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Abstract

Submodular functions are relevant to machine learning for mainly two

reasons: (1) some problems may be expressed directly as the optimiza-

tion of submodular functions and (2) the Lovász extension of submodu-

lar functions provides a useful set of regularization functions for super-

vised and unsupervised learning. In this paper, we present the theory

of submodular functions from a convex analysis perspective, presenting

tight links between certain polyhedra, combinatorial optimization and

convex optimization problems. In particular, we show how submodular

function minimization is equivalent to solving a wide variety of convex

optimization problems. This allows the derivation of new efficient al-

gorithms for approximate submodular function minimization with the-

oretical guarantees and good practical performance. By listing many

examples of submodular functions, we review various applications to

machine learning, such as clustering or subset selection, as well as a

family of structured sparsity-inducing norms that can be derived and

used from submodular functions.
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Introduction

Many combinatorial optimization problems may be cast as the min-

imization of a set-function, that is a function defined on the set of

subsets of a given base set V . Equivalently, they may be defined as

functions on the vertices of the hyper-cube, i.e, {0, 1}p where p is

the cardinality of the base set V—they are then often referred to as

pseudo-boolean functions [15]. Among these set-functions, submodular

functions play an important role, similar to convex functions on vector

spaces, as many functions that occur in practical problems turn out to

be submodular functions or slight modifications thereof, with applica-

tions in many areas areas of computer science and applied mathematics,

such as machine learning [86, 105, 80, 85], computer vision [18, 62], op-

erations research [63, 118] or electrical networks [110]. Since submodu-

lar functions may be minimized exactly, and maximized approximately

with some guarantees, in polynomial time, they readily lead to efficient

algorithms for all the numerous problems they apply to.

However, the interest for submodular functions is not limited to dis-

crete optimization problems. Indeed, the rich structure of submodular

functions and their link with convex analysis through the Lovász exten-

sion [92] and the various associated polytopes makes them particularly
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2 Introduction

adapted to problems beyond combinatorial optimization, namely as

regularizers in signal processing and machine learning problems [21, 6].

Indeed, many continuous optimization problems exhibit an underlying

discrete structure, and submodular functions provide an efficient and

versatile tool to capture such combinatorial structures.

In this paper, the theory of submodular functions is presented, in

a self-contained way, with all results proved from first principles of

convex analysis common in machine learning, rather than relying on

combinatorial optimization and traditional theoretical computer sci-

ence concepts such as matroids. A good knowledge of convex analysis

is assumed (see, e.g., [17, 16]) and a short review of important concepts

is presented in Appendix A.

Paper outline. The paper is organized in several sections, which are

summarized below:

(1) Definitions: In Section 1, we give the different definitions

of submodular functions and of the associated polyhedra.

(2) Lovász extension: In Section 2, we define the Lovász ex-

tension and give its main properties. In particular we present

the key result in submodular analysis, namely, the link be-

tween the Lovász extension and the submodular polyhedra

through the so-called “greedy algorithm”. We also present

the link between sparsity-inducing norms and the Lovász ex-

tensions of non-decreasing submodular functions.

(3) Examples: In Section 3, we present classical examples of

submodular functions, together with the main applications

in machine learning.

(4) Polyhedra: Associated polyhedra are further studied in Sec-

tion 4, where support functions and the associated maximiz-

ers are computed. We also detail the facial structure of such

polyhedra, and show how it relates to the sparsity-inducing

properties of the Lovász extension.

(5) Separable optimization - Analysis: In Section 5, we

consider separable optimization problems regularized by the

Lovász extension, and show how this is equivalent to a se-
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quence of submodular function minimization problems. This

is the key theoretical link between combinatorial and convex

optimization problems related to submodular functions.

(6) Separable optimization - Algorithms: In Section 6, we

present two sets of algorithms for separable optimization

problems. The first algorithm is a an exact algorithm which

relies on the availability of a submodular function mini-

mization algorithm, while the second set of algorithms are

based on existing iterative algorithms for convex optimiza-

tion, some of which come with online and offline theoretical

guarantees.

(7) Submodular function minimization: In Section 7, we

present various approaches to submodular function mini-

mization. We present briefly the combinatorial algorithms

for exact submodular function minimization, and focus in

more depth on the use of specific convex separable optimiza-

tion problems, which can be solved iteratively to obtain ap-

proximate solutions for submodular function minimization,

with theoretical guarantees and approximate optimality cer-

tificates.

(8) Submodular optimization problems: in Section 8, we

present other combinatorial optimization problems which can

be partially solved using submodular analysis, such as sub-

modular function maximization and the optimization of dif-

ferences of submodular functions, and relate these to non-

convex optimization problems on the submodular polyhedra.

(9) Experiments: in Section 9, we provide illustrations of

the optimization algorithms described earlier, for submod-

ular function minimization, as well as for convex optimiza-

tion problems (separable or not). The Matlab code for all

these experiments may be found at http://www.di.ens.fr/

~fbach/submodular/.

In Appendix A, we review relevant notions from convex analysis

and convex optimization, while in Appendix B, we present several re-

sults related to submodular functions, such as operations that preserve
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submodularity.

Several books and paper articles already exist on the same topic

and the material presented in this paper rely mostly on those [49, 110,

133, 87]. However, in order to present the material in the simplest way,

ideas from related research papers have also been used.

Notation. We consider the set V = {1, . . . , p}, and its power set 2V ,

composed of the 2p subsets of V . Given a vector s ∈ R
p, s also denotes

the modular set-function defined as s(A) =
∑

k∈A sk. Moreover, A ⊂ B

means that A is a subset of B, potentially equal to B. For q ∈ [1,+∞],

we denote by ‖w‖q the ℓq-norm of w, by |A| the cardinality of the set

A, and, for A ⊂ V = {1, . . . , p}, 1A denotes the indicator vector of the

set A. If w ∈ R
p, and α ∈ R, then {w > α} (resp. {w > α}) denotes

the subset of V = {1, . . . , p} defined as {k ∈ V, wk > α} (resp. {k ∈
V, wk > α}), which we refer to as the weak (resp. strong) α-sup-level

sets of w. Similarly if v ∈ R
p, we denote {w > v} = {k ∈ V, wk > vk}.
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Definitions

Throughout this paper, we consider V = {1, . . . , p}, p > 0 and its

power set (i.e., set of all subsets) 2V , which is of cardinality 2p. We

also consider a real-valued set-function F : 2V → R such that F (∅) =

0. As opposed to the common convention with convex functions (see

Appendix A), we do not allow infinite values for the function F .

1.1 Equivalent definitions of submodularity

Submodular functions may be defined through several equivalent prop-

erties, which we now present.

Definition 1.1 (Submodular function). A set-function F : 2V →
R is submodular if and only if, for all subsets A,B ⊂ V , we have:

F (A) + F (B) > F (A ∪B) + F (A ∩B).

The simplest example of submodular function is the cardinality (i.e.,

F (A) = |A| where |A| is the number of elements of A), which is both

submodular and supermodular (i.e., its opposite is submodular), which

we refer to as modular.

5



6 Definitions

From Def. 1.1, it is clear that the set of submodular functions is

closed under linear combination and multiplication by a positive scalar.

Checking the condition in Def. 1.1 is not always easy in practice; it turns

out that it can be restricted to only certain sets A and B, which we

now present.

The following proposition shows that a submodular has the “dimin-

ishing return” property, and that this is sufficient to be submodular.

Thus, submodular functions may be seen as a discrete analog to concave

functions. However, as shown in Section 2, in terms of optimization they

behave more like convex functions (e.g., efficient minimization, duality

theory, links with convex Lovász extension).

Proposition 1.1. (Definition with first order differences) The

set-function F is submodular if and only if for all A,B ⊂ V and k ∈ V ,

such that A ⊂ B and k /∈ B, we have F (A ∪ {k}) − F (A) > F (B ∪
{k}) − F (B).

Proof. Let A ⊂ B, and k /∈ B, F (A∪{k})−F (A)−F (B∪{k})+F (B) =

F (C) + F (D)− F (C ∪D)− F (C ∩D) with C = A ∪ {k} and D = B,

which shows that the condition is necessary. To prove the opposite, we

assume that the condition is satisfied; one can first show that if A ⊂ B

and C ∩ B = ∅, then F (A ∪ C) − F (A) > F (B ∪ C) − F (B) (this

can be obtained by summing the m inequalities F (A ∪ {c1, . . . , ck}) −
F (A ∪ {c1, . . . , ck−1}) > F (B ∪ {c1, . . . , ck}) − F (B ∪ {c1, . . . , ck−1})
where C = {c1, . . . , cm}).

Then, for any X,Y ⊂ V , take A = X ∩ Y , C = X\Y and B = Y

(which implies A∪C = X and B∪C = X∪Y ) to obtain F (X)+F (Y ) >

F (X ∪ Y ) + F (X ∩ Y ), which shows that the condition is sufficient.

The following proposition gives the tightest condition for submod-

ularity (easiest to show in practice).

Proposition 1.2. (Definition with second order differences)

The set-function F is submodular if and only if for all A ⊂ V and

j, k ∈ V \A, we have F (A∪ {k})−F (A) > F (A∪ {j, k})−F (A∪ {j}).
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Proof. This condition is weaker than the one from previous proposition

(as it corresponds to taking B = A ∪ {j}). To prove that it is still

sufficient, simply apply it to subsets A ∪ {b1, . . . , bs−1}, j = bs for

B = A ∪ {b1, . . . , bm} ⊃ A with k /∈ B, and sum the m inequalities

F (A∪{b1, . . . , bs−1}∪{k})−F (A∪{b1 , . . . , bs−1} ) > F (A∪{b1, . . . , bs}∪
{k}) − F (A ∪ {b1, . . . , bs}), to obtain the condition in Prop. 1.1.

In order to show that a given set-function is submodular, there are

several possibilities: (a) using Prop. 1.2 directly, (b) use the Lovász

extension (see Section 2) and show that it is convex, (c) cast it as a

special case from Section 3 (typically a cut or a flow), or (d) use known

operations on submodular functions presented in Appendix B.2.

1.2 Associated polyhedra

A vector s ∈ R
p naturally leads to a modular set-function defined as

s(A) =
∑

k∈A sk = s⊤1A, where 1A ∈ R
p is the indicator vector of the

set A. We now define specific polyhedra in R
p. These play a crucial role

in submodular analysis, as most results may be interpreted or proved

using such polyhedra.

Definition 1.2 (Submodular and base polyhedra). Let F be a

submodular function such that F (∅) = 0. The submodular polyhe-

dron P (F ) and the base polyhedron B(F ) are defined as:

P (F ) = {s ∈ R
p, ∀A ⊂ V, s(A) 6 F (A)}

B(F ) = {s ∈ R
p, s(V ) = F (V ), ∀A ⊂ V, s(A) 6 F (A)}

= P (F ) ∩ {s(V ) = F (V )}.

As shown in the following proposition, the submodular polyhedron

P (F ) has non-empty interior and is unbounded. Note that the other

polyhedron (the base polyhedron) will be shown to be non-empty and

bounded as a consequence of Prop. 2.2. It has empty interior since it

is included in the subspace s(V ) = F (V ). See Figure 1.1 for examples

with p = 2 and p = 3.
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2s

s 1

B(F)

P(F)

3s

s 2

s 1

P(F)

B(F)

Fig. 1.1: Submodular polyhedron P (F ) and base polyhedron B(F ) for

p = 2 (left) and p = 3 (right), for a non-decreasing submodular function

(for which B(F ) ⊂ R
p
+, see Prop. 1.4).

Proposition 1.3. (Properties of submodular polyhedron) Let

F be a submodular function such that F (∅) = 0. If s ∈ P (F ), then

for all t ∈ R
p, such that t 6 s, we have t ∈ P (F ). Moreover, P (F ) has

non-empty interior.

Proof. The first part is trivial, since t 6 s implies that for all A ⊂
V , t(A) 6 s(A). For the second part, we only need to show that

P (F ) is non-empty, which is true since the constant vector equal to

minA⊂V, A 6=∅

F (A)
|A| belongs to P (F ).

1.3 Polymatroids (non-increasing submodular functions)

When the submodular function F is also non-decreasing, i.e., when for

A,B ⊂ V , A ⊂ B ⇒ F (A) 6 F (B), then the function is often referred

to as a polymatroid rank function (see related matroid rank functions

in Section 3.8). For theses functions, the base polyhedron is included

in the positive orthant, and this is in fact a characteristic property.
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Proposition 1.4. (Base polyhedron and polymatroids) Let F

be a submodular function such that F (∅) = 0. The function F is non-

decreasing, if and only if the base polyhedron is included in the positive

orthant Rp
+.

Proof. The simplest proof uses the greedy algorithm from Section 2.2.

We have from Prop. 2.2, mins∈B(F ) sk = −maxs∈B(F )(−1{k})
⊤s =

−f(−1{k}) = F (V ) − F (V \{k}). Thus, B(F ) ⊂ R
p
+ if and only if

for all k ∈ V , F (V ) − F (V \{k}) > 0. Since, by submodularity, for all

A ⊂ V and k /∈ A, F (A∪{k})−F (A) > F (V )−F (V \{k}), B(F ) ⊂ R
p
+

if and only if F is non-decreasing.

For polymatroids, another polyhedron is often considered, the sym-

metric independence polyhedron, which we now define. This polyhe-

dron will turn out to be the unit ball of the dual norm of the norm

defined in Section 2.3 (see more details and figures in Section 2.3).

Definition 1.3 (Symmetric independence polyhedron). Let F

be a non-decreasing submodular function such that F (∅) = 0. The

submodular polyhedron |P |(F ) is defined as:

|P |(F ) = {s ∈ R
p, ∀A ⊂ V, |s|(A) 6 F (A)} = {s ∈ R

p, |s| ∈ P (F )}



2

Lovász extension

We first consider a set-function F such that F (∅) = 0, which is not

necessary submodular. We can define its Lovász extension [92], which

is often referred to as its Choquet integral [26]. The Lovász extension

allows to draw links between submodular set-functions and regular con-

vex functions, and transfer known results from convex analysis, such

as duality. In particular, we prove in this section, the two key results

of submodular analysis, namely that (a) a set-function is submodular

if and only if its Lovász extension is convex, and (b) that the Lovász

extension is the support function of the base polyhedron, with a di-

rect relationship through the “greedy algorithm”. We then present in

Section 2.3 how for non-decreasing submodular functions, the Lovász

extension may be used to define a structured sparsity-inducing norm.

2.1 Definition

We now define the Lovász extension of any set-function (not necessary

submodular).

Definition 2.1 (Lovász extension). Given a set-function F such

that F (∅) = 0, the Lovász extension f : Rp → R is defined as follows;

10
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for w ∈ R
p, order the components in decreasing order wj1 > · · · > wjp ,

and define f(w) through any of the following equivalent equations:

f(w) =

p
∑

k=1

wjk

[

F ({j1, . . . , jk})− F ({j1, . . . , jk−1})
]

, (2.1)

f(w) =

p−1
∑

k=1

F ({j1, . . . , jk})(wjk − wjk+1
) + F (V )wjp , (2.2)

f(w) =

∫ +∞

min{w1,...,wp}
F ({w > z})dz + F (V )min{w1, . . . , wp}, (2.3)

f(w) =

∫ +∞

0
F ({w > z})dz +

∫ 0

−∞
[F ({w > z})− F (V )]dz. (2.4)

Proof. To prove that we actually define a function, one needs to prove

that the definitions are independent of the potentially non unique

ordering wj1 > · · · > wjp , which is trivial from the last formula-

tion in Eq. (2.4). The first and second formulations in Eq. (2.1) and

Eq. (2.2) are equivalent (by integration by parts, or Abel summation

formula). To show equivalence with Eq. (2.3), one may notice that

z 7→ F ({w > z}) is piecewise constant, with value zero for z > wj1 =

max{w1, . . . , wp}, and equal to F ({j1, . . . , jk}) for z ∈ (wjk+1
, wjk),

k = {1, . . . , p − 1}, and equal to F (V ) for z < wjp = min{w1, . . . , wp}.
What happens at break points is irrelevant for integration.

To prove Eq. (2.4) from Eq. (2.3), notice that for α 6

min{0, w1, . . . , wp}, Eq. (2.3) leads to

f(w) =

∫ +∞

α
F ({w > z})dz −

∫ min{w1,...,wp}

α
F ({w > z})dz

+F (V )min{w1, . . . , wp}

=

∫ +∞

α
F ({w > z})dz −

∫ min{w1,...,wp}

α
F (V )dz

+

∫ min{w1,...,wp}

0
F (V )dz

=

∫ +∞

α
F ({w > z})dz −

∫ 0

α
F (V )dz,

and we get the result by letting α tend to −∞.



12 Lovász extension

Note that for modular functions A 7→ s(A), with s ∈ R
p, then the

Lovász extension is the linear function w 7→ w⊤s. Moreover, for p = 2,

we have

f(w) =
1

2
[F ({1}) + F ({2}) − F ({1, 2})] · |w1 − w2|

+
1

2
[F ({1}) − F ({2}) + F ({1, 2})] · w1

+
1

2
[−F ({1}) + F ({2}) + F ({1, 2})] · w2

= −[F ({1}) + F ({2}) − F ({1, 2})]min{w1, w2}
+F ({1})w1 + F ({2})w2,

which allows an illustration of various propositions in this section (in

particular Prop. 2.1).

The following proposition details classical properties of the Cho-

quet integral/Lovász extension. In particular, property (e) below im-

plies that the Lovász extension is equal to the original set-function on

{0, 1}p (which can canonically be identified to 2V ), and hence is indeed

an extension of F . See an illustration in Figure 2.1 for p = 2.

Proposition 2.1. (Properties of Lovász extension) Let F be any

set-function such that F (∅) = 0. We have:

(a) if F and G are set-functions with Lovász extensions f and g, then

f + g is the Lovász extension of F + G, and for all λ ∈ R, λf is the

Lovász extension of λF ,

(b) for w ∈ R
p
+, f(w) =

∫ +∞
0 F ({w > z})dz,

(c) if F (V ) = 0, for all w ∈ R
p, f(w) =

∫ +∞
−∞ F ({w > z})dz,

(d) for all w ∈ R
p and α ∈ R, f(w + α1V ) = f(w) + αF (V ),

(e) the Lovász extension f is positively homogeneous,

(f) for all A ⊂ V , F (A) = f(1A),

(g) if F is symmetric (i.e., ∀A ⊂ V, F (A) = F (V \A)), then f is even,

(h) if V = A1 ∪ · · · ∪ Am is a partition of V , and w =
∑m

i=1 vi1Ai

(i.e., w is constant on each set Ai), with v1 > · · · > vm, then f(w) =
∑m−1

i=1 (vi − vi+1)F (A1 ∪ · · · ∪Ai) + vm+1F (V ).

Proof. Properties (a), (b) and (c) are immediate from Eq. (2.4) and

Eq. (2.2). Properties (d), (e) and (f) are straightforward from Eq. (2.2).
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w2

w1

w >w2 1

1 2w >w

(1,1)/F({1,2})  
(0,1)/F({2})

f(w)=1
0 (1,0)/F({1})

Fig. 2.1: Lovász extension for V = {1, 2}: the function is piecewise

affine, with different slopes for w1 > w2, with values F ({1})w1 +

[F ({1, 2}) − F ({1})]w2, and for w1 6 w2, with values F ({2})w2 +

[F ({1, 2}) − F ({2})]w1. The level set {w ∈ R
2, f(w) = 1} is displayed

in blue, together with points of the form 1
F (A)1A.

If F is symmetric, then F (V ) = F (∅) = 0, and thus f(−w) =
∫ +∞
−∞ F ({−w > z})dz =

∫ +∞
−∞ F ({w 6 −z})dz =

∫ +∞
−∞ F ({w 6 z})dz =

∫ +∞
−∞ F ({w > z})dz = f(w) (because we may replace strict inequalities

by regular inequalities), i.e., f is even. Finally, property (h) is a direct

consequence of Eq. (2.3).

Note that when the function is a cut function (see Section 3.2), then

the Lovász extension is related to the total variation and property (c) is

often referred to as the co-area formula (see [21] and references therein,

as well as Section 3.2).

Decomposition into modular plus non-negative function.

Given any submodular function G and an element t of the base poly-

hedron B(G) defined in Def. 1.2, then the function F = G − t is also

submodular, and is such that F is always non-negative and F (V ) = 0.

Thus G may be (non uniquely) decomposed as the sum of a modular

function t and a submodular function F which is always non-negative

and such that F (V ) = 0. Such functions F have interesting Lovász

extensions. Indeed, for all w ∈ R
p, f(w) > 0 and f(w + α1V ) = f(w).

Thus in order to represent the level set {f(w) = 1}, we only need to

project onto a subspace orthogonal to 1V . In Figure 2.2, we consider a
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w > w >w1 2

1w > w >w3 2

32w > w >w1

13w > w >w2

2w > w >w1 3

21w =w

w =w1 3
32w =w

12w > w >w3

(0,1,1)/F({2,3})

(0,0,1)/F({3})

(1,0,1)/F({1,3})

(1,0,0)/F({1})

(1,1,0)/F({1,2})

(0,1,0)/F({2})

3

(0,1,0)/2

(0,0,1)

(0,1,1)
(1,0,1)/2

(1,0,0)

(1,1,0)

Fig. 2.2: Top: Polyhedral level set of f (projected on the set w⊤1V = 0),

for 2 different submodular symmetric functions of three variables, with

different inseparable sets leading to different sets of extreme points;

changing values of F may make some of the extreme points disap-

pear (see Section 4.2 for a discussion of inseparable sets and faces of

this polytope). The various extreme points cut the space into polygons

where the ordering of the components is fixed. Left: F (A) = 1|A|∈{1,2},
leading to f(w) = maxk∈{1,2,3} wk − mink∈{1,2,3}wk (all possible ex-

treme points); note that the polygon need not be symmetric in general.

Right: one-dimensional total variation on three nodes, i.e., F (A) =

|11∈A − 12∈A|+ |12∈A − 13∈A|, leading to f(w) = |w1 −w2|+ |w2 −w3|,
for which the extreme points corresponding to the separable set {1, 3}
and its complement disappear.

function F which is symmetric (which implies that F (V ) = 0 and F is

non-negative, see more details in Section 7.4).

2.2 Greedy algorithm

The next result relates the Lovász extension with the support function1

of the submodular polyhedron P (F ) which is defined in Def. 1.2. This

is the basis for many of the theoretical results and algorithms related to

submodular functions. It shows that maximizing a linear function with

non-negative coefficients on the submodular polyhedron may be ob-

tained in closed form, by the so-called “greedy algorithm” (see [92, 42]

1The support function is obtained by maximizing linear functions; see definition in Ap-
pendix A.
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and Section 3.8 for an intuitive explanation of this denomination in the

context of matroids), and the optimal value is equal to the value f(w)

of the Lovász extension. Note that otherwise, solving a linear program-

ming problem with 2p − 1 constraints would then be required. This

applies to the submodular polyhedron P (F ) and to the base polyhe-

dron B(F ); note the different assumption regarding the positivity of

the components of w.

Proposition 2.2. (Greedy algorithm for submodular and base

polyhedra) Let F be a submodular function such that F (∅) = 0.

Let w ∈ R
p, with components ordered in decreasing order, i.e., wj1 >

· · · > wjp and define sjk = F ({j1, . . . , jk}) − F ({j1, . . . , jk−1}). Then
s ∈ B(F ) and,

(a) if w ∈ R
p
+, s is a maximizer of maxs∈P (F )w

⊤s, and

maxs∈P (F )w
⊤s = f(w),

(b) s is a maximizer of maxs∈B(F ) w
⊤s, and maxs∈B(F ) w

⊤s = f(w).

Proof. By convex duality (which applies because P (F ) has non empty

interior from Prop. 1.3), we have, by introducing Lagrange multipliers

λA ∈ R+ for the constraints s(A) 6 F (A), A ⊂ V , the following pair

of convex optimization problems dual to each other:

max
s∈P (F )

w⊤s = min
λA>0,A⊂V

max
s∈Rp

{

w⊤s−
∑

A⊂V

λA[s(A)− F (A)]

}

(2.5)

= min
λA>0,A⊂V

max
s∈Rp

{

∑

A⊂V

λAF (A) +

p
∑

k=1

sk
(

wk −
∑

A∋k
λA

)

}

= min
λA>0,A⊂V

∑

A⊂V

λAF (A) such that ∀k ∈ V, wk =
∑

A∋k
λA.

If we take the (primal) candidate solution s obtained from the greedy

algorithm, we have f(w) = w⊤s from Eq. (2.1). We now show that

s is feasible (i.e., in P (F )), as a consequence of the submodularity of

F . Indeed, without loss of generality, we assume that jk = k for all

k ∈ {1, . . . , p}. We can decompose any subset of {1, . . . , p} as A =
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A1 ∪ · · · ∪Am, where Ak = (uk, vk] are integer intervals. We then have:

s(A) =
m
∑

k=1

s(Ak)
}

by modularity

=

m
∑

k=1

{

F ((0, vk])− F ((0, uk])
}

6

m
∑

k=1

{

F ((u1, vk])− F ((u1, uk])
}

by submodularity

= F ((u1, v1]) +

m
∑

k=2

{

F ((u1, vk])− F ((u1, uk])
}

6 F ((u1, v1]) +

m
∑

k=2

{

F ((u1, v1] ∪ (u2, vk])− F ((u1, v1] ∪ (u2, uk])
}

by submodularity

= F ((u1, v1] ∪ (u2, v2])

+
m
∑

k=3

{

F ((u1, v1] ∪ (u2, vk])− F ((u1, v1] ∪ (u2, uk])
}

.

