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Abstract—The paper examines the problem of learning socio-
linguistic skills through imitation when those skills involve both
observable motor patterns and internal unobservable cognitive
operations. This approach is framed in a research program
trying to investigate novel links between context-dependent motor
learning by imitation and language acquisition. More precisely,
the paper presents an algorithm allowing a robot to learn how to
respond to communicative/linguistic actions of one human, called
an interactant, by observing how another human, called a demon-
strator, responds. As a response to 2 continuous communicative
hand signs of the interactant, the demonstrator focuses on one
out of three objects, and then performs a movement in relation to
the object focused on. The response of the demonstrator, which
depends on the context, including the hand signs produced by
the interactant, is assumed to be appropriate and the robotic
imitator uses these observations to build a general policy of how
to respond to interactant actions. In this paper the communicative
actions of the interactant are based on hand signs. The robot has
to learn several things at the same time: 1) Weather it is the first
sign or the second sign that specifies the object to focus on (that
is, requests an internal cognitive operation), and the same for
the request of a movement type. 2) How many hand signs there
are and how to recognize them. 3) How many movement types
there are and how to reproduce them in different contexts. 4)
How to assign specific interactant hand signs to specific internal
operations and specific movements. An algorithm is proposed
based on a similarity metric between demonstrations, and an
experiment is presented where the unseen “focus on object”
operation and the hand movements are successfully imitated,
including in situations not observed during the demonstrations.

I. INTRODUCTION

A robot that is to operate in human populated environments,

such as a home or an office, must be able to take the social

context into account and take simple directions. In addition

to all other difficulties that must be overcome before a robot

is able to function around humans it should be able to learn

how it should act as a response to social and linguistic cues1.

In the presented experiment the linguistic cues is that of a

sign language where a hand signs requests either a type of

hand movement or an object focus. The current object focus

will be referred to as a state in an internal cognitive structure

1Being able to achieve world states and predict the consequences of its
actions does not tell it which world states are preferable. A robot that knows
how to make coffee, how to smash the coffee cup, and is able predict the
response of humans to each action, still have no way of knowing which of
these two actions is the appropriate response to a request for coffee unless
more information is somehow provided (for example, as in the presented
experiment, by observing the actions of a human, that is assumed to act
appropriately. Receiving feedback from a human that is assumed to know
what should be done is another approach).

(where internal refers to the fact that it is not observable).

Thus the operation to change this state is referred to as

an operation on an internal cognitive structure (unlike the

visible hand movements, this operation is not visible). Therefor

the hand sign requests an operation on an internal cognitive

structure, and this operation must be imitated even if it is not

directly visible (and it is the imitation of this unseen operation

that results in the strong generalization performance). One

of the challenges is to simultaneously learn new signs and

learn new types of actions. We will investigate the unlabeled

case, where the robot encounters an unknown number of

communicative signs, movement types and internal cognitive

operations, neither of which has been seen before. In order

to study this case we present an experiment where a robot

learns how it should respond to communicative signs of one

human by imitating the responses of another human. The

experimental setup is shown in fig 1 where one human, called

an interactant, performs a communicative action and then

another human, called a demonstrator, reacts (performing two

types of actions, one internal cognitive operation and one

movement). The imitator then builds a model of how it should

react to communicative gestures.

Experiments show that the model generalizes well to combi-

nations of communicative signs that was not observed during

demonstrations.

Both actions and gestures are continuous, never exactly the

same, and the imitator is never presented with any form of

symbolic representation of interactant hand signs or demon-

strator actions. The imitator must therefore infer both the

number of actions it has been demonstrated and the number

of gestures it has observed from data (an unknown number of

specific instances are observed for each of an unknown number

of action types and each of an unknown number of gesture

types). Both directly observable actions (hand movements) and

inferred unseen actions (internal cognitive operations of focus-

ing on an object) are imitated. The imitation of unobservable

internal actions extends the type of communication that can

be learned by imitation to include some words that are not

direct action requests.

