us to replace the difficult optimization

in r × d dimensions into r consecutive optimizations in dimension d. Note that this option

allows using high values of r.

The evolution of the algorithm is shown on Figure 3. One can see that the excursion

set is accurately identified in few (three) iterations of the parallel SUR strategy. After 18

evaluations (i.e. six initial evaluations plus three iterations, each providing a batch of r = 4

points), the excursion probability pn(x) does not depart much from the true function x∈Γ⋆ .

A key question here is to compare performances between the parallel criterion and the

non-parallel one (r = 1). If the total number of evaluation of f is strictly identical, we

generally expect the parallel criterion to have a worse performance than the non parallel

one, in term of reducing the uncertainty H
(Γ)
n , because in the non parallel case the nth

evaluation point is chosen based on n − 1 past evaluations, while in the parallel case it is

chosen based on n − r evaluations. In an ideal case, the uncertainty would decrease at the

same rate, meaning that n/r iterations of the parallel criterion gives the same remaining

uncertainty as n iterations of the non-parallel one (for n a multiple of r, say). Thus, if f is

very expensive to evaluate, the time saving for the practitioner might be considerable.

Figure 4 gives the evolution of the uncertainty H
(Γ)
n obtained during the uncertainty

reduction with the parallel and the non-parallel criteria. It also shows J
(Γ)
n (x⋆

n
), which is

the values of the J
(Γ)
n criterion (with r = 4) at its current minimizer x⋆

n
. Note that, here,

x⋆
n
is a batch of r points. One can see on Figure 4 that at each iteration, J

(Γ)
n (x⋆

n
) is lower

14



Figure 3: Plot of the function pn(x) = Pn(x ∈ Γ) = Φ
(

mn(x)−T

sn(x)

)
after n evaluations of the

simulator. The triangles are the six points of the initial DOE. The squares are the points

sampled using the J
(Γ)
n criterion. Areas in black correspond to pn(x) ≈ 0 and areas in white

correspond to pn(x) ≈ 1. The dotted line indicates the true excursion set. The contour lines

indicate the three level sets pn(x) = 0.05, 0.5 and 0.95.

than H
(Γ)
n . This was to be expected, since J

(Γ)
n (x⋆

n
) is precisely the expectation of the future

uncertainty H
(Γ)
n+r if the r points x⋆

n
are added to the design of experiments.

A striking conclusion to this section is that, here, the parallel criterion has the same

performance as the non-parallel one, in term of reducing the uncertainty H
(Γ)
n , which corre-

sponds to the ideal case mentioned before.

4.3 Six dimensional example

The Hartman6 function is a well known 6-dimensional function used in unconstrained global

optimisation (Torn and Zilinskas [1989]). We test our SUR strategies on this function for

two reasons. First we want to prove that the sampling strategy works (i.e., is able to

recover the true volume of excursion) on higher dimensional functions, and provides better

performances than a “basic” random sampling strategy. Second, we want to confirm the

compared performances of the parallel J
(Γ)
n criterion with the non parallel one observed
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Figure 4: Evolution ofH
(Γ)
n during the sequential sampling strategy on the nuclear safety case

study. The optimum J
(Γ)
n (x⋆

n
) of the J

(Γ)
n criterion is usually lower than H

(Γ)
n and corresponds

to the expectation of H
(Γ)
n at the next iteration.

earlier. We follow Jones et al. [1998] and perform the following change of variables:

yH : x ∈ R
6 7→ − log(−Hartman6(x)) .

We work with a threshold T = 4 and use two measures of performance:

• the uncertainty H
(Γ)
n ,

• the relative squared volume error SE, defined in section 4.1.

All the performance calculations are done using 10 000 reference points (with a sobol se-

quence). In this example, α⋆ = 0.2127 which means that exactly 2127 of the 10 000 reference

points are in the excursion set.

The results are averaged over 100 random initial design of experiments of 36 points

(all of them being maximin Latin Hypercube Designs, generated with the R package lhs

Carnell [2009]). The average uncertainty and the squared error are denoted by H
(Γ)
n and SE

respectively.