By pursuing applying submodularity, we finally obtain that s(A) 6

F ((u1, v1] ∪ · · · ∪ (um, vm]) = F (A), i.e., s ∈ P (F ).

Moreover, we can define dual variables λ{j1,...,jk} = wjk − wjk+1
for

k ∈ {1, . . . , p− 1} and λV = wjp with all other λA equal to zero. Then

they are all non negative (notably because w > 0), and satisfy the

constraint ∀k ∈ V, wk =
∑

A∋k λA. Finally, the dual cost function has

also value f(w) (from Eq. (2.2)). Thus by duality (which holds, because

P (F ) has a non-empty interior), s is an optimal solution. Note that it

is not unique (see Prop. 4.2 for a description of the set of solutions).

In order to show (b), we may first assume that w > 0, we may

replace P (F ) by B(F ), by simply dropping the constraint λV > 0 in

Eq. (2.5). Since the solution obtained by the greedy algorithm satis-

fies s(V ) = F (V ), we get a pair of primal-dual solutions, hence the

optimality.

The result generalizes to all possible w, because we may add a large

constant vector to w, which does not change the maximization with

respect to B(F ) (since it includes the constraint s(V ) = F (V )).
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The next proposition draws precise links between convexity and

submodularity, by showing that a set-function F is submodular if and

only if its Lovász extension f is convex [92]. This is further developed

in Prop. 2.4 where it is shown that, when F is submodular, minimizing

F on 2V (which is equivalent to minimizing f on {0, 1}p since f is an

extension of F ) and minimizing f on [0, 1]p are equivalent.

Proposition 2.3. (Convexity and submodularity) A set-function

F is submodular if and only if its Lovász extension f is convex.

Proof. Let A,B ⊂ V . The vector 1A∪B + 1A∩B = 1A + 1B has compo-

nents equal to 0 (on V \(A ∪ B)), 2 (on A ∩ B) and 1 (on A∆B =

(A\B) ∪ (B\A)). Therefore, f(1A∪B + 1A∩B) =
∫ 2
0 F (1{w>z})dz =

∫ 1
0 F (A ∪B)dz +

∫ 2
1 F (A ∩B)dz = F (A ∪B) + F (A ∩B).

If f is convex, then by homogeneity, f(1A + 1B) 6 f(1A) + f(1B),

which is equal to F (A) + F (B), and thus F is submodular.

If F is submodular, then by Prop. 2.2, for all w ∈ R
p
+, f(w) is

a maximum of linear functions, thus, it is convex on R
p
+. Moreover,

because f(w + α1V ) = f(w) + αF (V ), it is convex on R
p.

The next proposition completes Prop. 2.3 by showing that mini-

mizing the Lovász extension on [0, 1]p is equivalent to minimizing it on

{0, 1}p, and hence to minimizing the set-function F on 2V (when F is

submodular).

Proposition 2.4. (Minimization of submodular functions)

Let F be a submodular function and f its Lovász extension; then

minA⊂V F (A) = minw∈{0,1}p f(w) = minw∈[0,1]p f(w).

Proof. Because f is an extension from {0, 1}p to [0, 1]p (property (d)

from Prop. 2.1), we must have minA⊂V F (A) = minw∈{0,1}p f(w) >

minw∈[0,1]p f(w). For the other inequality, any w ∈ [0, 1]p may be de-

composed as w =
∑p

i=1 λi1Bi where B1 ⊂ · · · ⊂ Bp = V , where λ is

nonnegative and has a sum smaller than or equal to one (this can be

obtained by considering Bi the set of indices of the i largest values of
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w). We then have f(w) =
∑p

i=1

∫

∑i
k=1

λk
∑i−1

k=1
λk
F (Bi)dz =

∑p
i=1 λiF (Bi) >

∑p
i=1 λi minA⊂V F (A) > minA⊂V F (A) (because minA⊂V F (A) 6 0).

This leads to the desired result.

Note that the last equality shows that the minimizers of f(w) on

w ∈ [0, 1]p must have sup-level sets (i.e., the sets Bi defined above)

which are minimizers of F (i.e., w is a convex hull of the indicator

vectors of all minimizers of F ).

We end this section, by simply stating the greedy algorithm for

the symmetric independence polyhedron, whose proof is similar to the

proof of Prop. 2.2 (we define the sign of a as +1 if a > 0, and −1

if a < 0, and zero otherwise; |w| denotes the vector composed of the

absolute values of the components of w).

Proposition 2.5. (Greedy algorithm for symmetric indepen-

dence polyhedron) Let F be a submodular function such that

F (∅) = 0 and F is non-decreasing. Let w ∈ R
p. A maximizer of

maxs∈|P |(F )w
⊤s may be obtained by the following algorithm: order

the components of |w|, as |wj1 | > · · · > |wjp | and define sjk =

sign(wjk)[F ({j1, . . . , jk})−F ({j1, . . . , jk−1})]. Moreover, for all w ∈ R
p,

maxs∈|P |(F )w
⊤s = f(|w|).

2.3 Structured sparsity and convex relaxations

Structured sparsity. The concept of parsimony is central in many

scientific domains. In the context of statistics, signal processing or ma-

chine learning, it takes the form of variable or feature selection prob-

lems.

In a supervised learning problem, we aim to predict n responses

yi ∈ R, from n observations xi ∈ R
p, for i ∈ {1, . . . , n}. In this paper, we

focus on linear predictors of the form f(x) = w⊤x, where w ∈ R
p (for

extensions to non-linear predictions, see [4, 5] and references therein).

We consider estimators obtained by the following regularized empirical
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risk minimization formulation:

min
w∈Rp

1

n

n
∑

i=1

ℓ(yi, w
⊤xi) + λΩ(w), (2.6)

where ℓ(y, ŷ) is a loss between a prediction ŷ and the true response y,

and Ω is a norm. Typically, the quadratic loss ℓ(y, ŷ) = 1
2 (y−ŷ)2 is used

for regression problems and the logistic loss ℓ(y, ŷ) = log(1+exp(−yŷ))
is used for binary classification problems where y ∈ {−1, 1} (see, e.g.,

[128] and [58] for more complete descriptions of loss functions).

In order to promote sparsity, the ℓ1-norm is commonly used and, in

a least-squares regression framework is referred to as the Lasso [131] in

statistics and as basis pursuit [24] in signal processing. Sparse models

are commonly used in two situations: First, to make the model or the

prediction more interpretable or cheaper to use, i.e., even if the under-

lying problem does not admit sparse solutions, one looks for the best

sparse approximation. Second, sparsity can also be used given prior

knowledge that the model should be sparse. In these two situations, re-

ducing parsimony to finding models with low cardinality turns out to be

limiting, and structured parsimony has emerged as a fruitful practical

extension, with applications to image processing, text processing, bioin-

formatics or audio processing (see, e.g., [140, 74, 68, 71, 82, 76, 95, 90],

a review in [8, 9] and Section 3 for various examples, and in particular

Section 3.3 for relationships with grouped ℓ1-norm with overlapping

groups).

Convex relaxation of combinatorial penalty. Most of the work

based on convex optimization and the design of dedicated sparsity-

inducing norms has focused mainly on the specific allowed set of spar-

sity patterns [140, 74, 71, 76]: if w ∈ R
p denotes the predictor we aim

to estimate, and Supp(w) denotes its support, then these norms are de-

signed so that penalizing with these norms only leads to supports from

a given family of allowed patterns. We can instead follow the approach

of [59, 68] and consider specific penalty functions F (Supp(w)) of the

support set Supp(w) = {j ∈ V, wj 6= 0}, which go beyond the cardi-

nality function, but are not limited or designed to only forbid certain

sparsity patterns. As first shown in [6], for non-decreasing submodular
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functions, these may also lead to restricted sets of supports but their

interpretation in terms of an explicit penalty on the support leads to

additional insights into the behavior of structured sparsity-inducing

norms.

While direct greedy approaches (i.e., forward selection) to the prob-

lem are considered in [59, 68], submodular analysis may be brought to

bear to provide convex relaxations to the function w 7→ F (Supp(w)),

which extend the traditional link between the ℓ1-norm and the cardi-

nality function.

Proposition 2.6. (Convex relaxation of functions defined

through supports) Let F be a non-decreasing submodular function.

The function w 7→ f(|w|) is the convex envelope (tightest convex lower

bound) of the function w 7→ F (Supp(w)) on the unit ℓ∞-ball [−1, 1]p.

Proof. We use the notation |w| to denote the p-dimensional vector

composed of the absolute values of the components of w. We de-

note by g∗ the Fenchel conjugate (see definition in Appendix A) of

g : w 7→ F (Supp(w)) on the domain {w ∈ R
p, ‖w‖∞ 6 1} = [−1, 1]p,

and g∗∗ its bidual [17]. We only need to show that the Fenchel bid-

ual is equal to the function w 7→ f(|w|). By definition of the Fenchel

conjugate, we have:

g∗(s) = max
‖w‖∞61

w⊤s− g(w)

= max
δ∈{0,1}p

max
‖w‖∞61

(δ ◦ w)⊤s− f(δ) by definition of g,

= max
δ∈{0,1}p

δ⊤|s| − f(δ) by maximizing out w,

= max
δ∈[0,1]p

δ⊤|s| − f(δ) because F − |s| is submodular.

Thus, for all w such that ‖w‖∞ 6 1,

g∗∗(w) = max
s∈Rp

s⊤w − g∗(s)

= max
s∈Rp

min
δ∈[0,1]p

s⊤w − δ⊤|s|+ f(δ)

By strong convex duality (which applies because Slater’s condition [17]
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is satisfied), we get:

g∗∗(w) = min
δ∈[0,1]p

max
s∈Rp

s⊤w − δ⊤|s|+ f(δ)

by strong duality and

= min
δ∈[0,1]p,δ>|w|

f(δ) = f(|w|) because F is nonincreasing,

which leads to the desired result. Note that F non-increasing implies

that f is non-increasing with respect to all of its components.

The previous proposition provides a relationship between combina-

torial optimization problems (involving functions of the form w 7→
F (Supp(w))) and convex optimization problems involving the Lovász

extension. A desirable behavior of a convex relaxation is that some of

the properties of the original problem are preserved. In this paper, we

will focus mostly on the allowed set of sparsity patterns (see below and

Section 4.3). For more details about theroretical guarantees and appli-

cations of submodular functions to structured sparsity, see [6, 7]. In Sec-

tion 3, we consider several example of submodular functions and present

when appropriate how they translate to sparsity-inducing norms.

Optimization for regularized risk minimization. Given the rep-

resentation of Ω as the maximum of linear functions (Prop. 2.5), we

can easily obtain a subgradient of Ω, thus allowing the use of subgradi-

ent descent techniques (see a description in Appendix A.2). However,

these methods typically require many iterations, and given the struc-

ture of our norms, more efficient methods are available: we describe in

Section 5.1 proximal methods, which generalizes soft-thresholding algo-

rithms for the ℓ1-norm and grouped ℓ1-norm, and can use efficiently

the combinatorial structure of the norms.

Structured sparsity-inducing norms and dual balls. We as-

sume in this paragraph that F is submodular and non-decreasing, and

such that the values on all singletons is strictly positive. The func-

tion Ω : w 7→ f(|w|) is then a norm [6]. Through the representa-

tion Ω(w) = maxs∈P (F ) |w|⊤s = max|s|∈P (F )w
⊤s = maxs∈|P |(F )w

⊤s,
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the dual norm is equal to Ω∗(s) = maxA⊂V
|s|(A)
F (A) = maxA⊂V

‖sA‖1
F (A) ,

and the unit dual ball is the symmetric independence polyhedron

|P |(F ) = {s ∈ R
p, |s| ∈ P (F )} = {s ∈ R

p, ∀A ⊂ V, ‖sA‖1 6 A}
(see Appendix A for more details on polar sets and dual norms).

The dual ball |P |(F ) = {s ∈ R
p, Ω∗(s) 6 1} is naturally character-

ized by half planes of the form w⊤s
F (Supp(w)) 6 for w ∈ {−1, 0, 1}p. Thus,

the unit ball of Ω is the convex hull of the vectors 1
F (Supp(w))w for the

same vectors w ∈ {−1, 0, 1}p. See Figure 2.3 for examples for p = 2

and Figure 2.4 for examples with p = 3.

A particular feature of the unit ball of Ω is that it has faces which

are composed of vectors with many zeros, leading to structured sparsity

(see Section 3.3 for examples and Section 4.2, for more details about the

facial structure of the symmetric independence polyhedron). However,

as can be seen in Figures 2.3 and 2.4, there are additional extreme

points and faces where many of the components of |w| are equal (e.g.,

the corners of the ℓ∞-ball). In the context of sparsity-inducing norms,

this has the sometimes undesirable effect of inducing vectors with many

components of equal magnitude. As shown in [115], this effect due to

the ℓ∞-norm in Prop. 2.6 may be corrected by the appropriate use of

ℓq-norms q ∈ (1,∞), which we now present for the ℓ2-norm.

ℓ2-relaxations of submodular penalties. Given a non-decreasing

submodular function such that F ({k}) > 0 for all k ∈ V , we may define

a norm Θ as follows:

Θ(w) =
1

2
min
η∈Rp

+

{

w2
i

ηi
+ f(η)

}

,

using the usual convention that that
w2

i
ηi

is equal to zero as soon as

wi = 0, and equal to +∞ if wi 6= 0 and ηi = 0 (for more details on vari-

ational representations of any norms through squared ℓ2-norm, see [8]).

As shown in [115], this defines a norm, which shares the same sparsity-

inducing effects as Ω, without the extra singular points. Moreover, the

optimization results presented in this paper can be used as well to de-

rive efficient algorithms for optimization problems regularized by this

norm. Moreover, Prop. 2.6 may be extended, and Θ is the convex enve-

lope of the function w 7→ F (Supp(w))‖w‖2 , or the homogeneous convex
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(1,0)/F({1})

(1,1)/F({1,2})(0,1)/F({2})

s  +s  =F({1,2})

2

1

s

s

2

1

21

s  =F({1})

s  =F({2})

Fig. 2.3: Polyhedral unit ball of Ω (top) with the associated dual unit

ball (bottom), for 4 different submodular functions (two variables),

with different sets of extreme points; changing values of F may make

some of the extreme points disappear (see the notion of stable sets in

Section 4.3). From left to right: F (A) = |A|1/2 (all possible extreme

points), F (A) = |A| (leading to the ℓ1-norm), F (A) = min{|A|, 1}
(leading to the ℓ∞-norm), F (A) = 1

21{A∩{2}6=∅} + 1{A 6=∅} (leading to

the structured norm Ω(w) = 1
2 |w2| + ‖w‖∞). Extreme points of the

primal balls correspond to full-dimensional faces of the dual ball, and

vice-versa.

envelope (the tightest homogeneous convex lower bound) of the func-

tion w 7→ 1
2F (Supp(w)) +

1
2‖w‖22, thus replacing the ℓ∞-constraint by

an ℓ2-penalty.

Shaping level sets through symmetric submodular functions.

For a non-decreasing submodular function F , we have defined a norm

Ω(w) = f(|w|), that essentially allows the definition of a prior knowl-

edge on supports of predictors w. When using the Lovász extension

directly for symmetric submodular functions, then it turns out that

the effect is on all sub-level sets {w 6 α} and not only on the sup-

port {w 6= 0}. Indeed, as shown in [7], the Lovász extension is the

convex envelope of the function w 7→ maxα∈R F ({w 6 α}) on the set
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w
2

w
3

w
1

F (A) = |A|
Ω(w) = ‖w‖1

F (A) = min{|A|, 1}
Ω(w) = ‖w‖∞

F (A) = |A|1/2

all possible extreme points

F (A) = 1{A∩{1}6=∅} + 1{A∩{2,3}6=∅}

Ω(w) = |w1|+ ‖w{2,3}‖∞

F (A) = 1{A∩{1,2,3}6=∅}

+1{A∩{2,3}6=∅} + 1{A∩{3}6=∅}

Ω(w) = ‖w‖∞ + ‖w{2,3}‖∞ + |w3|

Fig. 2.4: Unit balls for structured sparsity-inducing norms, with the

corresponding submodular functions and the associated norm.

[0, 1]p + R1V = {w ∈ R
p, maxk∈V wk −mink∈V wk 6 1}.

The main examples of such symmetric functions are cuts in undi-

rected graphs, which we describe in Section 3.2, leading to the to-

tal variation, but other examples are interesting as well for machine

learning (see [7]). Finally, while the facial structure of the symmetric

independence polyhedron |P |(F ) was key to analysing the regulariza-

tion properties for shaping supports, the base polyhedron B(F ) is the

proper polyhedron (see Section 4.2 for more details).
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Examples and applications of submodular

functions

We now present classical examples of submodular functions. For each of

these, we also describe the corresponding Lovász extensions, and, when

appropriate, the associated submodular polyhedra. We also present ap-

plications to machine learning, either through formulations as combi-

natorial optimization problems of through the regularization properties

of the Lovász extension. We are by no means exhaustive and other ap-

plications may be found in facility location [31, 30, 1], game theory [45],

document summarization [91], social networks [81], or clustering [107].

Note that in Appendix B.2, we present several operations that pre-

serve submodularity (such as symmetrization and partial minimiza-

tion), which can be applied to any of the functions presented in this

section, thus defining new functions.

3.1 Cardinality-based functions

We consider functions that depend only on s(A) for a certain s ∈ R
p
+.

If s = 1V , these are functions of the cardinality. The next propo-

sition shows that only concave functions lead to submodular func-

tions, which is coherent with the diminishing return property from

25
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Section 1 (Prop. 1.1).

Proposition 3.1. (Submodularity of cardinality-based set-

functions) If s ∈ R
p
+ and g : R+ → R is a concave function, then

F : A 7→ g(s(A)) is submodular. If F : A 7→ g(s(A)) is submodular for

all s ∈ R
p
+, then g is concave.

Proof. The function F : A 7→ g(s(A)) is submodular if and only if for

all A ⊂ V and j, k ∈ V \A: g(s(A) + sk) − g(s(A)) > g(s(A) + sk +

sj) − g(s(A) + sj). If g is concave and a > 0, t 7→ g(a + t) − g(t) is

non-increasing, hence the first result. Moreover, if t 7→ g(a+ t)− g(t) is
non-increasing for all a > 0, then g is concave, hence the second result.

Proposition 3.2. (Lovász extension of cardinality-based set-

functions) Let s ∈ R
p
+ and g : R+ → R be a concave function

such that g(0) = 0, the Lovász extension of the submodular function

F : A 7→ g(s(A)) is equal to

f(w) =

p
∑

k=1

wjk [g(sj1 + · · · + sjk)− g(sj1 + · · · + sjk−1
)].

If s = 1V , i.e., F (A) = g(|A|), then f(w) = ∑p
k=1wjk [g(k)− g(k − 1)].

Thus, for functions of the cardinality (for which s = 1V ), the Lovász ex-

tension is thus a linear combination of order statistics (i.e., r-th largest

component of w, for r ∈ {1, . . . , p}).

Application to machine learning. In terms of set functions, con-

sidering g(s(A)) instead of s(A) does not make a significant difference.

However, it does in terms of the Lovász extension. Indeed, as shown

in [7], using the Lovász extension for regularization encourages com-

ponents of w to be equal (see also Section 2.3), and hence provides a

convex prior for clustering or outlier detection, depending on the choice

of the concave function g (see more details in [7, 64]). This is a situation

where this effect has positive desired consequences.
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Some special cases of non-decreasing functions are of interest, such

as F (A) = |A|, for which f(w) = w⊤1V and Ω is the ℓ1-norm, and

F (A) = 1|A|>0 for which f(w) = maxk∈V wk and Ω is the ℓ∞-norm.

When restricted to subsets of V and then linearly combined, we obtain

set covers defined in Section 3.3. Other interesting examples of com-

binations of functions of restricted weighted cardinality functions may

be found in [130, 83].

3.2 Cut functions

Given a set of (non necessarily symmetric) weights d : V × V → R+,

define the cut as

F (A) =
∑

k∈A, j∈V \A
d(k, j),

which we denote d(A,V \A). Note that for a cut function and disjoint

subsets A,B,C, we always have (see [35] for more details):

F (A ∪B ∪ C) = F (A ∪B) + F (A ∪ C) + F (B ∪ C)

−F (A)− F (B)− F (C) + F (∅)

F (A ∪B) = d(A ∪B, (A ∪B)) = d(A,Ac ∩Bc) + d(B,Ac ∩Bc)

6 d(A,Ac) + d(B,Bc) = F (A) + F (B),

where we denote Ac = V \A. This implies that F is sub-additive. We

then have, for any sets A,B ⊂ V :

F (A ∪B)

= F ([A ∩B] ∪ [A\B] ∪ [B\A])
= F ([A ∩B] ∪ [A\B]) + F ([A ∩B] ∪ [B\A]) + F ([A\B] ∪ [B\A])

−F (A ∩B)− F (A\B)− F (B\A) + F (∅)

= F (A) + F (B) + F (A∆B)− F (A ∩B)− F (A\B)− F (B\A)
= F (A) + F (B)− F (A ∩B) + [F (A∆B)− F (A\B)− F (B\A)]
6 F (A) + F (B)− F (A ∩B), by sub-additivity,

which shows submodularity. Moreover, the Lovász extension is equal

to

f(w) =
∑

k,j∈V
d(k, j)(wk − wj)+
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Fig. 3.1: Two-dimensional grid with 4-connectivity. The cut in these

undirected graphs lead to Lovász extensions which are certain versions

of total variations, which enforce level sets of w to be connected with

respect to the graph.

(which provides an alternative proof of submodularity owing to

Prop. 2.3). Thus, if the weight function d is symmetric, then the sub-

modular function is also symmetric and the Lovász extension is even

(from Prop. 2.1). Examples of graphs related to such cuts (i.e., graphs

defined on V for which there is an edge from k to j if and only if

d(k, j) > 0) are shown in Figures 3.1 and 3.2. An interesting instance

of these Lovász extensions plays a crucial role in signal and image pro-

cessing; indeed, for a graph composed of a two-dimensional grid with

4-connectivity (see Figure 3.1), we obtain a certain version of the total

variation, which is a common prior to induce piecewise-constant sig-

nals (see applications to machine learning below). In fact, some of the

results presented in this paper were first shown on this particular case

(see, e.g., [21] and references therein).

Note that these functions can be extended to cuts in hypergraphs,

which may have interesting applications in computer vision [18]. More-

over, directed cuts (i.e., when d(k, j) and d(j, k) may be different) may

be interesting to favor increasing or decreasing jumps along the edges

of the graph. Finally, there is another interesting link between directed

cuts and isotonic regression (see, e.g., [93] and references therein), which

corresponds to solving a separable optimization problem regularized by

a large constant times the associated Lovász extension. See another link

with isotonic regression in Section 5.4.
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Interpretation in terms of quadratic functions of indicator

variables. For undirected graphs (i.e., for which the function d is

symmetric), we may rewrite the cut as follows:

F (A) =
1

2

p
∑

k=1

p
∑

j=1

d(k, j)|(1A)k − (1A)j |

=
1

2

p
∑

k=1

p
∑

j=1

d(k, j)|(1A)k − (1A)j |2

because |(1A)k − (1A)j |2 ∈ {0, 1}. This leads to

F (A) =
1

2

p
∑

k=1

p
∑

j=1

(1A)k(1A)j
[

1j=k

p
∑

i=1

d(i, k) − d(j, k)
]

=
1

2
1⊤AQ1A,

with Q = Diag(D1)−D where D is the square weighted affinity matrix

obtained from d, which has non-positive diagonal elements (Q is the

Laplacian of the graph [27]). It turns out that a sum of linear and

quadratic functions of 1A is submodular only in this situation.

Proposition 3.3. (Submodularity of quadratic functions) Let

Q ∈ R
p×p and q ∈ R

p. Then the function F : A 7→ q⊤1A + 1
21

⊤
AQ1A

is submodular if and only if all off-diagonal elements of Q are non-

positive.

Proof. Since cuts are submodular, the previous developments show that

the condition is sufficient. It is necessary by simply considering the

inequality 0 6 F ({i}) + F ({j}) − F ({i, j}) = qi +
1
2Qii + qj +

1
2Qjj −

[qi + qj +
1
2Qii +

1
2Qjj +Qij] = −Qij.

Regular functions and robust total variation. By partial min-

imization, we obtain so-called regular functions [18, 21]. One applica-

tion is “noisy cut functions”: for a given weight function d : W ×W →
R+, where each node in W is uniquely associated in a node in V ,

we consider the submodular function obtained as the minimum cut
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adapted to A in the augmented graph (see top-right plot of Fig-

ure 3.2): F (A) = minB⊂W
∑

k∈B, j∈W\B d(k, j) + λ|A∆B|, where

A∆B = (A\B) ∪ (B\A) is the symmetric difference between sets A

and B. This allows for robust versions of cuts, where some gaps may

be tolerated; indeed, compared to having directly a small cut for A,

B needs to have a small cut and be close to A, thus allowing some

elements to be removed or added to A in order to lower the cut (see

more details in [7]).

