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The fixation probability of a beneficial mutation in a geographically structured

population.

Bahram Houchmandzadeh & Marcel Vallade
CNRS & Grenoble Universités, Laboratoire Interdiciplinaire de Physique, BP87, 38402 St-Martin d’Hères Cedex.

One of the most fundamental concepts of evolutionary dynamics is the “fixation” probability, i.e.

the probability that a gene spreads through the whole population. Most natural communities are
geographically structured into habitats exchanging individuals among themselves. The topology
of the migration patterns is believed to influence the spread of a new mutant, but no general
analytical results were known for its fixation probability. We show how for large populations, the
fixation probability of a beneficial mutation can be evaluated for any migration pattern between
local communities. Specifically, we demonstrate that for large populations, in the framework of the
Voter Model of the Moran model, the fixation probability is always smaller or at best equal to the
fixation probability of a non-structured population. In the “Invasion Processes” version of the Moran
model, the fixation probability can exceed that of a non-structured population ; our method allows
migration patterns to be classified according to their amplification effect. The theoretical tool we
have developed to perform these computations uses the fixed points of the probability generating
function which are obtained by a system of second order algebraic equations.

I. INTRODUCTION.

One of the main concepts of population genetics is the
fixation probability[1] : a beneficial gene does not always
spread, but has a probability πf to take over the whole
population. The fixation probability can be computed
for a non-structured population[2, 3], where the progeny
of an individual can replace any other one in the commu-
nity with equal probability, and depends monotonously
on the fitness of the new allele and the size of the commu-
nity N . Natural communities however are geographically
extended and subdivided into colonies that exchange in-
dividuals: the progeny of an individual in a given patch
compete with the local descendants of other individuals
in the same patch, and also with migrants from other
nearby patches. Evaluating the fixation probability of
these subdivided communities is of fundamental impor-
tance (see below), but no general results analogous to
that of Moran were known for them.

Evolutionary dynamics is a competition between de-
terministic selection pressure and stochastic events due
to random sampling from one generation to the other.
For small populations, stochastic events drive the evo-
lutionary dynamics : a large beneficial mutation with
fitness say 1.1, has a probability of only 0.29 to take over
a community of size N = 4, barely superior to a neutral
mutation. For large non-structured population, selection
is the main force : the same beneficial allele in a popu-
lation of size N = 106 has a fixation probability of 0.09,
orders of magnitude higher than the fixation probability
of a neutral allele. It is then of fundamental importance
to determine what are the driving forces in a large sub-
divided population and how the fixation probability is
affected by this division and the pattern of migration
routes.

Evolutionary problems related to geograhical subdivi-
sion have been investigated from the begining of the field
of population genetics [4–7]. Maruyama [8, 9] was the

first author to cast the problem of fixation probability
into a rigorous generalized Moran model (see fig. I.1) to
which he applied standard techniques of branching pro-
cesses and Markov chains. Under the assumption that
the progeny in a patch descend from only local individu-
als, he obtained an astonishing result: the migration pat-
tern between the patches has no influence on the fixation
probability of a gene and, in this respect, the population
can be considered as non-structured. The simplifying as-
sumptions of Maruyama have been criticized by many
authors (see for example [1, 10, 11]), but the Maruyama
result on fixation probability was largely held to be true.

Recently, Lieberman et al.[12] were able to show that,
for patches of size 1 (where all the progeny descend
from neighboring patches), some peculiar migration pat-
terns can considerably amplify the effective fitness of a
beneficial allele for the “invasion” version of the Moran
model . Antal et al.[13, 14] analyzed a similar prob-
lem and showed that the location where a new mutant
is introduced can play an important role in its fixa-
tion probability. They also pointed out the fundamen-
tal difference between the two versions of the gener-
alized Moran model, called invasion process and voter
model, in their amplifying capabilities. These new find-
ings have spurred much interest in the field of evolution-
ary dynamics on graphs[11] and have applications be-
yond population genetics in domains such as the spread
of epidemics[15] or cancer[16, 17] or the appearance of
collective behavior[18].

In this article, we give the general solution of the
Moran model on graph (see Fig. I.1) introduced by
Maruyama without his simplifying assumptions. The
mathematical tool we develop enables us to classify mi-
gration patterns according to their effect on the fixation
probability and to make clear the differences between the
two versions of the Moran model : the Voter Model (die
first, then be replaced) and the Invasion Process (du-
plicate, then replace another). We demonstrate that
when the selection pressure is not too small, in the Voter
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(a) (b)

Figure I.1. (a) The (Voter version of) Moran model : in a
community of fixed size N , death events occur continuously.
When an individual dies, it is immediately replaced by the du-
plicate of another one, chosen at random. (b) The Maruyama
islands, or the Moran model on graph : the meta community
is composed of M islands, each of size Ni. When an individ-
ual dies in island i, it is replaced either by the progeny of a
local individual, or by one from an other connected island.
The connectivity between islands is given by the matrix mki

, the probability of migration from island k to island i. In the
Invasion process (IP) version of this model, one individual is
first selected for duplication and then replaces another one.

Model framework, spatial subdivision always diminishes
the chances of success of a beneficial allele : the fixa-
tion probability of a beneficial mutation in a subdivided
population is always smaller or at best equal to that of a
non-structured population of the same size. The equality
happens only for “balanced” migration pattern, i.e. when
the number of migrants send and received are balanced
for each patch.

