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Abstract

We show that the herding procedure of Welling (2009b) takes exactly the form of a stan-
dard convex optimization algorithm—namely a conditional gradient algorithm minimizing a
quadratic moment discrepancy. This link enables us to invoke convergence results from con-
vex optimization and to consider faster alternatives for the task of approximating integrals in
a reproducing kernel Hilbert space. We study the behavior of the different variants through
numerical simulations. The experiments indicate that while we can improve over herding on the
task of approximating integrals, the original herding algorithm tends to approach more often
the maximum entropy distribution, shedding more light on the learning bias behind herding.

1 Introduction

The herding algorithm has recently been presented by Welling (2009b) as a computationally attrac-
tive alternative method for learning in intractable Markov random fields models (MRF). Instead
of first estimating the parameters of the MRF by maximum likelihood / maximum entropy (which
requires approximate inference to estimate the gradient of the partition function), and then sampling
from the learned MRF to answer queries, herding directly generates pseudo-samples in a determinis-
tic fashion with the property of asymptotically matching the empirical moments of the data (akin to
maximum entropy). The herding algorithm generates pseudo-samples xt with the following simple
recursion:

xt+1 ∈ argmax
x∈X

〈wt,Φ(x)〉

wt+1 = wt + µ− Φ(xt+1),
(1)

where X is the observation space; Φ is a feature map from X to F , which could be viewed as the vector
of sufficient statistics for some exponential family, and µ is a mean vector to match (the empirical
moment vector of the same family). Unlike in frequentist learning of MRFs, the parameter wt never
converges to a point in herding and actually follows a “weakly chaotic” walk (Welling and Chen,
2010).

The herding updates can be motivated from two different perspectives. From the learning per-
spective, the herding updates can be derived by performing fixed step size subgradient ascent on
the zero-temperature limit of the annealed likelihood function of the MRF (called the “tipi func-
tion” by Welling (2009b)). From this perspective, the herding algorithm was later generalized to
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MRFS with latent variables (Welling, 2009a; Chen and Welling, 2010) as well as discriminative
MRFs (Gelfand et al., 2010).

From the moment matching perspective, which has been explored more in details by Chen et al.
(2010), the herding updates can be derived as an effective way to choose pseudo-samples xt in

order to quickly decrease the moment discrepancy ET .
= ‖µ− 1

T

∑T
t=1 Φ(xt)‖, and in fact as greedily

minimizing ET (Chen et al., 2010). Under suitable regularity conditions, ET decreases as O(1/T ) for
the herding updates—this is faster than i.i.d. sampling from the distribution generating µ (e.g., the
training data) which would yield the slower O(1/

√
T ) rate. This faster rate is explained by negative

auto-correlations amongst the pseudo-samples and was used by Chen et al. (2010) to sub-select a
small collection of representative “super-samples” from a much larger set of i.i.d. samples. This fast
moment matching perspective is the focus of this paper. We make the following contributions:

• We show that herding as described by Eq. (1) is equivalent to a specific type of conditional gra-
dient algorithm (a.k.a. Frank-Wolfe algorithm) for the problem of estimating the mean µ. This
provides a novel understanding and another explicit cost function that herding is minimizing.

• This interpretation allows improvements, for the task of estimating means, with other faster
variants of the conditional gradient algorithm, which lead to non-uniform weights, one based
on line-search, one based on an active-set algorithm.

• Based on existing results from convex optimization (Dunn, 1980; Bach, 2011), we extend and
improve the convergence results of herding. In particular, we provide a linear convergence rate
for the line-search variant in finite-dimensional settings and show how the conditions assumed
in Chen et al. (2010) in fact never hold in the infinite-dimensional setting.

• We run experiments that show that algorithms which estimate faster the mean than herding
generate samples that are not better (and typically worse) than the samples obtained with
herding when evaluated in terms of the ability to approximate a sample with large entropy,
a property which (if or when satisfied by herding) could be the basis for an interpretation of
herding as a learning algorithm (Welling, 2009b). These results could help shedding more light
on what is (and is not) the learning bias of herding.