The class of regular functions is particularly interesting, because

it leads to a family of submodular functions for which dedicated fast

algorithms exist. Indeed, minimizing the cut functions or the partially

minimized cut, plus a modular function defined by z ∈ R
p, may be

done with a min-cut/max-flow algorithm (see, e.g., [29]). Indeed, fol-

lowing [18, 21], we add two nodes to the graph, a source s and a sink t.

All original edges have non-negative capacities d(k, j), while, the edge

that links the source s to the node k ∈ V has capacity (zk)+ and the

edge that links the node k ∈ V to the sink t has weight −(zk)− (see

bottom line of Figure 3.2). Finding a minimum cut or maximum flow

in this graph leads to a minimizer of F − z. For a detailed study of the

expressive power of functions expressible in terms of graph cuts, see,

e.g., [141, 22].

For proximal methods, such as defined in Eq. (5.5) (Section 5),

we have z = ψ(α) and we need to solve an instance of a parametric

max-flow problem, which may be done using efficient dedicated algo-

rithms [51, 62, 21]. See also Section 7.3 for generic algorithms based on

a sequence of singular function minimizations.

Applications to machine learning. Finding minimum cuts in

undirected graphs such as two-dimensional grids or extensions thereof

in more than two dimesions has become an important tool in computer

vision for image segmentation, where it is commonly referred to as graph

cut techniques (see, e.g., [84] and references therein). In this context,

several extensions have been considered, such as multi-way cuts, where

exact optimization is not possible anymore, and a sequence of binary

graph cuts is used to find an approximate minimum (see also [108] for a
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V

W

t s

t s

Fig. 3.2: Top: directed graph (left) and undirected corresponding to

regular functions (which can be obtained from cuts by partial mini-

mization; a set A ⊂ V is displayed in red, with a set B ⊂ W with

small cut but one more element than A, see text in Section 3.2 for de-

tails). Bottom: graphs corresponding to the s − t min-cut formulation

for minimizing the submodular function above plus a modular function

(see text for details).

specific multi-way extension based on different submodular functions).

The Lovász extension of cuts in an undirected graph, often referred

to as the total variation, has now become a classical regularizer in sig-

nal processing and machine learning: given a graph, it will encourages

solutions to be piecewise-constant according to the graph (as opposed

to the graph Laplacian, which will impose smoothness along the edges

of the graph) [65, 64]. See Section 4.2 for a formal description of the

sparsity-inducing properties of the Lovász extension; for chain graphs,

we obtain usual piecewise constant vectors, and the have many applica-

tions in sequential problems (see, e.g., [57, 132, 94, 21] and references

therein). Note that in this context, separable optimization problems
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considered in Section 5 are heavily used and that algorithms presented

in Section 6 provide unified and efficient algorithms for all these situa-

tions.

3.3 Set covers

Given a non-negative set-function D : 2V → R+, then we can define a

set-function F through

F (A) =
∑

G⊂V, G∩A 6=∅

D(G),

with Lovász extensionf(w) =
∑

G⊂V D(G)maxk∈Gwk.

The submodularity and the Lovász extension can be obtained us-

ing linearity and the fact that the Lovász extension of A 7→ 1G∩A 6=∅

is w 7→ maxk∈Gwk. In the context of structured sparsity-inducing

norms (see Section 2.3), these correspond to penalties of the form

w 7→ f(|w|) =
∑

G⊂V D(G)‖wG‖∞, thus leading to overlapping group

Lasso formulations (see, e.g., [140, 74, 68, 71, 82, 76, 95]). For example,

when D(G) = 1 for elements of a given partition, and zero otherwise,

then F (A) counts the number of elements of the partition with non-

empty intersection with A. This leads to the classical non-overlapping

grouped ℓ1/ℓ∞-norm.

Möbius inversion. Note that any set-function F may be written as

F (A) =
∑

G⊂V, G∩A 6=∅

D(G) =
∑

G⊂V

D(G)−
∑

G⊂V \A
D(G),

i.e., F (V )− F (V \A) =
∑

G⊂A

D(G),

for a certain set-function D, which is not usually non-negative. Indeed,

by Möbius inversion formula1 (see, e.g., [47]), we have:

D(G) =
∑

A⊂G

(−1)|G|−|A|[F (V )− F (V \A)
]

.

1 If F and G are any set functions such that ∀A ⊂ V , F (A) =
∑

B⊂A G(B), then ∀A ⊂ V ,

G(A) =
∑

B⊂A(−1)|A\B|F (B).
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Thus, functions for which D is non-negative form a specific subset

of submodular functions (note that for all submodular functions, the

function D(G) is non-negative for all pairs G = {i, j}, for j 6= i, as a

consequence of Prop. 1.2). Moreover, these functions are always non-

decreasing. For further links, see [49], where it is notably shown that

D(G) = 0 for all sets G of cardinality greater or equal to three for cut

functions (which are second-order polynomials in the indicator vector).

Reinterpretation in terms of set-covers. Let W be any “base”

set. Given for each k ∈ V , a set Sk ⊂ W , we define the cover

as F (A) =
∣

∣

⋃

k∈A Sk
∣

∣. More generally, we can define F (A) =
∑

j∈W ∆(j)1∃k∈A,Sk∋j, if we have weights ∆(j) ∈ R+ for j ∈ W (this

corresponds to replacing the cardinality function on W , by a weighted

cardinality function, with weights defined by ∆). Then, F is submod-

ular (as a consequence of the equivalence with the previously defined

functions, which we now prove).

These two types of functions are in fact equivalent. Indeed, for a

weight function D : 2V → R+, we consider the base set W to be

the power-set of V , i.e., W = 2V , and Sk = {G ⊂ V,G ∋ k}, and
∆(G) = D(G), to obtain a set cover, since we then have

F (A) =
∑

G⊂V

D(G)1A∩G 6=∅ =
∑

G⊂V

D(G)1∃k∈A,k∈G

=
∑

G⊂V

D(G)1∃k∈A,G∈Sk
.

Moreover, for a certain set cover defined by W , Sk ⊂ W , k ∈ V , and

∆ : W 7→ R+, define Gj = {k ∈ V, Sk ∋ j} the subset of V of points

that cover j ∈W . We can then write the set cover as

F (A) =
∑

j∈W
∆(j)1∃k∈A,Sk∋j =

∑

j∈W
∆(j)1A∩Gj 6=∅,

to obtain a set-function expressed in terms of groups and non-negative

weight functions.

Applications to machine learning. Submodular set-functions

which can be expressed as set covers (or equivalently as a sum of max-



34 Examples and applications of submodular functions

imum of certain components) have several applications, mostly as reg-

ular set-covers or through their use in sparsity-inducing norms.

When used as set covers, submodular functions are traditionally

used because algorithms for maximization with theoretical guarantees

may be used (see Section 8). See [88] for several applications.

When used through their Lovász extensions, we obtain structured

sparsity-inducing norms which can be used to impose specific prior

knowledge into learning problems: indeed, as shown in Section 2.3, they

correspond to a convex relaxation to the set-function applied to the

support of the predictor. Morever, as shown in [74, 6] and in Section 4.3,

they lead to specific sparsity patterns (i.e., supports), which are stable

for the submodular function, i.e., such that they cannot be increased

without increasing the set-function. For this particular example, stable

sets are exactly intersection of complements of groups G such that

D(G) > 0 (see more details in [74]), that is, some of the groups with

non-zero weights carve out the set V to obtain the support of the

predictor. Note that following [95], all of these may be interpreted in

terms of flows (see Section 3.4) in order to obtain fast algorithms to

solve the proximal problems.

By choosing certain set of groups G such that D(G) > 0, we can

model several interesting behaviors (see more details in [9]):

• Line segments: Given p variables organized in a sequence,

using the set of groups of Figure 3.4, it is only possible to

select contiguous nonzero patterns. In this case, we have p

groups with non-zero weight, and the submodular function

is equal, up to constants, to the length of the range of A

(i.e., the distance beween the rightmost element of A and

the leftmost element of A).
• Two-dimensional convex supports: Similarly, assume

now that the p variables are organized on a two-dimensional

grid. To constrain the allowed supports to be the set of all

rectangles on this grid, a possible set of groups to consider

may be composed of half planes with specific orientations:

if only vertical and horizontal orientations are used, the set

of allowed patterns is the set of rectangles, while with more
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source

tG

sk

groups

k

G

sinks

k

Fig. 3.3: Flow (top) and set of groups (bottom) for sequences. When

these groups have unit weights (i.e., D(G) = 1 for these groups and

zero for all others), then the submodular function F (A) is equal to the

number of sequential pairs with at least one present element. When

applied to sparsity-inducing norms, this leads to supports that have no

isolated points (see applications in [95]).

general orientations, more general convex patterns may be

obtained. These can be applied for images, and in particular

in structured sparse component analysis where the dictionary

elements can be assumed to be localized in space [78].
• Two-dimensional block structures on a grid: Using

sparsity-inducing regularizations built upon groups which are

composed of variables together with their spatial neighbors

(see Figure 3.4) leads to good performances for background

subtraction [20, 10, 68, 95], topographic dictionary learn-

ing [79, 96], wavelet-based denoising [119].
• Hierarchical structures: here we assume that the variables

are organized in a hierarchy. Precisely, we assume that the

p variables can be assigned to the nodes of a tree (or a for-

est of trees), and that a given variable may be selected only

if all its ancestors in the tree have already been selected.

This corresponds to a set-function which counts the number
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source

groups

sinks

G

s
k

k

t
k
G

Fig. 3.4: Flow (top) and set of groups (bottom) for sequences. When

these groups have unit weights (i.e., D(G) = 1 for these groups and

zero for all others), then the submodular function F (A) is equal (up to

constants) to the length of the range of A (i.e., the distance beween the

rightmost element of A and the leftmost element of A). When applied

to sparsity-inducing norms, this leads to supports which are contiguous

segments (see applications in [78]).

of ancestors of a given set A (note that, as shown in Sec-

tion 4.3, the stable sets of this set-function are exactly the

ones described above).

This hierarchical rule is exactly respected when using the

family of groups displayed on Figure 3.5. The corresponding

penalty was first used in [140]; one of it simplest instance in

the context of regression is the sparse group Lasso [129, 48]; it

has found numerous applications, for instance, wavelet-based

denoising [140, 10, 68, 77], hierarchical dictionary learning

for both topic modelling and image restoration [76, 77], log-

linear models for the selection of potential orders [122], bioin-
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formatics, to exploit the tree structure of gene networks for

multi-task regression [82], and multi-scale mining of fMRI

data for the prediction of simple cognitive tasks [75]. See also

Section 9.3 for an application to non-parametric estimation

with a wavelet basis.
• Extensions: Possible choices for the sets of groups (and

thus the set functions) are not limited to the aforementioned

examples; more complicated topologies can be considered,

for example three-dimensional spaces discretized in cubes or

spherical volumes discretized in slices (see an application to

neuroimaging by [134]), and more complicated hierarchical

structures based on directed acyclic graphs can be encoded

as further developed in [5] to perform non-linear variable se-

lection.

Covers vs. covers. Set covers also classically occur in the context

of submodular function maximization, where the goal is, given certain

subsets of V , to find the least number of these that completely cover V .

Note that the main difference is that in the context of set covers con-

sidered here, the cover is considered on a potentially different set W

than V , and each element of V indexes a subset of W .

3.4 Flows

Following [98], we can obtain a family of non-decreasing submodular

set-functions (which include set covers) from multi-sink multi-source

networks. We define a weight function on a set W , which includes a

set S of sources and a set V of sinks (which will be the set on which

the submodular function will be defined). We assume that we are given

capacities, i.e., a function c from W × W to R+. For all functions

ϕ :W ×W → R, we use the notation ϕ(A,B) =
∑

k∈A, j∈B ϕ(k, j).
A flow is a function ϕ : W ×W → R+ such that (a) ϕ 6 c for all

arcs, (b) for all w ∈ W\(S ∪ V ), the net-flow at w, i.e., ϕ(W, {w}) −
ϕ({w},W ), is null, (c) for all sources s ∈ S, the net-flow at s is non-

positive, i.e., ϕ(W, {s}) − ϕ({s},W ) 6 0, (d) for all sinks t ∈ V , the

net-flow at t is non-negative, i.e., ϕ(W, {t})−ϕ({t},W ) > 0. We denote
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Fig. 3.5: Left: Groups corresponding to a hierarchy. Right: network flow

interpretation of same submodular function (see Section 3.4). When

these groups have unit weights (i.e., D(G) = 1 for these groups and

zero for all others), then the submodular function F (A) is equal to the

cardinality of the union of all ancestors of A. When applied to sparsity-

inducing norms, this leads to supports that select a variable only after

all of its ancestors have been selected (see applications in [76]).

by F the set of flows.

For A ⊂ V (the set of sinks), we define

F (A) = max
ϕ∈F

ϕ(W,A) − ϕ(A,W ),

which is the maximal net-flow getting out of A. From the max-

flow/min-cut theorem (see, e.g., [29]), we have immediately that

F (A) = min
X∈W, S⊂X, A⊂W\X

c(X,W\X).

One then obtain that F is submodular (as the partial minimization

of a cut function, see Prop. B.4) and non-decreasing by construction.

One particularity is that for this type of submodular non-decreasing

functions, we have an explicit description of the intersection of the

positive orthant and the submodular polyhedron (potentially simpler

than through the supporting hyperplanes {s(A) = F (A)}). Indeed,



3.4. Flows 39

s ∈ R
p
+ belongs to P (F ) if and only if, there exists a flow ϕ ∈ F such

that for all k ∈ V , sk = ϕ(W, {k}) − ϕ({k},W ) is the net-flow getting

out of k.

Similarly to other cut-derived functions, there are dedicated algo-

rithms for proximal methods and submodular minimization [63]. See

also Section 6.1 for a general divide-and-conquer strategy for solving

separable optimization problems based on a sequence of submodular

function minimization problems (here, min cut/max flow problems).

Flow interpretation of set-covers. Following [95], we now show

that the submodular functions defined in this section includes the

ones defined in Section 3.3. Indeed, consider a non-negative function

D : 2V → R+, and define F (A) =
∑

G⊂V, G∩A 6=∅
D(G). The Lovász

extension may be written as, for all w ∈ R
p
+ (introducing variables tG

in a scaled simplex reduced to variables indexed by G):

f(w) =
∑

G⊂V

D(G)max
k∈G

wk

=
∑

G⊂V

max
tG∈Rp

+
, tG

V \G
=0, tG(G)=D(G)

w⊤tG

= max
tG∈Rp

+
, tG

V \G
=0, tG(G)=D(G), G⊂V

∑

G⊂V

w⊤tG

= max
tG∈Rp

+
, tG

V \G
=0, tG(G)=D(G), G⊂V

∑

k∈V

(

∑

G⊂V, G∋k
tGk

)

wk.

Because of the representation of f as a maximum of linear functions

shown in Prop. 2.2, s ∈ P (F ) ∩ R
p
+, if and only there exists tG ∈

R
p
+, t

G
V \G = 0, tG(G) = D(G) for all G ⊂ V , such that for all k ∈V,

sk =
∑

G⊂V, G∋k t
G
k . This can be given a network flow interpretation

on the graph composed of a single source, one node per subset G ⊂ V

such that D(G) > 0, and the sink set V . The source is connected to

all subsets G, with capacity D(G), and each subset is connected to the

variables it contains, with infinite capacity. In this representation, tGk
is the flow from node corresponding to G, to the node corresponding

to the sink node k; and sk =
∑

G⊂V t
G
k is the net-flow in the sink k.

Thus, s ∈ P (F )∩R
p
+ if and only if, there exists a flow in this graph so
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that the net-flow getting out of k is sk, which corresponds exactly to a

network flow submodular function.

We give examples of such networks in Figure 3.3 and Figure 3.4.

This reinterpretation allows the use of fast algorithms for proximal

problems (as there exists fast algorithms for maximum flow problems).

The number of nodes in the network flow is the number of groupsG such

that D(G) > 0, but this number may be reduced in some situations.

See [95, 96] for more details on such graph constructions (in particular

in how to reduce the number of edges in many situations).

Application to machine learning. Applications to sparsity-

inducing norms (as decribed in Section 3.3) lead to applications to hier-

archical dictionary learning and topic models [76], structured priors for

image denoising [76, 77], background subtraction [95], and bioinformat-

ics [71, 82]. Moreover, many submodular functions may be interpreted

in terms of flows, allowing the use of fast algorithms (see, e.g., [63, 2]

for more details).

3.5 Entropies

Given p random variables X1, . . . ,Xp which all take a finite number of

values, we define F (A) as the joint entropy of the variables (Xk)k∈A
(see, e.g., [33]). This function is submodular because, if A ⊂ B and

k /∈ B, F (A ∪ {k}) − F (A) = H(XA,Xk) − H(XA) = H(Xk|XA) >

H(Xk|XB) = F (B ∪ {k}) − F (B) (by the data processing inequal-

ity [32]). Moreover, its symmetrization2 leads to the mutual informa-

tion between variables indexed by A and variables indexed by V \A.
This can be extended to any distribution by considering differential

entropies. One application is for Gaussian random variables, leading to

the submodularity of the function defined through F (A) = log detQAA,

for some positive definite matrix Q ∈ R
p×p (see further related exam-

ples in Section 3.6).

2For any submodular function F , one may defined its symmetrized version as G(A) =
F (A) + F (V \A)− F (V ), which is submodular and symmetric. See further details in Sec-
tion 7.4 and Appendix B.2.
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Entropies are less general than submodular functions. En-

tropies of discrete variables are non-increasing, non-negative submodu-

lar set-functions. However, they are more restricted than this, i.e., they

satisfy other properties which are not satisfied by all submodular func-

tions [139]. Note also that it is not known if their special structure can

be fruitfully exploited to speed up certain of the algorithms presented

in Section 7.

Applications to probabilistic modelling. In the context of prob-

abilistic graphical models, entropies occur in particular in algorithms

for structure learning: indeed, for directed graphical models, given

the directed acyclic graph, the minimum Kullback-Leibler divergence

between a given distribution and a distribution that factorizes into

the graphical model may be expressed in closed form through en-

tropies [89, 61]. Applications of submodular function optimization may

be found in this context, with both maximization [105] for learn-

ing bounded-treewidth graphical model and minimization for learning

naive Bayes models [86], or both (i.e., minimizing differences of sub-

modular functions, as shown in Section 8) for discriminative learning

of structure [106].

Entropies also occur in experimental design in Gaussian linear mod-

els [125]. Given a design matrix X ∈ R
n×p, assume that the vector

y ∈ R
n is distributed as Xw + σε, where w has normal prior distribu-

tion with mean zero and covariance matrix σ2λ−1I, and ε ∈ R
n is a

standard normal vector. The posterior distribution of w given y is nor-

mal with mean λ−1σ2X(σ2λ−1X⊤X + σ2I)−1y and covariance matrix

λ−1σ2I − λ−2σ4X(σ2λ−1X⊤X + σ2I)−1X⊤ = λ−1σ2
[

I − X(X⊤X +

λI)−1X⊤] = λ−1σ2
[

I − (XX⊤ + λI)−1XX⊤] = σ2(XX⊤ + λI)−1.

The posterior entropy of w given y is thus equal (up to constants) to

n log σ2 − log det(XX⊤ + λI). If only the observations in A are ob-

served, then the posterior entropy of w given yA is equal to |A| log σ2−
log det(XAX

⊤
A + λI), which is supermodular because the entropy of a

Gaussian random variable is the logarithm of its determinant. In ex-

perimental design, the goal is to select the set A of observations so

that the posterior entropy of w given yA is minimal (see, e.g., [43]),

and is thus equivalent to maximizing a submodular function (for which
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forward selection has theoretical guarantees, see Section 8.2). Note the

difference with subset selection (Section 3.7) where the goal is to select

columns of the design matrix instead of rows.

Application to semi-supervised clustering. Given p data points

x1, . . . , xp in a certain set X, we assume that we are given a Gaus-

sian process (fx)x∈X. For any subset A ⊂ V , then fxA
is normally

distributed with mean zero and covariance matrix KAA where K is

the p × p kernel matrix of the p data points, i.e., Kij = k(xi, xj)

where k is the kernel function associated with the Gaussian process

(see, e.g., [120]). We assume a modular prior distribution on subset

of the form p(A) ∝
∏

k∈A ηk
∏

k/∈A(1 − ηk) (i.e., each element k has a

certain prior probability ηk of being present, with all decisions being

statistically independent).

Once a set A is selected, we only assume that we want to model

the two parts, A and V \A as two independent Gaussian processes with

covariance matrices ΣA and ΣV \A. In order to maximize the likelihood

under the joint Gaussian process, the best estimates are ΣA = KAA and

ΣV \A = KV \A,V \A. This leads to the following negative log-likelihood

I(fA, fV \A)−
∑

k∈A
log ηk −

∑

k∈V \A
log(1− ηk),

where I(fA, fV \A) is the mutual information between two Gaussian pro-

cesses (see similar reasoning in the context of independent component

analysis [19]).

We thus need to minimize a modular function plus a mutual in-

formation between the variables indexed by A and the ones indexed

by V \A, which is submodular and symmetric. Thus in this Gaussian

process interpretation, clustering may be cast as submodular function

minimization. This probabilistic interpretation extends the minimum

description length interpretation of [108] to semi-supervised clustering.

Note here that similarly to the unsupervised clustering framework

of [108], the mutual information may be replaced by any symmetric

submodular function, such as a cut function obtained from appropri-

ately defined weigths. In Figure 3.6, we consider X = R
2 and sample

points from a traditional distribution in semi-supervised clustering, i.e.,
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Fig. 3.6: Examples of semi-supervised clustering : (left) observations,

(middle) results of the semi-supervised clustering algorithm based on

submodular function minimization, with eight labelled data points,

with the mutual information, (right) same procedure with the cut func-

tion.

twe “two moons” dataset. We consider 100 points and 8 randomly cho-

sen labelled points, for which we impose ηk ∈ {0, 1}, the rest of the

ηk being equal to 1/2 (i.e, we impose a hard constraint on the labelled

points to be on the correct clusters). We consider a Gaussian kernel

k(x, y) = exp(−α‖x−y‖22), and we compare two symmetric submodular

functions: mutual information and the weighted cuts obtained from the

same matrix K (note that the two functions use different assumptions

regarding the kernel matrix, positive definiteness for the mutual infor-

mation, and pointwise positivity for the cut). As shown in Figure 3.6,

by using more than second-order interactions, the mutual information

is better able to capture the structure of the two clusters. This ex-

ample is used as an illustration and more experiments and analysis

would be needed to obtain sharper statements. In Section 9, we use

this example for comparing different submodular function minimiza-

tion procedures. Note that even in the case of symmetric submodular

functions F , where more efficient algorithms in O(p3) for submodular

function minimization (SFM) exist [117] (see also Section 7.4), the min-

imization of functions of the form F (A)− z(A), for z ∈ R
p is provably

as hard as general SFM [117].
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3.6 Spectral functions of submatrices

Given a positive semidefinite matrix Q ∈ R
p×p and a real-valued func-

tion h from R+ to R, one may define the matrix function [54] Q 7→ h(Q)

defined on positive semi-definite matrices by leaving unchanged the

eigenvectors of Q and applying h to each of the eigenvalues. This leads

to the expression of tr[h(Q)] as
∑p

i=1 h(λi) where λ1, . . . , λp are the

(nonnegative) eigenvalues of Q [66]. We can thus define the function

F (A) = tr h(QAA) for A ⊂ V . Note that for Q diagonal, we exactly

recover functions of modular functions considered in Section 3.1.

The concavity of h is not sufficient however in general to ensure the

submodularity of F , as can be seen by generating random examples

with h(λ) = λ/(λ+ 1).

Nevertheless, we know that the functions h(λ) = log(λ + t) for

t > 0 lead to submodular functions since they lead to the entropy of a

Gaussian random variable with joint covariance matrix Q+ λI. Thus,

since for ρ ∈ (0, 1), λρ = ρ sin ρπ
π

∫∞
0 log(1 + λ/t)tρ−1dt (see, e.g., [3]),

h(λ) = λρ for ρ ∈ (0, 1] is a positive linear combination of functions

that lead to non-decreasing submodular set-functions. We thus obtain

a non-decreasing submodular function.

This can be generalized to functions of the singular values of

X(A,B) where X is a rectangular matrix, by considering the fact

that singular values of a matrix X are related to the eigenvalues of
(

0 X

X⊤ 0

)

(see, e.g., [54]).

Application to machine learning (Bayesian variable selection).

As shown in [6], such functions naturally appear in the context of vari-

able selection using the Bayesian marginal likelihood (see, e.g., [52]).

Indeed, given a subset A, assume that the vector y ∈ R
n is distributed

asXAwA+σε, whereX is a design matrix in R
n×p and wA a vector with

support in A, and ε ∈ R
n is a standard normal vector; if a normal prior

with covariance matrix σ2λ−1I is imposed on wA, then the negative

log-marginal likelihood of y given A (i.e., obtained by marginalizing
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wA), is equal to (up to constants) [126]:

min
wA∈R|A|

1

2σ2
‖y−XAwA‖22 +

λ

2σ2
‖wA‖2 +

1

2
log det[σ2λ−1XAX

⊤
A + σ2I].