For the Invasion Process, the fixation probability of a
new mutant in a subdivided population can exceed the
chances of success of the same mutant in a non-structured
populations. Our method allows migration patterns to
be partitioned according to their effect on fixation prob-
ability. For large populations there is no absolute upper
bound for the fixation probability, which can approach
unity. However, for a given value of imbalance between
migrants sent and received by each island, there exists an
upper bound to the fixation probability which is higher
than those of a non-structured population ; among the
patterns with the same imbalance, some topologies can
amplify the fixation probability to this higher value.

The mathematical method we develop is an extension
of the tool we recently developed [19] for non-structured
populations and is based on the dynamics of probability
generating function (dPGF). The power of the method
we present resides in its simplicity. The fixation proba-
bility is uniquely related to the fixed points of a partial
differential equation and these fixed points are the roots
of a system of algebraic second order equations. In this
framework, the fixation probability acquires a particu-
larly simple geometrical interpretation. We stress that
our results are not limited to migration between neigh-
boring patches, but encompass any migration pattern.

This article is organized as follow. We derive first the

general outline of the dPGF method. The next section
is dedicated to the application of the dPGF method to
the Voter Model version of the Moran process. The fol-
lowing section treats the IP process following the same
lines of argument and highlights fundamental differences
between these two models. The main points are summa-
rized in the conclusion.

II. THE DPGF EQUATION AND ITS FIXED

POINTS.

We have recently shown[19] that the differential equa-
tion governing the probability generating function (PGF)
can be used to compute efficiently the behavior of the
Moran process for a non-structured population. We re-
call this method, which we will generalize to the Moran
process on graph. Consider a community of fixed size
N , where n haploid individuals carry the allele A with
the fitness 1 + s (compared to 1 for the others). Death
events occur continuously and when an individual dies, it
is immediately replaced by the duplicate of another one,
chosen at random among the others, the randomness of
this choice being weighted by the parent’s fitness. The
transition probabilities for the A allele to decrease or in-
crease its population number by one unit during a short
time dt read

W−(n) = µn(N − n)/N (II.1)

W+(n) = µ(1 + s)(N − n)n/N (II.2)

where µ is the death rate. Let us call P (n, t) the proba-
bility density of observing n A−individuals at time t, and
set φ(z, t) =

∑

n P (n, t)zn as its PGF. Then, in units of
generation time (µ/N = 1), φ obeys the following equa-
tion :

c
∂φ

∂t
= (1− z) (c− z)

∂

∂z

(

Nφ− z
∂φ

∂z

)

(II.3)

where c = 1/(1 + s). Note that for beneficial mutation,
which we consider in this article, s > 0 and c < 1 . The
solution of this equation is given elsewhere [19]. The
stationary solution φs(z) = φ(z, t → ∞) however can
easily be used to compute the fixation probability. We
observe from expression (II.3) that φs(z) obeys the first
order ODE Nφs − dφs/dz = K, the solution of which is

φs(z) = π0 + πfz
N (II.4)

Note that as φ(1, t) = 1, π0 + πf = 1 ; moreover, as

π0 = φs(0) and πf = (1/N !)φ
(N)
s (0) , they represent

respectively the loss of allele and the fixation probability.
The heart of our method lies in the fact that z = c is

a fixed point of eq.(II.3) ; if at time t = 0, there were
exactly n0 A−alleles present, for all subsequent times
φ(c, t) = φ(c, 0) = cn0 . Inserting this relation into equa-
tion (II.4) leads to

πf =
1− cn0

1− cN
(II.5)
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which is the celebrated Moran result[2], usually obtained
by more complicated means.

Consider now the Moran process on a graph : the
community is subdivided into M colonies (or islands in
Maruyama’s terms), the size of i−th island being Ni.
When an individual dies on the island i, it has a prob-
ability mki of being replaced by the progeny of an indi-
vidual on the island k. The matrix of mki, the migration
probability from island k to island i, uniquely specifies
the migration pattern between islands. Let ni be the
number of A on island i. The transition probabilities for
A to decrease or increase in number by one on this island
is a small modification of expressions (II.1,II.2) :

W−

i (ni) = µni

M
∑

k=1

mki(Nk − nk)/Nk (II.6)

W+
i (ni) = µ(1 + s) (Ni − ni)

M
∑

k=1

mkink/Nk (II.7)

Let us make two remarks before going farther. Firstly,
there are two possibilities for the Moran model on a
graph. In the voter model (VM), first an individual dies
and then is replaced by the progeny of an another indi-
vidual. This is the case for example in a tropical forest
where space is the limiting resource and a seed can grow
only when an adult tree dies[20]. In the invasion process
(IP), used for example for cancer propagation [16] first an
individual duplicates and then the progeny replaces an-
other one. The Nk in the denominator of eqs. (II.6-II.7)
must be replaced by Ni ; moreover, the normalization
constraint is different for these two cases:

M
∑

k=1

mki = 1 i = 1, ...,M (VM) (II.8)

M
∑

i=1

mki = 1 k = 1, ...,M (IP) (II.9)

The difference between the two versions becomes impor-
tant for unbalanced graphs (see below). Secondly, in or-
der to lighten the notation we set all islands to the same
population size Ni = N . All the results obtained here
can be trivially generalized to variable island size (see
Mathematical details VID).

