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April 3, 2012

Abstract

This work is concerned with the numerical computation of null controls of minimal L∞-norm for

the linear heat equation with a bounded potential. Both, the cases of internal and boundary (Dirichlet

and Neumann) controls are considered. Dual arguments allow to reduce the search of controls to the

unconstrained minimization of a conjugate function with respect to the initial condition of a backward

heat equation. However, as a consequence of the regularizing property of the heat operator, this initial

(final) condition lives in a huge space, that can not be approximated with robustness. For this reason,

very specific to the parabolic situation, the minimization is severally ill-posed. On the other hand,

the optimality conditions for this problem show that, in general, the unique control v of minimal

L∞-norm has a bang-bang structure as he takes only two values: this allows to reformulate the

problem as an optimal design problem where the new unknowns are the amplitude of the bang-

bang control and the space-time regions where the control takes its two possible values. This second

optimization variable is modeled through a characteristic function. Since the admissibility set for this

new control problem is not convex, we obtain a relaxed formulation of it which leads to a well-posed

relaxed problem and lets use a gradient descent method for the numerical resolution of the problem.

Numerical experiments, for the inner and boundary controllability cases, are described within this

new approach.

Keywords: Linear heat equation with potential, approximate controllability, bang-bang control, relax-
ation, numerical approximation.

Mathematics Subject Classification: 35L05, 49J05, 65K10.

1 Introduction

In this paper, we consider both the internal and boundary controllability problem of a linear heat equation
with a bounded potential. Let us describe the problem in the distributed case for which the state equation
is {

yt −∆y + ay = v 1ω, (x, t) ∈ QT
y(σ, t) = 0, (σ, t) ∈ ΣT , y(x, 0) = y0(x), x ∈ Ω.

(1)
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Here, we denote by Ω an open and bounded set of RN , N ≥ 1, with C2 boundary Γ, QT = Ω× (0, T ),
ΣT = Γ × (0, T ), ω ⊂⊂ Ω is a (small) non-empty open subset of Ω, 1ω is the associated characteristic
function, qT = ω × (0, T ), T > 0, y0 ∈ L2(Ω), v ∈ L∞(qT ) is the control and y is the associated state.
The potential a = a(x, t) ∈ L∞(QT ).

It is known (see for instance [10, 11]) that, for any y0 ∈ L2(Ω), T > 0 and v ∈ L∞(qT ), there exists
exactly one solution of (1), with y ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)). For any y0 ∈ L2(Ω), the null
controllability problem for (1) at time T > 0 consists to find a function v in L∞(qT ), such that the
associated solution to (1) satisfies

y(x, T ) = 0, x ∈ Ω. (2)

The null controllability has been proved for the heat equation in the nineties: we mention the seminal
contributions [6], [9] and also more recently [1] for L∞−diffusion coefficient.

In this work, we are interested in the numerical approximation of the following optimization problem:
for any α ≥ 0

(Pα)
{

Minimize Jα(v) = ‖v‖L∞(qT )

subject to v ∈ Cα(y0, T )

where Cα(y0, T ) = {v ∈ L∞(qT ) : y solves (1) and satisfies ‖y(T )‖L2(Ω) ≤ α}. Problem (P0) corresponds
to the null controllability situation. For any α > 0, it is shown in [5] that the unique control solution of
the extremal constrained problem (Pα) is given by

vα = ‖ϕα‖L1(qT ) sign(ϕα) 1ω, (3)

(a quasi bang-bang control) where ϕα = ϕ solves the backward equation{
− ϕt −∆ϕ+ aϕ = 0, (x, t) ∈ QT ,
ϕ(σ, t) = 0, (σ, t) ∈ ΣT , ϕ(x, T ) = ϕα,T (x), x ∈ Ω

(4)

and with ϕα,T the unique solution of the following extremal problem, dual of (Pα),

(Dα)

 Minimize Jα(ϕ) =
1
2
‖ϕ‖2L1(qT ) + α‖ϕ‖L2(Ω) +

∫
Ω

y0(x)ϕ(x, 0)dx

subject to ϕ ∈ L2(Ω).

In the case where the potential a vanishes and, in general, in space dimension N = 1 (see [2]), the
control (3) is in fact of bang-bang type since the zero set of ϕ has zero Lebesgue measure.

For any α > 0, the minimization of Jα can be performed using a descent gradient method coupled
with a splitting operator approach. Once the minimizer ϕα,T is determined, ϕα is computed from (4) and
the control vα of minimal L∞-norm is then given by (3). We refer to [4, 7] where this method has been
used (in the inner point-wise and boundary cases). Moreover, as a consequence of the null controllability
property, the sequence (vα)α>0, defined by (3), is uniformly bounded w.r.t. α. However, as α goes to
zero, the minimizer ϕα,T may be not uniformly bounded in L2 but in a larger space, say H defined as
the completion of D(Ω) with respect to the norm ‖ϕ‖L1(qT ) (we refer to [16], section 4.6 for more details
on this passage). Actually, for the control of minimal L2-norm, it is shown in [12] that the corresponding
minimizer belongs to any negative Sobolev space. We also refer to [3, 14] where this phenomenon is
fully discussed in the L2-case. In particular, it is seen that the (so-called HUM) control exhibits a very
oscillatory behavior near the controllability time T and that the numerical minimization of J0 is ill-posed.
Since this phenomenon is related to the regularizing property of the heat kernel, it occurs very likely for
the L∞ case as well. But to our knowledge, this has not been studied theoretically so far. This prediction
is supported by the numerical experiments reported in [4], where for α small (of the order O(10−2)), the
approximated bang-bang control oscillates very frequently near T .
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On the other hand, (Pα) has also been solved numerically by using a penalty and regularization
technique (see [7]). In this method, the cost function in (Pα) is replaced by

1
2
‖v‖2Ls(Ω) +

1
2
k ‖y (T )‖2L2(Ω) ,

where the penalty parameter k = k(α) is chosen large enough so that ‖y(T )‖L2(Ω) ≤ α holds. The use of
the Ls-norm (s large enough) instead of the L∞-norm avoids the problem of the non-differentiability of
the L∞-norm and of any power of it. Numerical simulation results within this approach and for the case
of internal point-wise control are described in [7].