Thus, in a Bayesian model selection setting, in order to find the best

subset A, it is necessary to minimize with respect to w:

min
w∈Rp

1

2σ2
‖y−Xw‖22+

λ

2σ2
‖w‖2+1

2
log det[λ−1σ2XSupp(w)X

⊤
Supp(w)+σ

2I],

which, in the framework outlined in Section 2.3, leads to the submodu-

lar function F (A) = 1
2 log det[λ

−1σ2XAX
⊤
A +σ2I] = 1

2 log det[XAX
⊤
A +

λI] + n
2 log(λ

−1σ2). Note also that, since we use a penalty which is

the sum of a squared ℓ2-norm and a submodular function applied to

the support, then a direct convex relaxation may be obtained through

reweighted least-squares formulations using the ℓ2-relaxation of com-

binatorial penalties presented in Section 2.3 (see also [115]). See also

related simulation experiments for random designs from the Gaussian

ensemble in [6].

Note that a traditional frequentist criterion is to penalize larger

subsets A by the Mallow’s CL criterion [97], which is equal to A 7→
tr(XAX

⊤
A + λI)−1XAX

⊤
A , which is not a submodular function.

3.7 Best subset selection

Following [36], we consider p random variables (covariates) X1, . . . ,Xp,

and a random response Y with unit variance, i.e., var(Y ) = 1. We

consider predicting Y linearly from X. We consider F (A) = var(Y ) −
var(Y |XA). The function F is a non-decreasing function (the condi-

tional variance of Y decreases as we observed more variables). In order

to show the submodularity of F using Prop. 1.2, we compute, for all

A ⊂ V , and i, j distinct elemetns in V \A, the following quantity:

F (A ∪ {j, k}) − F (A ∪ {j}) − F (A ∪ {k}) + F (A)

= [var(Y |XA,Xk)− var(Y |XA)]− [var(Y |XA,Xj ,Xk)− var(Y |XA,Xj)]

= −Corr(Y,Xk|XA)
2 +Corr(Y,Xk|XA,Xj)

2,

using standard arguments for conditioning variances (see more details

in [36]). Thus, the function is submodular if and only if the last quantity
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is always non-positive, i.e., |Corr(Y,Xk|XA,Xj)| 6 |Corr(Y,Xk|XA)|,
which is often referred to as the fact that the variables Xj is not a

suppressor for the variable Xk given A.

Thus greedy algorithms for maximization have theoretical guaran-

tees (see Section 8) if the assumption is met. Note however that the

condition on suppressors is rather strong, although it can be appropri-

ately relaxed in order to obtain more widely applicable guarantees for

subset selection [37].

Subset selection as the difference of two submodular func-

tions. If we consider the linear model from the end of Section 3.6,

then given a subset A, maximizing the log-likelihood with respect to

wA and σ2, we obtain a negative log-likelihood of the form:

min
wA∈R|A|,σ2∈R+

n

2
log σ2 +

1

2σ2
‖y −XAwA‖22 +

λ

2σ2
‖wA‖2

= min
σ2∈R+

n

2
log σ2 +

1

2σ2
‖y‖22 −

1

2σ2
tr y⊤XA(X

⊤
AXA + λI)−1X⊤

A y

=
n

2
log

1

n
y⊤(I −XA(X

⊤
AXA + λI)−1X⊤

A )y +
n

2

=
n

2
log y⊤(I −XA(X

⊤
AXA + λI)−1X⊤

A )y +
n

2
(1− log n)

=
n

2
log det

(

X⊤
AXA + λI X⊤

A y

y⊤XA y⊤y

)

− n

2
log det(X⊤

AXA + λI) + cst,

which is a difference of two submodular functions (see Section 8.3 for

related optimization schemes). This function is non-increasing, so in

order to perform variable selection, it is necessary to add another crite-

rion, which can be the cardinality of A; or in a Bayesian setting, we can

replace the above maximization with respect to wA by a marginaliza-

tion, which leads to an extra-term of the form 1
2 log det(X

⊤
AXA + λI),

which does not change the type of minimization problems.

Note the difference between this formulation (aiming at minimizing

a set-function directly by marginalizing out or maximizing out w) and

the one from Section 3.6 which provides a convex relaxation of the

maximum likelihood problem by maximizing the likelihood with respect

to w.
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3.8 Matroids

Given a set V , we consider a family I of subsets of V such that (a)

∅ ∈ I, (b) I1 ⊂ I2 ∈ I ⇒ I1 ∈ I, and (c) for all I1, I2 ∈ I, |I1| <
|I2| ⇒ ∃k ∈ I2\I1, I1 ∪ {k} ∈ I. The pair (V, I) is then referred to as a

matroid, with I its family of independent sets. Then, the rank function

of the matroid, defined as F (A) = maxI⊂A, A∈I |I|, is submodular.3

A classical example is the graphic matroid ; it corresponds to V

being an edge set of a certain graph, and I being the set of subsets of

edges which do not contain any cycle. The rank function ρ(A) is then

equal to p minus the number of connected components of the subgraph

induced by A.

The other classical example is the linear matroid. Given a matrixM

with p columns, then a set I is independent if and only if the columns

indexed by I are linearly independent. The rank function ρ(A) is then

the rank of the columns indexed by A (this is also an instance of func-

tions from Section 3.6 because the rank is the number of non-zero

eigenvalues, and when ρ → 0+, then λρ → 1λ>0). For more details on

matroids, see, e.g., [124].

Greedy algorithm. For matroid rank functions, extreme points of

the base polyhedron have components equal to zero or one (because

F (A ∪ {k}) − F (A) ∈ {0, 1} for any A ⊂ V and k ∈ V ), and are in-

cidence vectors of the maximal independent sets (maximal because of

the constraint s(V ) = F (V )). Thus, the greedy algorithm for maxi-

mizing linear functions on the base polyhedron may be used to find

maximum weight maximal independent sets, where a certain weight is

given to all elements of V . In this situation, the greedy algorithm is

actually greedy, that it first orders the weights of each element of V

in decreasing order and select elements of V following this order and

skipping the elements which lead to non-independent sets.

For the graphic matroid, the base polyhedron is thus the convex

3This can be shown directly using Prop. 1.1. We first show that for any A ⊂ V , and k /∈ A,
then F (A∪{k})−F (A) ∈ {0, 1} as a consequence of the property (c). Then, we only need
to show that if F (A ∪ {k}) = F (A), then for all B greater than A (and that does not
contain k), then F (B ∪ {k}) = F (B), which is a consequence of property (b).
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hull of the incidence vectors of sets of edges which form a spanning

tree, and is often referred to as the spanning tree polytope4 [25]. The

greedy algorithm is then exactly Kruskal’s algorithm to find maximum

weight spanning trees [29].

Minimizing matroid rank function minus a modular function.

General submodular functions may be minimized in polynomial time

(see Section 7), but usually with large complexity, i.e., O(p6). For func-

tions which are equal to the rank function of a matroid minus a modular

function, then algorithms have better running-time complexities, i.e.,

O(p3) [34, 109].

4Note that algorithms presented in Section 6 lead to algorithms for several operations on
this spanning tree polytopes, such as line searches and orthogonal projections.
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Properties of associated polyhedra

We now study in more details submodular and base polyhedra defined

in Section 1, as well as the symmetric independent polyhedron (which

is the unit dual ball for the norms defined in Section 2.3). We firt review

that the support functions may be computed by the greedy algorithm,

and then characterize the set of maximizers of linear functions, from

which we deduce a detailed facial structure of the base polytope B(F )

and the symmetric independence polyhedron |P |(F ).

4.1 Support functions

The next proposition completes Prop. 2.2 by computing the full sup-

port function of B(F ) and P (F ) (see [17, 16] for definitions of support

functions), i.e., computing maxs∈B(F )w
⊤s and maxs∈P (F )w

⊤s for all

possible w (with positive and/or negative coefficients). Note the differ-

ent behaviors for B(F ) and P (F ).

Proposition 4.1. (Support functions of associated polyhedra)

Let F be a submodular function such that F (∅) = 0. We have:

(a) for all w ∈ R
p, maxs∈B(F )w

⊤s = f(w),

(b) if w ∈ R
p
+, maxs∈P (F )w

⊤s = f(w),

49
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(c) if there exists j such that wj < 0, then maxs∈P (F )w
⊤s = +∞,

(d) if F is non-decreasing, for all w ∈ R
p, maxs∈|P |(F )w

⊤s = f(|w|).

Proof. The only statement left to prove beyond Prop. 2.2 and Prop. 2.5

is (c): we just need to notice that s(λ) = s0− λδj ∈ P (F ) for λ→ +∞
and s0 ∈ P (F ) and that w⊤s(λ) → +∞.

The next proposition shows necessary and sufficient conditions for

optimality in the definition of support functions. Note that Prop. 2.2

gave one example obtained from the greedy algorithm, and that we can

now characterize all maximizers. Moreover, note that the maximizer is

unique only when w has distinct values, and otherwise, the ordering of

the components of w is not unique, and hence, the greedy algorithm

may have multiple outputs (and all convex combinations of these are

also solutions). The following proposition essentially shows what is ex-

actly needed to be a maximizer. This proposition is key to deriving

optimality conditions for the separable optimization problems that we

consider in Section 5 and Section 6.

Proposition 4.2. (Maximizers of the support function of sub-

modular and base polyhedra) Let F be a submodular function such

that F (∅) = 0. Let w ∈ R
p, with unique values v1 > · · · > vm, taken

at sets A1, . . . , Am (i.e., V = A1 ∪ · · · ∪Am and ∀i ∈ {1, . . . ,m}, ∀k ∈
Ai, wk = vi). Then,

(a) if w ∈ (R∗
+)

p, s is optimal for maxs∈P (F )w
⊤s if and only if for all

i = 1, . . . ,m, s(A1 ∪ · · · ∪Ai) = F (A1 ∪ · · · ∪Ai),

(b) s is optimal for maxs∈B(F )w
⊤s if and only if for all i = 1, . . . ,m,

s(A1 ∪ · · · ∪Ai) = F (A1 ∪ · · · ∪Ai).

Proof. We first prove (a). Let Bi = A1 ∪ · · · ∪ Ai, for i = 1, . . . ,m.

From the optimization problems defined in the proof of Prop. 2.2, let

λV = vm > 0, and λBi = vi − vi+1 > 0 for i < m, with all other λA,

A ⊂ V , equal to zero. Such λ is optimal (because the dual function is

equal to the primal objective f(w)).
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Let s ∈ P (F ). We have:

∑

A⊂V

λAF (A) = vmF (V ) +

m−1
∑

i=1

F (Bi)(vi − vi+1)

= vm(F (V )− s(V )) +
m−1
∑

i=1

[F (Bi)− s(Bi)](vi − vi+1)

+vms(V ) +
m−1
∑

i=1

s(Bi)(vi − vi+1)

> vms(V ) +
m−1
∑

i=1

s(Bi)(vi − vi+1) = s⊤w.

Thus s is optimal, if and only if the primal objective value s⊤w is

equal to the optimal dual objective value
∑

A⊂V λAF (A), and thus, if

and only if there is equality in all above inequalities, hence the desired

result. The proof for (b) follows the same arguments, except that we

don’t need to show that s(V ) = F (V ), since this is always satisfied for

s ∈ B(F ), hence we don’t need vm > 0.

Note that for (a), if vm = 0 in Prop. 4.2 (i.e., we take w ∈ R
p
+ and

there is a wk equal to zero), then the optimality condition is that for

all i = 1, . . . ,m− 1, s(A1 ∪ · · · ∪Ai) = F (A1 ∪ · · · ∪Ai) (i.e., we don’t

need that s(V ) = F (V ), i.e., the optimal solution is not necessarily in

the base polyhedron).

4.2 Facial structure

In this section, we describe the facial structure of the base polyhedron.

We first review the relevant concepts for convex polytopes.

Face lattice of a convex polytope. We quickly review the main

concepts related to convex polytopes. For more details, see [56]. A con-

vex polytope is the convex hull of a finite number of points. It may be

also seen as the intersection of finitely many half-spaces (such intersec-

tions are referred to as polyhedra and are called polytopes if they are

bounded). Faces of a polytope are sets of maximizers of w⊤s for cer-

tain w ∈ R
p. Faces are convex sets whose affine hulls are intersections
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of the hyperplanes defining the half-spaces from the intersection of half-

space representation. The dimension of a face is the dimension of its

affine hull. The (p−1)-dimensional faces are often referred to as facets,

while zero-dimensional faces are its vertices. A natural order may be

defined on the set of faces, namely the inclusion order between the sets

of hyperplanes defining the face. With this order, the set of faces is

a distributive lattice [38], with appropriate notions of “join” (unique

smallest face that contains the two faces) and “meet” (intersection of

the two faces).

Dual polytope. We now assume that we consider a polytope with

zero in its interior (this can be done by projecting it onto its affine hull

and translating it appropriately). The dual polytope of C is the polar

set C◦ of the polytope C (see Appendix A). It turns out that faces of C◦

are in bijection with the faces of C, with vertices of C mapped to facets

of C◦ and vice-versa. If C is represented as the convex hull of points si,

i ∈ {1, . . . ,m}, then the polar of C is defined through the intersection

of the half-space {w ∈ R
p, s⊤i w 6 1}, for i = 1, . . . ,m. Analyses and al-

gorithms related to polytopes may always be defined or looked through

their dual polytopes. In our situation, we consider two polytopes, B(F )

for which the dual polytope is the set {w, f(w) 6 1, w⊤1V = 0} (see

an example in Figure 2.2), and the symmetric independent polytope

|P |(F ), whose dual polytope is the unit ball of the norm Ω defined in

Section 2.3. See Figure 2.3 for examples of these polytopes, and also

Section 4.3.

Faces of the base polyhedron. Given the Prop. 4.2 that provides

the maximizers of maxs∈B(F ) w
⊤s, we may now give necessary and

sufficient conditions for characterizing faces of the base polyhedron.

We first characterize when the base polyhedron B(F ) has non-empty

interior within the subspace {s(V ) = F (V )}.

Definition 4.1. (Inseparable set) Let F be a submodular function

such that F (∅) = 0. A set A ⊂ V is said separable if and only there is

a set B ⊂ A, such that B 6= ∅, B 6= A and F (A) = F (B) + F (A\B).
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If A is non separable, A is said inseparable.

Proposition 4.3. (Full-dimensional base polyhedron) Let F be

a submodular function such that F (∅) = 0. The base polyhedron has

non-empty interior in {s(V ) = F (V )} if and only if V is not separable.

Proof. If V is separable into A and V \A, then, by submodularity of F ,

for all s ∈ B(F ), we must have s(A) = F (A) (and thus also F (V \A) =
s(V \A)) and hence the base polyhedron is included in the intersection

of two affine hyperplanes, i.e., B(F ) does not have non-empty interior

in {s(V ) = F (V )}.
Since B(F ) is defined through supporting hyperplanes, it has non-

empty interior in {s(V ) = F (V )} if it is not contained in any of the

supporting hyperplances. We thus now assume that B(F ) is included

in {s(A) = F (A)}, for A as a non-empty strict subset of V . Then B(F )

can be factorized in to B(FA)×B(FA) where FA is the restriction of F

to A and FA the contraction of F on A (see definition and properties in

Appendix B.2). Indeed, if s ∈ B(F ), then sA ∈ B(FA) because s(A) =

F (A), and sV \A ∈ B(FA), because for B ⊂ V \A, sV \A(B) = s(B) =

s(A∪B)− s(A) 6 F (A∪B)−F (A). Similarly, if s ∈ B(FA)×B(FA),

then for all set B ⊂ V , s(B) = s(A∩B)+S((V \A)∩B) 6 F (A∩B)+

F (A ∪B)− F (A) 6 F (B) by submodularity, and s(A) = F (A).

This shows that f(w) = fA(wA) + fA(wV \A), which implies that

F (V ) = F (A)+F (V \A), when applied to w = 1V , i.e., V is separable.

We can now detail the facial structure of the base polyhedron, which

will be dual to the one of the polyhedron defined by {w ∈ R
p, f(w) 6

1, w⊤1V = 0} (i.e., the sub-level set of the Lovász extension projected

on a subspace of dimension p − 1). As the base polyhedron B(F ) is a

polytope in dimension p − 1 (because it is bounded and contained in

the affine hyperplane {s(V ) = F (V )}), one can define a set of faces. As

described earlier, faces are the intersections of the polyhedron B(F )

with any of its supporting hyperplanes. Supporting hyperplanes are

themselves defined as the hyperplanes {s(A) = F (A)} for A ⊂ V .
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From Prop. 4.2, faces are obtained as the intersection of B(F ) with

s(A1 ∪ · · · ∪ Ai) = F (A1 ∪ · · · ∪ Ai) for an ordered partition of V .

Together with Prop. 4.3, we can now provide characterization of the

faces of B(F ). See more details on the facial structure of B(F ) in [49].

Since the facial structure is invariant by translation, as done at the

end of Section 2.1 we may translate B(F ) by a certain vector t ∈ B(F ),

so that F may be taken to be non-negative and such that F (V ) = 0

(as done at the end of Section 2.1), which we now assume.

Proposition 4.4. (Faces of the base polyhedron) Let A1∪· · ·∪Am

be an ordered partition of V , such that for all j ∈ {1, . . . ,m}, Aj is

inseparable for the function Gj : B 7→ F (A1 ∪ · · · ∪Aj−1∪B)−F (A1∪
· · · ∪ Aj−1) defined on subsets of Aj, then the set of bases s ∈ B(F )

such that for all j ∈ {1, . . . ,m}, s(A1 ∪ · · · ∪ Ai) = F (A1 ∪ · · · ∪ Ai)

is a face of B(F ) with non-empty interior in the intersection of the m

hyperplanes (i.e., the affine hull of the face is exactly the intersection

of these m hyperplanes). Moreover, all faces of B(F ) may be obtained

this way.

Proof. From Prop. 4.2, all faces may be obtained with supporting hy-

perplanes of the form s(A1∪· · ·∪Ai) = F (A1∪· · ·∪Ai), i = 1, . . . ,m, for

a certain partition V = A1∪· · ·∪Am. Hovever, among these partitions,

only some of them will lead to an affine hull of full dimension m. From

Prop. 4.3 applied to the submodular function Gj , this only happens if

Gj has no separable sets.

Note that in the previous proposition, several ordered partitions may

lead to the exact same face. The maximal number of full-dimensional

faces of B(F ) is always less than 2p − 2 (number of non-trivial sub-

sets of V ), but this number may be reduced in general (see examples

in Figure 2.2). Moreover, the number of extreme points may also be

large, e.g., p! for the submodular function A 7→ −|A|2 (leading to the

permutohedron [49]).

Note that the previous discussion implies that we have also a char-

acterization of the faces of the dual polytope U = {w ∈ R
p, f(w) 6

1, w⊤1V = 0} (note that because we have assumed that F is non-

negative and F (V ) = 0, then f is pointwise positive and satisfies
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f(1V ) = 0). In particular, the faces of U are obtained from the faces

of B(F ) through the relationship defined in Prop. 4.2: that is, given

a face of B(F ), and all the ordered partitions of Prop. 4.4 which lead

to it, the corresponding face of U is the closure of the union of all w

that satisfies the level set constraints imposed by the different ordered

partitions. As shown in [7], the different ordered partitions all share the

same elements but with a different order, thus inducing a set of partial

constraints between the ordering of the m values w is allowed to take.

An important aspect is that the the separability criterion in

Prop. 4.4 forbids some level sets from being characteritistic of a face.

For example, for cuts in an undirected graph, this shows that all level

sets within a face must be connected components of the graph. When

the Lovász extension is used as a constraint for a smooth optimization

problems, the solution has to happen in one of the faces. Moreover,

within this face, all other affine constraints are very unlikely to happen,

unless the smooth function has some specific directions of zero gradi-

ent (unlikely with random data, for some sharper statements, see [7]).

Thus, when using the Lovász as a regularizer, only certain level sets are

likely to happen, and in the context of cut functions, only connected

sets are allowed, which is one of the justifications behind using the total

variation.

4.3 Symmetric independence polyhedron

We now assume that the function F is non-decreasing, and consider

the symmetric independence polyhedron |P |(F ), which is the unit ball

of the dual norm Ω∗ defined in Section 2.3. This polytope is dual to

the unit ball of Ω, and it it thus of interest to characterize the facial

structure of |P |(F ). We need the additional notion of stable sets.

Definition 4.2. (Stable sets) A set A ⊂ V is said stable for a sub-

modular function F , if A ⊂ B and A 6= B implies that F (A) < F (B).

We first derive the same proposition than Prop. 4.2 for the sym-

metric independence polyhedron.



56 Properties of associated polyhedra

Proposition 4.5. (Maximizers of the support function of sym-

metric independence polyhedron) Let F be a non-decreasing sub-

modular function such that F (∅) = 0. Let w ∈ R
p
∗, with unique

values for |w|, v1 > · · · > vm > 0, taken at sets A1, . . . , Am. Then

s is optimal for maxs∈|P |(F )w
⊤s if and only if for all i = 1, . . . ,m,

|s|(A1 ∪ · · · ∪Ai) = F (A1 ∪ · · · ∪Ai), and w and s have the same signs.

Proof. The proof follows the same arguments than for Prop. 4.2.

Note that in the previous proposition, if vm = 0 in Prop. 4.2 (i.e., we

take w ∈ R
p with some zero components, then the optimality condition

is that for all i = 1, . . . ,m − 1, |s|(A1 ∪ · · · ∪ Ai) = F (A1 ∪ · · · ∪ Ai)

(i.e., we don’t need that |s|(V ) = F (V ), that is, the optimal solution

is not necessarily in the base polyhedron). Moreover, the value of sk
when wk = 0 is irrelevant (given that |s| ∈ P (F )).

We can now derive a characterization of the faces of |P |(F ).

Proposition 4.6. (Faces of the symmetric independence poly-

hedron) Let C be a stable set and Let A1 ∪ · · · ∪ Am be an ordered

partition of C, such that for all j ∈ {1, . . . ,m}, Aj is inseparable for the

function Gj : B 7→ F (A1 ∪ · · · ∪Aj−1∪B)−F (A1∪ · · · ∪Aj−1) defined

on subsets of Aj , and ε ∈ {−1, 1}C , then the set of bases s ∈ B(F )

such that for all j ∈ {1, . . . ,m}, (ε◦s)(A1∪· · ·∪Ai) = F (A1∪· · ·∪Ai)

is a face of |P |(F ) with non-empty interior in the intersection of the m

hyperplanes. Moreover, all faces of |P |(F ) may be obtained this way.

Proof. The proof follows the same structure than for Prop. 4.4, but by

applying Prop. 4.5. The requirement for stability, comes from the fact

that if C is not stable, then if D is a larger set such that F (D) = F (C),

we have the additional constraint (s ◦ ε)(D\C) = 0.

The last proposition has interesting consequences for the use of

submodular functions for defining sparsity-inducing norms. Indeed, the

faces of the unit-ball of Ω are dual to the ones of the dual ball of Ω∗

(which is exactly |P |(F )). Moreover, as a consequence of Prop. 4.5,

the set C in Prop. 4.6 corresponds to the non-zero elements of w in a
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face of the unit-ball of Ω. This implies that all faces of the unit ball of

Ω will only impose non-zero patterns which are stable sets. Note here

the relationship with w 7→ F (Supp(w)), which would share the same

property; that is, when this function is used to regularize a continuous

objective function, then a stable set is always solution of the problem,

as augmenting unstable sets does not increase the value of F , but can

only increase the minimal value of the continuous objective function

because of an extra variable to optimize upon.

However, the faces of |P |(F ) are not all related to non-zero pat-

terns, and, as before, and as shown in Figure 2.3, there are additional

singularities, which may come as desired or undesired (see [115]).

Stable inseparable sets. We end the description of the structure

of |P |(F ) by noting that among the 2p − 1 constraints of the form

‖sA‖1 6 F (A) defining it, we may restrict the sets A to be stable and

inseparable. Indeed, if ‖sA‖1 6 F (A) for all stable and inseparable sets

A, then if B is not stable, then we may consider the smallest enclosing

stable set (these are stable by intersection, hence the possibility of

defining such smallest enclosing stable set) C, and we have ‖sB‖1 6

‖sC‖1, and F (B) = F (C). We thus need to show that ‖sC‖1 6 F (C)

only for stable sets. If the set C is separable into C = D1 ∪ · · · ∪
Dm, where all Di, i = 1, . . . ,m are separable, they must all be stable

(otherwise C would not be), and thus we have ‖sC‖1 = ‖sD1
‖1 + · · ·+

‖sDm‖1 6 F (D1) + · · · + F (Dm) = F (C).
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Separable optimization problems - Analysis

In this section, we consider separable convex functions and the mini-

mization of such functions penalized by the Lovász extension of a sub-

modular function. When the separable functions are all quadratic func-

tions, those problems are often referred to as proximal problems and

are often used as inner loops in convex optimization problems regular-

ized by the Lovász extension (see a brief introduction in Section 5.1

and, e.g., [28, 8] and references therein). In this section, we consider re-

lationships between separable optimization problems and general sub-

modular minimization problems, and focus on a detailed analysis of the

equivalent between these; for corresponding algorithms, see Section 6.

5.1 Convex optimization with proximal methods

In this section, we briefly review proximal methods which are convex

optimization methods particularly suited to the norms we have defined.