We call P (n1, n2, ..., nM ; t) the probability of observing
ni individuals on island i at time t and let φ(z1, ..., zM ; t)
be its PGF. It can be shown (see Mathematical Details
VI A) that φ obeys the following equation for the VM :

∂φ

∂t
=

∑

i

(zi − 1)

{

N
∑

k

mkizk∂k −Nc∂i

− (zi − c)∂i
∑

k

mkizk∂k

}

φ (II.10)

where ∂i = ∂/∂zi. The above equation can be treated
along the same lines as before. We first note that the

stationary solution for a connected graph reads

φs(z1, ..., zM ) = π0 + πf (z1z2...zM )
N

(II.11)

where again, π0 and πf stand for the loss and fixation
probabilities. If we could find a fixed point ζ =(ζ1, ...ζM )
of eq. (II.10), then we would immediately deduce the
fixation probability

πf =
1− φ(ζ1, ..., ζM ; t = 0)

1− (ζ1...ζM )
N

(II.12)

We see here how the general problem of finding the fix-
ation probability is reduced to finding the fixed point of
a PDE. A priori, the existence of such a fixed point ζ
cannot be taken for granted. We shall see in the next
section that a true fixed point actually exists for certain
classes of connectivity and that a “quasi-fixed point” ex-
ists in the general case, when the global population is
large enough. In this article, we are interested in the fix-
ation probability of one mutant appearing on an island
chosen at random. Therefore the initial condition is

P (n1, ..., nM ; t = 0) = (1/M)

M
∑

i=1

δni,1 (II.13)

and φ(z1, ...zM ; t = 0) = (1/M)
∑

i zi . The fixation
probability is then given by

πf =
1− (1/M)

∑

i ζi

1− (ζ1...ζM )
N

(II.14)

We call attention to the versatility of this method. Ap-
pearance of a mutant on a specific island, for example,
can be treated with the same ease using (II.12).

III. FIXED POINTS OF THE VOTER MODEL.

a. Exact results. We first concentrate on the VM ;
the IP will be discussed in the next section and treated as
a natural extension. We first investigate for which kind of
connectivity matrix the fixation probability is the same
as for a non-structured population. Obviously ζi = c
yields the non-structured fixation probability. Inserting
this specific value into eq.(II.10) and arranging the sum-
mation orders, we get

∂φ(c, ...c)

∂t
= Nc(c− 1)

[

∑

i

(Ti − 1))∂i

]

φ

∣

∣

∣

∣

∣

zi=c

(III.1)

where

Ti =
∑

k

mik (III.2)

is called the temperature of node i by Lieberman[12].
Ti > 1 represents a node which sends out more migrants
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Figure III.1. Some particular special cases with simple fixed
point. (a) Isothermal graph, where the number of migrants
sent and received by each graph is equal (number on arrows
denotes migration probabilities). (b) Star : one central is-
land communicates exclusively with a group of P peripheral
islands (see Mathematical details. (c) super star, where each
secondary island possesses Q tertiary ones. migration routes
are 1 → 3 → 2 → 1 (see VI B)

than it receives. If all the nodes are balanced, i.e. Ti =
1 ∀i, then ζi = c is indeed a fixed point, and, according
to eq.(II.14)

πf = (1− c)/(1− cNM ) = πn.s.
f (III.3)

This generalizes the Maruyama finding to balanced is-
lands. This result was already obtained with a different
method by Lieberman et al. for the IP process, who call
graphs obeying this condition “ isothermal ”.

Other particular solutions for simple symmetries such
as star connectivity ( see fig. III.1 and Mathematical
details VI B) can be readily obtained.

b. Approximate solutions. Our aim, however, is to
evaluate the fixation probability for any given connec-
tivity, i.e. to determine the function πf (mij). We have
already showed that[19], for the classical Moran Model,
and for not too small selection pressure Ns & 1, second
order terms not containing the factor N in the dPGF
(II.3) can be negelected. Following the same approxi-
mation here, we find that there exist quasi-fixed points
ζ = (ζ1,..., ζM ) which obey the following system of second
order algebraic equations :

∑

i

mki(ζi − 1) = c

(

1−
1

ζk

)

, k = 1, ...,M (III.4)

The above equations can be directly solved by standard
numerical means. They are open however to a geomet-
rical interpretation. Summing the above expression over
the index k leads to:

∑

i

(ζi + c/ζi) = M(1 + c) (III.5)

This shows that the quasi-fixed points corresponding to
the various connectivities lie on a particular hyper sur-
face. Note that the exact fixed points found previously
naturally belong to this hyper surface.