Related work

There are two related lines of work, imitation learning and

linguistics. These fields are traditionally studied separately but

the present paper argues that there are fruitful ways to combine

them.

Imitation learning, sometimes referred to as programming by



Fig. 1. A and B shows the demonstration phase while C and D shows
the reproduction phase. In A the human interactant, in the middle, makes
a communicative gesture. The human demonstrator, to the right, and the
robotic imitator, to the left, observes the communicative gesture. In B the
demonstrator, to the right, performs an action which is dependent on the
observed gesture and the imitator observes. After several such demonstrations
the imitator is able to build a model of how it should respond to the commu-
nicative gestures of the interactant based on how the demonstrator responded.
Each demonstration and reproduction have its own object positions. In C the
interactant performs a communicative gesture and the imitator observes it,
and in D it reproduces the action. The hand trajectories are actually captured
using a mouse instead of a kinect, and a simulated rather than physical robot
is used (see section II-F for details).

demonstration or learning from demonstration examines the

problem of learning sensorimotor tasks from demonstrations.

For recent overviews of the field see [2], or [3] and for a

recently proposed formalization of tele-operated imitators see

[4]. The work presented in this paper would fit within this

formalism and, as all such work, does not have to deal with

the correspondence problem (see [5] for an early or [6] for a

more recent explanation of this important problem in imitation

learning). In [7], the question of how to find appropriate

task spaces are considered, referred to as finding appropriate

reference points. It examines a larger number and more diverse

type of reference point based task spaces using demonstrations

that are known to be of a single task. Most imitation learning

research consider this single task setup, but see [8] for an

exception where two different table tennis tasks are learnt from

unlabeled demonstrations. Most research also concern tasks

without a communicative component. For an exception, see

[9], which also deals with multiple tasks and the problems of

finding the number of gestures of an interactant and is perhaps

the work that is most related to the present paper. It is however

very unusual that these issues are dealt with in the field of

imitation learning, and how to solve the related problems is

largely an open research question.

A method that has been extensively used for learning

a single sensorimotor task is Gaussian Mixture Regression

(GMR). See for example [12], [13] or the recent book [14].

The main parameter is the number of Gaussians to use and

this can be directly chosen but can also be estimated from the

training data using the Bayesian Information Criteria (BIC),

see [8] for such an experiment and [15] for an in depth

explanation of BIC. The paper [17] examines how a task

can be divided into subtasks, in a way that is related to

the problem of finding the number of movements. Previous

work [18] examined Incremental Local Online GMR (ILO-

GMR) that can learn an open ended number of tasks from

unlabeled demonstrations. In [18], the 2D position of an object

was used to determine what task should be performed. This

object position was used in a way which is similar to the

communicative signs in the experiment presented here. The

main difference is that the triggering regions could be kept

well separated due to the fact that the object position was

directly controllable (unlike the 3D point that a hand sign is

transformed into in this experiment).

The task solved in the presented experiment is close to the

task solved in [10]. There are also structural similarities in

how the task is solved since the architecture presented in [10]

is not based on separate systems for language and action. The

difference between the proposed architecture and [10] is the

use of imitation learning methods instead of rewards and the

fact that the proposed architecture does not use a symbolic

representation of the communicative acts. Furthermore the

proposed architecture does not use neural networks. The

generalization ability exhibited by the system in [10] is also

exhibited by the proposed algorithm which is able to respond

properly to novel combinations of linguistic commands. See

[11] for another artificial neural network based approach to

this type of task. However, in [11] the action and linguistic

units are separate units and, like in [10], the linguistic inputs

are symbolic.

Linguistics research have resulted in models of the evo-

lution of language, for example using the setup of language

games, see for example [19]. There has also been a move

within the developmental robotics community (see for example

[20]) in the direction towards viewing language in relation to

the physical context of the speaker and hearer, as opposed

to viewing language as independent from a physical reality

(assumed to be connected later using some form of interface).