2 Mean estimation

We start with a similar setup as Chen et al. (2010) where herding can be interpreted as a way to
approximate integrals of functions in a reproducing kernel Hilbert space (RKHS). We consider a set
X and a mapping Φ from X to a RKHS F . Through this mapping, all elements of F may be identified
with real functions f on X defined by f(x) = 〈f,Φ(x)〉, for x ∈ X . We denote by k : (x, y) 7→ k(x, y)
the associated positive definite kernel. Note that the mapping Φ may be explicit (classically in low-
dimensional settings) or implicit—where the kernel trick can be used, see Section 4.3 and Chen et al.
(2010).

Throughout the paper, we assume that the data is uniformly bounded in feature space, that is, for
all x ∈ X , ‖Φ(x)‖ 6 R, for some R > 0; this condition is needed for the updates of Eq. (1) to be
well-defined.

We denote by M ⊂ F the marginal polytope (Wainwright and Jordan, 2008; Chen et al., 2010), i.e.,
the convex-hull of all vectors Φ(x) for x ∈ X . Note that for any f ∈ F , we have

sup
x∈X

f(x) = sup
g∈M

〈f, g〉,
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Figure 1: Marginal polytope in two situations: (left) finite number of extreme points (typical with
discrete data), (right) polynomial kernel in one dimension, with Φ(x) = (x, x2) for x ∈ [−1, 1].

and that |f(x)| = |〈f,Φ(x)〉| 6 ‖f‖R for all x ∈ X and f ∈ F (i.e., all functions with finite norm
are bounded).

Extreme points of the marginal polytope. In all the cases we consider in Section 5, it turns
out that all points of the form Φ(x), x ∈ X are extreme points of M (see an illustration in Figure 1).
This is indeed always true when ‖Φ(x)‖ is constant for all x ∈ X (for example for our infinite-
dimensional kernels on [0, 1] in Section 5.1); it is also true if Φ(x) contains both an injective feature

map Φ̃(x) and its self-tensor-product Φ̃(x)⊗ Φ̃(x), which is the case in the graphical model examples
in Section 5.2.

Mean element and expectation. We consider a fixed probability distribution p(x) over X .
Following Chen et al. (2010), we denote by µ the mean element (see, e.g., Smola et al., 2007):

µ = Ep(x)Φ(x) ∈ M.

Note that in the learning perspective, p is the empirical distribution on the data and so µ is the
corresponding empirical moment vector to match. To approximate this mean, we consider n points
x1, . . . , xn ∈ X combined with positive weights w1, . . . , wn that sum to one. These define p̂, the
associated weighted empirical distribution, and µ̂ the approximating mean:

µ̂ = Ep̂(x)Φ(x) =

n∑

i=1

wiΦ(xi) ∈ M. (2)

For all functions f ∈ F , we then have

Ep(x)f(x) = Ep(x)〈f,Φ(x)〉 = 〈µ, f〉,

and similarly Ep̂(x)f(x) = 〈µ̂, f〉. We thus get, using Cauchy-Schwarz inequality,

sup
f∈F , ‖f‖=1

|Ep(x)f(x)− Ep̂(x)f(x)| = ‖µ− µ̂‖,

and controlling µ− µ̂ is enough to control the error in computing the expectation for all f ∈ F with
finite norm. Note that a random i.i.d. sample from p(x) would lead to an expected worst-case error
which is less than 4R√

n
—a classical result based on Rademacher averages (see, e.g. Boucheron et al.,

2005).

In this paper, we will try to find a good estimate µ̂ of µ based on a weighted set of points from
{Φ(x), x ∈ X}, generalizing Chen et al. (2010), and show how this relates to herding.
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3 Related work

This paper brings together three lines of work, namely the approximation of integrals, herding and
convex optimization. The links between the first two were clearly outlined by Chen et al. (2010),
while the present paper provides the novel interpretation of herding as a well-established convex
optimization algorithm.