They essentially allow to solve the problem regularized with a new norm

at low implementation and computational costs. For a more complete

presentation of optimization techniques adapted to sparsity-inducing

norms, see [8]. Proximal-gradient methods constitute a class of first-

58
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order techniques typically designed to solve problems of the following

form [113, 11, 28]:

min
w∈Rp

g(w) + h(w), (5.1)

where g is smooth. They take advantage of the structure of Eq. (5.1)

as the sum of two convex terms, only one of which is assumed smooth.

Thus, we will typically assume that g is differentiable (and in our situ-

ation in Eq. (2.6), that the loss function ℓ is convex and differentiable),

with Lipschitz-continuous gradients (such as the logistic or square loss),

while h will only be assumed convex.

Proximal methods have become increasingly popular over the past

few years, both in the signal processing (see, e.g., [12, 137, 28] and

numerous references therein) and in the machine learning communi-

ties (see, e.g., [8] and references therein). In a broad sense, these meth-

ods can be described as providing a natural extension of gradient-based

techniques when the objective function to minimize has a non-smooth

part. Proximal methods are iterative procedures. Their basic princi-

ple is to linearize, at each iteration, the function g around the current

estimate ŵ, and to update this estimate as the (unique, by strong con-

vexity) solution of the following proximal problem:

min
w∈Rp

[

f(ŵ) + (w − ŵ)⊤f ′(ŵ) + λh(w) +
L

2
‖w − ŵ‖22

]

. (5.2)

The role of the added quadratic term is to keep the update in a neigh-

borhood of ŵ where f stays close to its current linear approximation;

L>0 is a parameter which is an upper bound on the Lipschitz constant

of the gradient f ′.
Provided that we can solve efficiently the proximal problem in

Eq. (5.2), this first iterative scheme constitutes a simple way of solv-

ing problem in Eq. (5.1). It appears under various names in the liter-

ature: proximal-gradient techniques [113], forward-backward splitting

methods [28], and iterative shrinkage-thresholding algorithm [11]. Fur-

thermore, it is possible to guarantee convergence rates for the function

values [113, 11], and after t iterations, the precision be shown to be of

order O(1/t), which should contrasted with rates for the subgradient

case, that are rather O(1/
√
t).
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This first iterative scheme can actually be extended to “acceler-

ated” versions [113, 11]. In that case, the update is not taken to be

exactly the result from Eq. (5.2); instead, it is obtained as the solution

of the proximal problem applied to a well-chosen linear combination

of the previous estimates. In that case, the function values converge

to the optimum with a rate of O(1/t2), where t is the iteration num-

ber. From [112], we know that this rate is optimal within the class

of first-order techniques; in other words, accelerated proximal-gradient

methods can be as fast as without non-smooth component.

We have so far given an overview of proximal methods, without

specifying how we precisely handle its core part, namely the computa-

tion of the proximal problem, as defined in Eq. (5.2).

Proximal Problem. We first rewrite problem in Eq. (5.2) as

min
w∈Rp

1

2

∥

∥

∥
w −

(

ŵ − 1

L
f ′(ŵ)

)

∥

∥

∥

2

2
+
λ

L
h(w).

Under this form, we can readily observe that when λ = 0, the solution

of the proximal problem is identical to the standard gradient update

rule. The problem above can be more generally viewed as an instance

of the proximal operator [100] associated with λh:

Proxλh : u ∈ R
p 7→ argmin

v∈Rp

1

2
‖u− v‖22 + λh(v).

For many choices of regularizers h, the proximal problem has a

closed-form solution, which makes proximal methods particularly effi-

cient. If Ω is chosen to be the ℓ1-norm, the proximal operator is simply

the soft-thresholding operator applied elementwise [39]. In this paper

the function h will be either the Lovász extension f of the submodular

function F , or, for non-decreasing submodular functions, the norm Ω

defined in Section 2.3. In both cases, the proximal operator is exactly

one of the separable optimization problems we consider in this section.

5.2 Optimality conditions for base polyhedra

Throughout this section, we make the simplifying assumption that

the problem is strictly convex and differentiable (but not necessar-

ily quadratic) and such that the derivatives are unbounded, but sharp
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statements could also be made in the general case. The next propo-

sition shows that by convex strong duality (see Appendix A), it is

equivalent to the maximization of a separable concave function over

the base polyhedron.

Proposition 5.1. (Dual of proximal optimization problem)

Let ψ1, . . . , ψp be p continuously differentiable strictly convex func-

tions on R such that for all j ∈ V , functions ψj are such that

supα∈R ψ
′
j(α) = +∞ and infα∈R ψ′

j(α) = −∞. Denote ψ∗
1 , . . . , ψ

∗
p their

Fenchel-conjugates (which then have full domain). The two following

optimization problems are dual of each other:

min
w∈Rp

f(w) +

p
∑

j=1

ψj(wj), (5.3)

max
s∈B(F )

−
p

∑

j=1

ψ∗
j (−sj). (5.4)

The pair (w, s) is optimal if and only if (a) sk = −ψ′
k(wk) for all

k ∈ {1, . . . , p}, and (b) s ∈ B(F ) is optimal for the maximization of

w⊤s over s ∈ B(F ) (see Prop. 4.2 for optimality conditions).

Proof. We have assumed that for all j ∈ V , functions ψj are such

that supα∈R ψ
′
j(α) = +∞ and infα∈R ψ′

j(α) = −∞. This implies that

the Fenchel-conjugates ψ∗
j (which are already differentiable because of

the strict convexity of ψj [16]) are defined and finite on R, as well

as strictly convex. We have (since strong duality applies because of

Fenchel duality, see Appendix A.2 and [16]):

min
w∈Rp

f(w) +

p
∑

j=1

ψi(wj) = min
w∈Rp

max
s∈B(F )

w⊤s+
p

∑

j=1

ψj(wj)

= max
s∈B(F )

min
w∈Rp

w⊤s+
p

∑

j=1

ψj(wj)

= max
s∈B(F )

−
p

∑

j=1

ψ∗
j (−sj),
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where ψ∗
j is the Fenchel-conjugate of ψj (which may in general have a

domain strictly included in R). Thus the separably penalized problem

defined in Eq. (5.3) is equivalent to a separable maximization over the

base polyhedron (i.e., Eq. (5.4)). Moreover, the unique optimal s for

Eq. (5.4) and the unique optimal w for Eq. (5.3) are related through

sj = −ψ′
j(wj) for all j ∈ V .

5.3 Equivalence with submodular function minimization

Following [21], we also consider a sequence of set optimization problems,

parameterized by α ∈ R:

min
A⊂V

F (A) +
∑

j∈A
ψ′
j(α). (5.5)

We denote by Aα any minimizer of Eq. (5.5). Note that Aα is a min-

imizer of a submodular function F + ψ′(α), where ψ′(α) ∈ R
p is the

vector of components ψ′
k(α), k ∈ {1, . . . , p}.

The key property we highlight in this section is that, as shown

in [21], solving Eq. (5.3), which is a convex optimization problem, is

equivalent to solving Eq. (5.5) for all possible α ∈ R, which are sub-

modular optimization problems. We first show a monotonicity property

of solutions of Eq. (5.5) (following [21]).

Proposition 5.2. (Monotonicity of solutions) Under the same as-

sumptions than in Prop. 5.1, if α < β, then any solutions Aα and Aβ

of Eq. (5.5) for α and β satisfy Aβ ⊂ Aα.

Proof. We have, by optimality of Aα and Aβ :

F (Aα) +
∑

j∈Aα

ψ′
j(α) 6 F (Aα ∪Aβ) +

∑

j∈Aα∪Aβ

ψ′
j(α)

F (Aβ) +
∑

j∈Aβ

ψ′
j(β) 6 F (Aα ∩Aβ) +

∑

j∈Aα∩Aβ

ψ′
j(β),

and by summing the two inequalities and using the submodularity of F ,
∑

j∈Aα

ψ′
j(α) +

∑

j∈Aβ

ψ′
j(β) 6

∑

j∈Aα∪Aβ

ψ′
j(α) +

∑

j∈Aα∩Aβ

ψ′
j(β),
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which is equivalent to
∑

j∈Aβ\Aα(ψ′
j(β) − ψ′

j(α)) 6 0, which implies,

since for all j ∈ V , ψ′
j(β) > ψ′

j(α) (because of strict convexity), that

Aβ\Aα = ∅.

The next proposition shows that we can obtain the unique solution

of Eq. (5.3) from all solutions of Eq. (5.5).

Proposition 5.3. (Proximal problem from submodular func-

tion minimizations) Under the same assumptions than in Prop. 5.1,

given any solutions Aα of problems in Eq. (5.5), for all α ∈ R, we define

the vector u ∈ R
p as

uj = sup({α ∈ R, j ∈ Aα}).

Then u is the unique solution of the convex optimization problem in

Eq. (5.3).

Proof. Because infα∈R ψ′
j(α) = −∞, for α small enough, we must have

Aα = V , and thus uj is well-defined and finite for all j ∈ V .

If α > uj, then, by definition of uj, j /∈ Aα. This implies that

Aα ⊂ {j ∈ V, uj > α} = {u > α}. Moreover, if uj > α, there exists β ∈
(α, uj) such that j ∈ Aβ . By the monotonicity property of Prop. 5.2,

Aβ is included in Aα. This implies {u > α} ⊂ Aα.

We have for all w ∈ R
p, and β less than the smallest of (wj)− and
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the smallest of (uj)− :

f(u) +

p
∑

j=1

ψj(uj)

=

∫ ∞

0
F ({u > α})dα +

∫ 0

β
(F ({u > α}) − F (V ))dα

+

p
∑

j=1

{
∫ uj

β
ψ′
j(α)dα + ψj(β)

}

= C +

∫ ∞

β

[

F ({u > α}) +
p

∑

j=1

(1w>α)jψ
′
j(α)

]

dα

with C =

∫ β

0
F (V )dα+

p
∑

j=1

ψj(β)

6 C +

∫ ∞

β

[

F ({w > α}) +
p

∑

j=1

(1w>α)jψ
′
j(α)

]

dα by optimality of Aα,

= f(w) +

p
∑

j=1

ψj(wj).

This shows that u is the unique optimum of problem in Eq. (5.3).

From the previous proposition, we also get the following corollary,

i.e., all solutions of Eq. (5.5) may be obtained from the unique solution

of Eq. (5.3). Note that we immediately get the maximal and minimal

minimizers, but that there is no general characterization of the set of

minimizers (which is a lattice because of Prop. 7.1).

Proposition 5.4. (Submodular function minimizations from

proximal problem) Under the same assumptions than in Prop. 5.1, if

u is the unique minimizer of Eq. (5.3), then for all α ∈ R, the minimal

minimizer of Eq. (5.5) is {u > α} and the maximal minimizer is {u >

α}, that is, for any minimizers Aα, we have {u > α} ⊂ Aα ⊂ {u > α}.

Proof. From the definition of the supremum in Prop. 5.3, then we im-

mediately obtain that {u > α} ⊂ Aα ⊂ {u > α} for any minimizer

Aα. Moreover, if α is not a value taken by some uj, j ∈ V , then this



5.4. Quadratic optimization problems 65

defines uniquely Aα. If not, then we simply need to show that {u > α}
and {u > α} are indeed maximizers, which can be obtained by taking

limits of Aβ when β tends to α from below and above.

Duality gap. We can further show that for any s ∈ B(F ) and w ∈
R
p,

f(w)− w⊤s+
p

∑

j=1

{

ψj(wj) + ψ∗
j (−sj) + wjsj

}

(5.6)

=

∫ +∞

−∞

{

(F + ψ′(α))({w > α})− (s+ ψ′(α))−(V )

}

dα.

Thus, the duality gap of the separable optimization problem in

Prop. 5.1, may be written as the integral of a function of α. It turns

out that, as a consequence of Prop. 7.3 (Section 7), this function of

α is the duality gap for the minimization of the submodular function

F +ψ′(α). Thus, we obtain another direct proof of the previous propo-

sitions. Eq. (5.6) will be particularly useful when relating approximat

solution of the convex optimization problem to approximate solution

of the combinatorial optimization problem of minimizing a submodular

function (see Section 7.5).

5.4 Quadratic optimization problems

When specializing Prop. 5.1 and 5.4 to quadratic functions, we obtain

the following corollary, which shows how to obtain minimizers of F (A)+

λ|A| for all possible λ ∈ R from a single convex optimization problem:

Proposition 5.5. (Quadratic optimization problem) Let F be

a submodular function and w ∈ R
p the unique minimizer of w 7→

f(w) + 1
2‖w‖22. Then:

(a) s = −w is the point in B(F ) with minimum ℓ2-norm,

(b) For all λ ∈ R, the maximal minimizer of A 7→ F (A) + λ|A| is
{w > −λ} and the minimal minimizer of F is {w > −λ}.

One of the consequences of the last proposition is that some of the

solutions to the problem of minimizing a submodular function sub-
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ject to cardinality constraints may be obtained directly from the solu-

tion of the quadratic separable optimization problems (see more details

in [104]).

Primal candidates from dual candidates. From Prop. 5.5, given

the optimal solution s of maxs∈B(F )−1
2‖s‖22, we obtain the optimal

solution w = −s of minw∈Rp f(w) + 1
2‖w‖22. However, when using ap-

proximate algorithms such as the ones presented in Section 6, one may

actually get only an approximate dual solution s, and in this case, one

can improve on the natural candidate primal solution w = −s. In-
deed, assume that the components of s are sorted in increasing order

sj1 6 · · · 6 sjp, and denote t ∈ B(F ) the vector defined by tjk =

F ({j1, . . . , jk}) − F ({j1, . . . , jk−1}) . Then we have f(−s) = t⊤(−s),
and for any w such that wj1 > · · · > wjp , we have f(w) = w⊤t. Thus,
by minimizing w⊤t+ 1

2‖w‖22 subject to this constraint, we improve on

the choice w = −s. Note that this is exactly an isotonic regression

problem with total order, which can be solved simply and efficiently in

O(p) by the “pool adjacent violators” algorithm (see, e.g., [14]). In Sec-

tion 9, we show that this leads to much improved approximate duality

gaps.

Additional properties. Proximal problems with the square loss

exhibit further interesting properties. For example, when considering

problems of the form minw∈Rp λf(w) + 1
2‖w− z‖22, for varying λ, some

set-functions (such as the cut in the chain graph) leads to an agglom-

erative path, i.e., as λ increases, components of the unique optimal

solutions cluster together and never get separated [7].

Also, one may add an additional ℓ1-norm penalty to the regularized

quadratic separable problem defined above, and it is shown in [7] that,

for any submodular function, the solution of the optimization problem

may be obtained by soft-thresholding the result of the original proxi-

mal problem (note that this is not true for all separable optimization

problems).
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5.5 Separable problems on other polyhedra

We now show how to minimize a separable convex function on the sub-

modular polyhedron or the symmetric independent polyhedron (rather

than on the base polyhedron). We first show the following proposition

for the submodular polyhedron of any submodular function (non neces-

sarily non-decreasing), which relates the unrestricted proximal problem

with the proximal problem restricted to R
p
+.

Proposition 5.6. (Separable optimization on the submodular

polyhedron) Assume that F is submodular. Let ψj , j = 1, . . . , p be p

convex functions such that ψ∗
j is defined and finite on R. Let (v, t) be

a primal-dual optimal pair for the problem

min
v∈Rp

f(v) +
∑

k∈V
ψk(vk) = max

t∈B(F )
−

∑

k∈V
ψ∗
k(−tk).

For k ∈ V , let sk be a maximizer of −ψ∗
k(−sk) on (−∞, tk]. Define

w = v+. Then (w, s) is a primal-dual optimal pair for the problem

min
w∈Rp

+

f(w) +
∑

k∈V
ψk(wk) = max

s∈P (F )
−

∑

k∈V
ψ∗
k(−sk).

Proof. The pair (w, s) is optimal if and only if (a) wksk + ψk(wk) +

ψ∗
k(−sk) = 0, i.e., (wk, sk) is a Fenchel-dual pair for ψk, and (b) f(w) =

s⊤w. The first statement (a) is true by construction (indeed, if sk = tk,

then this is a consequence of optimality for the first problem, and if

sk < tk, then wk = (ψ∗
k)

′(−sk) = 0).

For the second statement (b), notice that s is obtained from t by

keeping the components of t corresponding to strictly positive values

of v (let K denote that subset), and lowering the ones for V \K. For

α > 0, the level sets {w > α} are equal to {v > α} ⊂ K. Thus, by

Prop. 4.2, all of these are tight for t and hence for s because these

sets are included in K, and sK = tK . This shows, by Prop. 4.2, that

s ∈ P (F ) is optimal for maxs∈P (F )w
⊤s.

Note that Prop. 5.6 involves primal-dual pairs (w, s) and (v, t), but

that we can define w from v only, and define s from t only; thus,
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primal-only views and dual-only views are possible. This also applies

to Prop. 5.7, which extends Prop. 5.6 to the symmetric independent

polyhedron (we denote by a ◦ b the pointwise product between two

vectors of same dimension).

Proposition 5.7. (Separable optimization on the symmetric

independent polyhedron) Assume that F is submodular and non-

decreasing. Let ψj , j = 1, . . . , p be p convex functions such that ψ∗
j is

defined and finite on R. Let εk ∈ {−1, 1} denote the sign of (ψ∗
k)

′(0)
(if it is equal to zero, then the sign can be −1 or 1). Let (v, t) be a

primal-dual optimal pair for the problem

min
v∈Rp

f(v) +
∑

k∈V
ψk(εkvk) = max

t∈B(F )
−

∑

k∈V
ψ∗
k(−εktk).

Let w = ε ◦ (v+) and sk be εk times a maximizer of −ψ∗
k(−sk) on

(−∞, tk]. Then (w, s) is a primal-dual optimal pair for the problem

min
w∈Rp

f(|w|) +
∑

k∈V
ψk(wk) = max

s∈|P |(F )
−

∑

k∈V
ψ∗
k(−sk).

Proof. Because f is non-decreasing with respect to each of its compo-

nent, we have:

min
w∈Rp

f(|w|) +
∑

k∈V
ψk(wk) = min

v∈Rp
+

f(v) +
∑

k∈V
ψk(εkvk).

We can thus apply Prop. 5.7 to wk 7→ ψk(εkwk), which has Fenchel

conjugate sk 7→ ψ∗
k(εksk) (because ε

2
k = 1), to get the desired result.

Applications to sparsity-inducing norms. Prop. 5.7 is particu-

larly adapted to sparsity-inducing norms defined in Section 2.3, as it de-

scribes how to solve the proximal problem for the norm Ω(w) = f(|w|).
For a quadratic function, i.e., ψk(wk) = 1

2 (wk − zk)
2 and ψ∗

k(sk) =
1
2s

2
k + skzk. Then εk is the sign of zk, and we thus have to minimize

min
v∈Rp

f(v) +
1

2

∑

k∈V
(vk − |zk|)2,
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which is the classical quadratic separable problem on the base polyhe-

dron, and select w = ε ◦ v+. Thus, proximal operators for the norm Ω

may be obtained from the proximal operator for the Lovász extension.



6

Separable optimization problems - Algorithms

In the previous section, we have analyzed a series of optimization prob-

lems which may be defined as the minimization of a separable function

on the base polyhedron. In this section, we consider algorithms to solve

these problems; most of them are based on the availability of an effi-

cient algorithm for maximizing linear functions (greedy algorithm from

Prop. 2.2). We focus on three types of algorithms. The algorithm we

present in Section 6.1 is a divide-and-conquer non-approximate method

that will recursively solve the separable optimization problems by defin-

ing smaller problems. This algorithm requires to be able to solve sub-

modular function minimization problems of the form minA F (A)−t(A),
where t ∈ R

p, and is thus applicable only when such algorithms are

available (such as in the case of cuts, flows or cardinality-based func-

tions). The next two sets of algorithms are iterative methods for con-

vex optimization on convex sets for which the support function can be

computed, and are often referred to as “Frank-Wolfe” algorithms. The

min-norm-point algorithm that we present in Section 6.2 is dedicated to

quadratic functions and converges after finitely many operations (but

with no complexity bounds), while the conditional gradient algorithms

that we consider in Section 6.3 do not exhibit finite convergence but

70
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have known convergence rates.

Note that, from the use of the algorithms presented in this section,

we can derive a series of operations on the two polyhedra, namely line

searches and orthogonal projections (see also [103]).

6.1 Decomposition algorithm for proximal problems

We now consider an algorithm for proximal problems, which is based

on a sequence of submodular function minimizations. It is based on a

divide-and-conquer strategy. We adapt the algorithm of [55] and [49,

Sec. 8.2]. Note that it can be slightly modified for problems with non-

decreasing submodular functions [55] (otherwise, Prop. 5.7 may be

used).

For simplicity, we consider strictly convex differentiable functions

ψ∗
j , j = 1, . . . , p, (so that the minimum in s is unique) and the following

recursive algorithm:

(1) Find the unique minimizer t ∈ R
p of

∑

j∈V ψ
∗
j (−tj) such that

t(V ) = F (V ).

(2) Minimize the submodular function F − t, i.e., find the largest

A ⊂ V that minimizes F (A)− t(A).

(3) If A = V , then t is optimal. Exit.

(4) Find a minimizer sA of
∑

j∈A ψ
∗
j (−sj) over s in the base

polyhedron associated to FA, the restriction of F to A.

(5) Find the unique minimizer sV \A of
∑

j∈V \A ψ
∗
j (−sj) over s

in the base polyhedron associated to the contraction FA of

F on A, defined as FA(B) = F (A∪B)−F (A), for B ⊂ V \A.
(6) Concatenate sA and sV \A. Exit.

The algorithm must stop after at most p iterations. Indeed, if A 6= V

in step 3, then we must have A 6= ∅ (indeed, A = ∅ implies that

t ∈ P (F ), which in turns implies that A = V because by construction

t(V ) = F (V ), which leads to a contradiction). Thus we actually split V

into two non-trivial parts A and V \A. Step 1 is a separable optimization

problem with one linear constraint. When ψ∗
j is a quadratic polynomial,

it may be obtained in closed form; more precisely, one may minimize
1
2‖t− z‖22 subject to t(V ) = F (V ) by taking t = F (V )

p 1V + z − 1V 1⊤V
p z.
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Proof of correctness. Let s be the output of the algorithm. We first

show that s ∈ B(F ). We have for any B ⊂ V :

s(B) = s(B ∩A) + s(B ∩ (V \A))
6 F (B ∩A) + F (A ∪B)− F (A) by definition of sA and sV \A

6 F (B) by submodularity.

Thus s is indeed in the submodular polyhedron P (F ). Moreover, we

have s(V ) = sA(A)+ sV \A(V \A) = F (A)+F (V )−F (A) = F (V ), i.e.,

s is in the base polyhedron B(F ).

Following [55], we now construct a second base s̄ ∈ B(F ) as fol-

lows: s̄A is the minimizer of
∑

j∈A ψ
∗
j (−sj) over sA in the base polyhe-

dron associated to the submodular polyhedron P (FA) ∩ {sA 6 tA}.
From Prop. B.5, the associated submodular function is HA(B) =

minC⊂B F (C) + t(A\C). We have HA(A) = minC⊂A F (C) − t(C) +

t(A) = F (A) because A is the largest minimizer of F − t. Thus, the

base polyhedron associated with HA is simply B(FA) ∩ {sA 6 tA}.
Morover, we define s̄V \A as the minimizer of

∑

j∈V \A ψ
∗
j (−sj) over

the base polyhedron B(JA) where we define the submodular function

JA on V \A as follows: JA(B) = minC⊃B F (C∪A)−F (A)−t(C)+t(B).

Then JA − t is non-decreasing and submodular (by Proposition B.6).

Moreover, JA(V \A) = F (V ) − F (A) and JA 6 FA. Finally B(FA) ∩
{sV \A > tV \A} = B(JA).

We now show that s̄ is optimal for the problem. Since s̄ has a higher

objective value than s (because s is minimized on a larger set), the base

s will then be optimal as well. In order to show optimality, we need to

show that if w denotes the vector of gradients (i.e., wk = −(ψ∗
k)

′(−s̄k)),
then s̄ is a maximizer of s 7→ w⊤s over s ∈ B(F ). Given Prop. 4.2, we

simply need to show that s̄ is tight for all level sets {w 6 α}. Since, by
construction s̄k 6 s̄q for all s ∈ A and q ∈ V \A, level sets are included

in A or in V \. Thus, by optimality of s̄A and s̄V \A, these level sets are

indeed tight, hence optimality.

Note finally that similar algorithms may be applied when we restrict

s to be integers (see, e.g., [55, 62]).
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6.2 Iterative algorithms - Exact minimization

In this section, we focus on quadratic separable problems. Note that

modifying the submodular function by adding a modular term1, we can

consider ψk = 1
2w

2
k. As shown in Prop. 5.1, minimizing f(w) + 1

2‖w‖22
is equivalent to minimizing 1

2‖s‖22 such that s ∈ B(F ).

Thus, we can minimize f(w) + 1
2‖w‖22 by computing the minimum

ℓ2-norm element of the polytope B(F ), or equivalently the orthogo-

nal projection of 0 onto B(F ). Although B(F ) may have exponentially

many extreme points, the greedy algorithm of Prop. 2.2 allows to max-

imize a linear function over B(F ) at the cost of p function evaluations.

The minimum-norm point algorithm of [135] is dedicated to such a sit-

uation, as outlined by [50]. It turns out that the minimum-norm point

algorithm can be interpreted as a standard active set algorithm for

quadratic programming, which we now describe.