Language is however still seen as a separate system and the

research problem is framed as finding the link between this

system and the sensorimotor system, or to find out how the

two separate systems co-develop.

The proposed algorithm does not include a separate lan-

guage system but is instead an imitation learning system whose

context has been extended to include the communicative hand

signs of an interactant. The number of different signs observed

is not obtainable without looking at the effect that the actions

of the interactant has on the demonstrator. If the field of

imitation learning needs to include an interactant, perhaps

the field of linguistics needs to include a demonstrator that

acts in the world, an agent whose actions are modified by the

interactants behavior. In linguistics, it is easier to see the need

of learning to perform internal cognitive operations since so

many sentences yield no external actions. There are difficult

practical problems involved with imitating such operations but,

as the present paper shows, this is possible if the demonstrator



acts according to a consistent policy, the internal state is

changed in response to observable parts of the context (in

this case the signs of the interactant) and the internal state

modifies observable behavior.

Hidden Markov Models (HMM) is a mathematical structure

that has been used in imitation learning and which would be

suitable for the type of imitation learning presented here, mod-

eling the current state of the demonstrator. Current research

has, however, used HMM’s as a way to represent how far

along in the task the demonstrator is, a form of task time,

as for example in [12]. In this paper we investigate a simple

internal structure that does not change state during the demon-

strations/reproductions, that has only 3 states and where the

policy of the demonstrator is to perform a single operation with

a deterministic outcome at a single point as a direct response to

the environment. The structure of a more complicated internal

structure and set of operations could be represented using

an HMM (for example if a demonstrator could, with some

probability, switch to focusing on a fast moving object). The

problem in the current paper is finding out how one state

effects behavior. Indeed, in a single demonstration there is

no information about what the internal state is.

II. ALGORITHMS

There are always three objects in the scene, one red, one

blue and one green. Their position is set randomly at the start

of each demonstration and at the start of each reproduction and

is then kept constant during the demonstration/reproduction.

The demonstrator always focuses on exactly one of the

objects in the scene, meaning that the only thing that will

influence how the hand is moved is the position of the hand

relative to the object that is focused on. Then it always per-

forms one out of an unknown number of movements, defined

in a coordinate system centered on the object focused on (for

example: moving the hand in a circle around the object).

We say that this trajectory is an instance of the movement

that the demonstrator was trying to perform. For example a

specific trajectory where the hand of the demonstrator moved

roughly in a circle around the object is an instance of the

“circle” movement. The imitator must estimate the number

of movements that it has observed and, for each trajectory,

determine what movement it was an instance of. This will be

represented by hypothesizing a number of possible movements

equal to the number of trajectories and assigning a probability

mm;t (the probability that trajectory number t is an instance

of movement number m) to each trajectory-movement pair.

For example, if trajectories number A,B and C are the only

instances of the circle movement, this would be represented by

mx;A, mx;B and mx;C being large and mx;t being small for all

other values of t. It does not matter which hypothesized move-

ment they are all instances of since a movement is completely

defined by its members. For N demonstrations, this results

in an NxN membership matrix denoted M . To infer which

trajectories are instances of the same movement, a measure

of similarity between trajectories is proposed, resulting in a

similarity matrix (where hopefully trajectory number A will

have higher similarity to trajectories number B and C than

to other trajectories). Using the similarity matrix the values

of the membership matrix is found by an iterative procedure

referred to as the grouping algorithm2. The grouping algorithm

proposed is novel but it is not a main contribution of the paper,

and no claims of optimality are made. For completeness it is

however presented in detail and thus takes up a large part

of the text. After the grouping algorithm is done, and values

for M have been found, the internal operation performed by

the demonstrator in each demonstration is inferred. Given

that the internal operations and the type of movement for

each demonstration has been inferred this information is used

to determine the word order of the sign language. In the

experiment presented below the interactant always uses the

first hand sign to request some form of internal operation

and always uses the second hand sign to request some form

of movement. The imitator infers this word order from the

demonstrations.