3.1 Quadrature/cubature formulas

The evaluation of expectation, or equivalently of integrals, is a classical problem in numerical analy-
sis. When the input space X is a compact subset of Rp and p(x) is the density of the distribution with
respect to the Lebesgue measure, then this is equivalent to evaluating the integral

∫
X f(x)p(x)dx.

Quadrature formulas are aimed at computing such integrals as a weighted combinations of values
of f at certain points, which is exactly the problem we consider in Section 2.

Although a thorough review of quadrature formulas is outside the scope of this paper, we mention two
methods which are related to our approach. First, given a positive definite kernel and a given set of
points (typically sampled i.i.d. from a given distribution), the Bayes-Hermite quadrature of O’Hagan
(1991) and Rasmussen and Ghahramani (2003) essentially computes an orthogonal projection of µ
onto the affine hull of this set of points. This does not lead to positive quadrature weights, and one
may thus replace the affine hull by the convex hull to obtain such nonnegative weights, which we do
in our experiments in Section 5.

Moreover, quasi-Monte Carlo methods consider sequences of so-called “quasi-random” quadrature
points so that the empirical average approaches the integral. These quasi-random sequences are
such that the approximation error goes down as Õ(1/n) (for functions of bounded variation) as
opposed to O(1/

√
n) for a random sequence. In simulations, we used a Sobol sequence (see, e.g.,

Morokoff and Caflisch, 1994).

3.2 Franke-Wolfe algorithms

Given a smooth (twice continuously differentiable) convex function J on a compact convex set M
with gradient J ′, Frank-Wolfe algorithms are a class of iterative optimization algorithms that only
require (in addition to the computation of the gradient J ′) to be able to optimize linear functions on
M. The first class of such algorithms is often referred to as conditional gradient algorithms: given
an iterate gt, the minimum of 〈J ′(gt),Φ〉 over Φ ∈ M is computed, and the next iterate is taken on
the segment between gt and Φ, i.e., gt+1 = ρtgt +(1− ρt)Φ, where ρt ∈ [0, 1]. There are two natural
choices for ρt, (a) simply taking ρt = 1/(t + 1) and (b) performing a line search to find the point
in the segment with optimal value (either for J or for a quadratic upper-bound of J). These are
illustrated in Figure 2, and convergence rates are detailed in Section 4.2. Moreover, for quadratic
functions, the conditional gradient algorithm with step sizes ρt = 1/(t+1) has a dual interpretation
as subgradient ascent (see, e.g., Bach, 2011), which we outline in Section 4.1.

Finally, in order to minimize the number of iterations, a variant known as the minimum-norm-
point algorithm will find gt+1 that minimizes J on the convex hull of all previously visited points,
using a specific active-set algorithm (see Wolfe, 1976; Bach, 2011, for details). For convex sets with
finitely many extreme points, it converges in a finite number of iterations with higher (though still
polynomial) iteration computational cost.
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Figure 2: Two versions of two iterations of conditional gradient; left: ρt =
1

t+1 , right: line search.
The minimun-norm-point algorithm would have converged to µ after two iterations.

4 Herding as a Frank-Wolfe algorithm

To relate herding with the conditional gradient algorithms, we consider the following optimization
problem:

min
g∈M

J(g) =
1

2
‖g − µ‖2, (3)

with the trivial unique solution µ. A conditional gradient algorithm to solve this optimization
problem with stepsize ρt = 1/(t+ 1) use the iterates

ḡt+1 ∈ arg min
g∈M

〈gt − µ, g〉,

gt+1 = (1− ρt) gt + ρt ḡt+1. (4)

But these updates are exactly the same as herding via the change of variable gt = µ−wt/t. Indeed,
as the minimizer of a linear function of a convex set ḡt+1 can be restricted to be an extreme point of
M, which implies that ḡt+1 = Φ(xt+1) for a certain xt+1. The herding updates are thus equivalent
to the conditional gradient minimization of J with step size given by ρt = 1/(t+ 1).