In Figure 5, the parallel J
(Γ)
n criterion, with r = 4, and the non parallel one are tested

and compared. The criteria are calculated based on 250 integration points renewed at each

iteration, using an instrumental distribution. A total of 80 new points are evaluated for
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each instance of any of the two considered strategies. Two main conclusions can be obtained

from Figure 5. First, as anticipated, the SUR strategies are sequentially reducing the relative

real volume error faster than the basic random sampling strategy. From a relative error, in

absolute value, of approximately 15% (with the initial design), we end up with a relative error

(after having added 80 new observations) of approximately 3.3% on average. Second, the

parallel strategy has again almost the same performance as the non parallel one. This means

that we are, again, very close to the “ideal case” mentioned in the previous application.
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Figure 5: Evolution of H
(Γ)
n and of the averaged squared relative volume error during both

the considered sequential and batch sequential algorithms, on the yH function.

5 Conclusion and future work

In this paper, we presented algorithms for the computation of parallel and non-parallel

Kriging-based infill sampling criteria. We showed that the use of the formulas introduced in

this paper enables a practically sound implementation of the Stepwise Uncertainty Reduc-

tion (SUR) criteria proposed in Bect et al. [2011] and of batch-sequential versions of them.

In particular, the complexity for computing a SUR criterion giving r points to evaluate si-
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multaneously is “only” linear in r. Sampling criteria that were previously unaffordable in

practical applications can now be used for parallel or non-parallel inversion. In addition,

we showed that the proposed parallel SUR criteria do perform extremely well, in terms of

quickly estimating a probability of failure. For low values of r, computing one iteration of

the parallel criterion improves the accuracy of the estimation at almost the same pace than

r sequential iterations of the non-parallel criterion. In applications on expensive-to-evaluate

simulators, this allows a considerable time saving for the practitioners. Finally, a new version

of the R package KrigInv (Chevalier et al. [2012]) is now available online, and allows using

the presented sequential and batch-sequential strategies.

Further improvement are possible in this work and were mentioned in this paper. Sequential

Monte Carlo methods might be an interesting alternative to compute a set of integration

points that “evolves” from one iteration to another (See, e.g, Li et al.). Finally, from a

more theoretical perspective, approaches directly based on random set notions (considering

a “variance” of the excursion set itself, rather than the variance of the excursion volume)

may provide elegant alternative sampling criteria for inversion and related problems.
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APPENDIX

A Kriging mean and variance

In this section, we shall recall how to obtain the kriging mean and variance. Let ξ ∼ GP(m, k)

be a Gaussian random process with mean function m(·) = E(ξ(·)) and covariance function

k(·, ·) = cov(ξ(·), ξ(·)). We assume that the mean can be written as a linear combination

m(·) =
l∑

i=1

βi pi(·) (14)

of basis functions p1, . . . , pl (very often, these are monomials), where β1, . . . , βl are unknown

parameters. The covariance k is assumed to be a given symmetric strictly positive function.

The kriging predictor of ξ at a point x ∈ X from n observations ξ(x1), . . . , ξ(xn) is the

best linear unbiased predictor (BLUP) of ξ(x) from the observations, that we shall denote

by

mn(x) = λ(x; xn)
T




ξ(x1)
...

ξ(xn)


 . (15)

The vector of kriging weights λ(x; xn) ∈ R
n can be obtained by solving the linear system


K(xn) p(xn)

T

p(xn) 0




︸ ︷︷ ︸
:=K̃(xn)

·


λ(x; xn)

µ(x; xn)




︸ ︷︷ ︸
:=λ̃(x;xn)

=


k(x, xn)

p(x)




︸ ︷︷ ︸
:=k̃(x,xn)

(16)

where K(xn) is the n× n covariance matrix of the random vector (ξ(x1), . . . , ξ(xn))
T, p(xn)

is the l×n matrix with general term pi(xj), k(x, xn) is the column vector with general term

k(x, xi) and µ(x; xn) is a vector of l Lagrange multipliers associated to the unbiasedness

constraint.

The covariance function of the prediction error

kn(x, y) := En ((ξ(x)−mn(x)) (ξ(y)−mn(y))) , (17)

also called kriging covariance, can be written using the notations of equation (16) as

kn(x, y) = k(x, y)− k̃(x, xn)
T λ̃(y; xn). (18)

21



The conditional variance of the prediction error at a point x ∈ X, also called kriging variance,

will be denoted by s2n(x) := kn(x, x).

Remark 5. To ensure that the conditional process f |An is still Gaussian when the mean

function is of the form (14), with an unknown vector of parameters β, it is necessary to

adopt a Bayesian approach and to use an (improper) uniform distribution over Rl as a prior

distribution for β (see Bect et al. [2011], Section 2.3, Proposition 2, and the references

therein for more detail).