The algorithm makes two basic assumptions. First it is

assumed that for each movement there is a single low dimen-

sional task space, valid during the entire movement, such that

the policy of the demonstrator can be well specified in this

space. Second, it is assumed that a gesture signals either the

type of movement to be done or what internal operation to

perform.

In figure 2 we see a graphical overview of how the demon-

strations are acquired and in figure 3 how the reproductions

are done.

Demonstrator
Context Focus (unseen)

Trajectory

Demonstration

Context

Imitator

S1(x,y,z)

S2(x,y,z)
Transforms

Interactant
hand signs

Object Positions

x,yx,y x,y

Demonstration

Fig. 2. The demonstrations are generated by a demonstrator reacting to hand
signs of an interactant and the position of 3 objects (which together forms
the context). Each of the hand signs are transformed into a 3D space and is
observed by the imitator, along with the object positions and the trajectory.
The internal operation must be reproduced by the imitator in order to achieve
success, but it is not visible (the imitator must infer what this operation was
from the data)

A. Demonstrations

In the experiment presented in this paper the syntax of the

sign language that the imitator must find is as follows: the

first sign requests the internal operation of a specific object

focus; a “1” requests focus on the red object, a “2” the green

and a “3” the blue object. The second sign requests a specific

type of movement, defined in relation to the object specified3;

a “4” requests performing the “triangle up” movement, a

2Since it results in groups of trajectories, where either a group is empty or
the members of any specific group are all instances of the same movement.

3The policy maps hand positions in a coordinate system with (0,0) at the
center of the object focused on
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Fig. 3. The reproduction starts with the building of a model of the
demonstrator using the algorithms detailed below. Then this model along with
transformed hand signs of the interactant, object positions and the starting
position of the imitators hand determines how the reproduction is done.

“5” the “triangle down” movement and a “6” requests the

“circle” movement. For the imitator to find this word order

it needs to infer the internal operations performed and it

needs to know what trajectories are instances of the same

movement. Each sign is transformed into a 3D point by

comparing its similarity (after dynamic time warping) to three

prototypes (trajectories of the signs “7”,“8” and “9”). There

is nothing special or optimal about this particular transform,

it is just a simple and fast way of transforming a continuous

hand sign into a low dimensional space and any number of

other methods could have been used (the only requirement

on a transform from trajectories to three coordinates, is that

there is some correlation between the type of trajectory and

the resulting coordinates). During reproduction the imitator

compares distances in this 3D space between the hand sign it is

observing and the hand signs observed during demonstrations.

If a larger number of hand signs is to be learnt it would be

easy to create a transform to a higher dimensional space taking

the distance to additional prototypes.

B. Trajectory distance ∆t;k;i;j

To determine which trajectories are instances of the same

movement it is necessary to define some measure of distance

between two trajectories. In each demonstration the three ob-

jects and the starting position is different. For each movement

type, the policy of the demonstrator is determined by the

hand position in the coordinate system centered on the object

focused on. What object is focused on is not observable to

the imitator, but two trajectories that are instances of the

“circle” movement will only look similar if each is viewed

in the coordinate system of the object that is focused on (the

object encircled). For this reason the distance between two

trajectories is defined relative to two coordinate systems; one

used for trajectory 1 and the other one used for trajectory

2. Thus ∆A;B;1;3 is the distance between trajectory A seen

in coordinate system 1 and trajectory B seen in coordinate

system 3. If trajectory A is a circle around 0, 0 in coordinate

system 1 and trajectory B is a circle around 0, 0 in coordinate

system 3 they will probably look similar (trajectory A viewed

in another coordinate system would still be a circle, but not

around 0, 0, and the two trajectories will not look similar).