Frank Wolfe algorithm as an active set algorithm. We consider

m points x1, . . . , xm in R
p and the following optimization problem:

min
η∈R+

1

2

∥

∥

∥

m
∑

i=1

ηixi

∥

∥

∥

2

2
such that η > 0, η⊤1 = 1.

In our situation, the vectors xi will be the extreme points of B(F ),

i.e., outputs of the greedy algorithm, but they will always be used

implicitly through the maximization of linear functions over B(F ). We

will exactly apply the primal active set strategy outlined in Section 16.4

of [114], which is exactly the algorithm of [135]. The active set strategy

hinges on the fact that if the set of indices j ∈ J for which ηj > 0 is

known, the solution ηJ may be obtained in closed form by computing

the affine projection on the set of points indexed by I (which can be

implemented by solving a positive definite linear system, see step 2

in the algorithm below). Two cases occur: (a) If the affine projection

happens to have non-negative components, i.e., ηJ > 0 (step 3), then

we obtain in fact the projection onto the convex hull of the points

1 Indeed, we have 1

2
‖w−z‖2

2
+f(w) = 1

2
‖w‖2

2
+(f(w)−w⊤z)+ 1

2
‖z‖2, which corresponds (up

to the irrelevant constant term 1

2
‖z‖22) to the proximal problem for the Lovász extension

of A 7→ F (A)− z(A).
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indexed by J , and we simply need to check optimality conditions and

make sure that no other point needs to enter the hull (step 5), and

potentially add it to go back to step 2. (b) If the projection is not

in the convex hull, then we make a move towards this point until we

exit the convex hull (step 4) and start again at step 2. We describe in

Figure 6.1 an example of several iterations.

(1) Initialization: We start from a feasible point η ∈ R
p
+ such

that η⊤1 = 1, and denote J the set of indices such that ηj > 0

(more precisely a subset of J such that the set of vectors

indexed by the subset is linearly independent). Typically, we

select one of the original points, and J is a singleton.

(2) Projection onto affine hull: Compute ζJ the unique min-

imizer 1
2

∥

∥

∑

j∈J ηjxj
∥

∥

2

2
such that 1⊤ηJ = 1, i.e., the orthogo-

nal projection of 0 onto the affine hull of the points (xi)i∈J .
(3) Test membership in convex hull: If ζJ > 0 (we in fact

have an element of the convex hull), go to step 5

(4) Line search: Let α ∈ [0, 1) be the largest α such that ηJ +

α(ζJ−ηJ) > 0. Let K the sets of j such that ηj+α(ζj−ηj) =
0. Replace J by J\K and η by η + α(ζ − η), and go to step

2.

(5) Check optimality: Let y =
∑

j∈J ηjxj. Compute a mini-

mizer i of y⊤xi. If y⊤xi = y⊤η, then η is optimal. Otherwise,

replace J by J ∪ {j}, and go to step 2.

The previous algorithm terminates in a finite number of iterations

because it strictly decreases the quadratic cost function at each itera-

tion; however, there is no known bounds regarding the number of iter-

ations (see more details in [114]). Note that in pratice, the algorithm is

stopped after either (a) a certain duality gap has been achieved—given

the candidate η, the duality gap for η is equal to ‖x̄‖22+maxi∈{1,...,m} x̄i,
where x̄ =

∑m
i=1 ηixi (in the context of application to orthogonal pro-

jection on B(F ), following Section 5.4, one may get an improved duality

gap by solving an isotonic regression problem); or (b), the affine pro-

jection cannot be performed reliably because of bad condition number

(for more details regarding stopping criteria, see [135]).
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Fig. 6.1: Illustration of Frank-Wolfe minimum norm point algorithm:

(a) initialization with J = {2} (step 1), (b) check optimality (step 5)

and take J = {2, 5}, (c) compute affine projection (step 2), (d) check

optimality and take J = {1, 2, 5}, (e) perform line search (step 3) and

take J = {1, 5}, (f) compute affine projection (step 2) and obtain

optimal solution.

6.3 Iterative algorithms - Approximate minimization

In this section, we describe an algorithm strongly related to the

minimum-norm point algorithm presented in Section 7.2. This “condi-

tional gradient” algorithm is dedicated to minimization of any convex

smooth functions on the base polyhedron. Following the same argument

than for the proof of Prop. 5.1, this is equivalent to the minimization

of any convex strictly convex separable function regularized by the

Lovász extension. As opposed to the mininum-norm point algorithm,

it is not convergent in finitely many iterations; however, as shown in

Appendix A.2, it comes with approximation guarantees.

When performing optimization on the convex set B(F ), it is usu-

ally necessary to bound the convex set in some way. In our situation,
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the base polyhedron is included in the hyper-rectangle
∏

k∈V [F (V ) −
F (V \{k}), F ({k})] (as a consequence of the greedy algorithm applied

to 1{k} and −1{k}). We denote by αk the length of the interval for

variable k, i.e., αk = F ({k}) + F (V \{k}) − F (V ).

In this section, we also denote D2 =
∑p

k=1max{|F ({k})|, |F (V \{k})|}2. We then have that B(F ) is

included in the ℓ2-ball of center zero and radius D.

Conditional gradient algorithms. If g is a smooth convex function

defined on R
p with Lipschitz-continuous gradient (with constant L),

then the conditional gradient algorithm is an iterative algorithm that

will (a) start from a certain s0 ∈ B(F ), and (b) iterate the following

procedure for t > 1: find a minimizer s̄t−1 over the (compact) polytope

B(F ) of the Taylor expansion of g around st−1, i.e, s 7→ g(st−1) +

g′(st−1)
⊤(s − st−1), and perform a step towards s̄t−1, i.e., compute

st = ωt−1s̄t−1 + (1− ωt−1)st−1.

There are several strategies for computing ωt−1. The first is to take

ωt−1 = 1/t [41, 72], while the second one is to perform a line search on

the quadratic upper-bound on g obtained from the L-Lipschitz conti-

nuity of g (see Appendix A.2 for details). They both exhibit the same

upper bound on the sub-optimality of the iterate st, together with

g′(wt) playing the role of a certificate of optimality. More precisely, we

have for the line search method (see Appendix A.2):

g(st)− min
s∈B(F )

g(s) 6
L
∑p

k=1 α
2
k

t+ 1
,

and the computable quantity maxs∈B(F ) g
′(st)⊤(s− st) provides a cer-

tificate of optimality, that is, we always as g(st) − mins∈B(F ) g(s) 6

maxs∈B(F ) g
′(st)⊤(s−st), and the latter quantity has (up to constants)

the same convergence rate. Note that while this certificate comes with

an offline approximation guarantee, it can be significantly improved,

following Section 5.4, by solving an appropriate isotonic regression

problem (see simulations in Section 9).

In Figure 6.2, we consider the conditional gradient algorithm (with

line search) for the quadratic problem considered in Section 6.2. These

two algorithms are very similar as they both consider a sequence of
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extreme points of B(F ) obtained from the greedy algorithm, but they

differ in the following way: the min-norm-point algorithm is finitely

convergent but with no convergence rate, while the conditional gradi-

ent algorithm is not finitely convergent, but with a convergence rate.

Moreover, the cost per iteration for the min-norm-point algorithm is

much higher as it requires linear system inversions. In context where

the function F is cheap to evaluate, this may become a computational

bottleneck.

Subgradient descent algorithm. Under the same assumption as

before, the Fenchel conjugate of g is strongly convex with constant 1/L

(see Appendix A.2 for the definition of strong convexity). Moreover, we

may restrict optimization to the ball of radius D (if g is D-Lipschitz-

continuous). We can thus apply the subgradient descent algorithm de-

scribed in Appendix A.2, with iteration wt = wt−1 − 1
t

[

(g∗)′(wt−1) +

s̄t−1

]

(where s̄t−1 is a subgradient of f at wt−1, i.e., a maximiser of

s⊤wt−1 over s ∈ B(F )), and obtain a convergence rate

g∗(xt)− min
u∈{0,...,t}

g∗(xu) 6
LD2

2

1 + log t

t
.

The convergence rate is similar to the one for the conditional gradient,

but these are only upper bounds, and, as shown in the experiments,

the conditional gradient is faster. Note moreover, that when applied

to quadratic functions, the subgradient algorithm is then equivalent to

applying a conditional gradient algorithm with no line search to the

dual problem (and a constant step size); indeed, we may rewrite the

recursion as (−wt) = (−wt−1) +
1
t

[

s̄t−1 − (−wt−1)
]

, i.e., −wt is the

iterate of a conditional gradient algorithm.
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Fig. 6.2: Illustration of Frank-Wolfe conditional gradient algorithm:

starting from the inialization (a), in steps (b),(d),(f),(h), an extreme

point on the polytope is found an in steps (c),(e),(g),(i), a line search

is performed. Note the oscillations to converge to the optimal point

(especially compared to Figure 6.1).
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Submodular function minimization

Several generic algorithms may be used for the minimization of a sub-

modular function. They are all based on a sequence of evaluations of

F (A) for certain subsets A ⊂ V . For specific functions, such as the ones

defined from cuts or matroids, faster algorithms exist (see, e.g., [51, 62],

Section 3.2 and Section 3.8). For other special cases, such as functions

obtained as the sum of functions that depend on the intersection with

small subsets of V , faster algorithms also exist (see, e.g., [130, 83]).

Submodular function minimization algorithms may be divided in

two main categories: exact algorithms aim at obtaining a global mini-

mizer, while approximate algorithms only aim at obtaining an approx-

imate solution, that is, a set A such that F (A) − minB⊂V F (B) 6 ε,

where ε is as small as possible. Note that if ε is less than the minimal

absolute difference δ between non-equal values of F , then this leads

to an exact solution, but that in many cases, this difference δ may be

arbitrarily small.

An important practical aspect of submodular function minimization

is that most algorithms come with online approximation guarantees;

indeed, because of a duality relationship detailed in Section 7.1, in a

very similar way to convex optimization, a base s ∈ B(F ) may serve as a

79
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certificate for optimality. Note that all algorithms except the minimum-

norm-point algorithm from Section 7.2 come with offline approximation

guarantees.

In Section 7.3, we review combinatorial algorithms for submodular

function minimization that come with complexity bounds. Those are

however not used in practice in particular due to their high theoretical

complexity (i.e., O(p6)), except for the particular class of posimodular

functions, where algorithms scale as O(p3) (see Section 7.4).

In Section 7.5, we describe optimization algorithms based on sepa-

rable optimization problems regularized by the Lovász extension. Using

directly the equivalence presented in Prop. 2.4, we can minimize the

Lovász extension f on the hypercube [0, 1]p using subgradient descent

with approximate optimality for submodular function minimization of

O(1/
√
t) after t iterations. Using quadratic separable problems, we can

use the algorithms of Section 6.3 to obtain new submodular function

minimization algorithms with convergence of the convex optimization

problem at rate O(1/t), which translates through the analysis of Sec-

tion 5 to the same convergence rate of O(1/
√
t) for submodular function

minimization, although with improved behavior and better empirical

performance (see Section 7.5 and Section 9).

We also consider in Section 7.2 a formulation based on quadratic

separable problem on the base polyhedron, but using the minimum-

norm-point algorithm described in Section 6.2: this is one of the fastest

in practice, but it comes with no complexity bounds.

Note that maximizing submodular functions is a hard combinato-

rial problem in general. However, when maximizing a non-decreasing

submodular function under a cardinality constraint, the simple greedy

method allows to obtain a (1 − 1/e)-approximation [111] (see more

details in Section 8).

7.1 Minimizers of submodular functions

In this section, we review some relevant results for submodular function

minimization (for which algorithms are presented in next sections).

Proposition 7.1. (Lattice of minimizers of submodular func-
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tions) Let F be a submodular function such that F (∅) = 0. The set

of minimizers of F is a lattice, i.e., if A and B are minimizers, so are

A ∪B and A ∩B.

Proof. Given minimizers A and B of F , then, by submodularity, we

have 2minC⊂V F (C) 6 F (A ∪ B) + F (A ∩ B) 6 F (A) + F (B) =

2minC⊂V F (C), hence equality in the first inequality, which leads to

the desired result.

The following proposition shows that some form of local optimality

implies global optimality.

Proposition 7.2. (Property of minimizers of submodular func-

tions) Let F be a submodular function such that F (∅) = 0. The

set A ⊂ V is a minimizer of F on 2V if and only if A is a min-

imizer of the function from 2A to R defined as B ⊂ A 7→ F (B),

and if ∅ is a minimizer of the function from 2V \A to R defined as

B ⊂ V \A 7→ F (B ∪A)− F (A).

Proof. The set of two conditions is clearly necessary. To show that it is

sufficient, we let B ⊂ V , we have: F (A)+F (B) > F (A∪B)+F (A∩B) >

F (A)+F (A), by using the submodularity of F and then the set of two

conditions. This implies that F (A) 6 F (B), for all B ⊂ V , hence the

desired result.

The following proposition provides a useful step towards submod-

ular function minimization. In fact, it is the starting point of most

polynomial-time algorithms presented in Section 7.3. Note that sub-

modular function minimization may also be obtained from minimizing

‖s‖22 over s in the base polyhedron (see Section 5 and Section 5.4).

Proposition 7.3. (Dual of minimization of submodular func-

tions) Let F be a submodular function such that F (∅) = 0. We have:

min
A⊂V

F (A) = max
s∈B(F )

s−(V ) = F (V )− min
s∈B(F )

‖s‖1, (7.1)
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where (s−)k = min{sk, 0} for k ∈ V . Moreover, given A ⊂ V and

s ∈ B(F ), we always have F (A) > s−(V ) with equality if and only if

{s < 0} ⊂ A ⊂ {s 6 0} and A is tight for s, i.e., s(A) = F (A).

We also have

min
A⊂V

F (A) = max
s∈P (F ), s60

s(V ). (7.2)

Moreover, given A ⊂ V and s ∈ P (F ) such that s 6 0, we always have

F (A) > s(V ) with equality if and only if {s < 0} ⊂ A and A is tight

for s, i.e., s(A) = F (A).

Proof. We have, by convex duality, and Props. 2.4 and 4.1:

min
A⊂V

F (A) = min
w∈[0,1]p

f(w)

= min
w∈[0,1]p

max
s∈B(F )

w⊤s = max
s∈B(F )

min
w∈[0,1]p

w⊤s = max
s∈B(F )

s−(V ).

Strong duality indeed holds because of Slater’s condition ([0, 1]p has

non-empty interior). Since s(V ) = F (V ) for all s ∈ B(F ), we have

s−(V ) = F (V )− ‖s‖1, hence the second equality.

Moreover, we have, for all A ⊂ V and s ∈ B(F ):

F (A) > s(A) = s(A∩{s < 0})+s(A∩{s > 0}) > s(A∩{s < 0}) > s−(V ),

with equality if there is equality in the three inequalities. The first one

leads to s(A) = F (A). The second one leads to A ∩ {s > 0} = ∅, and

the last one leads to {s < 0} ⊂ A. Moreover,

max
s∈P (F ), s60

s(V ) = max
s∈P (F )

min
w>0

s⊤1V − w⊤s = min
w>0

max
s∈P (F )

s⊤1V − w⊤s

= min
1>w>0

f(1V −w) because of property (c) in Prop. 4.1,

= min
A⊂V

F (A) because of Prop. 2.4.

Finally, given s ∈ P (F ) such that s 6 0 and A ⊂ V , we have:

F (A) > s(A) = s(A ∩ {s < 0}) > s(V ),

with equality if and only if A is tight and {s < 0} ⊂ A.
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7.2 Minimum-norm point algorithm

From Eq. (5.5) or Prop. 5.4, we obtain that if we know how to minimize

f(w)+ 1
2‖w‖22, or equivalently, minimize 1

2‖s‖22 such that s ∈ B(F ), then

we get all minimizers of F from the negative components of s.

We can then apply the minimum-norm point algorithm detailed

in Section 6.2 to the vertices of B(F ), and notice that step 5 does not

require to list all extreme points, but simply to maximize (or minimize)

a linear function, which we can do owing to the greedy algorithm. The

complexity of each step of the algorithm is essentially O(p) function

evaluations and operations of order O(p3). However, there are no known

upper bounds on the number of iterations. Finally, we obtain s ∈ B(F )

as a convex combination of extreme points.

Note that once we know which values of the optimum values s (or

w) should be equal, greater or smaller, then, we obtain in closed form

all values. Indeed, let v1 > v2 > · · · > vm the m different values taken

by w, and Ai the corresponding sets such that wk = vj for k ∈ Aj .

Since we can express f(w) + 1
2‖w‖22 =

∑m
j=1

{

vj [F (A1 ∪ · · · ∪ Aj) −
F (A1 ∪ · · · ∪Aj−1)] +

|Aj |
2 c2j

}

, we then have:

vj =
−F (A1 ∪ · · · ∪Aj) + F (A1 ∪ · · · ∪Aj−1)

|Aj |
, (7.3)

which allows to compute the values vj knowing only the sets Aj (i.e.,

the ordered partition of constant sets of the solution). This shows in

particular that minimizing f(w) + 1
2‖w‖22 may be seen as a certain

search problem over ordered partitions.

7.3 Combinatorial algorithms

Most algorithms are based on Prop. 7.3, i.e., on the identity

minA⊂V F (A) = maxs∈B(F ) s−(V ). Combinatorial algorithms will usu-

ally output the subset A and a base s ∈ B(F ) such that A is tight for

s and {s < 0} ⊂ A ⊂ {s 6 0}, as a certificate of optimality.

Most algorithms, will also output the largest minimizer A of F , or

sometimes describe the entire lattice of minimizers. Best algorithms

have polynomial complexity [123, 70, 116], but still have high complex-

ity (typically O(p6) or more). Most algorithms update a sequence of
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convex combination of vertices of B(F ) obtained from the greedy al-

gorithm using a specific order. Recent algorithms [73] consider efficient

reformulations in terms of generalized graph cuts.

Note here the difference between the combinatorial algorithm which

maximizes s−(V ) and the ones based on the minimum-norm point al-

gorithm which maximizes −1
2‖s‖22 over the base polyhedron B(F ). In

both cases, the submodular function minimizer A is obtained by taking

the negative values of s. In fact, the unique minimizer of 1
2‖s‖22 is also

a maximizer of s−(V ), but not vice-versa.

7.4 Minimizing symmetric posimodular functions

A submodular function F is said symmetric if for all B ⊂ V ,

F (V \B) = F (B). By applying submodularity, get that 2F (B) =

F (V \B) + F (B) > F (V ) + F (∅) = 2F (∅) = 0, which implies that

F is non-negative. Hence its global minimum is attained at V and ∅.

Undirected cuts (see Section 3.2) are the main classical examples of

such functions.

Such functions can be minimized in time O(p3) over all non-trivial

(i.e., different from ∅ and V ) subsets of V through a simple algorithm

of Queyranne [117]. Moreover, the algorithm is valid for the regular

minimization of posimodular functions [102], i.e., of functions that sat-

isfies

∀A,B ⊂ V, F (A) + F (B) > F (A\B) + F (B\A).

These include symmetric submodular functions as well as non-

decreasing modular functions, and hence the sum of any of those (in

particular, cuts with sinks and sources, as presented in Section 3.2).

Note however that this does not include general modular functions (i.e.,

with potentially negative values); worse, minimization of functions of

the form λF (A)−z(A) is provably as hard as general submodular func-

tion minimization [117]. Therefore this O(p3) algorithm is quite specific

and may not be used for solving proximal problems with symmetric

functions.
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7.5 Approximate minimization through convex optimization

In this section, we consider two approaches to submodular function

minimization based on iterative algorithms for convex optimization: a

direct approach, which is based on minimizing the Lovász extension

directly on [0, 1]p (and thus using Prop. 2.4), and an indirect approach,

which is based on quadratic separable optimization problems (and thus

using Prop. 5.5). All these algorithms will access the submodular func-

tion through the greedy algorithm, once per iteration, with minor op-

erations inbetween.

Restriction of the problem. Given a submodular function F , if

F ({k}) < 0, then k must be in any minimizer of F , since, because of

submodularity, if it is not, then adding it would reduce the value of F .

Similarly, if F (V )− F (V \{k}) > 0, then k must in the complement of

any minimizer of F . Thus, if denote Amin the set of k ∈ V such that

F ({k}) < 0 and Amax the complement of the set of k ∈ V such that

F (V )− F (V \{k}) > 0, then we may restrict the minimization of F to

subset A such that Amin ⊂ A ⊂ Amax. This is equivalent to minimizing

the submodular function A 7→ F (A ∪Amin)− F (Amin) on Amax\Amin.

From now on, (mostly for the convergence rate described below)

we assume that we have done this restriction and that we are now

minimizing a function F so that for all k ∈ V , F ({k}) > 0 and

F (V )−F (V \{k}) 6 0. We denote by αk = F ({k})+F (V \{k})−F (V ),

which is non-negative by submodularity. Note that in practice, this re-

striction can be seamlessly done by starting regular iterative methods

from specific starting points.

Direct approach. From Prop. 2.4, we can use any convex opti-

mization algorithm to minimize f(w) on w ∈ [0, 1]p. Following [60],

we consider subgradient descent with step-size γt = D
√
2√

pt
(where

D2 =
∑

k∈V α
2
k), i.e., (a) starting from any w0 ∈ [0, 1]p, we iterate (a)

the computation of a maximiser st−1 of w⊤
t−1s over s ∈ B(F ), and (b)

the update wt = Π[0,1]p
[

wt−1 − D
√
2√

pt
st−1

]

, where Π[0,1]p is the orthogo-

nal projection onto the set [0, 1]p (which may done by thresholding the

components independently).
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The following proposition shows that in order to obtain a certified

ε-approximate set B, we need at most 4pD2

ε2
iterations of subgradient

descent (whose complexity is that of the greedy algorithm to find a

base s ∈ B(F )).

Proposition 7.4. (Submodular function minimization by sub-

gradient descent) After t steps of projected subgradient descent,

among the p sup-level sets of wt, there is a set B such that F (B) −
minA⊂V F (A) 6

Dp1/2√
2t

. Moreover, we have a certificate of optimal-

ity s̄t = 1
t+1

∑t
u=0 su, so that F (B) − (s̄t)−(V ) 6

Dp1/2√
2t

, with D2 =
∑p

k=1 α
2
k.

Proof. Given an approximate solution w so that 0 6 f(w) − f∗ 6 ε,

with f∗ = minA⊂V F (A) = minw∈[0,1]p f(w), we can sort the elements

of w in decreasing order, i.e., 1 > wj1 > · · · > wjp > 0. We then have,

with Bk = {j1, . . . , jk},

f(w)− f∗ =

p−1
∑

k=1

(F (Bk)− f∗)(wjk − wjk+1
)

+(F (V )− f∗)(wjp − 0) + (F (∅)− f∗)(1− wj1).

Thus, as the sum of positive numbers, there must be at least one Bk

such that F (Bk)−f∗ 6 ε. Therefore, given w such that 0 6 f(w)−f∗ 6
ε, there is at least on the sup-level set of w which has values for F which

is ε-approximate.

The subgradients of f , i.e., elements s of B(F ) are such that F (V )−
F (V \{k}) 6 sk 6 F ({k}).This implies that f is Lipschitz-continuous

with constant D, with D2 =
∑p

k=1 α
2
k. Since [0, 1]p is included in an

ℓ2-ball of radius
√
p/2, results from Appendix A.2 imply that we may

take ε = Dp1/2√
2t

. Moreover, as shown in the Appendix A.2, the average of

all subgradients provides a certificate of duality with the same known

convergence rate (i.e., if we use it as a certificate, it may lead to much

better certificates than the bound actually suggests).

Finally, if we replace the subgradient iteration by wt =

Π[0,1]p
[

wt−1 − Diag(α)−1
√
2√
t
st−1

]

, then this corresponds to a subgra-

dient descent algorithm on the function w 7→ f(Diag(α)−1/2w) on the
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set
∏

k∈V [0, α
1/2
k ], for which the diameter of the domain and the Lips-

chitz constant are equal to
(
∑

k∈V αk

)1/2
. We thus obtain the improved

convergence rate of
∑

k∈V αk√
2t

.

The previous proposition relies on the most simple algorithms for

convex optimization, subgradient descent, which is applicable in most

situations; however, its use is appropriate because the Lovász extension

is not differentiable, and the dual problem is also not differentiable. We

now consider separable quadratic optimization problems whose duals

are the maximization of a concave quadratic function on B(F ), which

is smooth. We can thus use the conditional gradient algorithm, with a

better convergence rate; however, as we show below, when we thresh-

old the solution to obtain a set A, we get the same scaling as before

(i.e., O(1/
√
t)), with an improved empirical behavior. See below and

experimental comparisons in Section 9.

Conditional gradient. We now consider the set-up of Section 5 with

ψk(wk) =
1

2Lk
w2
k, and thus ψ∗

k(sk) =
Lk
2 s

2
k for certain constants Lk >

0. That is, e consider the conditional gradient algorithm studied in

Section 6.3 and Appendix A.2, with g(s) = 1
2

∑

k∈V
Lks

2
k

2 : (a) starting

from any base s0 ∈ B(F ), iterate (b) the greedy algorithm to obtain

a mininizer s̄t−1 of (st−1 ◦ L)⊤s with respect to s ∈ B(F ), and (c)

perform a line search to minimize with respect to ω ∈ [0, 1], [st−1 +

ω(s̄t−1 − st−1)]
⊤ Diag(L)[st−1 + ω(s̄t−1 − st−1)].