In this work we propose an alternative approach to solve numerically (Pα). Precisely, we take advan-
tage of the bang-bang structure of the control and hence consider from the very beginning the control
system {

yt −∆y + ay = [λ1O + (−λ)(1− 1O)]1ω, (x, t) ∈ QT
y(σ, t) = 0, (σ, t) ∈ ΣT , y(x, 0) = y0(x), x ∈ Ω.

(5)

Notice that here, we impose a priori that the control v is of bang-bang type, that is, it takes only two
values, λ on O ∩ qT and −λ on (Q\O) ∩ qT , respectively. λ is the amplitude of the piecewise constant
control and O depends on (x, t) but no volume constraint nor regularity assumption are introduced on
O. Accordingly, for any α > 0, we consider the optimization problem

(BBα)

{
Minimize in (λ, 1O) :

1
2
λ2

subject to (λ, 1O) ∈ Dα(y0, T )
(6)

where

Dα(y0, T ) = {(λ, 1O) ∈ R+ × L∞ (qT ; {0, 1}) : y = y(λ,O) solves (5) and satisfies ‖y(T )‖L2(Ω) ≤ α}.
(7)

Thus, (BBα) can be viewed as an optimal design problem where we design the space-time region
where the control takes its two possible values and the optimality is related to the amplitude of the
bang-bang control. We would like to emphasize that this formulation makes sense and is of a practical
interest even if the control of minimal L∞-norm is not of bang-bang type. Indeed, we address directly
the problem of computing bang-bang type controls with minimal amplitude which, as indicated above, is
of a major interest in practice. Up to our knowledge, this perspective has not been addressed so far.

Since the space of admissible designs is not convex, we first obtain a well-posed relaxed formulation
and then show how this equivalent but new formulation allows to obtain, for any α > 0 arbitrarily small,
a robust approximation of the solution of the original problem. Precisely, in Section 2 we introduce and
analyze this relaxed formulation (see Theorem 2.1). In particular, we obtain that the relaxed problem
is an equivalent penalty version of (Pα) and prove that there exists a minimizing sequence of bang-bang
type controls (see Remark 1 and Theorem 2.1, part 3, for precise statements). Then, we derive and
discuss the first-order necessary optimality condition of the relaxed problem. From this, we recover the
bang-bang structure of the control for the pure heat equation and in one space dimension.

The case where the control acts on a part of the boundary in Dirichlet and Neumann forms is also
considered and the same type of results are obtained. The numerical resolution of the relaxed problem
is addressed in Section 3. We describe the algorithm used to solve the relaxed problem and present
several numerical experiments. In particular, the approach allows to capture the oscillatory behavior of
the control, as α goes to zero.
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2 Relaxation and necessary optimality conditions

2.1 The inner case

We adopt a penalty approach and for simplicity, we still use α to denote the penalty parameter. Hence
we transform (BBα) into the following problem:

(Tα)



Minimize in (λ, 1O) : Jα (λ, 1O) = 1
2

(
λ2 + 1

α ‖y (T )‖2L2(Ω)

)
subject to

yt −∆y + ay = λ [(2 1O − 1)] 1ω, (x, t) ∈ QT ,
y (σ, t) = 0, (σ, t) ∈ ΣT
y (x, 0) = y0 (x) , x ∈ Ω
(λ, 1O) ∈ R+ × L∞ (qT ; {0, 1}) .

Accordingly, we also consider the problem

(RTα)



Minimize in (λ, s) : Jα (λ, s) = 1
2

(
λ2 + 1

α ‖y (T )‖2L2(Ω)

)
subject to

yt −∆y + ay = [λ (2s (x, t)− 1)] 1ω, (x, t) ∈ QT
y (σ, t) = 0, (σ, t) ∈ ΣT
y (x, 0) = y0 (x) x ∈ Ω
(λ, s) ∈ R+ × L∞ (qT ; [0, 1])

From now on we consider the space L∞ (qT ; [0, 1]) endowed with the usual weak-? topology. We then
have the following result.

Theorem 2.1 (RTα) is a true relaxation of (Tα) in the following sense:

1. there exists one minimizer of (RTα) ,

2. up to subsequences, every minimizing sequence, say (λn, 1On) of (Tα) converges to some (λ, s) ∈
R+ × L∞ (qT ; [0, 1]) such that (λ, s) is a minimizer for (RTα) , and conversely,

3. if (λ, s) is a minimizer for (RTα) and if 1On
converges to s weak-? in L∞ (qT ; [0, 1]) , then, up to a

subsequence, (λ, 1On
) is a minimizing sequence for (Tα) .

Proof. Let us first prove that the functional Jα (λ, s) is continuous. Assume that (λn, sn) ∈ R+ ×
L∞ (qT ; [0, 1]) satisfies {

λn → λ

sn ⇀ s weak− ? in L∞ (qT ; [0, 1])
as n→∞.

Since [λn (2sn (x, t)− 1)] ⇀ [λ (2s (x, t)− 1)] weak-? in L∞ (qT ; [0, 1]) (in particular, also weakly in
L2 (qT )), the solution yn of the system

ynt −∆yn + ayn = [λn (2sn (x, t)− 1)] 1ω, (x, t) ∈ QT
yn (σ, t) = 0, (σ, t) ∈ ΣT
yn (x, 0) = y0 (x) x ∈ Ω

satisfies {
yn ⇀ y weakly in L2

(
0, T ;H1

0 (Ω)
)

ynt ⇀ yt weakly in L2
(
0, T ;H−1 (Ω)

)
,
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where y = y (x, t) solves
yt −∆y + ay = [λ (2s (x, t)− 1)] 1ω, (x, t) ∈ QT
y (σ, t) = 0, (σ, t) ∈ ΣT
y (x, 0) = y0 (x) x ∈ Ω.

By Aubin’s lemma, up to a subsequence still labeled by n,

yn → y strongly in L2
(
0, T ;L2 (Ω)

)
.