For each of the N points in trajectory number t the closest

points in trajectory k is selected (with distance measured

using the respective coordinate systems). For each point p of

trajectory number t, the closest point of trajectory number k
is found, using the positions in the coordinate systems i and j
respectively4. δp is defined as the angular difference in output

of the two points. Then we have Dt;k;i;j =
∑N

p=1 δ2
p/N .

Finally we have ∆t;k;i;j = min(Dt;k;i;j , Dt;k;i;j).
There are many possible ways of measuring similarity

between two trajectories, given the coordinate systems to view

them in and the paper makes no claim on the optimality of the

specific similarity measure introduced. Like many other parts

of the algorithm the important part is not how the specific part

is implemented but instead how it is combined with the rest of

the algorithm, with the details included only for completeness.

C. The grouping algorithm

The current estimate of the probability that trajectory num-

ber t is an instance of movement number m is denoted mm;t.

The suitable value of mm;t is completely determined by what

movements the other trajectories are estimated to be instances

of. The only thing that matters is that trajectories that are

instances of the same movement are grouped together. Since

the number of movements is unknown there are as many

movements as trajectories (so that M is a NxN matrix for

N demonstrations).

Given the similarity between trajectories there are many

possible ways to divide them into subgroups and the iterative

algorithm proposed is not claimed to be optimal (the reader

that is not interested in exactly how similarities between

trajectories is used to form groups whose members have high

similarity can skip this section II-C). The basic principle of

the grouping algorithm is that if two trajectories A and C
are more similar to each other than other trajectories likely

to be instances of movement x, then mx;A and mx;C will

increase. If A and C are less similar than average, then mx;A

and mx;C will decrease, and the magnitude of the change

depends oh how much the similarity deviates from the other

likely members.

The algorithm is described using pseudocode in 1. In order

to save space, several variables (either used in the pseudocode

or used to define other variables that are used in the in the

pseudocode) are defined and explained below rather than in

the pseudocode, such as: maximum trajectory similarity γt;k,

joint memberships: ωt;k, weighted mean similarity ̟t and

push strength ξt;k.

Maximum trajectory similarity γt;k. γt;k;i;j is the inverse

of the distance ∆t;k;i;j and γt;k is the maximum similarity

between trajectories t and k, γt;k = maxi;j(γt;k;i;j) (for

example, if trajectories A and C have the highest similarity

when A is in coordinate system 1 and C is in coordinate

system 2, γA;C = γA;C;1;2, which is likely to be the case if

4So that if i=1, j=3, and point number p’s position in coordinate system 1
is (0,0.4) then the point of trajectory k that is closest to (0,0.4) in coordinate
system 3 is chosen (so that a point above the red object in trajectory t is
compared to a point above the blue object in trajectory k).



Algorithm 1 Overview of the iterative grouping algorithm

Input: M1, S, N
• M1 is the initial membership probabilities

• S is the number of steps (S=50 is used in the experiment

presented below)

• N is the number of demonstrations

for s = 1 to S do

Mmod ←Ms (mm;t refers to Mmod)

Mold ←Ms (mm;t;old refers to Mold)

for m = 1 to N do

for t = 1 to N do

for k = 1 to N , k 6= t do

mm;t ← mm;k;oldξk;t + (1−mm;k;old)mm;t

end for

end for

end for

Rescale

Preferring hypotheses with few movement types:

∀ : 1 < m < N, 1 < t < N :

mm;t ← mm;t × (
∑N

τ=1 mm;τ )1/4

Rescale

mm;t ← mm;t + 0.0001
Rescale

Ms+1 ←Mmod

end for

note that if the push factor ξt;k is positive mm;t will increase

and if it is negative it will decrease in the central update

step. Remember that a positive ξt;k indicates that the policy

similarity between t and k is higher than the weighted

average. The rescaling makes the memberships of a single

demonstration sum to 1

trajectory A is a circle around the red object and trajectory C
is a circle around the green object).