Let αk = F ({k})+F (V \{k})−F (V ), k = 1, . . . , p, be the widths of

the hyper-rectangle enclosing B(F ). The following proposition shows

how to obtain an approximate minimizer of F .

Proposition 7.5. (Submodular function minimization by con-

ditional gradient descent) After t steps of the conditional gradient

method described above, among the p sub-level sets of L ◦ st, there is

a set B such that F (B) − minA⊂V F (A) 6 1√
t

√∑p
k=1

α2
kLk

2

∑p
k=1

1
Lk

.

Moreover, st acts as a certificate of optimality, so that F (B) −
(st)−(V ) 6 1√

t

√∑p
k=1

α2
kLk

2

∑p
k=1

1
Lk

.
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Proof. The convergence rate analysis of the conditional gradient

method leads to an ε-approximate solution with ε 6
∑p

k=1
α2
kLk

t+1 . From

Eq. (5.6), if we assume that (F +ψ′(α))({w > α})− (s+ψ′(α))−(V ) >

ε/2η for all α ∈ [−η, η], then we obtain (with ψ′(α)k = α
Lk

):

ε >

∫ +η

−η

{

(F + ψ′(α))({w > α})− (s + ψ′(α))−(V )

}

dα > ε,

which is a contradiction. Thus, there exists α ∈ [−η, η] such that 0 6

(F + ψ′(α))({w > α}) − (s + ψ′(α))−(V ) 6 ε/2η. Let A∗ a minimizer

of F . We have:

F ({w > α}) + ψ′(α)({w > α}) 6 F (A∗) + ψ′(α)(A∗) + ε/2η,

leading to F ({w > α}) 6 F (A∗) +
∑p

k=1
η
Lk

+ ε/2η. By choosing

η =
√

ε
2
∑p

k=1
L−1

k

, we obtain F ({w > α}) 6 F (A∗) +
√

ε
2

∑p
k=1 L

−1
k 6

F (A∗) +

√

∑p
k=1

α2
kLk

2(t+1)

∑p
k=1 L

−1
k . This leads to a an approximation of

1√
t

√

√

√

√

∑p
k=1 α

2
kLk

2

p
∑

k=1

1

Lk
.

In the previous proposition, two natural choices for Lk emerge.

The traditional choice Lk = 1, which leads to a convergence rate

of

√

p
∑p

k=1
α2
k

2(t+1) , and Lk ∝ α−1
k , leading to a convergence rate of

(

∑p
k=1 αk

)

1√
t+1

. Here the convergence rate is the same as for sub-

gradient descent. See Section 9 for an empirical comparison, showing a

better behavior for the conditional gradient method. As for subgradi-

ent descent, this algorithm provides certificates of optimality. Moreover,

when offline (or online) certificates of optimality ensures that we an ap-

proximate solution, because the problem is strongly convex, we obtain

also a bound
√
2ε on ‖st − s∗‖2 where s∗ is the optimal solution. In

the case where Lk = 1 for all k ∈ V , this in turns allows to ensure that

all indices k such that st >
√
2ε cannot be in a minimizer of F , while
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those indices k such that st < −
√
2ε have to be in a minimizer, which

can allow efficient reduction of the search space (although these have

not been implemented in the simulations in Section 9).

Alternative algorithms for the same separable optimization prob-

lems may be used, i.e., conditional gradient without line search [72, 40],

with similar convergence rates and behavior, but sometimes worse em-

pirical peformance, and with a weaker link with the minimum-norm-

point algorithm. Another alternative is to consider projected subgra-

dient descent in w, with the same convergence rate (because the ob-

jective function is then strongly convex. Note that as shown before

(Section 6.3), it is equivalent to a conditional gradient algorithm with

no line search.

Smoothing for special case of submodular functions. For some

specific submodular functions, it is possible to use alternative optimiza-

tion algorithms. As outlined in [130], this is appropriate when F may

be written as F (A) =
∑

G∈G FG(A ∩ G), where FG : G → R is sub-

modular, the set G of subsets of V is composed of small subsets, and

the Lovász extensions FG are explicit enough so that one may compute

a convex smooth (with Lipschitz-constant of the gradient less than L)

approximation of FG with uniform approximation error of O(1/L). In

this situation, the Lovász extension of F may be approximated within

O(1/L) by a smooth function on which an accelerated gradient tech-

nique such as described in Section 5.1 may be used with convergence

rate O(L/t2) after t iterations. When choosing L = 1/t (thus with a

fixef horizon), this leads to an approximation guarantee for submodu-

lar function minimization of the form O(1/t), instead of O(1/t2) in the

general case.



8

Other submodular optimization problems

While submodular function minimization may be solved in polyno-

mial time (see Section 7), submodular function maximization (which

includes the maximum cut problem) is NP-hard. Nevertheless, submod-

ularity may be used in order to obtain some local or global guarantees

(see Section 8.1 and Section 8.2) or to derive local descent algorithms

for more general problems (see Section 8.3).

8.1 Submodular function maximization

In this section, we consider a submodular function and the maximiza-

tion problem:

max
A⊂V

F (A). (8.1)

This problem is known to be NP-hard (note that it includes the max-

imum cut problem) [46]. However, several approximation algorithms

exist with theoretical guarantees, in particular when the function is

known to be non-negative (i.e., with non-negative values F (A) for all

A ⊂ V ). For example, it is shown in [46] that selecting a random subset

90
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already achieves at least 1/4 of the optimal value1, while local search

techniques achieve at least 1/2 of the optimal value.

Local search algorithm. Given any set A, simple local search al-

gorithms simply consider all sets of the form A ∪ {k} and A\{k} and

select the one with largest value of F . If this value is lower than F ,

then the algorithm stops and we are by definition at a local minimum.

While these local minima do not lead to any global guarantees in gen-

eral, there is an interesting added guarantee based on submodularity,

which we now prove (see more details in [53]).

Proposition 8.1. (Local minima for submodular function min-

imization) Let F be a submodular function and A ⊂ V such that for

all k ∈ A, F (A\{k}) 6 F (A) and for all k ∈ V \A, F (A∪{k}) 6 F (A).

Then for all B ⊂ A and all B ⊃ A, F (B) 6 F (A).

Proof. If B = A ∪ {i1, . . . , iq}, then

F (B)− F (A) =

q
∑

j=1

F (A ∪ {i1, . . . , ij})− F (A ∪ {i1, . . . , ij−1})

6

q
∑

j=1

F (A ∪ {ij})− F (A) 6 0,

which leads to the first result. The second one may be obtained from

the first one applied to A 7→ F (V \A) − F (V ).

Note that branch-and-bound algorithms (with worst-case exponential

time complexity) may be designed that specifically take advantage of

the property above [53].

Formulation using base polyhedron. Given F and its Lovász ex-

tension f , we have (the first equality is true since maximization of

1Such a result for a random subset shows that having theoretical guarantees do not neces-
sarily imply that an algorithm is doing anything subtle.
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convex function leads to an extreme point [121]):

max
A⊂V

F (A) = max
w∈[0,1]p

f(w),

= max
w∈[0,1]p

max
s∈B(F )

w⊤s because of Prop. 2.2,

= max
s∈B(F )

s+(V ) = max
s∈B(F )

1

2
(s + |s|)(B)

=
1

2
F (V ) +

1

2
max

s∈B(F )
‖s‖1.

Thus submodular function maximization may be seen as finding the

maximum ℓ1-norm point in the base polyhedron (which is not a convex

optimization problem). See an illustration in Figure 8.1.

8.2 Submodular function maximization with cardinality con-
straints

In this section, we consider a specific instance of submodular maxi-

mization problems, with theoretical guarantees.

Greedy algorithm for non-decreasing functions. Submodular

function maximization provides a classical example where greedy al-

gorithms do have performance guarantees. We now consider a non-

increasing submodular function F and the problem of minimizing F (A)

subject to the constraint |A| 6 k, for a certain k. The greedy algo-

rithm will start with the empty set A = ∅ and iteratively add the

element k ∈ V \A such that F (A ∪ {k}) − F (A) is maximal. It has an

(1−1/e)-performance guarantee [111] (note that this guarantee cannot

be improved in general, as it cannot for set cover, see [44]):

Proposition 8.2. (Performance guarantee for submodular

function maximization) Let F be a non-decreasing submodular

function. The greedy algorithm for maximizing F (A) subset to |A| 6 k

outputs a set A such that

F (A) > [1− (1− 1/k)k] max
B⊂V, |B|6k

F (B) > (1− 1/e) max
B⊂V, |B|6k

F (B).
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Proof. We follow the proof of [111, 136]. Let A∗ = {b1, . . . , bk} be

a maximizer of F with k elements, and aj the j-th element selected

during the greedy algorithm. We consider ρj = F ({a1, . . . , aj}) −
F ({a1, . . . , aj−1}). We have for all j ∈ {1, . . . , k}:

F (A∗)

6 F (A∗ ∪Aj−1) because F is non-decreasing,

= F (Aj−1) +
k

∑

i=1

[

F (Aj−1 ∪ {b1, . . . , bi})− F (Aj−1 ∪ {b1, . . . , bi−1})
]

6 F (Aj−1) +

k
∑

i=1

[

F (Aj−1 ∪ {bi})−F (Aj−1)
]

by submodularity,

6 F (Aj−1) + kρj by definition of the greedy algorithm,

=

j−1
∑

i=1

ρi + kρj .

We can now simply minimize
∑k

i=1 ρi subject to the k constraints de-

fined above (plus pointwise positivity), i.e.,
∑j−1

i=1 ρi + kρj > F (A∗). It
turns out, that taking all inequalities as equalities leads to an invert-

ible linear system whose solution is ρj = (k − 1)j−1k−j > 0, leading to
∑k

i=1 ρi =
∑k

i=1(1− 1/k)i−1k−1 = (1− 1/k)k, hence the desired result

since (1− 1/k)k = exp(k log(1− 1/k)) 6 exp(k × (−1/k)) = 1/e.

Extensions. Given the previous result on cardinality constraints,

several extensions have been considered, such as knapsack constraints

or matroid constraints (see [23] and references therein). Moreover,

fast algorithms and online data-dependent bounds can be further de-

rived [99].

8.3 Difference of submodular functions

In regular continuous optimization, differences of convex functions

play an important role, and appear in various disguises, such as DC-

programming [67], concave-convex procedures [138], or majorization-

minimization algorithms [69]. They allow the expression of any contin-

uous optimization problem with natural descent algorithms based on
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upper-bounding a concave function by its tangents.

In the context of combinatorial optimization, [106] has shown that

a similar situation holds for differences of submodular functions. We

now review these properties.

Formulation of any combinatorial optimization problem. Let

F : 2V → R any set-function, and H a strictly submodular function,

i.e., a function such that

α = min
A⊂V

min
i,j∈V \A

−H(A∪{i, j})+H(A∪{i})+H(A∪{j})−H(A) > 0.

A typical example would be H(A) = −1
2 |A|2, where α = 1. If

β = min
A⊂V

min
i,j∈V \A

−F (A ∪ {i, j}) + F (A ∪ {i}) + F (A ∪ {j}) − F (A)

is non-negative, then F is submodular (see Prop. 1.2). If β < 0, then

F (A) − β
αH(A) is submodular, and thus, we have F (A) = [F (A) −

β
αH(A)] − [−β

αH(A)], which is a difference of two submodular func-

tions. Thus any combinatorial optimization problem may be seen as a

difference of submodular functions (with of course non-unique decom-

position). However, some problems, such as subset selection in Sec-

tion 3.7, or more generally discriminative learning of graphical model

structure may naturally be seen as such [106].

Optimization algorithms. Given two submodular set-functions F

and G, we consider the following iterative algorithm, starting from a

subset A:

(1) Compute modular lower-bound B 7→ s(B), of G which is

tight at A: this might be done by using the greedy algorithm

of Prop. 2.2 with w = 1A. Several orderings of components

of w may be used (see [106] for more details).

(2) Take A as any minimizer of B 7→ F (B) − s(B), using any

algorithm of Section 7.

It converges to a local minimum, in the sense that at convergence to a

set A, all sets A ∪ {k} and A\{k} have smaller function values.
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0s

B(F)

s
t B(G)

Fig. 8.1: Geometric interpretation of submodular function maximiza-

tion (left) and optimization of differences of submodular functions

(right). See text for details.

Formulation using base polyhedron. We can give a similar ge-

ometric interpretation than for submodular function maximization;

given F,G and their Lovász extensions f , g, we have:

min
A⊂V

F (A)−G(A) = min
A⊂V

min
s∈B(G)

F (A)− s(A) because of Prop. 2.2,

= min
w∈[0,1]p

min
s∈B(G)

f(w)− s⊤w because of Prop. 2.4,

= min
s∈B(G)

min
w∈[0,1]p

f(w)− s⊤w

= min
s∈B(G)

min
w∈[0,1]p

max
t∈B(F )

t⊤w − s⊤w

= min
s∈B(G)

max
t∈B(F )

min
w∈[0,1]p

t⊤w − s⊤w by strong duality,

= min
s∈B(G)

max
t∈B(F )

(t− s)−(V )

=
F (V )−G(V )

2
− 1

2
min

s∈B(G)
max

t∈B(F )
‖t− s‖1.

Thus optimization of the difference of submodular functions may be

seen as computing the Hausdorff distance (see, e.g., [101]) between

B(G) and B(F ). See an illustration in Figure 8.1.
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Experiments

In this section, we provide illustrations of the optimization algorithms

described earlier, for submodular function minimization (Section 9.1),

as well as for convex optimization problems, quadratic separable ones

such as the ones used for proximal methods or within submodular

function minimization (Section 9.2), and an application of sparsity-

inducing norms to wavelet-based estimators (Section 9.3). The Matlab

code for all these experiments may be found at http://www.di.ens.

fr/~fbach/submodular/.

9.1 Submodular function minimization

We compare several simple though effective approaches to submodular

function minimization described in Section 7, namely:

• min-norm-point: the minimum-norm-point algorithm to

maximize −1
2‖s‖22 over s ∈ B(F ), described in Section 7.2.

• subgrad-des: the projected gradient descent algorithm to

minimize f(w) over w ∈ [0, 1]p, described in Section 7.5.
• cond-grad: the conditional gradient algorithm to maximize

−1
2‖s‖22 over s ∈ B(F ), with line search, described in Sec-

96
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Fig. 9.1: Examples of semi-supervised clustering : (left) observations,

(right) results of the semi-supervised clustering algorithm based on

submodular function minimization, with eight labelled data points.

tion 7.5.
• cond-grad-1/t: the conditional gradient algorithm to max-

imize −1
2‖s‖22 over s ∈ B(F ), with step size 1/t, described in

Section 7.5.
• cond-grad-w: the conditional gradient algorithm to maxi-

mize −1
2s

⊤Diag(α)−1s over s ∈ B(F ), with line search.

From all these algorithms, we look for the sub-level sets of s to obtain

the best value for the set-function F . We also use the base s ∈ B(F )

as a certificate for optimality, through F (A)− s−(V ) (see Prop. 7.3).

We test these algorithms on three data sets:

• Two moons (clustering with mutual information criterion):

we generated data from a standard synthetic examples in

semi-supervised learning (see Figure 9.1) with p = 400 data

points, and 16 labelled data points, using the method pre-

sented in Section 3.5 (based on the mutual information be-

tween two Gaussian processes), with a Gaussian-RBF kernel.
• Genrmf-wide and Genrmf-long (min-cut/max-flow stan-

dard benchmark): following [50], we generated cut problem

using the generator GENRMF available from DIMACS chal-
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lenge1. Two types of network were generated, “long” and

“wide”, with respectively p = 575 vertices and 2390 edges,

and p = 430 and 1872 edges (see [50] for more details).

In Figures 9.2, 9.4 and 9.6, we compare the five algorithms on the

three datasets. We denote by Opt the optimal value of the optimiza-

tion problem, i.e., Opt = minw∈Rp f(w) = maxs∈B(F ) s−(V ). On the

left plots, we display the dual suboptimality, i.e, log10(Opt − s−(V )),

together with the certified duality gap (in dashed). In the right plots

we display the primal suboptimality log10(F (B) − Opt). Note that in

all the plots in Figures 9.2, 9.3, 9.4, 9.5, 9.6 and 9.7, we plot the best

values achieved so far, i.e., we make all curves non-increasing.

Since all algorithms perform a sequence of greedy algorithms (for

finding maximum weight bases), we replace running times by num-

bers of iterations2. On all datasets, the achieved primal function val-

ues are in fact much lower than the certified values, a situation com-

mon in convex optimization, while this is not the case for dual val-

ues. Thus primal values F (A) are quickly very good and iterations are

just needed to sharpen the certificate of optimality. On all datasets,

the min-norm-point algorithm achieved quickest small duality gaps.

On all datasets, among the three conditional gradient algorithms, the

weighted one (with weights Lk = 1/αk) performs slightly better than

the unweighted one, and these two versions with line-search perform

significantly better than the algorithm with decaying step sizes. Finally,

the direct approach based on subgradient descent performs worse in the

two graph-cut examples, in particular in terms of certified duality gaps.

9.2 Separable optimization problems

In this section, we compare the iterative algorithms outlined in Sec-

tion 6 for minimization on quadratic separable optimization problems,

on the problems related to submodular function minimization from the

1The First DIMACS international algorithm implementation challenge: The core exper-
iments (1990), available at ftp://dimacs.rutgers.edu/pub/netßow/generalinfo/core.

tex.
2Only the mininum-norm-point algorithm has a non trivial cost per iteration, and in our
experiments, plots with running times would not be significantly different.
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Fig. 9.2: Submodular function minimization results for “Genrmf-wide”

example: (left) optimal value minus dual function values in log-scale

vs. number of iterations, in dashed, certified duality gap in log-scale

vs. number of iteration. (Right) Primal function values minus optimal

value in log-scale vs. number of iterations.
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Fig. 9.3: Separable optimization problem for “Genrmf-wide” example.

(Left) optimal value minus dual function values in log-scale vs. number

of iterations, in dashed, certified duality gap in log-scale vs. number of

iteration. (Right) Primal function values minus optimal value in log-

scale vs. number of iterations, in dashed, before the “pool-adjacent-

violator” correction.

previous section (i.e., minimizing f(w) + 1
2‖w‖22). In Figures 9.3, 9.5

and 9.7, we compare three algorithms on the three datasets, namely the

mininum-norm-point algorithm, and two versions of conditional gradi-

ent (with and without line search). On the left plots, we display the

achieved quantity log10(f(w)+
1
2‖w‖22−minv∈Rp f(v)+ 1

2‖v‖22) while in
the right plots we display the logarithm of the certified duality gaps, for
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Fig. 9.4: Submodular function minimization results for “Genrmf-long”

example: (left) optimal value minus dual function values in log-scale

vs. number of iterations, in dashed, certified duality gap in log-scale

vs. number of iteration. (Right) Primal function values minus optimal

value in log-scale vs. number of iterations.

200 400 600 800
−2

0

2

4

6

number of iterations

lo
g 10

(O
P

T
 +

 ||
s|

|2 /2
)

 

 

min−norm−point
cond−grad
cond−grad−1/t

200 400 600 800
−2

0

2

4

6

number of iterations

lo
g 10

(f
(w

)+
||w

||2 /2
−

O
P

T
)

Fig. 9.5: Separable optimization problem for “Genrmf-long” example.

(Left) optimal value minus dual function values in log-scale vs. number

of iterations, in dashed, certified duality gap in log-scale vs. number of

iteration. (Right) Primal function values minus optimal value in log-

scale vs. number of iterations, in dashed, before the “pool-adjacent-

violator” correction.

the same algorithms. Since all algorithms perform a sequence of greedy

algorithms (for finding maximum weight bases), we replace running

times by numbers of iterations. As in Section 9.1, on all datasets, the

achieved primal function values are in fact much lower than the certi-

fied values, a situation common in convex optimization. On all datasets,

the min-norm-point algorithm achieved quickest small duality gaps. On
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Fig. 9.6: Submodular function minimization results for “Two moons”

example: (left) optimal value minus dual function values in log-scale

vs. number of iterations, in dashed, certified duality gap in log-scale

vs. number of iteration. (Right) Primal function values minus optimal

value in log-scale vs. number of iterations.
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Fig. 9.7: Separable optimization problem for “Two moons” example.

(Left) optimal value minus dual function values in log-scale vs. number

of iterations, in dashed, certified duality gap in log-scale vs. number of

iteration. (Right) Primal function values minus optimal value in log-

scale vs. number of iterations, in dashed, before the “pool-adjacent-

violator” correction.

all datasets, among the two conditional gradient algorithms, the ver-

sion with line-search perform significantly better than the algorithm

with decaying step sizes. Note also, that while the conditional gradi-

ent algorithm is not finitely convergent, its performance is not much

worse than the minimum-norm-point algorith, with smaller running

time complexity per iteration. Moreover, as shown on the right plots,

the “pool-adjacent-violator” correction is crucial in obtaining much im-
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proved primal candidates.

9.3 Regularized least-squares estimation

In this section, we illustrate the use of the Lovász extension in the

context of sparsity-inducing norms detailed in Section 2.3, with the

submodular function defined in Figure 3.5, which is based on a tree

structure among the p variables, and encourages variables to be selected

after their ancestors. We don’t use any weights, and thus F (A) is equal

to the cardinality of the union of all ancestors Anc(A) of nodes indexed

by elements of A.

Given a probability distribution (x, y) on [0, 1] × R, we aim to

estimate f(x) = E(Y |X = x), by a piecewise constant function.

Following [140], we consider a Haar wavelet estimator with max-

imal depth d. That is, given the Haar wavelet, defined on R as

ψ(t) = 1[0,1/2)(t) − 1[1/2,1)(t), we consider the functions ψij(t) defined

as ψij(t) = ψ(2i−1t − j), for i = 1, . . . , d and j ∈ {0, . . . , 2i−1−1},
leading to p = 2d− 1 basis functions. These functions come naturally

in a binary tree structure, as shown in Figure 9.8 for d = 3. Impos-

ing a tree-structured prior enforces that a wavelet with given support

is selected only after all larger supports are selected; this avoids the

selection of isolated wavelets with small supports.

We consider random inputs xi ∈ [0, 1], i = 1, . . . , n, from a uniform

distribution and compute yi = sin(20πx2i ) + εi, where εi is Gaussian

with mean zero and standard deviation 0.1. We consider the optimiza-

tion problem

min
w∈Rp,b∈R

1

2n

n
∑

k=1

(

yk −
d

∑

i=1

2i−1−1
∑

j=0

wijψij(xk)− b

)2

+ λR(w), (9.1)

where b is a constant term and R(w) is a regularization function. In

Figure 9.9, we compare several regularization terms, namely R(w) =
1
2‖w‖22 (ridge regression), R(w) = ‖w‖1 (Lasso) and R(w) = Ω(w) =

f(|w|) defined from the hierarchical submodular function F (A) =

Card(Anc(A)). For all of these, we select λ such that the generalization

performance is maximized, and compare the estimated functions. The

hierarchical prior leads to a lower estimation error with fewer artefacts.
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Fig. 9.8: Wavelet bynary tree (d = 3). See text for details.
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Fig. 9.9: Estimation with wavelet trees: (left) ridge regression, (middle)

Lasso, (right) hierarchical penalty. See text for details.

In this section, our goal is mainly to compare several optimization

schemes to minimize Eq. (9.1) for this particular example (for more sim-

ulations on other examples with similar conclusions, see [8, 96, 77, 7]).

We compare in Figure 9.10 three ways of computing the proximal oper-

ator (within a proximal gradient method) and one direct optimization

scheme based on subgradient descent:

• Prox-hierarchical: we use a dedicated proximal operator

based on the composition of local proximal operators [77].



104 Experiments

0 50 100
−12

−10

−8

−6

−4

−2

time (seconds)

lo
g 10

(g
(w

) 
−

 m
in

(g
))

 

 

Subgradient descent
Prox. Min−norm−point
Prox. Decomposition
Prox. Hierarchical

Fig. 9.10: Running times for convex optimization for a regularized prob-

lem: several methods are compared; see text for details.

• Prox-decomposition: we use the algorithm of Section 6.1

which uses the fact that for any vector t, F − t may be min-

imized by dynamic programming [77].
• Prox-min-norm-point: we use the generic method which

does not use any of the structure.
• subgrad-descent: we use a generic method which does not

use any of the structure, and minimize directly Eq. (9.1) by

subgdradient descent.

As expected, in Figure 9.10, we see that the most efficient algorithm

is the dedicated proximal algorithm (which is usually not available ex-

cept in particular cases like the tree-structured norm), while the meth-

ods based on submodular functions fare correctly, with an advantage

for methods using the structure (i.e., the decomposition method, which

is only applicable when submodular function minimization is efficient)

over the generic method based on the min-norm-point algorithm (which

is always applicable).