Hence, up to a subsequence,

yn (t, ·)→ y (t, ·) strongly in L2 (Ω) and a.e. t ∈ [0, T ] . (8)

Since yn(t) are continuous functions, convergence (8) in fact holds for all t ∈ [0, T ]. In particular,

Jα (λn, sn)→ Jα (λ, s) as n→∞.

Moreover, Jα (λ, s) is clearly coercitive. As a consequence, problem (RTα) has a solution.
Statements 2. and 3. are a straightforward consequence of the continuity of Jα (λ, s) and of the

density of the space L∞ (qT ; {0, 1}) in L∞ (qT ; [0, 1]) .

Remark 1 Notice that if we denote by v = λ (2s− 1) (so that λ = ‖v‖L∞), then the state law in problem
(RTα) equals the system (1). This way, (RTα) is the penalty version of (Pα). Moreover, as a consequence
of the continuity of Jα we conclude that there exists a minimizing sequence of bang-bang type controls for
the penalty version of the approximate controllability problem (Pα).

Next, we analyze the first-order necessary optimality condition for the relaxed problem (RTα) .

Theorem 2.2 The functional Jα as defined in problem (RTα) is Gâteaux differentiable and its directional
derivative at (λ, s) in the admissible direction

(
λ̂, ŝ
)

is given by

∂Jα(λ, s)
∂(λ, s)

· (λ̂, ŝ) = λ̂

(
λ−

∫
qT

p(2s− 1) dx dt
)
− 2λ

∫
qT

pŝ dxdt (9)

where p ∈ C
(
[0, T ] ;L2 (Ω)

)
∩ L2

(
0, T ;H1

0 (Ω)
)

solves the adjoint equation{
− pt −∆p+ ap = 0, (x, t) ∈ QT
p(σ, t) = 0, (σ, t) ∈ ΣT , p(x, T ) + α−1y(x, T ) = 0, x ∈ Ω.

(10)

Proof. Let
(
λ̂, ŝ
)
∈ R+×L∞ (qT ; [0, 1]) be an admissible direction, i.e., for ε small enough,

(
λ+ ελ̂, s+ εŝ

)
∈

R+ ×L∞ (qT ; [0, 1]) . Denote by y(λ+ελ̂,s+εŝ) the solution of the state law as defined in (RTα) associated

with the perturbation
(
λ+ ελ̂, s+ εŝ

)
. Thanks to the linearity of the heat equation it is easy to see that

y(λ+ελ̂,s+εŝ) = y(λ,s) + εŷ + ε2ỹ

where y(λ,s) is the state associated with the control (λ, s) , ŷ is a solution to ŷt −∆ŷ + aŷ = 2
[
λŝ+ λ̂ (s− 1)

]
1ω, (x, t) ∈ QT

ŷ (σ, t) = 0 (σ, t) ∈ ΣT , ŷ (x, 0) = 0 x ∈ Ω,
(11)
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and ỹ solves {
ỹt −∆ỹ + aỹ = λ̂ŝ1ω, (x, t) ∈ QT
ỹ(σ, t) = 0, (σ, t) ∈ ΣT , ỹ (x, 0) = 0 x ∈ Ω.

A straightforward computation shows that

∂Jα(λ, s)
∂(λ, s)

· (λ̂, ŝ) = lim
ε→0

Jα

(
λ+ ελ̂, s+ εŝ

)
− Jα (λ, s)

ε
= λλ̂+

1
α

∫
Ω

y(λ,s) (T ) ŷ (T ) dx. (12)

On the other hand, taking into account the initial condition ŷ (0) = 0 and the final condition p (T ) =
−α−1y (T ) , from the weak form of the system (11) it is deduced that

1
α

∫
Ω

y(λ,s) (T ) ŷ (T ) dx = −λ̂
∫
qT

(2s− 1) dxdt− 2λ
∫
qT

pŝdxdt

for p ∈ W (0, T ) =
{
v ∈ L2

(
0, T ;H1

0 (Ω)
)

: vt ∈ L2
(
0, T ;H−1 (Ω)

)}
solution of (10). Replacing this

expression into (12) we obtain (9).

Corollary 2.1 Let (λ?, s?) ∈ R+ × L∞ (qT ; [0, 1]) be an optimal solution of (RTα). Then s? takes the
form

s? (x, t) =
{

0 if p (x, t) < 0
1 if p (x, t) > 0

(13)

and λ? = ‖p‖L1(qT ). Consequently, if N = 1 or if the potential a = 0 for N > 1, then s? is a characteristic
function and therefore problem (Tα) is well-posed, i.e., the control is of bang-bang type.

Proof. Let (λ?, s?) ∈ R+ × L∞ (qT ; [0, 1]) be an optimal solution of (RTα). From (9) it follows that

(λ− λ?)
(
λ? −

∫
qT

p(2s? − 1) dx dt
)
− 2λ?

∫
qT

p(s− s?) dxdt ≥ 0 (14)

for all (λ, s) ∈ R+ × L∞ (qT ; [0, 1]) . In particular, if λ = λ?, then∫
qT

ps?dxdt ≥
∫
q

psdxdt ∀s ∈ L∞ (qT ; [0, 1]) .

An standard localization argument (see for instance [15, pages 67-69]) shows that this variational inequal-
ity is equivalent to the point-wise variational inequality

p (x, t) s? (x, t) ≥ p (x, t) s (x, t) ∀s ∈ L∞ (qT ; [0, 1]) , for a.e. (x, t) ∈ qT .

From this we easily obtain (13).
Now consider the case of the pure heat equation, i.e., a = 0. Using the fact that thanks to the

analyticity of p the zero set of p has zero Lebesgue measure, we conclude that s? is a characteristic
function. The same holds if a 6= 0 and N = 1 (see [2]).

Finally, if we put s = s? in (14), then

λ? =
∫
qT

p (2s? − 1) dxdt = ‖p‖L1(qT ) ,

where the last equality is a consequence of (13). Remark that from this last equality and (13), the optimal
control λ?(2s? − 1) has exactly the structure given by (3).