With this choice of step size, we get (t+1)gt+1 = tgt +Φ(xt+1), that is gt =
1
t

∑t
u=1 Φ(xu), and we

thus get uniform weights in Eq. (2).

For general step-sizes ρt ∈ [0, 1], if we assume that we start the algorithm with ρ0 = 1 (which

implies g1 = Φ(x1)), then we get that gt =
∑t

u=1

(∏t−1
v=u(1−ρv−1)ρu−1

)
Φ(xu), which thus leads to

non-uniform weights in Eq. (2), though they still sum to one. The conditional gradient updates (4)
can thus be seen as a generic algorithm to obtain a weighted set of points to approximate µ, and
traditional herding is the ρt = 1/(t+ 1) step-size case.

A second choice of step-size for t ≥ 1 is to use line search, which leads in this setting (where the

global unconstrained minimum happens to belong to M) to ρt =
〈gt−µ,gt−ḡt+1〉

‖ḡt+1−gt‖2 ∈ [0, 1]. This leads

to a variant of herding with non-uniform weights.

We finally comment on the initialization g0 for the updates in (4). In the kernel herding algorithm
of Chen et al. (2010), the authors use w0 = µ as this is required to interpret the herding updates as
greedily minimizing ET (with the additional assumptions that ‖Φ(x)‖ is constant). In our setting,
this corresponds to choosing g0 = 0 (which might be outside of M, though this is not problematic in
practice). Another standard choice (for MRFs in particular) is to use w0 = 0 (g0 = µ), which means
that the first point x1 is chosen randomly from the extreme points of M—this is the scheme we used.
As is common in convex optimization, we didn’t see any qualitative difference in our experiments
between the two types of initialization.
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4.1 Dual problem and subgradient descent

Welling (2009b) proposed originally an algorithmic interpretation of herding as performing subgra-
dient ascent with constant step size on a function obtained as the zero temperature limit of the
log-likelihood of an exponential model that he called the “tipi function”. Our interpretation of
the procedure as a Frank-Wolfe algorithm might therefore appear as a conflicting interpretation at
first sight. To establish a natural connection between these two interpretations, we can compute
the Fenchel-dual optimization problem to Eq. (3). Indeed, we have (with standard arguments for
swapping the min and max operations):

min
g∈M

1

2
‖g − µ‖2 = min

g∈M
max
f∈F

f⊤(g − µ)− 1

2
‖f‖2

= max
f∈F

min
g∈M

f⊤(g − µ)− 1

2
‖f‖2

= max
f∈F

{
min
x∈X

f(x)− 〈f, µ〉 − 1

2
‖f‖2

}
.

The dual function f 7→ minx∈X f(x)−〈f, µ〉− 1
2‖f‖2 is 1-strongly concave and non-differentiable, and

a natural algorithm to maximize it is thus subgradient ascent with a step size equal to 1
t+1 (Shalev-Shwartz et al.,

2007), which is known to be equivalent to the primal conditional gradient algorithm with step sizes
ρt = 1/(t+ 1). It is therefore not surprising that herding is equivalent to subgradient ascent with a
decreasing stepsize on this function (with the identification ft = gt − µ = −wt/t). The presence of
the squared norm which is added to the “tipi function” merely reflects the change of scaling between
gt and wt. It is worthwhile mentioning that other functions, like Bregman divergences, would have
led to a different dual function hence adding a different term than a squared norm to the “tipi
function”.

4.2 Convergence analysis

Without further assumptions on the problem, then the two choices of step sizes lead to a convergence
rate of the form (Dunn, 1980; Bach, 2011):

1

2
‖gt − µ‖2 6 4

R2

t
.