Conclusion

In this paper , we have explored various properties and applications of

submodular functions. Key concepts are the Lovász extension and the

associated submodular and base polyhedra. Given the numerous ex-

amples involving such functions, the analysis and algorithms presented

in this paper allow the unification of several results in convex opti-

mization, involving structured situations and notably sparsity-inducing

norms. Several questions related to submodular functions remain open,

such as efficient combinatorial optimization algorithms for submodu-

lar function minimization, with both good computational complexity

bounds and practical performance. Moreover, we have presented algo-

rithms for approximate submodular function minimization with con-

vergence rate of the form O(1/
√
t) where t is the number of calls to

the greedy algorithm; it would be interesting to obtain better rates or

show that this rate is optimal. Finally, submodular functions essen-

tially consider links between combinatorial optimization problems and

linear programming, or linearly constrained quadratic programming;

it would be interesting to extend submodular analysis so that more

modern convex optimization tools such as semidefinite programming.
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Review of convex analysis and optimization

In this section, we review relevant concepts from convex analysis and

optimization. For more details, see [17, 13, 16, 121].

A.1 Convex analysis

In this section, we review extended-value convex functions, Fenchel

conjugates and polar sets.

Extended-value convex functions. In this paper, we consider

functions defined on R
p with values in R ∪ {+∞}, and the domain

of f is defined to be the set of vectors in R
p such that f has finite

values. Such an “extended-value” function is said to be convex if its

domain is convex and f restricted to its domain (which is a real-valued

function) is convex.

Throughout this paper, we denote w 7→ IC(w) the indicator function

of the convex set C, defined as 0 for w ∈ C and +∞ otherwise; this

defines a convex function and allows constrained optimization problems

to be treated as unconstrained optimization problems. In this paper, we

always assume that f is a proper function (i.e., has non-empty domain).
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A function is said closed if for all α ∈ R, the set {w ∈ R
p, f(w) 6 α}

is a closed set. We only consider closed functions in this paper.

Fenchel conjugate. For any function f : Rp → R ∪ {+∞}, we may

define the Fenchel conjugate f∗ as the extended-value function from

R
p to R ∪ {+∞} defined as

f∗(s) = sup
w∈Rp

w⊤s− f(w). (A.1)

As a pointwise supremum of linear functions, f∗ is always convex

(even if f is not), and it is always closed. Moreover, if f is convex and

closed, then the biconjugate of f (i.e., f∗∗) is equal to f , i.e., for all

w ∈ R
p,

f(w) = sup
s∈Rp

w⊤s− f∗(s).

If f is not convex and closed, then the bi-conjugate is always a lower-

bound on f , i.e., for all w ∈ R
p, f∗∗(w) 6 f(w), and it is the tightest

such convex closed lower bound, often referred to as the convex envelope

(see an example in Section 2.3).

When f is convex and closed, many properties of f may be seen

from f∗ and vice-versa:

• f is strictly convex if and only if f∗ is differentiable in the

interior of its domain,
• f is µ-strongly convex (i.e., the function w 7→ f(w)− µ

2 ‖w‖22
is convex) if and only if f∗ has Lipschitz-continuous gradients
(with constant 1/µ) in the interior of its domain.

Support function. Given a convex closed set C, the support func-

tion of C is the Fenchel conjugate of IC , defined as:

∀s ∈ R
p, I∗C(s) = sup

w∈C
w⊤s.

It is always a positively homogeneous proper closed convex function.

Moreover, if f is a positively homogeneous proper closed convex func-

tion, then f∗ is the indicator function of a closed convex set.
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Proximal problems and duality. In this paper, we will consider

minimization problems of the form

min
w∈Rp

1

2
‖w − z‖22 + f(w),

where f is a positively homogeneous proper closed convex function

(with C being a convex closed set such that f∗ = IC). We then have

min
w∈Rp

1

2
‖w − z‖22 + f(w) = min

w∈Rp
max
s∈C

1

2
‖w − z‖22 +w⊤s

= max
s∈C

min
w∈Rp

1

2
‖w − z‖22 +w⊤s

= max
s∈C

1

2
‖z‖22 −

1

2
‖s − z‖22,

where the unique minima of the two problems are related through w =

s − z. Note that the inversion of the maximum and minimum were

made possible because strong duality holds in this situation (f has

domain equal to R
p). Thus the original problem is equivalent to an

orthogonal projection on C. See applications and extensions to more

general separable functions (beyond quadratic) in Section 5.

Polar sets. Given a subset C of Rp, the polar set of C is denoted C◦

and defined as:

C◦ = {s ∈ R
p, ∀w ∈ C,w⊤s 6 1}.

For any C, the polar set C◦ is a closed convex set that contains zero

in its interior. If C satifies itself these properties, then C◦◦ = C (more

generally, C◦◦ is the closure of the convex hull of C ∪ {0}). Thus, the
polar operation is a bijection between polar convex sets that contain

zero in their interior.

Given a set C, the support function f of C (i.e., the Fenchel conju-

gate of IC) is such that C◦ is the set {w ∈ R
p, f(w) 6 1}. In the context

of norms, i.e., when f is a norm, then C is the unit ball of the dual

norm (the dual norm of f , is equal to Fenchel-conjugate of the indicator

function of its unit ball, to be distinguished from the Fenchel-conjugate

of f); the two unit balls are then polar to each other.
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A.2 Convex optimization

In this section, we consider several iterative optimization algorithms

dedicated to minimizing a convex function f defined on R
p (potentially

with infinite values). See also Section 5.1 for a quick review of proximal

methods.

Subgradient descent. A subgradient of a convex function f at x ∈
R
p, is any vector g such that for all y ∈ R

p, f(y) > f(x)+ g⊤(y−x). If
we assume that f is Lipschitz-continuous (with Lipschitz constant B)

on the ℓ2-ball of radiusD (which is assume to be included in the interior

of the domain of f), then the subgradient descent algorithm consists

of (a) starting from any x0 such that ‖x0‖2 6 D and (b) iterating the

recursion

xt = ΠD(xt−1 − γtgt−1),

where gt−1 is any subgradient of f at xt−1 (with our assumption, such

gt always exists), and ΠD the orthogonal projection on the ℓ2-ball of

center zero and radius D.

If we denote f∗ = min‖x‖26D f(x), then with γt =
D

B
√
t
, we have for

all t > 0, the convergence rates

0 6 min
u∈{0,...,t}

f(xu)− f∗ 6
4DB√

t
.

The following proposition shows that we may also get a certificate

of optimality with similar guarantee.

Proposition A.1. Let f be a convex function f defined on R
n. We

assume that f is Lipschitz-continuous on K (with diameter D), with

constant B. Let xt be the t-th iterate of subgradient descent with con-

stants γt =
D

B
√
2t
, and ȳt =

1
t

∑t−1
u=0 gu. Then

0 6 min
u∈{0,...,t}

f(xu)− f∗ 6 f∗ + f∗(ȳt) + max
x∈K

−ȳ⊤t x 6
DB

√
2√

t
.

Proof. Let f∗ be the Fenchel conjugate of f , defined as f∗(y) =

maxx∈Rn x⊤y − f(x). We denote by g the support function of K, i.e.,
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g(y) = maxx∈K x⊤y. We then have

min
x∈K

f(x) = min
x∈K

max
y∈Rn

x⊤y − f∗(y) = max
y∈Rn

−f∗(y)− g(−y).

We consider the non-negative real number gap(x, y) = f(x) + f∗(y) +
g(−y).We consider the following subgradient descent iteration

xt = ΠK(xt−1 − γtyt−1) with yt−1 ∈ ∂f(xt−1),

where ΠK is the orthogonal projection on K and ∂f(xt−1) is the sub-

differential of f at xt−1.

Following standard arguments, we get for any x ∈ K (using the

contractivity of orthogonal projections):

‖xt − x‖2 6 ‖xt−1 − x‖2 + γ2t ‖yt−1‖2 − 2γt(xt−1 − x)⊤yt−1,

leading to

(xt−1 − x)⊤yt−1 6
‖xt−1 − x‖2 − ‖xt − x‖2 + γ2tB

2

2γt
.

Thus, summing from t = 1 to T , we obtain (by summing by parts):

T
∑

t=1

(xt−1 − x)⊤yt−1 6
B2

2

T
∑

t=1

γt +
1

2

T
∑

t=1

γ−1
t (‖xt−1 − x‖2 − ‖xt − x‖2)

=
B2

2

T
∑

t=1

γt +
1

2

T−1
∑

t=1

‖xt − x‖2(γ−1
t+1 − γ−1

t )

+
1

2
γ−1
1 ‖x0 − x‖2 − 1

2
γ−1
T ‖xT − x‖2.

If we further assume that γt is non-increasing and that D = diam(K),

we get

T
∑

t=1

(xt−1 − x)⊤yt−1 6
B2

2

T
∑

t=1

γt +
1

2

T−1
∑

t=1

D2(γ−1
t+1 − γ−1

t ) +
1

2
γ−1
1 D2

=
B2

2

T
∑

t=1

γt +
D2

2γT
.

This leads to, using f(x) > f(xt−1) + y⊤t−1(x− xt−1),

1

T

T
∑

t=1

[

f(xt−1)− f(x)
]

6
B2

2T

T
∑

t=1

γt +
D2

2TγT
.
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We may now apply this to x∗ any minimizer of f on K, to get the

two usual bounds

f

(

1

T

T
∑

t=1

xt−1

)

− f(x∗) 6
B2

2T

T
∑

t=1

γt +
D2

2TγT

min
t∈{1,...,T}

f(xt−1)− f(x∗) 6
B2

2T

T
∑

t=1

γt +
D2

2TγT
.

We now denote x̄t =
1
t

∑t−1
u=0 xu and ȳt =

1
t

∑t−1
u=0 yu. We have:

f∗(ȳT ) + g(−ȳT )

6
1

T

T
∑

t=1

f∗(yt−1) + g(−ȳT ) by convexity of f

=
1

T

T
∑

t=1

[

− f(xt−1) + x⊤t−1yt−1

]

+ g(−ȳT )

because xt−1, yt−1 are Fenchel-dual

= − 1

T

T
∑

t=1

f(xt−1) +
1

T

T
∑

t=1

x⊤t−1yt−1 − ȳ⊤T x for a certain x ∈ K

= − 1

T

T
∑

t=1

f(xt−1) +
1

T

T
∑

t=1

(xt−1 − x)⊤yt−1

6 − 1

T

T
∑

t=1

f(xt−1) +
B2

2T

T
∑

t=1

γt +
D2

2TγT
.

This leads to

gap(x̄T , ȳT ) = f(x̄T ) + f∗(ȳT ) + g(−ȳT ) 6
B2

2T

T
∑

t=1

γt +
D2

2TγT
.
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With γt =
αD
B
√
t
, we obtain an upper bound

B2

2T

T
∑

t=1

γt +
D2

2TγT
6

DB

2

[

α
1

T

T
∑

t=1

1√
t
+

1

α

√
T

]

6
DB

2

[

α
2

T

T
∑

t=1

(
√
t−

√
t− 1

)

+
1

α

√
T

]

6
DB

2

[

α
2√
T

+
1

α

√
T

]

6
DB

√
2√

T
with α =

1√
2
.

If we further assume that f is strongly convex with constant µ, (i.e.,

x 7→ f(x)− µ
2 ‖x‖22 is convex), then by taking γt =

1
µt , we have, for all

t > 0 [127],

0 6 min
u∈{0,...,t}

f(xu)− f∗ 6
B2

2µt

1 + log t

t
.

Conditional gradient descent. We now assume that the function

f is differentiable on a compact convex set K ⊂ R
p (with diameter D),

and that its gradient is Lipschitz-continuous with constant L. We con-

sider the following conditional gradient algorithm, which is applicable

when linear functions may be maximized efficiently over K.

(1) Initialization: Choose any x0 ∈ K, compute a minimizer

x1 ∈ K of f ′(x0)⊤x.
(2) Iteration: iterate until upper bound ε on duality gap is

reached:

(a) x̄t−1 ∈ argminx∈K f ′(xt−1)
⊤x,

(b) Compute upper bound on gap: (xt−1− x̄t−1)
′f ′(xt−1)

(c) Compute ωt−1 = min

{

1, f
′(xt−1)⊤(xt−1−x̄t−1)

LD2

}

(d) Take xt = xt−1 + ωt−1(x̄t−1 − xt−1).
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Step (2)(a) corresponds to minimizing the first order Taylor expansion

at xt−1, while step (2)(c) corresponds to performing approximate line-

search on the segment [xt−1, x̄t−1]. Combining the analysis of [40] and

[72], we have the following proposition:

Proposition A.2. For the previous algorithm with have: f(xt) −
minx∈K f(x) 6

LD2

t+1 . Moreover, there exists at least one k ∈ [2t/3, t]

such that maxx∈K(xk − x)⊤f ′(xk) 6
2LD2

t , i.e., the primal-dual pair

(xk, f
′(xk)) is a certificate of optimality ensuring at least an approxi-

mate optimality of 9LD2

2t .

Proof. Let g(z) = maxx∈K(z−x)⊤f ′(z). It is a certificate of duality for

z ∈ K. We denote ∆t = f(xt)−minx∈K f(x). We have 0 > ∆t 6 g(xt).

Moreover, following [40], we have ∆1 6
LD2

2 and

∆t 6 ∆t−1 + f ′(xt−1)
⊤(xt − xt−1) +

L

2
‖xt − xt−1‖22

= ∆t−1 + ωt−1f
′(xt−1)

⊤(x̄t−1 − xt−1) +
Lω2

t−1

2
‖x̄t−1 − xt−1‖22

6 ∆t−1 − ωt−1g(xt−1) +
LD2ω2

t−1

2

6 ∆t−1 −
1

2
min

{

g(xt−1)
2

LD2
, g(xt−1)

}

.

This implies that ∆t is non-increasing, and thus ∆t 6 ∆1 6
LD2

2 . This

implies, using ∆t−1 6 g(xt−1):

∆t 6 ∆t−1 −
1

2LD2
∆2

t−1.

By dividing by ∆t∆t−1, we get:

∆−1
t−1 6 ∆−1

t − 1

2LD2
,

and thus 2
LD2 6 ∆−1

1 6 ∆−1
t − t−1

2LD2 , which implies for any t > 1,

∆t 6
2LD2

t+ 3
6

2LD2

t
.
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Let us now assume that for all u ∈ {αt, . . . , t}, then g(xu) > βLD2

αt+3 .

We then have

∆t 6
2LD2

αt+ 3
− LD2

2

t−1
∑

u=αt

β2

(αt+ 3)2

6
2LD2

αt+ 3
− β2LD2t(1− α)

2(αt + 3)2

With α = 2/3 and β = 3, we obtain that ∆t < 0, which is a contradic-

tion. This leads to the desired result.
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Miscellaneous results on submodular functions

B.1 Conjugate functions

The next proposition computes the Fenchel conjugate of the Lovász

extensions restricted to [0, 1]p, noting that by Prop. 4.1, the regular

Fenchel conjugate of the unrestricted Lovász extension is the indicator

function of the base polyhedron (for a definition of Fenchel conjugates,

see [17, 16] and Appendix A). This allows a form of conjugacy between

set-functions and convex functions (see more details in [49]).

Proposition B.1. (Conjugate of a submodular function) Let F

be a submodular function such that F (∅) = 0. The conjugate f̃ :

R
p → R of F is defined as f̃(s) = maxA⊂V s(A) − F (A). Then, the

conjugate function f̃ is convex, and is equal to the Fenchel-conjugate

of the Lovász extension restricted to [0, 1]p. Moreover, for all A ⊂ V ,

F (A) = maxs∈Rp s(A)− f̃(s).

Proof. The function f̃ is a maximum of linear functions and thus it is

convex. We have for s ∈ R
p:

max
w∈[0,1]p

w⊤s− f(w) = max
A⊂V

s(A)− F (A) = f̃(s),

115
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because F − s is submodular and because of Prop. 2.4, which leads to

first the desired result. The last assertion is a direct consequence of the

fact that F (A) = f(1A).

B.2 Operations that preserve submodularity

In this section, we present several ways of building submodular func-

tions from existing ones. For all of these, we describe how the Lovász

extensions and the submodular polyhedra are affected. Note that in

many cases, operations are simpler in terms of submodular and base

polyhedra. Many operations such as projections onto subspaces may be

interpreted in terms of polyhedra corresponding to other submodular

functions.

We have seen in Section 3.5 that given any submodular function

F , we may define G(A) = F (A) + F (V \A)− F (V ). Then G is always

submodular and symmetric (and thus non-negative, see Section 7.4).

This symmetrization can be applied to any submodular function and in

the example of Section 3, they often lead to interesting new functions.

We now present other operations that preserve submodularity.

Proposition B.2. (Restriction of a submodular function) let

F be a submodular function such that F (∅) = 0 and A ⊂ V . The

restriction of F on A, denoted FA is a set-function on A defined as

FA(B) = F (B) for B ⊂ A. The function fA is submodular. Moreover,

if we can write the Lovász extension of F as f(w) = f(wA, wV \A),
then the Lovász extension of FA is fA(wA) = f(wA, 0). Moreover, the

submodular polyhedron P (FA) is simply the projection of P (F ) on the

components indexed by A, i.e., s ∈ P (FA) if and only if ∃t such that

(s, t) ∈ P (F ).

Proof. Submodularity and the form of the Lovász extension are

straightforward from definitions. To obtain the submodular poly-

hderon, notice that we have fA(wA) = f(wA, 0) = max(s,t)∈P (F )w
⊤
As+

0⊤t, which implies the desired result, this shows that the Fenchel-

conjugate of the Lovász extensions is the indicator function of a poly-

hedron.
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Proposition B.3. (Contraction of a submodular function) let

F be a submodular function such that F (∅) = 0 and A ⊂ V . The

contraction of F on A, denoted FA is a set-function on V \A defined

as FA(B) = F (A ∪ B) − F (A) for B ⊂ V \A. The function FA is

submodular. Moreover, if we can write the Lovász extension of F as

f(w) = f(wA, wV \A), then the Lovász extension of FA is fA(wV \A) =
f(1A, wV \A)− F (A). Moreover, the submodular polyhedron P (FA) is

simply the projection of P (F ) ∩ {s(A) = F (A)} on the components

indexed by V \A, i.e., t ∈ P (FA) if and only if ∃s ∈ P (F ) ∩ {s(A) =

F (A)}, such that sV \A = t.

Proof. Submodularity and the form of the Lovász extension are

straightforward from definitions. Let t ∈ R
|V \A|. If ∃s ∈ P (F )∩{s(A) =

F (A)}, such that sV \A = t, then we have for all B ⊂ V \A, t(B) =

t(B) + s(A) − F (A) 6 F (A ∪ B) − F (A), and hence t ∈ P (FA). If

t ∈ P (FA), then take any v ∈ B(FA) and concatenate v and t into

s. Then, for all subsets C ⊂ V , s(C) = s(C ∩ A) + s(C ∩ (V \A)) =

v(C ∩A) + t(C ∩ (V \A)) 6 F (C ∩A) +F (A∪ (C ∩ (V \A)))−F (A) =

F (C∩A)+F (A∪C)−F (A) 6 F (C) by submodularity. Hence s ∈ P (F ).

The next proposition shows how to build a new submodular func-

tion from an existing one, by partial minimization. Note the similarity

(and the difference) between the submodular polyhedra for a partial

minimum (Prop. B.4) and for the restriction defined in Prop. B.2.

Note also that contrary to convex functions, the pointwise maximum

of two submodular functions is not in general submodular (as can be

seen by considering functions of the cardinality from Section 3.1).

Proposition B.4. (Partial minimum of a submodular function)

We consider a submodular function G on V ∪W , where V ∩W = ∅

(and |W | = q), with Lovász extension g : Rp+q → R. We consider, for

A ⊂ V , F (A) = minB⊂W G(A ∪B)−minB⊂W G(B). The set-function

F is submodular and such that F (∅) = 0. Its Lovász extension is such

that for all w ∈ [0, 1]p, f(w) = minv∈[0,1]q g(w, v) − minv∈[0,1]q g(0, v).
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Moreover, if minB⊂W G(B) = 0, we have for all w ∈ R
p
+, f(w) =

minv∈Rq
+
g(w, v), and the submodular polyhedron P (F ) is the set of

s ∈ R
p such that there exists t ∈ R

q
+, such that (s, t) ∈ P (G).

Proof. Define c = minB⊂W G(B), which is independent of A. We have,

for A,A′ ⊂ V , and any B,B′ ⊂W , by definition of F :

F (A ∪A′) + F (A ∩A′)

6 −2c+G([A ∪A′] ∪ [B ∪B′]) +G([A ∩A′] ∪ [B ∩B′])

= −2c+G([A ∪B] ∪ [A′ ∪B′]) +G([A ∪B] ∩ [A′ ∪B′])

6 −2c+G(A ∪B) +G(A′ ∪B′) by submodularity.

Minimizing with respect to B and B′ leads to the submodularity of F .

Following Prop. B.1, we can get the conjugate function f̃ from the

one g̃ of G. For s ∈ R
p, we have, by definition, f̃(s) = maxA⊂V s(A)−

F (A) = maxA∪B⊂V ∪W s(A) + c−G(A ∪B) = c+ g̃(s, 0). We thus get

from Prop. B.1 that for w ∈ [0, 1]p,

f(w) = max
s∈Rp

w⊤s− f̃(s)

= max
s∈Rp

w⊤s− g̃(s, 0)− c

= max
s∈Rp

min
(w̃,v)∈[0,1]p+q

w⊤s− w̃⊤s+ g(w̃, v) − c

by applying Prop. B.1,

= min
(w̃,v)∈[0,1]p+q

max
s∈Rp

w⊤s− w̃⊤s+ g(w̃, v) − c

= min
v∈[0,1]q

g(w, v) − c by maximizing with respect to s.

Note that c = minB⊂W G(B) = minv∈[0,1]q g(0, v).
For any w ∈ R

p
+, for any λ > ‖w‖∞, we have w/λ ∈ [0, 1]p, and

thus

f(w) = λf(w/λ) = min
v∈[0,1]q

λg(w/λ, v) − cλ = min
v∈[0,1]q

g(w, λv) − cλ

= min
v∈[0,λ]q

g(w, v) − cλ.

Thus, if c = 0, we have f(w) = minv∈Rq
+
g(w, v), by letting λ → +∞.
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We then also have:

f(w) = min
v∈Rq

+

g(w, v) = min
v∈Rq

+

max
(s,t)∈P (G)

w⊤s+ v⊤t

= max
(s,t)∈P (G), t∈Rq

+

w⊤s.

The following propositions give an interpretation of the intersec-

tion between the submodular polyhedron and sets of the form {s 6 z}
and {s > z}. Prop. B.5 notably implies that for all z ∈ R

p, we have:

minB⊂V F (B)+ z(V \B) = maxs∈P (F ), s6z s(V ), which implies the sec-

ond statement of Prop. 7.3 for z = 0.

Proposition B.5. (Convolution of a submodular function and

a modular function) Let F be a submodular function such that

F (∅) = 0 and z ∈ R
p. Define G(A) = minB⊂A F (B) + z(A\B). Then

G is submodular, satisfies G(∅) = 0, and the submodular polyhedron

P (G) is equal to P (F )∩{s 6 z}. Moreover, for all A ⊂ V , G(A) 6 F (A)

and G(A) 6 z(A).

Proof. Let A,A′ ⊂ V , and B,B′ the corresponding minimizers defining

G(A) and G(A′). We have:

G(A) +G(A′)

= F (B) + z(A\B) + F (B′) + z(A′\B′)

> F (B ∪B′) + F (B ∩B′) + z(A\B) + z(A′\B′) by submodularity,

= F (B ∪B′) + F (B ∩B′) + z([A ∪A′]\[B ∪B′]) + z([A ∩A′]\[B ∩B′])

> G(A ∪A′) +G(A ∩A′) by definition of G,

hence the submodularity of G. If s ∈ P (G), then ∀B ⊂ A ⊂ V , s(A) 6

G(A) 6 F (B) + z(A\B). Taking B = A, we get that s ∈ P (F ); from

B = ∅, we get s 6 z, and hence s ∈ P (F )∩{s 6 z}. If s ∈ P (F )∩{s 6
z}, for all ∀B ⊂ A ⊂ V , s(A) = s(A\B) + s(B) 6 z(A\B) + F (B); by

minimizing with respect to B, we get that s ∈ P (G).

We get G(A) 6 F (A) by taking B = A in the definition of G(A),

and we get G(A) 6 z(A) by taking B = ∅.
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Proposition B.6. (Monotonization of a submodular function)

Let F be a submodular function such that F (∅) = 0. Define G(A) =

minB⊃A F (B) − minB⊂V F (B). Then G is submodular such that

G(∅) = 0, and the base polyhedron B(G) is equal to B(F ) ∩ {s > 0}.
Moreover, G is non-decreasing, and for all A ⊂ V , G(A) 6 F (A).

Proof. Let c = minB⊂V F (B). Let A,A′ ⊂ V , and B,B′ the corre-

sponding minimizers defining G(A) and G(A′). We have:

G(A) +G(A′) = F (B) + F (B′)− 2c

> F (B ∪B′) + F (B ∩B′)− 2c by submodularity

> G(A ∪A′) +G(A ∩A′) by definition of G,

hence the submodularity of G. It is obviously non-decreasing. We get

G(A) 6 F (A) by taking B = A in the definition of G(A). Since G is

increasing, B(G) ⊂ R
p
+ (because all of its extreme points, obtained by

the greedy algorithm, are in R
p
+). By definition of G, B(G) ⊂ B(F ).

Thus B(G) ⊂ B(F ) ∩ R
p
+. The opposite inclusion is trivial from the

definition.
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