Remark 2 Notice that even in the case where (Tα) is well-posed, the relaxed formulation (RTα) is not
useless. Indeed, at the numerical level, since the admissibility set for (RTα) is convex (contrary to what
happens in (Tα)), it is allowed to make variations in this space and therefore we may implement a
descent algorithm to solve (RTα), and consequently also (Tα). Moreover, Theorem 2.1, part 3, provides
a constructive way of computing a minimizing sequence of bang-bang type controls for the general case of
the heat equation with a potential in dimension N > 1.
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2.2 The boundary case

In this section we address the situation in which the control acts on a part of the boundary. We consider
both the cases of Dirichlet and Neumann type controls.

2.2.1 Dirichlet-type controls

For a fixed α > 0, we focus on the control system
yt −∆y + ay = 0, (x, t) ∈ QT
y (σ, t) = f (σ, t) 1Σ0 (σ, t) ∈ ΣT
y (x, 0) = y0 (x) x ∈ Ω

(15)

and look for the control f , with support in Σ0 = Γ0 × (0, T ), which satisfies

‖y (T )‖H−1(Ω) ≤ α. (16)

It is important to notice that we have moved from the L2−norm for the final state to the H−1−norm
because, as noticed in ([10, p. 217]), if we take f ∈ L2 (Σ0) and y0 ∈ L2 (Ω), then, in general, we do not
have y (T ) ∈ L2 (Ω) .

Under some technical assumptions, some positive results concerning the existence of a solution for the
approximate controllability problem (15)-(16) are obtained in [5].

Similarly to the inner situation, we consider the optimization problem

(Bα)



Minimize in (λ, 1O) : Jα (λ, 1O) = 1
2

(
λ2 + 1

α ‖y (T )‖2H−1(Ω)

)
subject to

yt −∆y + ay = 0, (x, t) ∈ QT
y (σ, t) = λ [2 1O − 1] 1Σ0 (σ, t) ∈ ΣT
y (x, 0) = y0 (x) , x ∈ Ω
(λ, 1O) ∈ R+ × L∞ (Σ0; {0, 1})

with y0 ∈ L2 (Ω) .
We also consider the new problem

(RBα)



Minimize in (λ, s) : Jα (λ, s) = 1
2

(
λ2 + 1

α ‖y (T )‖2H−1(Ω)

)
subject to

yt −∆y + ay = 0, (x, t) ∈ QT
y (σ, t) = λ [2s (σ, t)− 1] 1Σ0 (σ, t) ∈ ΣT
y (x, 0) = y0 (x) , x ∈ Ω
(λ, s) ∈ R+ × L∞ (Σ0; [0, 1]) .

Then, we have:

Theorem 2.3 (RBα) is a relaxation of (Bα) in the same terms as stated in Theorem 2.1.

Before proving this result, we recall some results concerning the properties of the solution to the
following non-homogeneous system:

yt −∆y + ay = 0, (x, t) ∈ QT
y (σ, t) = f (σ, t) (σ, t) ∈ ΣT
y (x, 0) = y0 (x) x ∈ Ω,

(17)

with f ∈ L∞ (ΣT ) and y0 ∈ L2 (Ω) .
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Following [10, pp. 208-221] or [11, Vol. II, p.86], a weak solution of (17) is a function y ∈ L2 (QT )
which satisfies ∫

QT

y(−ϕt −∆ϕ+ aϕ)dxdt =
∫

Ω

y0(x)ϕ(x, 0)dx−
∫

ΣT

f∂νϕdΣT

for all ϕ ∈ X1 (QT ) =
{
v ∈ H2,1 (QT ) : v = 0 on ΣT and v (x, T ) = 0, x ∈ Ω

}
. As usual, ∂νϕ de-

notes the directional derivative of ϕ in the direction of the outward unit normal vector to Γ. Then, it
is proved (see also [5, Prop. 5.1]) that there exists a unique weak solution of system (17) which has the
regularity

y ∈ H1/2,1/4 (QT ) = L2
(

0, T ;H1/2 (Ω)
)
∩H1/4

(
0, T ;L2 (Ω)

)
.

Moreover, the estimate
‖y‖H1/2,1/4(QT ) ≤ c

(
‖f‖L∞(ΣT ) + ‖y0‖L2(Ω)

)
holds. In particular,

‖y‖L2(0,T ;L2(Ω)) ≤ c
(
‖f‖L∞(ΣT ) + ‖y0‖L2(Ω)

)
. (18)

On the other hand, standard arguments show that the weak solution of (17) also satisfies yt ∈ L2
(
0, T ;H−2 (Ω)

)
and

‖yt‖L2(0,T ;H−2(Ω)) ≤ c
(
‖f‖L∞(ΣT ) + ‖y0‖L2(Ω)

)
. (19)

Finally, we also notice that y ∈ C
(
[0, T ] ;H−1 (Ω)

)
, see [11, Vol. I, Th. 3.1]. As a consequence, the cost

functionals Jα and Jα above are well-defined.

Proof of Theorem 2.3. The proof follows the same lines as in Theorem 2.1 so that we only indicate the
main differences. To prove the continuity of Jα, let us take (λn, sn) ∈ R+ × L∞ (Σ0; [0, 1]) such that{

λn → λ

sn ⇀ s weak− ? in L∞ (Σ0; [0, 1]) .

From estimates (18) and (19) it follows that the corresponding weak solution of
ynt −∆yn + ayn = 0, (x, t) ∈ QT
yn (σ, t) = λn (2sn (σ, t)− 1) 1Σ0 (σ, t) ∈ ΣT
yn (x, 0) = y0 (x) x ∈ Ω,

satisfies {
yn ⇀ y weakly in L2

(
0, T ;L2 (Ω)

)
ynt ⇀ yt weakly in L2

(
0, T ;H−2 (Ω)

)
,

where y = y (x, t) solves 
yt −∆y + ay = 0, (x, t) ∈ QT
y (σ, t) = λ (2s (σ, t)− 1) 1Σ0 (σ, t) ∈ ΣT
y (x, 0) = y0 (x) x ∈ Ω.

Again by Aubin’s lemma, up to a subsequence

yn → y strongly in L2
(
0, T ;H−1 (Ω)

)
.