Joint memberships ωt;k is a measure of how probable

it is that trajectories t and k are instances of the same

movement according to the current state of the member-

ship matrix M . It is calculated as: ωt;k = (maxm(mm;t ∗

mm;k))/(
∑N

τ=1 maxm;τ (mm;t ∗mm;τ )).
Weighted mean similarity ̟t is a measure of the weighted

average similarity to trajectory t of trajectories that are likely

to be instances of the same movement. ̟t =
∑N

k=1 ωt;k∗γt;k.

Push strength ξt;k is the strength with which trajectory t will

affect the memberships of trajectory k in the movement groups

that they are both probable members of. If it is positive the

presence of trajectory k in a movement group will increase the

membership of trajectory t and decrease it if it is negative. It

is calculated as: ξt;k = e((γt;k/̟t)−1), and we can for example

see that ξt;k = 1 if the similarity between t and k is exactly

the same as the average weighted similarity between t and the

other trajectories that has high joint memberships with t. If the

similarity γt;k is bigger than the weighted average ̟t, the we

will get a push strength ξt;k > 1 (and if the similarity γt;k is

smaller than the weighted average ̟t, we will get ξt;k < 1).

Inferring what object was focused on during each

demonstration

When the grouping algorithm is successful we know what

demonstrations include the same movements. The coordinate

system in which a trajectory is the most similar to the other

trajectories of the same movement is set as the coordinate

system of that demonstration.

Finding the word order

The within group distances of the first signs and the second

signs are compared and the one that has the biggest distance

is assumed to designate the coordinate system. If this is

successful the imitator knows which of the signs designates the

coordinate system and which one designates the movement.

D. Finding the movement and the coordinate system during

reproduction

The sign that has been found to designate movement is

compared to the corresponding signs of all demonstrations

and the group of the demonstrations whose sign is closest

is assumed to be demonstrations of the correct movement.

The same is done to find the coordinate system: The

sign that has been found to designate coordinate system is

compared to the corresponding signs of all demonstrations

and the coordinate system of the demonstration whose sign

is closest is assumed to be the correct coordinate system.

E. Reproduction

At each timestep during the reproduction, the imitator finds

the 50 points that are closest to the current state (measured

in the coordinate system found) amongst those trajectories

that are members of the movement found. The average of the

output of these points is used. More sophisticated methods

could easily be inserted here, for example ILO-GMR [18] or

GMR [12] together with BIC [15]. Since low dimensional

and accurate data is available after a successful grouping

algorithm more sophisticated methods are not needed in this

case. Again, the global power of the architecture lies in how

simple algorithmic parts are combined together.

F. Simulating the setup

The imitator robot is simulated and is able to move its

hand in any direction it wants which, if a physical robot

is to be used, would require an inverse kinematics model

that translates current joint configurations and desired hand

directions to motor outputs. The simulated imitator was easier

to perform experiments with and since the focus of the

presented experiment is about learning what should be done

rather than how to do it (in the language of [1] the “what to

imitate” instead of the “how to imitate” question is the focus

of the presented experiment) it was used in place of a physical

robot. There are obviously limits to what types of behaviors

a robot can learn to do in simulation before this starts to

become a serious simplification, and if more advanced physical

manipulations are to be investigated a physical robot will have

to be used. The hand trajectories of the demonstrator as well as

the communicative signs of the interactant are captured using



a mouse. Using for example a Kinect device would not reduce

the quality of the trajectories and the presented approach was

used due to its simplicity.

III. EXPERIMENT

In figure 4 the 12 demonstrations are shown relative to the

three different objects. The appropriate response to six of the

total nine possible combinations of communicative inputs are

demonstrated, but the imitator successfully imitates in all nine

combinations.