An important consequence of the above equation is
that we can now sort migration patterns according to

(a)

(b)

Figure III.2. Fixation probability as a function of connec-
tivities for 2 islands. (a) A fixed point ζ = (ζ1, ζ2) be-
longs to the curve C1 (eq. III.7). Each point of this curve
uniquely determines a fixation probability through eq.(II.14).
Alternatively, choosing a value πf = β determines the fixed

point : this is the point (ζβ
1
, ζβ

2
) where the curves C1 and

Cβ
2

: (1− (ζ1 + ζ2)/2) /
(

1− (ζ1ζ2)
N
)

= β cross. The cross-

ing point between the implicit curve πf = β and the diago-
nal is a monotonic function of β. Therefore, possible values
of πf are bounded between two extremum values α = πn.s.

f

associated with the fixed point (c, c) and γ = 1/N associ-
ated with the fixed point (1, 1). (b) Surface and contour

plot of πf (m11,m22). Once the fixed point (ζβ
1
, ζβ

2
) is cho-

sen, in the connectivity plane (m11,m22), the straight line

∆β : (ζβ
1
− 1)m11 − (ζβ

2
− 1)m22 = −ζβ

2
+ (1 + c) − c/ζβ

1
is

the level curve of πf (m11,m22) for πf = β. Here, for better
visibility, π0 = 1− πf is represented.

their effect on the fixation probability. This also allows
us to demonstrate that πf has an upper bound corre-
sponding to πn.s.

f . To illustrate these concepts and the
geometrical meaning of these equations, we first consider
the case of two islands, which readily generalizes to arbi-
trary M . There are only two independent migration pa-
rameters in this case: m21 = 1−m11 and m12 = 1−m22.
Rearranging the terms, the above set of equations can be
written as

(ζ1 − 1)m11 − (ζ2 − 1)m22 = −ζ2 + (1 + c)− c/ζ1(III.6)

(ζ1 − 1)m11 − (ζ2 − 1)m22 = ζ1 − (1 + c) + c/ζ2

These are the equations of two conics crossing at ζ1 =
ζ2 = 1 and therefore have one more solution. We can also
regard the above equation as a linear system in migration
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probabilities mij , which has a solution only if ζ = (ζ1, ζ2)
belongs to the curve

C1 : ζ1 + ζ2 + c (1/ζ1 + 1/ζ2) = 2(1 + c) (III.7)

Choosing a point along this curve uniquely determines
the fixation probability πf (eq. II.14). On the other
hand, once the point ζ is chosen, equation (III.6) de-
termines the level curves of the function πf (m11,m22),
which are straight lines. This construction is detailed in
figure III.2.

The important point we wish to stress is that πf is
bounded between two extremum values, the maximum
corresponding to πn.s.

f and the minimum to the neutral

case 1/MN . This can be observed directly on the geo-
metrical construction of figure III.2.a. Alternatively, this
maximum principle can be demonstrated by searching
for the constrained extremum of the function πf (ζ1, ζ2)
(eq.II.14) under the constraint of eq.(III.7), using La-
grange multipliers ( see Mathematical details VI C).

Figure III.3 shows the comparison between the above
theoretical computations and direct numerical resolution
of the Moran stochastic process for two islands by a Gille-
spie algorithm[21] ( see Mathematical Details VI E). As
can be observed, there is an excellent agreement between
the theoretical results and “true” fixation probabilities
obtained by numerical simulations.

Except for the ease of visualization when M = 2, noth-
ing is specific to this case, and all of the above arguments
can be extended to an arbitrary number of islands. Every
quasi-fixed point ζ = (ζ1, ..., ζM ) belonging to the hyper
surface (III.5) uniquely determines a fixation probabil-
ity. In the M(M − 1) space of connectivity coefficients,
the level curves of πf (mij) are hyper-planes given by
eq.(III.4).

The reverse procedure to explicitly compute the func-
tion πf (mij) is simple : once the mij are specified, the
fixed point ζ is found by solving the system of M sec-
ond order algebraic equations. Finding ζ then allows for
the computation of πf through the algebraic expression
(II.14). Figure III.4 shows the comparison between theo-
retical and numerical fixation probability, for five islands
of population size N = 50, for various selection pressures
; for each selection pressure, 1200 random graphs have
been generated. The relative deviation between theory
and simulation is ∼ 10−3, which is due to the precision of
numerical simulation and the number of stochastic tra-
jectories used to evaluate the fixation probability.

The deviation of πf from its maximum πn.s.
f is related

to the deviation from “isothermy”. The “non isothermy”
of a graph can be measured by ∆ = Var(Ti − 1). Figure
III.4.c shows that even though ∆ cannot be used as a
single parameter to evaluate the fixation probability (
or equivalently, the deviation of πf from the maximum
value), these two quantities are highly correlated.

The fixed point approximation developed above was
derived for large selection pressure Ns & 1. The domain
of validity of our method is however much broader. In
fact, it is not the population size of an island N , but the

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Figure III.3. Direct numerical resolution of the Moran
stochastic process on graph for two islands (M = 2) and its
comparison with theoretical curves. c = 0.8, N = 50. (a) sur-
face and contour plot of the loss probability π0(m11,m22) =
1− πf (m11,m22) of the numerical result obtained by a Gille-
spie algorithm. For each point (m11,m22), R = 106 trajecto-
ries have been stochastically generated. (b) Numerical data
(symbols) and their corresponding theoretical curves (solid
lines) along anti-diagonal slices (inset) : π0(m11,K − m11)
for K = 1(black, circles), 0.75(red, rectangles), 0.50(green,
diamonds) and 0.25 (blue, triangles).

population size of the whole community MN which sets
the limit of the validity : MNs & 1, as can be seen in
figure III.5. It is not the fixation probability, but the limit
of validity of our approximation which seems to follow
the Maruyama conjecture that “ certain quantities are
independent of the geographical structure of population”
[9] . The limit MNs & 1 is in fact what makes our
method relevant : natural populations are always large
and spatially subdived. Therefore even small additive
fitnesses are amenable to our analytical treatment.
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Figure III.4. Comparison between theoretical and numerical
loss probability (π0 = 1− πf ) for M = 5, N = 50 and differ-
ent fitness c = 1/(1+ s) = 0.99(blue), 0.98 (green), 0.95(red),
0.9(cyan), 0.8(black and orange). For each value of c, 1200
random graph (only 480 for the high precision orange set) are
generated ; For each graph, the loss probability is computed

both numerically (πnum.
0 ) and theoretically (πtheor.