Hence, as in the inner case, we have

Jα (λn, sn)→ Jα (λ, s) as n→∞.

The rest of the proof runs as in Theorem 2.1.
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Remark 3 We notice that if the initial condition y0 ∈ L∞ (Ω) , then the solution of system (17) satisfies
y ∈ L∞ (QT ) (see [10, p.221]). In particular, y (T ) ∈ L2 (Ω) and therefore the H−1 (Ω)−norm in the
costs Jα and Jα may be replaced by the L2 (Ω)−norm.

From now on, we assume that y0 belongs to L∞(Ω) and then replace in Jα and Jα the term
α−1‖y(T )‖2H−1(Ω) by α−1‖y(T )‖2L2(Ω). Similarly to Theorem 2.2 and Corollary 2.1 we have:

Theorem 2.4 For y0 ∈ L∞(Ω) the functional Jα as defined above is Gâteaux differentiable and its
directional derivative at (λ, s) in the admissible direction

(
λ̂, ŝ
)

is given by

∂Jα(λ, s)
∂(λ, s)

· (λ̂, ŝ) = λ̂

(
λ+

∫
Σ0

∂νp(2s− 1) dΣ0

)
+ 2λ

∫
Σ0

∂νpŝ dΣ0 (20)

where p solves the backward equation (10).

Corollary 2.2 Let (λ?, s?) ∈ R+ × L∞ (Σ0; [0, 1]) be an optimal solution of (RBα). Then s? takes the
form

s? (σ, t) =
{

0 if ∂νp (σ, t) < 0
1 if ∂νp (σ, t) > 0

(21)

and λ? = ‖∂νp‖L1(Σ0). As a consequence, if N = 1 or if the potential a = 0 for N > 1, then s? is a
characteristic function and therefore problem (Bα) is well-posed, i.e., the control is of bang-bang type.

2.2.2 Neumann-type controls

Consider the system 
yt −∆y + ay = 0 in QT
∂νy = g on ΣT
y (0) = y0 in Ω.

(22)

It is well-known (see for instance [11] or [15]) that for y0 ∈ L2 (Ω) and g ∈ L2
(
0, T ;H−1/2 (Γ)

)
the

system (22) has a unique solution y ∈ L2
(
0, T ;H1 (Ω)

)
∩C

(
[0, T ] ;L2 (Ω)

)
which satisfies the variational

formulation
d

dt

∫
Ω

y (x, t) v (x) dx+
∫

Ω

[∇y (x, t)∇v (x) + a (x, t) y (x, t) v (x)] dx = < g (t) , v >Γ ∀v ∈ H1 (Ω) ,

where < ·, · >Γ stands for the duality product in H1/2 (Γ) . Moreover,

‖y‖C([0,T ];L2(Ω)) + ‖y‖L2(0,T ;H1(Ω)) ≤ C
(
‖y0‖L2(Ω) + ‖g‖L2(0,T ;H−1/2(Γ))

)
.

With the same notation as in the preceding section, we consider the two problems

(NBα)



Minimize in (λ, 1O) : Jα (λ, 1O) = 1
2

(
λ2 + 1

α ‖y (T )‖2L2(Ω)

)
subject to

yt −∆y + ay = 0 in QT
∂νy (σ, t) = λ [21O (σ, t)− 1] 1Σ0 on ΣT
y (0) = y0 in Ω
(λ, 1O) ∈ R+ × L∞ (ΣT ; {0, 1})

and

(RNBα)



Minimize in (λ, s) : Jα (λ, 1O) = 1
2

(
λ2 + 1

α ‖y (T )‖2L2(Ω)

)
subject to

yt −∆y + ay = 0 in QT
∂νy (σ, t) = λ [2s (σ, t)− 1] 1Σ0 on ΣT
y (0) = y0 in Ω
(λ, s) ∈ R+ × L∞ (ΣT ; [0, 1]) .
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The same type of arguments as the ones used in the two preceding cases lets prove that (RNBα) is a
relaxation of (NBα). Also, a direct computation shows that the functional Jα is Gâteaux differentiable
and its directional derivative at (λ, s) in the admissible direction

(
λ̂, ŝ
)

is given by

∂Jα (λ, s)
∂ (λ, s)

·
(
λ̂, ŝ
)

= λ̂

(
λ+

∫
Σ0

p (2s− 1) dΣ0

)
+ 2λ

∫
Σ0

ŝpdΣ, (23)

where p solves the system 
−pt −∆p+ ap = 0 in QT
∂νp = 0 on ΣT
p (T ) = 1

αy (T ) in Ω.
(24)

By using (23), it is not hard to show that if (λ?, s?) is a solution of (RNBα), then

s? (σ, t) =
{

0 if p (σ, t) > 0
1 if p (σ, t) < 0

and λ? = ‖p‖L1(Σ0)

3 Algorithm - Numerical experiments

3.1 Algorithm and numerical approximation

Let us provide some details on the inner situation and in the one dimensional space case. From now on,
we take Ω = (0, 1).

First notice that we may remove the constraint λ ∈ R+ since, if (λ, s) solves (RTα), then (−λ, 1− s)
is also a solution. Hence, the expression (9) provides the following iterative descent algorithm :

(λ0, s0) ∈ R× L∞(QT , [0, 1]),

λn+1 = λn − an
(
λn −

∫
qT

pn(2sn − 1) dx dt
)
, n ≥ 0,

sn+1 = P[0,1](sn + bnλ
npn), n ≥ 0

(25)

where pn solves (10), P[0,1](x) = max(0,min(1, x)) denotes the projection of any x onto [0, 1] and an, bn
denote the optimal descent step which is obtained as the solution of the extremal problem :

min Jα(λn+1(a), sn+1(b)) over a, b ∈ R+. (26)

Problem (26) is solved by using line search techniques. The gradient algorithm is stopped as soon as

|λn −
∫
qT

pn(2sn − 1)dxdt| ≤ σ (27)

for some given tolerance σ > 0 small enough. In the sequel, σ := 10−3.
As for the numerical discretization, we use the two-step Gear scheme (of second order) for the time

integration coupled with a P1 finite element approach for the spatial approximation. Precisely, for large
integer Nx, we consider the Nx points xi ∈ [0, 1] such that x1 = 0, xi < xi+1 and xNx