Note that the convergence in O(1/t) does not lead to improved estimation of integrals over random
sampling. Moreover, without further assumptions, current theoretical analysis does not allow to
distinguish between the two forms of conditional gradient algorithms (although they differ a bit in
practice, see Section 5).

However, if we assume that within the affine hull of M, there exists a ball of center µ and radius
d > 0 that is included in M (i.e., µ is in the relative interior of M), then both choices of step sizes
yield faster rates than random sampling. For the version with line search, we actually obtain a linear
convergence rate (Beck and Teboulle, 2004):

1

2
‖gt − µ‖2 6 R2 exp

(
− d2t

R2

)
.

For the version without line search (ρt = 1/(t+1)), Chen et al. (2010) shows the slower convergence
rate in O(1/t2):

1

2
‖gt − µ‖2 6 2R4

d2t2
.
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Concerning the assumption that µ is in the relative interior of M, we now show that in finite-
dimensional settings, this assumption is always satisfied under reasonable conditions, while it is
never satisfied in a large class of infinite-dimensional settings (namely Mercer kernels).

We first provide an equivalent definition of this condition which is used in the proofs. Let A be the
affine hull of M, µ0 the orthogonal projection of 0 on A, and F̃ the space of directions (or difference

space) of A (i.e., F̃ = A−µ0).
1 Now there exists d > 0 so that any element of A which is at distance

less than d of µ is in M if and only if ∀f ∈ F , the maximum of f⊤g over g ∈ A and ‖g − µ‖ 6 d is

less than the maximum of f⊤g over g ∈ M. Given the properties of A and F̃ , this is equivalent to:

∀f ∈ F̃ , max
‖g−µ‖6d

f⊤g 6 max
g∈M

f⊤g

⇔ ∀f ∈ F̃ , 〈µ, f〉+ d‖f‖ 6 max
x∈X

f(x). (5)

Proposition 1 Assume that F is finite-dimensional, that X is a compact topological measurable
space with a continuous kernel function, and that the distribution p has full support on X . Then
∃d > 0 so that Eq. (5) is true.

Sketch of proof. To show the existence of such d > 0, it is sufficient to show that Ω : f 7→
maxx∈X f(x)− 〈µ, f〉 is a norm on F̃ . This is because in finite dimensions, all norms are equivalent
and thus this implies Ω(f) ≤ d2‖f‖ and so Eq. (5) is satisfied with d = d2. Ω is convex and positively
homogeneous by construction. Now Ω(f) = 0 means that Ep(x)[f(x) − maxy f(y)] = 0, and thus
f(x) = maxy f(y) for x in the support of p (assumed to be X ) using the fact that f is continuous
(since the kernel is continuous), and so f is a constant function. We then have two possibilities: ei-
ther µ0 = 0, in which case one can show that there is no non-zero constant functions in F ; otherwise
f = αµ0 for some α and thus the orthogonality condition 〈f, µ0〉 = 0 implies that α = 0. Both cases
imply f = 0, hence Ω is a norm.

Proposition 2 Assume X is a compact subspace of R
d, and that the kernel k is a continuous

function on X × X . If F is infinite-dimensional, then there exists no d > 0 so that Eq. (5) is true.

Sketch of proof. We can apply Mercer theorem to the kernel k̃(x, y) of the projection onto
the orthogonal of {µ, µ0}. This kernel is also a Mercer kernel, and we get an orthonormal basis

(ek)k>1 of L2(X ) with countably many eigenvalues λk that are summable. Moreover, (λ
1/2
k ek)k>1

is known to be an orthonormal basis of the associated feature space F (Cucker and Smale, 2002),
and for all x, y ∈ X , k̃(x, y) =

∑
k>1 λkek(x)ek(y), with uniform convergence. This implies that for

fk = λ
1/2
k ek, we have ‖fk‖ = 1, and 〈fk, µ0〉 = 〈fk, µ〉 = 0.