0 ). Nu-
merical probabilities are computed by a Gillespie algorithm
using R = 106 stochastic trajectories for each graph, except
for for the c = 0.8, orange set, where R = 108 trajectories

are used. (a) πtheor.
0 vs πnum.

0 , where the closeness to the
diagonal is a visual clue for the goodness of the theoretical re-
sult. Solid dotted lines indicate the corresponding πn.s.

0 . (b)
relative deviation between numerical and theoretical results
where δ = 2(πnum.

0 − πtheor.
0 )/

(

πnum.
0 + πtheor.

0

)

. The rel-

ative deviation is ∼ 1/
√
R = 10−3 ; for c = 0.8 (orange set)

the deviation is ∼ 1/
√
R = 10−4 (c) The deviation from iso-

thermal ∆ = Var(Ti−1) versus the fixation probability πnum
f

of graphs. There is a high positive correlation (C ≈ 0.9) be-
tween ∆ and πf − πn.s.

f

IV. FIXED POINTS OF THE INVASION

PROCESS.

For a non structured population, there is no difference
between VM (die first then be replaced) and IP (dupli-
cate first, then replace) version of the Moran model. For

0.97 0.971 0.972 0.982 0.983 0.984 0.988 0.989

0.795 0.796 0.797 0.895 0.896 0.945 0.946

(a) (b) (c)

(d) (e) (f)

π
0

num.

π
0

th
e
o
r
.

Figure III.5. Comparison between theoretical and numerical

loss probability (πtheor.
0 vs πnum.

0 ) for M = 5, c = 0.99
(s = 0.01) and variable island population size : (a) N = 1,
(MNs = 0.05) ; (b) 2, (0.1) ; (c) 4, (0.2) ; (d) 8, (0.4) ;
(e) 16, (0.8) ; (f) 32, (1.6). For each value of c, 500 random
connectivity matrix are generated. In each graph, horizontal
and vertical axis scale are identical. We observe that for very
small selection pressure MNs . 0.5, the deviation from the
diagonal becomes large. To quantify this effect, we compare
the standard deviation σ1 and σ2 of the two variables πnum

0 −
πtheor.
0 and πnum

0 −πn.s.
0 ; on each graph, πn.s.

f is represented

by the dotted vertical line: (×10−4) (a) σ1 = 3.9, σ2 = 4.3 ;
(b) (3.1, 3.8) ; (c) (2.3, 3.3) ; (d) (1.7, 3.1) ; (e) (1.4, 3.1) ; (f)
(1.1, 3.3). The two values become significantly different for
MNs & 0.5. As a comparison, in Figure III.4, the amplitude
σ2/σ1 varies from 3.7 (for c = 0.99) to 20 (for c = 0.8).

a subdivided population however, this difference has pro-
found consequences when the islands are not balanced.
We can understand this intuitively by considering an is-
land that sends more migrants than it receives. In the
IP version, when one A (beneficial) allele duplicates on
this island, it has a high probability of spreading to other
islands. In the VM version, as death occurs first, this ad-
vantage disappears. It is however less obvious why the
IP advantage for one island could persist upon averaging
over all islands.

Mathematically, the treatment of the IP is similar to
VM, except that migration coefficients should obey row
normalization

∑

i mki = 1 instead of column normal-
ization (eq.II.8-II.9). The dPGF equation is therefore
slightly different from expression (II.10) :

∂φ

∂t
=

∑

i

(zi − 1)
∑

k

mki {Nzk∂k −Nc∂i

− (zi − c)∂izk∂k}φ (IV.1)

but as before, we can find the fixation probability of a
graph by the fixed point of the dPGF through the same
eqs. (II.12,II.14).

For example, the isothermal theorem holds for IP and
is demonstrated along the same lines as for the VM : for
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Figure IV.1. Comparison between theoretical and numerical
loss probability (π0 = 1 − πf ) of the Invasion Process for
M = 5, N = 50 and different fitness c = 1/(1 + s) = 0.8(a),
0.9 (b), 0.95(c), 0.98(d). Each graph contains 500 points : 400
points are computed numerically by generating 106 stochas-
tic trajectories (black) and 100 by generating 107 ones(red).
The solid (green) line designates the diagonal. The dotted
(blue) horizontal line refers to the loss probability value of a
non-structured population. In each graph, the mean relative
deviation σ between numerical and theoretical values for the
two data sets are (×10−4) (a) 5.0, 2.0 ; (b) 3.4, 1.2 ; (c) 2.3,
1.1 ; (d) 1.5, 0.5.

the point ζ = (c, c, ..., c), the second order terms of the
dPGF (II.10) automatically vanish ; the first order terms
also vanish if

Ti = 1 i = 1, ...,M

where the temperature is now Ti =
∑

k mki . (Ti − 1)
has the meaning of balance between migrants received
and sent by island i. All other exact results such as the
“star” graph treated in preceding section have an analog
for the IP (see Mathematical details VI B).