= 1. We note
for i ∈ {1, Nx − 1}, ∆xi = xi+1 − xi and ∆x = max ∆xi. We note by P∆x the corresponding partition
of Ω = [0, 1] and by P∆t the corresponding partition of [0, T ], obtained in the same way. Finally, set
h = (∆x,∆x) and Qh the quadrangulation of QT associated to h so that in particular QT =

⋃
K∈Qh

K.
The following (conformal) finite element approximation of L2(0, T ;H1

0 (0, 1)) is introduced:

X0h = {ϕh ∈ C0(QT ) : ϕh|K ∈ (P1,x ⊗ P1,t)(K) ∀K ∈ Qh, ϕh(0, t) = ϕh(1, t) = 0 ∀t ∈ (0, T ) }.
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Here Pm,ξ denotes the space of polynomial functions of order m in the variable ξ. Accordingly, the
functions in X0h reduce on each quadrangle K ∈ Qh to a linear polynomial in both x and t. The space
X0h, conformal approximation of L2(QT ) is a finite-dimensional subspace of L2(0, T ;H1

0 (0, 1)). Moreover,
the functions ϕh ∈ X0h are uniquely determined by their values at the nodes (xi, tj) of Qh such that
0 < xi < 1.

Let us now introduce other finite dimensional spaces. First, we set

Φ∆x = { z ∈ C0([0, 1]) : z|k ∈ P1,x(k) ∀k ∈ P∆x }.

Then, Φ∆x is a finite dimensional subspace of L2(0, 1) and the functions in Φ∆x are uniquely determined
by their values at the nodes of P∆x.

Secondly, since the variable λ(2s−1) ∈ L∞(QT ) appears in the right hand side of the forward problem
in y, it is natural to approximate λ(2s − 1) ∈ L∞(QT ) by a piecewise constant function. Thus, let Mh

be the space defined by

Mh = {µh ∈ L∞(QT ) : µh|K ∈ (P0,x ⊗ P0,t)(K) ∀K ∈ Qh }.

Mh is a finite dimensional subspace of L∞(QT ) and the functions in Mh are uniquely determined by their
(constant) values on the quadrangles K ∈ Qh.

Therefore, for any sh ∈Mh and any λh ∈ R, the approximation yh ∈ X0h of the solution of (RTα) is
given as follows :

(i) Consider the times tj = j∆t and set yh|t=0 = π∆x(y0) ∈ Φ∆x.

(ii) Then, yh|t=t1 is the solution to the linear problem

∫ 1

0

1
∆t

(Ψ− yh|t=0)z dx+
1
2

∫ 1

0

(Ψxzx + π∆xA(x, t1)Ψz) dx

+
1
2

∫ 1

0

((yh|t=0)xzx + π∆xA(x, tNt
)yh|t=0z) dx

=
1
2
λh

∫ 1

0

((2sh(x, t1)− 1) + (2sh(x, t0)− 1)z(x) dx ∀z ∈ Φ∆x, Ψ ∈ Φ∆x.

(iii) Finally, for given n = 1, . . . , N − 1, Ψ? = yh|t=tn−1 and Ψ = yh|t=tn , yh|t=tn+1 is the solution to the
linear problem

∫ 1

0

1
2∆t

(3Ψ− 4Ψ + Ψ?)z dx+
∫ 1

0

(Ψxzx + π∆x(A(x, tn−1))Ψz) dx

=
∫ 1

0

µh(x, tn−1)z(x) dx ∀z ∈ Φ∆x, Ψ ∈ Φ∆x.

Here, π∆x denotes the projection over Φ∆x.
We are thus using the two-step implicit Gear algorithm as a numerical tool to solve numerically the

problem (RTα). As advocated in [4], where the influence of the time discretization is highlighted, it
has been observed that this second order scheme ensures a better behavior of the underlying gradient
algorithm than, for instance, the implicit Euler scheme. At the finite dimensional level, algorithm (25)
reads as follows : 

(λ0
h, s

0
h) ∈ R×Mh,

λn+1
h = λnh − anh

(
λnh −

∫
qT

pnh(2snh − 1) dx dt
)
, n ≥ 0,

sn+1
h = P[0,1](snh + bnhλ

n
hp
n
h), n ≥ 0

(28)

where pnh is an approximation of the backward problem (10), obtained by using P1 finite element in space
and the Gear scheme for the time integration, as described above.
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3.2 Numerical experiments

3.2.1 Distributed case

We now provide some numerical results in the one dimensional space case and discuss mainly the influence
of the penalty parameter α. We take Ω = (0, 1) and first consider the data ω = (0.25, 0.75), a ≡ 0 and
y0(x) = sin(2πx). In order to have a better control of the diffusion, we also replace the operator −∆ by
−c∆ with c lower than one. This does not modify the theoretical part.

The descent algorithm is initialized with λ = 1 and s = 1/2 over QT . We take σ := 10−3 as stopping
criterion parameter.

We take a uniform partition P∆x for Ω : xi+1 − xi = 1/Nx with Nx = 400. On the other hand, in
order to describe correctly the oscillations of the density near T , we take a non uniform partition P∆t of
the time interval (0, T ): precisely we define

t1 = 0; tj+1 − tj =
T

epT − 1
(e

pT
Nt − 1)e

p(Nt+1−j)
Nt

T j = 1, ..., Nt

where Nt ∈ N is the number of sub-interval of the partition P∆t and any p ∈ N. The points tj , distributed
along (0, T ), are thus exponentially concentrated near T . This property is amplified for increasing values
of p. Here p := 6 and Nt = 400.

Table 1 collects the value of λh and ‖yh(·, T )‖L2(0,1) with respect to the penalty parameter α. We
take c := 1/10.

We check that the L∞-norm λh of the control increases as α goes to zero : in other words, the amount
of work needed to get closer to the zero target at time T is more important. However, as a consequence
of the null controllability of (1) with v ∈ L∞(qT ), we check that λh is uniformly bounded by above with
respect to α.