B Modelling choices

B.1 Choice of the integration points

The criteria studied in this paper involve the numerical computation of integrals over the

domains X or X × X. We showed in section 4 that the number of integration points has

an important impact on the performance of the corresponding strategies. In this section we

deal with the question of how these integration points are chosen.

The J
(Γ)
n and J

(α)
n criteria may be written under the following general form:

Jn(xn+1, . . . , xn+r) = Const±

∫

D

En

(
vn+r(u)

∣∣ Xn+1 = xn+1, . . . , Xn+r = xn+r

)
Q(du) (19)

More specifically, for the J
(Γ)
n criterion, we have Const = 0, D := X, vn+r(x) = pn+r(x)(1−

pn+r(x)) and Q := PX. For the J
(α)
n criterion, Const = γn, D := X × X, vn+r(z1, z2) =

pn+r(z1)pn+r(z2) and Q := PX⊗PX. Note that in the remainder of this section, we omit the

conditioning on (Xn+1 = xn+1, . . . , Xn+r = xn+r) in order to simplify the notations.

For both criteria, a straightforward option to for calculating the integral over D would be

to use Monte Carlo sampling with distribution Q. However, importance sampling techniques

(see, e.g., Rubinstein and Kroese [2008], Robert and Casella [2004]) are a good choice for

reducing the variance of the Monte Carlo error in case a suitable instrumental density is

chosen. For the integral in equation 19, a natural choice for such an instrumental density is:

h(u) ∝ vn(u)Q(u) . (20)
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Indeed, if a point u has, in expectation, a high “future uncertainty” vn+r(u) it generally

means that the current uncertainty at point u, vn(u) is already high. For the J
(Γ)
n criterion,

we thus propose the following instrumental density:

h(u) ∝ pn(u)(1− pn(u))PX(u) (21)

Similarly, for the J
(α)
n criterion, the proposed instrumental density is:

h(z1, z2) ∝ pn(z1)pn(z2)PX ⊗ PX(z1, z2) (22)

Remark 6. Using importance sampling techniques for the problem of estimating a probability

of failure with a kriging metamodel has already been proposed and applied in Dubourg [2011].

B.2 Sampling from our instrumental distribution

Sampling from the densities h defined above in Equations 21 and 22 is a difficult task.

Figure 6 shows the value of the density pn(x)(1−pn(x))PX(x), which is (up to a multiplicative

factor) the instrumental density proposed to compute the criterion J
(Γ)
n . When n = 20

evaluations of the simulator are available, one may remark (right graph) that the support of

the instrumental density becomes very narrow. This issue complicates the use of standard

MCMC algorithms to obtain a sample distributed according to the instrumental density.

Sequential Monte Carlo methods may provide a nice solution to this issue but they have

not been investigated and implemented yet in the KrigInv package (Chevalier et al. [2012]).

Instead, we decided to use a simpler approximation. The idea consists in replacing the

integral in 19 by the following estimator:

∫

D

En (vn+r(u))Q(du) ≈
1

N

N∑

j=1

En(vn+r(uj)) , (23)

where N is a large number and u1, . . . ,uN is a i.i.d sample of N points with distribution Q.

Rather than aiming at computing the integral of origin, we try to approximate this finite

sum using a discrete instrumental density proportional to:

N∑

j=1

vn(uj)δuj

Such new discrete instrumental density is easy to sample from.
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Figure 6: Plot of the function pn(x)(1 − pn(x)) after n evaluations of the MORET code

(left). The triangles are the six points of the initial DOE. Right: the squares are the points

sampled using the J
(Γ)
n criterion. Areas in black correspond to low uncertainty zones.

Of course, this method has important limitations. In particular the new “objective”

quantity 1
N

∑N

j=1 En(vn+r(uj)) can be completely different from
∫
D
En (vn+r(u))Q(du) if all

the N points from the initial large sample have an uncertainty vn close to zero, or if N is not

large enough. In essence, both N and the number of draws should tend to infinity in order for

the estimator to converge to the true value of the integral. However, even if adapted MCMC

approaches are likely to perform better in future implementations, this simple and easy

option proposed here already provided a significantly improved calculation of the proposed

SUR criteria compared to a standard quasi-Monte Carlo approach, as presented in section 4.
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