In the limit MNs & 1, second order terms of the dPGF
can be neglected and quasi-fixed points ζ = (ζ1,..., ζM )
now obey the following system of second order algebraic
equations :

∑

i

mki(ζi − 1) = cTk

(

1−
1

ζk

)

, k = 1, ...,M (IV.2)

The process of estimating the fixation probability is sim-
ilar to the previous discussion of the VM version. Figure
IV.1 shows, for 500 random graphs and various selection
pressures, the comparison between the fixation probabil-
ity found from expression (IV.2) and by direct numerical

simulations. The same high degree of precision is ob-
served as in the previous case.

It can be seen in figure IV.1 that many migration pat-
terns show fixation probabilities higher than the non-
structured value. The difference in the evaluation of
the fixed point of invasion process is the presence of the
term Tk on the right hand side of eqs.(IV.2) compared
to eqs.(III.4). This modification excludes a constraint
independent of the graph topology similar to eq.(III.5),
and the fixed points no longer belong to a universal hy-
persurface. An important consequence is that for the
Invasion Process, the fixation probability does not obey
a gobal “maximum principle”. We can however give a
restricted version of this principle. Each migration pat-
tern {mki} can be considered as a point in a M(M − 1)
space. We can partition this space into subspaces ET of
dimension (M − 1), each subspace labeled by the vector
T = (T1, ..., TM ): the subspace ET contains all migration
patterns which have temperature distribution T. Using
the same arguments as in the previous section, we can
show that in each subspace ET, the fixed points belong
to the (M − 1) hypersurface

M
∑

k=1

Tk(ζk + c/ζk) = M(1 + c) (IV.3)

On each hypersurface, the fixation probability has a max-
imum value πmax

f (T) > πn.s.
f . For a given temperature

distribution T, the set of all graphs with fixation proba-
bility ∈ [πmax

f (T), πn.s.
f ] are fitness amplifiers. For some

particular classes of graph, πf can greatly exceed the non-
structured value and approach unity, as noted by other
authors[12, 15] (see Mathematical details VIB ).

V. CONCLUSION.

Evolutionary dynamics of a non structured population
is an interplay between deterministic selection pressure
and stochastic sampling between generations. In a ge-
ographically subdivided populations, migration between
colonies is the third ingredient to be taken into account.
A migration pattern is a more complexe quantity than
a number such as the fitness, and it has to be specified
by an M ×M matrix, where the coefficient mki weights
migration importance from patch k to patch i. In the pre-
ceding sections, in the framework of the Moran model, we
have developed a mathematical method that allows for
the computation of the fixation probability of a beneficial
allele in a subdivided population for arbitrary migration
patterns.

This mathematical method allows us to partition the
migration patterns according to their effect on the fix-
ation probability and gives rise to important funda-
mental results. For example, the celebrated result of
Maruyama[8, 9] was that the fixation probability does
not depend on population subdivision and is equal to
that of a non-strucured population πn.s.

f . In order to
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compute the fixation probability, Maruyama had used a
severe approximation. Our investigation shows (in the
VM version of the Moran model) that the Maruyama
solution corresponds to the upper bound of the fixation
probabilities and the effective fitness of a beneficial allele
is degraded by the population subdivision.

The IP version of the Moran model is more often used
for epidemic or cancer propagation. In this framework,
Lieberman et al.[12] were able to build particular migra-
tion patterns capable of amplifying the fixation proba-
bility of a mutant in a subdivided population compared
to a non-structured one. The method we develop in this
article gives the general conditions for which a pattern
can amplify the fitness of a mutant. We show that the
important parameter in this case is the (vector) of mi-
gration imbalance T, which sets the upper bound for
the fixation probability πmax

f (T). One can then find all
topologies correponding to this imbalance which have a
fixation probability in the range of [πn.s.

f , πmax
f (T)] and

hence are fitness amplifiers.
The mathematcial tool we have developed is based on

finding the fixed points of a partial differential equation
; for large selection pressure MNs & 1, the fixed points
are solutions of a system of second degree algebraic equa-
tion. The problem of finding the fixation probability is
therefore mapped into a simple problem of geometry and
of conics crossing in a M dimensional space. Until now,
no general analytical tool was available to estimate the
fixation probability of a subdivided population. Some so-
lutions have been found for simple symmetries, but it was
necessary to resort to numerical simulations in order to
investigate a particular migration pattern[11]. Although
faster algorithms have been developed[22], the numeri-
cal simulations remain extremely costly for large pop-
ulations. The method we have developed in this article
requires negligible computational time and allows precise
investigation of wide classes of topologies and problems.
For example, one could envisage problems in which the
migration patterns themselves, i.e. the coefficients mki,
are subject to selection in order to prevent epidemic prop-
agation or help the emergence of cooperative behavior.

All species are distributed through space and are there-
fore subdivided into colonies. Understanding the evolu-
tionary process for these populations is therefore of fun-
damental importance to our comprehension of evolution
in general. We believe that the dPGF method we propose
here is a valuable tool in advancing our comprehension
of this process.

c. Acknowledgments. We are grateful to O.Rivoire,
A. Halperin and E. Geissler for the careful reading of the
manuscript and fruitful discussions. This work was partly
funded by Agence Nationale de la Recherche Française
(ANR) grant “Evo-Div.”