The value α also affects the shape of the bang-bang control. Figure 1 depicts the iso-values of the
optimal density for α = 10−2, 10−4, 10−6 and α = 10−8. According to the symmetry of ω and of the
initial datum y0, we obtain symmetric density over QT . For α = 10−2, the density is constant in time
and related to the sign of y0: precisely, for all t, sh(x, t) = 0 if y0(x) > 0 and sh(x, t) = 1 if y0(x) < 0.
However, for α small enough, for instance here, α = 10−3, the optimal density exhibits some variations
with respect to the variable t. These variations are mainly located at the end of the time interval.
Moreover, as α decreases, the number of theses oscillations, that is, the number of theses changes of sign
of vh increases so that, at the null controllability limit (α = 0) one may expected an oscillatory behavior
of the bang-bang control both in space and time, in an arbitrarily close neighborhood of (0, 1) × {T}.
This is in agreement with our observations in the L2 case (see [14]). Of course, as in the L2-case, this
behavior may only be captured with an arbitrarily finer mesh. The increasing number of iterates needed
to satisfy the criterion (27) as α decreases is also a consequence of these oscillations near T .

In Figure 1 we also observe that (except for α = 10−2) the optimal density sh is not strictly a bi-
valued 0 − 1 (as it should be almost everywhere) and takes some intermediate values: this is only due
to the numerical approximation and to the very low variation of the cost function with respect to the
density near the minimum (a bi-valued density is obtained after a very large number of iterates). Figure
2 displays the sign of the adjoint solution p (see 10) in qT and also clearly exhibits the variation of the
bang-bang control: recall that from (13), s and p are related through the relation 2s− 1 = sign(p).

More interesting is the fact that, whatever be the initial value (λ0
h, s

0
h) ∈ R+ × L∞(QT , [0, 1]) guess

we consider as the starting point for the algorithm, we always get the same limit. This is of course in
agreement with the fact the control v of minimal L∞-norm is unique, and so the couple (λ, s) defined by
v = λ(2s− 1)1ω is.

We now consider both a bounded but discontinuous potential a and a discontinuous initial datum.
Precisely, for Ω = (0, 1) and ω = (0.2, 0.6), we take
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α 10−1 10−2 10−4 10−6 10−8

‖yh(T )‖L2(Ω) 8.96× 10−2 5.34× 10−2 6.24× 10−3 4.37× 10−4 9.17× 10−5

λh 0.087 0.471 1.309 1.831 1.948
] iterates 11 213 561 1032 4501

Table 1: Nx = Nt = 400 - y0(x) = sin(2πx) - c = 0.1
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Figure 1: Nx = Nt = 400 - y0(x) = sin(2πx) - ω = (0.25, 0.75) - c = 0.1 - From left to right and from top
to button, iso-values of the density function sh in QT for α = 10−2, 10−4, 10−6 and α = 10−8.
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Figure 2: Nx = Nt = 400 - y0(x) = sin(2πx) - ω = (0.25, 0.75) - c = 0.1 - Sign of the adjoint state p for
α = 10−6 (left) and α = 10−8 (right).

a (x) =
{

1, 0 ≤ x ≤ 0.5
−3, 0.5 < x ≤ 1

, y0 (x) =
{

0, x ∈ [0, 0.1] ∪ [0.9, 1]
1., 0.1 < x < 0.9.

(29)

The over data remain unchanged. For α = 10−6, Figure 3 depicts the iso-values of the optimal
density sh together with the sign of the corresponding adjoint solution p over QT . The convergence leads
to λh ≈ 14.35 for which ‖yh(T )‖L2(0,1) ≈ 4.11 × 10−6. Here, of course, the symmetry of the density is
lost. As in the preceding test, we observe variations of the density near T , up to the error due to the
numerical approximation.
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Figure 3: Nx = 400 - Nt = 400 - ω = (0.2, 0.6) - α = 10−6 - Discontinuous data as in (29)- Iso-values of
the density function sh in QT (left) and sign of p (right).
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3.2.2 Boundary case

In the boundary situation, the density s is simply a time function. This allows to observe clearer the
high singular character of the bang-bang control as α goes to zero, that is, when one wants to recover
the null control of minimal L∞-norm. The procedure is very similar, except that we also consider a non
uniform partition P∆x (concentrated on x = 1) in order to better describe the final state p(T ) of the
adjoint system (oscillating near x = 1).

x1 = 0; xi+1 − xi =
1

ep − 1
(e

p
Nx − 1)e

p(Nx+1−i)
Nx i = 1, ..., Nx.

with here p := 3 and still Nx = 400.
The minimization procedure is similar. For the Dirichlet boundary control considered in Section 2.2.1,

fromTheorem 2.4, we may consider the following descent algorithm.
(λ0
h, s

0
h) ∈ R×Nh,

λn+1
h = λnh − anh

(
λnh +

∫
Σ0

∂νp
n
h(2snh − 1) dΣ0

)
, n ≥ 0,

sn+1
h = P[0,1](snh − bnhλnh∂νpnh(1, ·)), n ≥ 0

(30)

where pnh is as above an approximation of the backward problem (10) and Nh the space defined by

Nh = {µh ∈ L∞([0, T ]) : µh|k ∈ P0,t)(K) ∀k ∈ P∆t }.

As in the inner situation, the residue∣∣∣∣λnh +
∫

Σ0

∂νp
n
h(2snh − 1) dΣ0

∣∣∣∣
is used as stopping criterion for the algorithm. For the Neumann boundary control discussed in Section
2.2.2, the algorithm is given by

(λ0
h, s

0
h) ∈ R×Nh,

λn+1
h = λnh − anh

(
λnh +

∫
Σ0

pnh(2snh − 1) dΣ0

)
, n ≥ 0,

sn+1
h = P[0,1](snh + bnhλ

n
hp
n
h(1, ·)), n ≥ 0

(31)

where pnh is an approximation of the solution p of (24).