If we assume that there exists d > 0 so that Eq. (5) is true, then we have for all k > 1, maxx∈X |fk(x)| >
d. Since X is compact, there exists a cover of F with finitely many balls of radius d/4R. Let Y
be the finite set of centers. Since all functions fk are Lipschitz-continuous with constant 2R, then
for all k > 1, maxx∈Y |fk(x)| > d − 2R × d/4R = d/2. Since Y is finite, there exists x ∈ Y so
that |fk(x)| > d/2 > 0 for infinitely many values of k; this contradicts the summability of the series∑

k>1 fk(x)
2. Hence the result.

The last proposition shows that the current theory only supports the slower rates of O(1/t) for
the two conditional gradient algorithms in infinite-dimensional settings. On the other hand, we

1It turns out that µ0 is a function taking a constant value since the orthogonality condition yields 〈µ0,Φ(x) −
Φ(y)〉 = 0, i.e., µ0(x) = µ0(y) for all x, y ∈ X by the reproducing property of F .
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note that, in some cases, traditional herding performs empirically better without known theoretical
justification (see Section 5).

4.3 Computational issues

In order to run a herding algorithm, there are two potential computational bottlenecks:

Computing expectations 〈µ,Φ(x)〉: in a learning context (empirical moment matching), these
are done through an empirical average. In an integral evaluation context, in finite-dimensional
settings, one simply needs to compute Ep(x)Φ(x); while in an infinite-dimensional setting, follow-
ing Chen et al. (2010); Rasmussen and Ghahramani (2003), expectations of the form Ep(x)k(x, y)
need to be computed. This can be done for some pairs of kernels/distributions, like the ones we
choose in Section 5, but not in general.

Minimizing 〈gt−µ,Φ(x)〉 with respect to x ∈ X : in general, this computation may be relatively
hard (it is for example NP-hard in the context of the graphical models we consider in Section 5).
In practice, Chen et al. (2010) and Welling (2009a) perform local search, while another possibility
is to perform the minimization through exhaustive search in a finite sample. Note that a convex
relaxation through variational methods (Wainwright and Jordan, 2008) could provide an interesting
alternative.

5 Experiments

The goals of these simulations are (a) to compare the different algorithms aimed at estimating
integrals, i.e., assess herding for the task of mean estimation (Section 5.1 and Section 5.2), and (b)
to briefly study the empirical relationship with maximum entropy estimation in a learning context
(Section 5.3).

5.1 Kernel herding on X = [0, 1] (∞-dim setting)

Problem set-up. In this section, we consider X = [0, 1] and the norm ‖f‖2 =
∫ 1

0 [f
(ν)(x)]2dx

on the space of functions with zero mean and whose ν-th derivative exists and is in L2([0, 1]). As

shown by Wahba (1990), the associated kernel is equal to B2ν(x−y−⌊x−y⌋)
(2ν)! , where B2ν is the (2ν)-th

Bernoulli polynomial, with B2(x) = x2 − x+ 1
6 and B6(x) = x6 − 3x5 + 5

2x
4 − 1

2x
2 + 1

42 .

We consider either the uniform density on [0, 1], or a randomly selected density of the form p(x) ∝(∑d
i=1 ai cos(2iπx) + bi sin(2iπx)

)2
, for which all required expectations may be computed in closed

form. In particular, the mean element is computed as µ : x 7→ E[k(Y, x)] which may be computed in
closed form by expanding all terms in the Fourier basis. As for the optimization step, it consists in
minimizing gt(x)−µ(x) over the interval [0, 1] which can be done efficiently with exhaustive search.

Comparison of mean estimation procedures. We compare in Figure 3 two kernels, i.e., with
ν = 1 (left and middle plots) and ν = 3 (right plot), the following mean estimation procedures, and
plot log10 ‖µ̂−µ‖, for two densities, the uniform density (middle and right) and a randomly selected
non-uniform density (left). We compare the following:

• cg-1/(t+1): conditional gradient procedure with weights ρt = 1
t+1 , which is the original

herding procedure of Welling (2009a). This leads to uniform weights.
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Figure 3: Comparison of population herding procedures for kernels on [0, 1]. From left to right:
ν = 3 and non-uniform density, ν = 3 and uniform density, ν = 1 decay of eigenvalues and uniform
density. Best seen in color.