VI. MATHEMATICAL DETAILS.

A. Deriving the dPGF equation on graph.

We will follow the same derivation as in [19], gener-
alized to M islands. To shorten the notation, let us
represent the state of the system by the vector n =
(n1, ..., nM ), its conjugated variable by z = (z1, ..., zM )
and z

n = zn1

1 ...znM

M . More over, let the vector a±k n rep-
resent the state n where we have added or removed one
individual to or from island k. Then the master equation
governing the probabilities P (n; t) then reads

∂P (n, t)

∂t
=

M
∑

i=1

W+
i (a−i n)P (a−i n, t)−W+

i (n)P (n, t)(VI.1)

+ W−

i (a+i n)P (a+i n, t)−W−

i (n)P (n, t)

where the transition probabilities W±

i are given by ex-
pressions (II.6,II.7). Multiplying both sides of equation
(VI.1) by z

n and summing over n, we get :

∂φ

∂t
=

∑

i

(zi − 1)
〈

z
nW+

i (n)
〉

+

(

1

zi
− 1

)

〈

z
nW−

i (n)
〉

(VI.2)
where the symbol 〈...〉 stands for summation over states
n. The computation rules are simple enough :

〈nkz
n〉 = zk

∂φ

∂zk
〈

n2
kz

n
〉

= zk
∂

∂zk

(

zk
∂φ

∂zk

)

〈nknjz
n〉 = zkzj

∂2φ

∂zk∂zj

which leads to equations (II.10,IV.1) depending on the
choice of row or column normalization of mki. Note that
the stationary solution (II.11) of the dPGF is valid for
connected graphs.

B. Some particular solutions of the Moran process

on graph.

The article contains the general solution of fixation
probability for the Moran process. Some graphs have
simple symmetries and their πf can be given in closed
form. Here we explore a few such cases. These graphs,
which have been already solved by other authors (at least
for IP) are selected to illustrate the simplicity of the fixed
point method.

d. Star connectivity. Consider fig. III.1b, where one
central island, labeled 0, is connected to P peripheral
islands and where self migration is prohibited mii = 0.
Peripheral islands do not communicate among each other
mij = 0 if i, j > 0. For the VM, this configuration im-
poses mi0 = 1/P and m0i = 1. The symmetric dispo-
sition of the islands imposes a fixed point of the form
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ζ = (ζ0, ζ1, ζ1, ...ζ1). Plugging this solution into the VM
dPGF (II.10), we get

ζ0 = c (Pc+ 1) / (P + c)

ζ1 = c2/ζ0

For the IP, migrations are mi0 = 1 and m0i = 1/P (i >
0). Using the dPGF (IV.1), we obtain

ζ0 = c (P + c) / (Pc+ 1)

ζ1 = c2/ζ0

We emphasize that these are exact solutions of eq.
(II.10,IV.1) respectively. In both cases, the fixation prob-
ability is

πstar
f =

1− (ζ0 + Pζ1)/(P + 1)

1− (ζ0ζP1 )N

When P ≫ 1 for IP, this reduces to

πIP
f ≈

1− c2

1− c2PN
(VI.3)

e. Super star. This configuration, (figIII.1c) is an
extension of the star configuration, where a central island
A is connected to P secondary islands B ; each secondary
island is connected to Q tertiary islands C. For the VM,
migration coefficients are mAC = 1, mCB = 1/Q and
mBA = 1/P , and all other coefficients are zero. There is
no longer an exact fixed point for this case ; the quasi-
fixed points are

ζA = c
c2PQ+ cQ+ 1

c2Q+ c+ PQ

ζB = c
c2Q+ c+ PQ

c2 + cPQ+Q

ζC = c3/ζAζB

For the IP, mAC = 1/PQ, mCB = 1, mBA = 1, the ζi are
the same as the above expressions, up to a circular per-
mutation of indices A,B,C. In both cases, the fixation
probability is

πstar
f =

1− (ζA + PζB + PQζC)/(1 + P + PQ)

1− (ζAζPB ζPQ
C )N

(VI.4)
For IP, in the limit P ≫ 1, Q ≫ 1, this reduces to

πIP
f ≈

1− c3

1− c3PQN

Note that the expressions (VI.3,VI.4) for star and super-
star are identical to those found by Lieberman[12].

C. The maximum Principle.

For VM the fixation probability

πf =
1− (1/M)

∑

i ζi

1− (ζ1...ζM )
N

subjected to the constraint

M
∑

i=1

(ζi + c/ζi) = M(1 + c) (VI.5)

possesses a maximum for the non-structured point ζ =
(c, ...c). This result has a simple geometrical interpre-
tation shown in figure III.2. It can be demonstrated as
follows. Let us set

a = (1/M)
∑

i

ζi

g =
∏

i

ζ
1/M
i

the fixation probability can be written

πf =
1− a

1− gNM

The geometrical mean g of a set of positive numbers is
never larger than their arithmetical mean a, therefore

πf ≤
1− a

1− aNM
(VI.6)

The range of variation of a constrained by the condi-
tion (VI.5) can be obtained using the Lagrange multiplier
method:

∂

[

a− λ

M
∑

i=1

(ζi + c/ζi)

]

/∂ζi = 0

1/M − λ
(

1− c/ζ2i
)

= 0 i = 1, ...,M

which, for ζi > 0, can be satisfied only if

ζ1 = ζ2 = ... = ζM

The hypersurface (VI.5) has only two points along the
diagonal,

ζi = 1 i = 1, ...,M

ζi = c

These two solutions correspond to the extremum values
of a, so that the range of variation of this arithmetical
mean is c ≤ a ≤ 1 .