The algorithm finds the number of movements and correctly

infers all the internal actions as well as the word order. Four

separate reproductions are performed in each of the nine

combinations, with no degradation in performance for the 3

tasks not demonstrated.

Similarity

In figure 5 we can see the 4 dimensional similarity matrix

displayed graphically. Higher values mostly correspond to two

trajectories that are instances of the same movement and under

the correct hypotheses of object focus.
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Fig. 5. Here we can see the similarity matrix with entries γt;k;i;j presented
graphically. The similarity goes from dark blue (lowest similarity) to dark red
(highest similarity). The similarity of a trajectory with itself is undefined, but
for the purpose of a graphical representation it must be given a value and is
arbitrarily set to 0. t indexes the first trajectory (y-axis from 1 to 12 in each
sub figure), k the second trajectory (x-axis from 1 to 12 in each sub figure),
i the coordinate system used for trajectory k (indicating the sub figures row
number) and j the coordinate system used for trajectory t (indicating the sub
figures column number). For example (12,9,2,1) is the bright red of the sub
figure in row 2 column 1 (indicating a high similarity between trajectories 12
and 9 in coordinate systems 2 and 1 respectively).

In figure 6 we can see the 2 dimensional maximum similar-

ity matrix displayed graphically (trajectory number 1, number

2). In general the trajectories that are instances of the same

movement have significantly higher similarity (1-4 for triangle

up, 5-8 for triangle down, 9-12 for circle, as can be seen in

fig 4).

Final groupings
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Fig. 6. Here we can see the maximum similarity matrix with entries γt;k

presented graphically. Ttrajectories 1 to 4 are of the triangle up movement,
trajectories 5 to 8 are of the triangle down movement and finally trajectories
9 to 12 are of the circle movement. In general trajectories that are instances
of the same movement have high similarity.

Using the maximum similarity matrix of figure 6 all tra-

jectories was been grouped correctly together. The trajectories

demonstrating movement 1 were all assigned to movement

group 4, the trajectories of movement 2 to movement group

2 and the trajectories of movement 3 to movement group 11

(the number of the group is irrelevant as a movement group

is completely defined by its members). These grouping results

and the full 4D similarity matrix (fig 5) was then used to

correctly infer the internal operation in each demonstration

and the word order (as described in section II).

The grouping algorithm was tested an additional 50 times

on the maximum similarity matrix from figure 6 and 49 times

it was successful but one time it failed by grouping trajectories

1 to 8 in the same group (which would probably have lead to

a failed reproduction of the two triangle movements but would

not have compromised reproduction of the circle movement).

Reproductions

In figure 7 we can see 36 successful reproductions, where

the top left, middle middle and bottom right each show 4

correct reproductions of an unseen task. The edges of the

triangles are not as sharp as they should be and, when the

starting position in the circle movement is far to the right of

the object, the imitator initially makes a to big semi circle

before falling into the correct small circle movement (more

sophisticated methods for the reproduction could be used on

the data obtained, but that is not the focus of the current paper

and the reproduction ability was enough for our purposes). The

three tasks not demonstrated is reproduces as well as the other

tasks (top left, middle middle and bottom right), as should be

expected from the structure of the algorithm.

IV. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to simultaneously learn

never before encountered communicative signs and never

before encountered movements, without using labeled data,

and at the same time learn new compositional associations

between movements and signs. We have also shown that the

actions learnt can include unseen internal operations (focus

on object) of a demonstrator under a set of conditions. One

condition was that the unseen operation is performed as a



Fig. 4. Here we see the 12 demonstrations relative to the three objects. The demonstrator observes the first sign, the second sign and then performs the hand
movement presented under. Each of the trajectories are shown relative to the three objects. One thing we can see is that demonstration number 11 almost
seems to be making a circle around the red object in column 11 row 1. When we look at the similarity in 5 we can see that demonstration 11 indeed does
look fairly similar to the other circles, even when viewing it in the incorrect first coordinate system and the other demonstration in their respective correct
coordinate system (top left for comparison with demonstrations 9 and 10 and middle left for comparison with demonstration 12). Something similar happens
with demonstration 4. This demonstrates one way in which this similarity measure could fail to inform the imitator; if two objects are close to each other it
is difficult to know which one was focused on.