• cg-l.search: conditional gradient procedure with line search (with non-uniform weights).

• min-norm-point: Minimum-norm point algorithm. This leads to non-uniform weights.

• random: Random selection of points (from p(x)), averaged over 10 replications.

• sobol: a classical quasi-random sequence, with uniform weights. For non-uniform densities,
we first apply the inverse cumulative distribution function.

For all of these (except for min-norm-point), we also consider an extra a posteriori projection step
(denoted by the -proj suffix), which computes the optimal set of non-uniform weights by finding
the best approximation of µ in the convex hull of the points selected by the algorithm. We can draw
the following conclusions:

• Min-norm-point algorithms always perform best.

• Conditional gradient with line search is performing slightly worse than regular herding. (Note
that we are in the infinite-dimensional setting and so they both have O(n−1) as theoretical
rate.)

• The extra projection step always significantly improves performance, and sometimes enough
that random selection of point combined with a reprojection outperforms regular herding (at
least for ν = 3, i.e., with a smaller feature space).

• On the right plot, it turns out that the Sobol sequence is known to achieve the optimal rate of
O(n−2) for ‖µ− µ̂‖2 for the associated Sobolev space (Wahba, 1990). In this situation, regular
herding empirically achieves the same rate; however, the theoretical analysis provided in the
present paper or by Chen et al. (2010) does not allow to explain or support this statement
theoretically.

Estimation from a finite sample. In Figure 4, we compare three of the previously mentioned
herding procedures when all quantities are computed from a random sample of size 1000. In plain,
testing errors are computed (using exact expectations) while in dashed, the training errors are
computed. All methods eventually fit the empirical mean, with no further progress on the testing
error, this behavior happening faster with the min-norm-point algorithm.
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Figure 4: Comparison of estimated (from a finite sample) herding procedures for kernels on [0, 1]
with ν = 3 and non-uniform density.
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Figure 5: Comparison of herding procedures on graphical models with 100 binary variables. See
Section 5.2.

5.2 Estimation on graphical models

We consider X = {−1, 1}d and a random variable computed as the sign (in {−1, 1}) of a Gaussian
random vector in R

d, together with Φ(x) composed of x and of all of its pairwise products xx⊤.
In this set-up, we can compute the expectation Ep(x)Φ(x) in closed form, as the mass assigned
to the positive orthant by a bivariate Gaussian distribution with correlation ρ, which is equal to
1
4 + 1

2π sin−1 ρ (Abramowitz and Stegun, 1964). We are here in the finite-dimensional setting and
the faster rates derived in Section 4.2 apply.

We generated 10000 samples from such a distribution and performed herding with exact expectations
but with minima with respect to x computed over this sample (by exhaustive search over the sample).
We plot results in Figure 5, where we see the superiority of the minimum-norm-point procedure over
the two other herding procedures.

5.3 Herding and maximum/minimum entropy

Given a moment vector µ obtained from the empirical expectation of Φ(x) on data, the goal of herding
is to produce a pseudo-sample drawn from a distribution whose moments match µ without having
to estimate the canonical parameters of the corresponding model. A natural candidate for such a
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distribution is the maximum entropy distribution and we will compare the results of herding with the
maximum entropy distribution in cases where it can be easily computed, namely for X = {−1, 1}d
(with d 6 10) and either Φ(x) = x ∈ [−1, 1]d or Φ(x) = (x, xx⊤). In this setup, following Welling
(2009a), the distribution on x ∈ X is estimated by the empirical distribution

∑n
i=1 wiδ(x = xi).