The right hand side of the inequality (VI.6) is the re-
ciprocal of a geometrical sum: it is therefore a monoton-
ically decreasing function of a and it takes its maximum
value for a = c :

πf ≤
1− c

1− cNM

This “maximum principle” holds as long as our approxi-
mate expression for the fixation probability is valid, that
is to say for NMs > 1.
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Figure VI.1. The restricted maximum principle for IP, illus-
trated for two islands. Two closed curves corresponding to
temperature distributions 1 = {1, 1} and T = {T, 2− T} are
shown. The quasi fixed points are found as in figure III.2 by
finding the point at which CT crosses the curve πf = constant.
There is a maximum value α of the fixation probability. For
isothermal distributions, α1 = πn.s.

f . For non isothermal dis-
tributions, αT > α1. Points of CT between the two curves
πf = α1 and πf = αT correspond to fitness amplifiers graphs.

For the IP case, the maximum principle has a restricted
version. Consider all graphs corresponding to a given
(IP) temperature distribution T = {T1, ...TM}. Then
the quasi fixed point belongs to the hypersurface

CT :

M
∑

k=1

Tk(ζk + c/ζk) = M(1 + c) (VI.7)

Given T, all the above arguments for the maximum can
be repeated, except that the extrema of πf are now given
by the crossing of CT and the curve

Tk

(

1− c/ζ2k
)

= Constant k = 1, ...,M

As a consequence, the maximum of the fixation proba-
bility πmax

f (T) > πn.s.
f . Figure VI.1(analogous to figure

III.2) illustrates this construction for the case of two is-

lands. Note that sup
T

(

πmax
f (T)

)

= (1 − c/M), which

corresponds to the limiting case T1 = M− ǫ, Ti>1 = ǫKi,
ǫ → 0, Ki = O(1).

D. Generalization to variable island size.

The generalization to islands of variable sizes is
straightforward. We describe this generalization for VM,
and a similar generalization can be provided for the in-
vasion process. The dPGF reads:

∂φ

∂t
=

∑

i

(zi − 1)

{

Ni

∑

k

mki

Nk
zk∂k −Nic∂i

− (zi − c)∂i
∑

k

mki

Nk
zk∂k

}

φ

The temperature of an island is defined as:

Tk =
∑

i

Nimki

Nk

The isothermal condition always corresponds to Tk = 1
for all the islands and it corresponds to the fixed point
ζk = c ∀k.

In the case of appearance of a mutant at a random site,
the fixation probability is related to the coordinates ζi of
the fixed point by:

πf =
1−

∑

i(Ni/NTot)ζi

1−
∏

i ζ
Ni

i

(VI.8)

where NTot =
∑

i Ni is the total number of individuals.
The set of equations allowing the determination of the
(quasi) fixed point reads:

∑

i

Nimki(ζi − 1) = Nkc(1−
1

ζk
) , k = 1, ...,M

and the fixed points lie on a hypersurface defined by

∑

i

Ni(ζi + c/ζi) = NTot(1 + c) (VI.9)

One can readily show that the “maximum principle” for
VM also holds in this more general case. we set

â =
∑

i

Niζi/NTot

ĝ =
∏

i

ζ
Ni/NTot

i

Using the Lagrange multipliers method it is easy to show
that ĝ is never larger than â and that the range of vari-
ation of â under the constraint (VI.9) is c ≤ â ≤ 1.
Following the same reasoning as in section 6.4, one then
deduces

πf =
1− â

1− ĝNTot

≤
1− â

1− âNTot

≤
1− c

1− cNTot

The fixation probability given by (VI.8) is maximum for
a non-structured population.
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E. Numerical resolution.

f. Numerical simulation. The stochastic equations
given by the rates (II.6,II.7) can be seen as 2M chemical
reactions (two for each islands) for the species A:

Ai
k+

−−→ 2Ai ; Ai
k−

−−→ ∅

which we solve by the classical Gillespie algorithm ([21])
written in C++. We are interested here only in the fix-
ation probability and not in the fixation time ; the pro-
gram can therefore be accelerated by computing only the
nature of the event that occurs at each turn (and not its
time of occurrence). In general, to solve for the fixation
probability of a given graph, R = 106 stochastic trajec-
tories are generated. For M = 5 and N = 50, computing
the fixation probability of 1000 islands takes about ~6
hours on a standard PC. The high precision orange set
of Figure III.4 for 500 graph takes about 1 week on two

computers.
g. Analytical computations. Equations (III.4) con-

stitute a system of M second order algebraic equations.
They can be efficiently solved by standard methods such
as the “conjugated gradients”. Mathematical software
such as “Scilab” and “Matlab” have implemented these
methods with the “fsolve” subroutine. In Mathematica
(Wolfram Research), this routine is implemented by first
setting the equation (III.4) (for VM)

f [m_, z_ , c_] := (m . ( z−1) − c )∗ z + c

where m is the M ×M connectivity matrix, and then by
solving the equation

FindRoot [ f [m, z , c ] == 0 , {z , z0 } ]

where z0 is the M−dimensional vector {c, ...c}. For 5 is-
lands, solving 1000 different graphs takes about 1 second
.
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