Reproductions
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Fig. 7. Here we can see the 36 reproduction attempts. The rows indicate
movement and the columns indicate coordinate system. In each case the signs
given to the imitator led to correctly finding the correct data and the correct
coordinate system and as we can see it went fairly well.

predictable response to a part of the context that is visible to

the imitator. Another condition was that the operation resulted

in a state that had a consistent influence on a policy of the

demonstrator which determined actions that were observable

by the imitator. We have further shown how imitating these

internal operations resulted in a policy that is able to generalize

correctly and results in successful reproductions in situations

where there are no demonstrations.

From a linguistic point of view we have shown that, in

some situations, observations of two speakers of a language

can be used to find discrete communicative classes. That is;

using the effect on an interlocutor of communicative acts to

find how many classes the continuous behavior should be

divided into (where behavior modification is only dependent

on weather or not a communicative act is a member, not on

its specifics). Traditionally, a communicative act is assumed

to go through some recognition system and be represented as

a symbol (so that finding the meaning of the symbol is the

only remaining problem). The presented approach opens up

for the investigation of borderline cases such as body language

and facial expressions, where it might not be easy to find a

recognition system transforming a continuous representation

into symbols without looking at how they modify the behavior

of an interlocutor/demonstrator.

One venue for future work is to use a real robot to perform

the reproduction and to use a Kinect device to capture hand

movements.

The grouping algorithm as presented is a batch computation

but is suited for modification into an incremental version.

When the demonstrations already seen have been grouped, a

new demonstration can be checked for similarity with these

established groups (for a new group of demonstrations those

that are similar to an established group is added to it and then



the algorithm could be run on the remaining demonstrations

to find the new groups).

The actual reproduction that is performed after the full

model of the demonstrator is built has access to a small

amount of relevant low dimensional data and several more

sophisticated methods could be used, for example the well

explored combination of BIC with GMM (allowing quick re-

gression during reproduction). ILO-GMR [18] would allow the

immediate incorporation of new data (if a new demonstration

is close to a group of movements it can be immediately added

to that group without the need to re build a model as the

models are built on line).

One could add additional heuristics or information sources

specific to the particular setting, such as the hand being on

average closer to focused on objects, or add an estimate of

what object the demonstrator is looking at to the demon-

strations. In the current paper we do not use anything like

this and indeed a single demonstration contains absolutely no

information regarding the internal state. The imitator has no

idea how a specific state of the imitator influences policy, and

so a single demonstration gives no information about what

internal state was. If it had such a model relating internal

states to actions; it could simply infer the internal state directly

and the problem would be trivial. The problem solved is to

find a correlation model between internal states and observed

behavior, which is very different from the standard problem

of using a known correlation model to infer the exact state.

The imitator builds a model of this correlation based on an

assumption of consistency in the influence. Since the way

in which an internal state influences actions is inferred from

data, the algorithm should be usable even in situations where

the structure of this influence is unknown. If, for example,

the demonstrators internal state is modified in some way

by the interactants tone of voice or body language and the

programmers does not know how to encode the relationship

between these different states and behavior (or even know how

many states to use), the algorithm could in principle still be

used (since the number of internal states and the correlation

models are inferred).

Future work could also include learning situation-specific

correlations from easy tasks, such as “the hand of the demon-

strator is more likely to be close an objects that is focused

on”. The imitator could also learn that in some situations

the internal state is correlated with the eye gaze of the

demonstrator (looking at objects focused on). Being able to

learn such correlations would increase autonomy and reduce

reliance on the programmers predicting what correlations the

imitator will find useful.
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