Learning independent bits. We first consider Φ(x) = x and some specific feasible moment
µ ∈ M. It is well-known that the maximum entropy distribution is the one with independent bits.
In the top panels of Figure 6, we compare the norm between the maximum entropy probability vector
and the one estimated by two versions of herding, namely conditional gradient with stepsize ρt =
1/(t+1) (regular herding with uniform weights) and with line search (with non-uniform weights)—the
minimum-norm-point algorithm leads to quantitatively similar results. We show results in Figure 6
for a mean vector µ which is a random uniform vector in [−1, 1]d (left plots), and for a mean µ

which is random with uniform (µi + 1)/2 values in {1, 2, 3, 4, 5}× 2
√
2

3 (middle plots), and for mean
values µ which is are random with uniform (µi + 1)/2 values in {1, 2, 3, 4, 5}/6 (right plots).

For each of the mean vector, we plot in the top plots, the error in estimating the full maximum
entropy distribution (a vector of size 2d), and in the bottom plots, the error in estimating the feature
means (a vector of size d). We can draw the following conclusions:

• For a random vector µ (left plots), then regular herding (with no line search) empirically
converges to the maximum entropy distribution.

• For rational ratios between the means (but irrational means, middle plots), then there is no
convergence to the maximum entropy distribution.

• For rational means (right), there is no convergence either, but the behavior is more erratic.

• The line-search procedure never converges to the maximum entropy procedure. On the oppo-
site, it happens to be close to a minimum entropy solution, where many states have probability
zero.

Experiments considered in Figure 6 considered a single draw of the mean vector µ, but similar
empirical conclusions may be drawn from other random samples, and we conjecture that for almost
surely all random vectors µ ∈ [−1, 1]d (which would avoid rational ratios between mean values),
then regular herding converges to the maximum entropy distribution. The next experiment shows
that this is not the case in general.

Learning non-independent bits. We now consider Φ(x) = (x, xx⊤), and a certain random
feasible moment µ ∈ M. As before, we compare the norm between the maximum entropy probability
vector and the one estimated by the two versions of herding. We present results in Figure 7 for a
mean vector obtained by the corresponding exponential family distribution with zero weights for
the features x and constant weights on the features xx⊤. We see that the herding procedures, while
leading to a consistent estimation of the mean vector, does not converge to the maximum entropy
distribution and other unreported experiments have led to similar results.

6 Conclusion

We showed that herding generates a sequence of points which give in sequence the descent directions
of a conditional gradient algorithm minimizing the quadratic error on the moment vector. Therefore,
if herding is only assessed in terms of its ability to approximate the moment vector, it is outper-
formed by other more efficient algorithms. Clearly, herding was originally defined with another goal,
which was to generate a pseudo-sample whose distribution could approach the maximum entropy
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Figure 6: Comparison of herding procedures on the independent bit problem with d = 10 binary
variables. Top: estimation of the maximum entropy distribution, bottom: estimation of the mean
of the features Φ(x). From left to right: Mean values are selected uniformly at random on [−1, 1],
mean values are equal to

√
2 times random rational numbers in [−1, 1], mean values are equal to

random rational numbers in [−1, 1].
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Figure 7: Comparison of herding procedures on graphical models with 10 binary variables. Top:
estimation of the maximum entropy distribution, bottom: estimation of the mean of the features
Φ(x).
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distribution with the given moment vector. Our experiments suggest empirically, that while this
is the case in certain cases, herding fails in other case, which are not chosen to be particularly
pathological. This probably prompts for a further study of herding.

Our experiments also show that algorithms that are more efficient than herding at approximat-
ing the moment vector fail more blatantly to approach a maximum entropy distribution and they
present characteristics which would rather suggest a minimization of the entropy. This suggests the
question of whether there is a tradeoff between approximating most efficiently the mean vector and
approximating well the maximum entropy distribution, or if the two goals are in fact rather aligned?
In any case, we hope that formulating herding as an optimization problem can help form a better
understanding of its goals and its properties.
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