\relax \citation{dvoretzky} \citation{bousquet-fusy-preville} \citation{BeBo07} \citation{friedman-tamari} \citation{HT72} \citation{knuth4} \@writefile{toc}{\contentsline {section}{\tocsection {}{1}{Introduction and main results}}{1}} \newlabel{def-m-tamari}{{1}{1}} \citation{bergeron-preville} \citation{bousquet-fusy-preville} \citation{haglund-book} \citation{haglund-polynomial} \citation{HaimanPreu} \citation{HaiConj} \citation{loehr-thesis} \citation{MR1935784} \citation{MR1972636} \citation{MR2163448} \citation{bergeron-preville} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces The covering relation between $m$-ballot paths ($m=2$).}}{2}} \newlabel{fig:push_mWalk}{{1}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces The $m$-Tamari lattice $\mathcal {T}_{n}^{(m)}$ for $m=1$ and $n=4$ (left) and for $m=2$ and $n=3$ (right). The three walks surrounded by a line in $\mathcal {T}_{4}^{(1)}$ form a lattice that is isomorphic to $\mathcal {T}_{2}^{(2)}$ (see Proposition\nonbreakingspace 4\hbox {}).}}{2}} \newlabel{fig:lattice_ex}{{2}{2}} \citation{bousquet-fusy-preville} \citation{ch06} \citation{HaimanPreu} \citation{HaiConj} \citation{bergeron-preville} \citation{pitman-stanley} \citation{yan} \citation{bergeron-preville} \citation{bergeron-preville} \citation{bousquet-fusy-preville} \newlabel{number-unlabelled}{{1}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces A labelled $2$-ballot path.}}{3}} \newlabel{fig:labelled}{{3}{3}} \newlabel{number}{{2}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces A labelled $2$-Tamari interval $I=[P,Q]$ of size $|I|=3$. It has $c(P)=3$ contacts, and its initial rise is $r(Q)=2$.}}{4}} \newlabel{fig:interval}{{4}{4}} \newlabel{F-def}{{3}{4}} \newlabel{thm:main}{{2}{4}} \newlabel{t-x-param}{{4}{4}} \newlabel{Fx1}{{5}{4}} \newlabel{thm:1}{{3}{4}} \newlabel{t-x-param-1}{{6}{4}} \citation{bousquet-fusy-preville} \citation{bousquet-fusy-preville} \newlabel{F-param-y1}{{7}{5}} \@writefile{toc}{\contentsline {section}{\tocsection {}{2}{A functional equation}}{5}} \newlabel{sec:eq}{{2}{5}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{2.1}{Recursive decomposition of Tamari intervals}}{5}} \citation{bousquet-fusy-preville} \citation{bousquet-fusy-preville} \citation{bousquet-fusy-preville} \citation{bousquet-fusy-preville} \citation{bousquet-fusy-preville} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces The recursive construction of Tamari intervals.}}{6}} \newlabel{fig:concatenation}{{5}{6}} \newlabel{prop:sublattice}{{4}{6}} \newlabel{prop:decomp}{{5}{6}} \newlabel{eq:contacts}{{8}{7}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{2.2}{From the decomposition to a functional equation}}{7}} \newlabel{prop:eq}{{6}{7}} \newlabel{eq:Fb}{{9}{7}} \newlabel{Fk-F}{{10}{7}} \newlabel{Fm-F}{{11}{7}} \newlabel{Fk-Fcirc}{{12}{8}} \newlabel{Fcirc}{{13}{8}} \@writefile{toc}{\contentsline {section}{\tocsection {}{3}{Principle of the proof, and the case $m=1$}}{9}} \newlabel{sec:sol1}{{3}{9}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.1}{Principle of the proof}}{9}} \newlabel{sec:principle}{{3.1}{9}} \newlabel{eq:G}{{14}{9}} \newlabel{init-G}{{15}{9}} \newlabel{tG1}{{16}{9}} \newlabel{eq:Gtilde0}{{17}{9}} \newlabel{init:Gtilde}{{18}{9}} \newlabel{eq:Gtilde}{{19}{9}} \newlabel{Lambda-def}{{20}{9}} \newlabel{A-def}{{21}{9}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.2}{The case $m=1$}}{10}} \newlabel{subsec:sol1}{{3.2}{10}} \newlabel{sec:m11}{{3.2.1}{10}} \@writefile{toc}{\contentsline {subsubsection}{\tocsubsubsection {}{3.2.1}{A homogeneous differential equation and its solution}}{10}} \newlabel{ED-uy}{{22}{10}} \newlabel{init-1}{{23}{10}} \newlabel{tGsol1}{{24}{10}} \@writefile{toc}{\contentsline {subsubsection}{\tocsubsubsection {}{3.2.2}{Reconstruction of $\mathaccentV {tilde}07EG(u,y)$}}{10}} \newlabel{1+u}{{25}{10}} \citation{stanley-vol2} \newlabel{Gsol-1}{{26}{11}} \newlabel{sec:m=y=1}{{3.2.3}{11}} \@writefile{toc}{\contentsline {subsubsection}{\tocsubsubsection {}{3.2.3}{The case $y=1$}}{11}} \newlabel{G11conj}{{27}{11}} \@writefile{toc}{\contentsline {subsubsection}{\tocsubsubsection {}{3.2.4}{The trivariate series}}{11}} \@writefile{toc}{\contentsline {section}{\tocsection {}{4}{Solution of the functional equation: the general case}}{11}} \newlabel{sec:sol}{{4}{11}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{4.1}{A homogeneous differential equation and its solution}}{11}} \newlabel{lem:ui}{{7}{11}} \newlabel{poluv-bis}{{28}{11}} \newlabel{prop:combi-lin-m}{{8}{12}} \newlabel{eq:combi-lin-y}{{29}{12}} \newlabel{lemma:Lagrange}{{9}{12}} \newlabel{eq:Lagrange-inv}{{30}{12}} \newlabel{eq:Lagrange-inv-bis}{{31}{12}} \newlabel{eq:Lagrange-poly}{{32}{12}} \newlabel{lemma:implicit-functions}{{10}{12}} \newlabel{eq:Lambdaiter-A}{{33}{12}} \newlabel{eq:Adev}{{34}{12}} \newlabel{eq:implicit-functions}{{35}{12}} \newlabel{eq:Gy-poly}{{36}{13}} \newlabel{eq:Gy-poly-ui}{{37}{13}} \newlabel{combine}{{38}{13}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{4.2}{Reconstruction of $\mathaccentV {tilde}07EG(u,y)$}}{14}} \newlabel{lem:Hk}{{11}{14}} \newlabel{AB}{{39}{14}} \citation{stanley-vol2} \newlabel{prop:extraction}{{12}{15}} \newlabel{eq-sym}{{40}{15}} \newlabel{eq-sym-k}{{41}{15}} \newlabel{Hsol}{{42}{15}} \newlabel{phi-rec}{{43}{15}} \newlabel{Phi-k}{{44}{15}} \newlabel{lem:elem}{{13}{15}} \newlabel{P-reconstruct}{{14}{16}} \newlabel{P-dev}{{45}{16}} \newlabel{lem:sym}{{15}{16}} \newlabel{eq-sym-k-1}{{46}{17}} \newlabel{e-neg:a}{{47}{17}} \newlabel{second-sum:a}{{48}{17}} \newlabel{e-neg}{{49}{18}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{4.3}{The case $y=1$}}{18}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{4.4}{The trivariate series}}{19}} \newlabel{thm:trivariate}{{17}{19}} \newlabel{phi0}{{50}{19}} \citation{bergeron-preville} \citation{bergeron-preville} \citation{mbm-chapuy-preville-prep} \@writefile{toc}{\contentsline {section}{\tocsection {}{5}{Final comments}}{20}} \newlabel{sec:final}{{5}{20}} \citation{bousquet-fusy-preville} \bibstyle{plain} \bibdata{tamar.bib} \bibcite{bergeron-preville}{1} \bibcite{BeBo07}{2} \bibcite{mbm-chapuy-preville-prep}{3} \bibcite{bousquet-fusy-preville}{4} \bibcite{ch06}{5} \bibcite{dvoretzky}{6} \bibcite{friedman-tamari}{7} \bibcite{MR1935784}{8} \bibcite{MR1972636}{9} \bibcite{haglund-book}{10} \bibcite{haglund-polynomial}{11} \bibcite{MR2163448}{12} \bibcite{HaimanPreu}{13} \bibcite{HaiConj}{14} \bibcite{HT72}{15} \bibcite{knuth4}{16} \bibcite{loehr-thesis}{17} \bibcite{stanley-vol2}{18} \bibcite{pitman-stanley}{19} \bibcite{yan}{20} \newlabel{tocindent-1}{0pt} \newlabel{tocindent0}{12.77466pt} \newlabel{tocindent1}{17.77344pt} \newlabel{tocindent2}{25.54932pt} \newlabel{tocindent3}{0pt} \@writefile{toc}{\contentsline {section}{\tocsection {}{}{References}}{21}}