Let us discuss the Neumann boundary case. We take y0(x) = sin(πx), T = 1/2, c = 1/10, a := 0.
The stopping criterion is related to the absolute value |λ−

∫ 1

0
p(1, t) (2s− 1) dt|. We stop the algorithm

as soon as this value is lower than 10−3. Table 2 reports the L∞-norm λh and the L2(0, 1)-norm of yh(T )
for various values of the penalty parameter α. The amplitude λh of the bang-bang control increases as
α → 0, and is significantly bigger than in the inner case. This is due to the fact that the control acts
only on a single point of Ω.

α 10−2 10−4 10−6 10−8

‖yh(·, T )‖L2(Ω) 2.96× 10−1 1.59× 10−1 5.56× 10−2 9.31× 10−3

λh 1.488 10.181 29.121 34.03
] iterates 33 512 6944 20122

Table 2: (λh, yh(T )) with respect to α in the Neumann boundary case.
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Figure 4 depicts the optimal density sh with respect to the time variable. We observe here that the
density is almost everywhere a characteristic function with an increasing number of change of sign as t
goes to T−. Figure 5 depicts the trace, both in time and space, of the approximate controlled solution
yh while Figure 6 displays yh along QT .

Let us insist again on that oscillatory behavior and display the density for α = 10−6. Figures 7, 8
and 9 depict the optimal density sh(t) for t ∈ [0., 0.5], t ∈ [0.4, 0.5] and t ∈ [0.48, 0.5] respectively. These
figures indicates that the frequency of these sign changes increases as t is close to T . Moreover, the
number of these sign’ changes increases as α→ 0. In spite of this singular phenomenon, we observe again
the invariance of the limit (λh, sh) of the algorithm with respect to the initialization, consequence of the
uniqueness of the minimal L∞- norm control.

At the limit in α→ 0, we expect a bounded amplitude λh but an arbitrarily large number of oscillations
near T , in full agreement with our observations for the L2 situation in [14]. The figures also confirm,
in agreement with the optimality conditions for Jα that, the optimal density is almost everywhere a
characteristic function, so that no relaxation is needed. The only point where the density is not 0 or 1 is
at the final time: From Figure 9, sh(T ) is close to 1/2, intermediate value which reinforces the property,
that at the limit in α, the null control highly oscillates at t = T−.
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Figure 4: Neumann case - The optimal density sh(t) for t ∈ [0, T ] - α = 10−4.

For Dirichlet boundary control, the situation is very similar: we simply report here in Table 3 the
optimal couple (λh, ‖yh(T )‖L2(0,1)) with respect to α.

α 10−2 10−4 10−6 10−8

‖yh(·, T )‖L2(Ω) 9.21× 10−2 3.28× 10−3 7.31× 10−4 2.34× 10−5

λh 0.98 5.12 7.30 9.02
] iterates 21 319 4912 9301

Table 3: (λh, ‖yh(T )‖L2(0,1)) with respect to α in the Dirichlet boundary case.
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Figure 5: Neumann case - Left : yh(1, t) for t ∈ (0, T ) ; Right: yh(x, T ) for x ∈ (0, 1) - α = 10−4.

Figure 6: Neumann case - Approximated controlled solution yh over QT
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Figure 7: Neumann case - The optimal density sh(t) for t ∈ [0, T ] - α = 10−6.
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Figure 8: Neumann case - The optimal density sh(t) for t ∈ [0.4, 0.5] - α = 10−6.
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Figure 9: Neumann case - The optimal density sh(t) for t ∈ [0.48, 0.5] for α = 10−6.

4 Conclusion and final remarks

The reformulation of the L∞-controllability problem in terms of an optimal design one allows to get a
well-posed relaxed formulation and then a simple minimization procedure. In spite of the well-posedness
of this formulation, these bang-bang controls highly oscillate near the final time. While the amplitude
of approximate controls is bounded by above with respect to the penalty parameter α, one may suspect
that the number of these oscillations is not. This feature, closely related to the heat kernel regularization
property, renders severally ill-posed the numerical approximation of the null control of L∞ norm. Other
procedures may be adopted, for instance taking into account the fact that the relaxed cost is quadratic
with respect to the amplitude λ; however, they all share high degree of ill-posedeness. In that respect, the
minimization of the relaxed cost is not easier than the minimization of the conjugate function (derived
from duality arguments) commonly used. The subtle difference, strongly enhanced for small values of α,
comes from the fact that the density s belongs to L∞ while the dual variable degenerates in an abstract
space.

On the other hand, it is also natural to consider the problem of finding the best location of the support
of the control of minimal L∞-norm. This problem has been recently addressed by the authors in the
L2-case (see [13]).

Finally, let us mention the wave type equation where the situation is different: in that case, existence
of bang-bang control does not hold in general, as it depends on the initial data (see [8]). This means that,
by applying the same procedure, some data may exhibit relaxation, that is, an optimal density taking
values in (0,1).

References

[1] G. Alessandrini and L. Escauriaza, Null-controllability of one-dimensional parabolic equations,
ESAIM Control Optim. Calc. Var. 14 (2008), no. 2, 284–293.



REFERENCES 20

[2] S. Angenent, The zero set of a solution of a parabolic equation, J. reine angew. Math. 390 (1988),
79–96.

[3] F. Ben Belgacem and S.M. Kaber, On the Dirichlet boundary controllability of the 1-D heat equation:
semi-analytical calculations and ill-posedness degre, Inverse Problems 27 (2011), no. 5.

[4] C. Carthel, R. Glowinski and J.-L. Lions, On exact and approximate Boundary Controllabilities for
the heat equation: A numerical approach, J. Optimization, Theory and Applications 82(3), (1994)
429–484.

[5] C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation,
Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), no. 1, 31–61.

[6] A.V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series,
number 34. Seoul National University, Korea,(1996) 1–163.

[7] R. Glowinski, J-L. Lions and J. He, Exact and approximate controllability for distributed parameter
systems. A numerical approach. Encyclopedia of Mathematics and its Applications, 117. Cambridge
University Press, Cambridge, 2008.

[8] M. Gugat and G. Leugering, L∞-norm minimal control of the wave equation: on the weakness of
the bang-bang principle, ESAIM: COCV 14 (2008) 254-283.

[9] G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. Partial Differential
Equations 20 (1995), no. 1–2,
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