
HAL Id: hal-00613125
https://hal.science/hal-00613125v1

Preprint submitted on 2 Aug 2011 (v1), last revised 20 Nov 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization with Sparsity-Inducing Penalties
Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski

To cite this version:
Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski. Optimization with Sparsity-
Inducing Penalties. 2011. �hal-00613125v1�

https://hal.science/hal-00613125v1
https://hal.archives-ouvertes.fr

Optimization with Sparsity-Inducing Penalties

Francis Bach

INRIA - SIERRA Project-Team

23, avenue d’Italie

75013 Paris, France

francis.bach@inria.fr

Rodolphe Jenatton

INRIA - SIERRA Project-Team

23, avenue d’Italie

75013 Paris, France

rodolphe.jenatton@inria.fr

Julien Mairal

Department of Statistics

University of California

Berkeley, CA 94720, USA

julien@stat.berkeley.edu

Guillaume Obozinski

INRIA - SIERRA Project-Team

23, avenue d’Italie

75013 Paris, France

guillaume.obozinski@inria.fr

August 3, 2011

Abstract

Sparse estimation methods are aimed at using or obtaining parsimonious representations
of data or models. They were first dedicated to linear variable selection but numerous
extensions have now emerged such as structured sparsity or kernel selection. It turns out
that many of the related estimation problems can be cast as convex optimization problems
by regularizing the empirical risk with appropriate non-smooth norms. The goal of this
paper is to present from a general perspective optimization tools and techniques dedicated
to such sparsity-inducing penalties. We cover proximal methods, block-coordinate descent,
reweighted ℓ2-penalized techniques, working-set and homotopy methods, as well as non-
convex formulations and extensions, and provide an extensive set of experiments to compare
various algorithms from a computational point of view.

Contents

1 Introduction 1

1.1 Notation . 2

1.2 Loss functions . 3

1.3 Sparsity-Inducing Norms . 3

1.4 Optimization Tools . 8

1.5 Multiple Kernel Learning . 12

1.5.1 Variational formulation for sums of ℓ2-norms 14

1.5.2 From the group Lasso to MKL . 15

1.5.3 Variational formulations for subquadratic norms 16

1.5.4 Structured multiple kernel learning 18

2 Generic Methods 21

3 Proximal Methods 23

3.1 Principle of Proximal Methods . 23

3.2 Algorithms . 24

3.3 Computing the Proximal Operator . 25

3.4 Proximal methods for structured MKL . 27

4 (Block) Coordinate Descent Algorithms 30

4.1 Coordinate descent for ℓ1-regularization . 30

4.2 Block-coordinate descent for ℓ1/ℓq regularization 32

4.3 Block-coordinate descent for MKL . 33

5 Reweighted-ℓ2 Algorithms 34

2

5.1 Quadratic variational formulation for general norms 35

6 Working-Set and Homotopy Methods 38

6.1 Working-Set Techniques . 38

6.2 Homotopy methods . 40

7 Sparsity and Nonconvex Optimization 43

7.1 Greedy Algorithms . 43

7.2 DC-Programming, Reweighted-ℓ1 Algorithms 45

7.3 Sparse Matrix Factorization and Dictionary Learning 46

7.4 Bayesian Methods . 48

8 Quantitative Evaluation 49

8.1 Speed Benchmarks for Lasso . 50

8.2 Group-Sparsity for Multi-task Learning . 51

8.3 Structured Sparsity . 52

8.3.1 Denoising of natural image patches 52

8.3.2 Multi-class classification of cancer diagnosis. 53

8.3.3 General overlapping groups of variables 53

8.4 General Comments . 54

9 Extensions 61

10 Conclusions 62

3

Chapter 1

Introduction

The principle of parsimony is central to many areas of science: the simplest explanation
to a given phenomenon should be preferred over more complicated ones. In the context
of machine learning, it takes the form of variable or feature selection, and it is commonly
used in two situations. First, to make the model or the prediction more interpretable or
computationally cheaper to use, i.e., even if the underlying problem is not sparse, one looks
for the best sparse approximation. Second, sparsity can also be used given prior knowledge
that the model should be sparse.

For variable selection in linear models, parsimony may be directly achieved by penalization
of the empirical risk or the log-likelihood by the cardinality of the support1 of the weight
vector. However, this leads to hard combinatorial problems (see, e.g., [84, 116]). A tradi-
tional convex approximation of the problem is to replace the cardinality of the support by
the ℓ1-norm. Estimators may then be obtained as solutions of convex programs.

Casting sparse estimation as convex optimization problems has two main benefits: First, it
leads to efficient estimation algorithms—and this paper focuses primarily on these. Second,
it allows a fruitful theoretical analysis answering fundamental questions related to estima-
tion consistency, prediction efficiency [19, 86] or model consistency [123, 133]. In particular,
when the sparse model is assumed to be well-specified, regularization by the ℓ1-norm is
adapted to high-dimensional problems, where the number of variables to learn from may be
exponential in the number of observations.

Reducing parsimony to finding the model of lowest cardinality turns out to be limiting, and
structured parsimony [15, 55, 56, 53] has emerged as a natural extension, with applications
to computer vision [31, 60, 53], text processing [59] or bioinformatics [55, 63]. Structured
sparsity may be achieved by penalizing other functions than the cardinality of the support
or regularizing by other norms than the ℓ1-norm. In this paper, we focus primarily on
norms which can be written as linear combinations of norms on subsets of variables, but we
also consider traditional extensions such as multiple kernel learning and spectral norms on
matrices (see Section 1.3 and 1.5). One main objective of this paper is to present methods

1We call the support the set of non-zeros

1

which are adapted to most sparsity-inducing norms with loss functions potentially beyond
least-squares.

Finally, similar tools are used in other communities such as signal processing. While the
objectives and the problem set-up are different, the resulting convex optimization problems
are often similar, and most of the techniques reviewed in this paper also apply to sparse
estimation problems in signal processing. Moreover, we consider in Section 7 non-convex
formulations and extensions.

This paper aims at providing a general overview of the main optimization techniques that
have emerged as most relevant and efficient for methods of variable selection based on
sparsity inducing-norms. We survey and compare several algorithmic approaches as they
apply to the ℓ1-norm, group norms, but also to norms inducing structured sparsity and
to general multiple kernel learning problems. We complement these by a presentation of
some greedy and non-convex methods. Our presentation is essentially based on existing
literature, but the process of constructing a general framework lead naturally to a couple
of new results, connections and points of view.

This paper is organized as follows: We introduce some notation in Section 1.1, and present
optimization problems related to sparse methods in Section 1.2. In Section 1.3, we present
the various sparsity-inducing norms, while in Section 1.4, we review various optimization
tools that will be needed throughout the paper. We then quickly present in Section 2
generic techniques that are not best suited to sparse methods. In subsequent sections, we
present methods which are well adapted to regularized problems, namely proximal methods
in Section 3, block coordinate descent in Section 4, reweighted ℓ2-methods in Section 5,
and working set and homotopy methods in Section 6. We review non-convex approaches
such as greedy methods, DC programming and dictionary learning in Section 7. Finally, we
provide quantitative evaluations of all of these methods in Section 8. Some of the material
from this paper is taken from an earlier book chapter [12] and the dissertations of Rodolphe
Jenatton and Julien Mairal.

1.1 Notation

Vectors are denoted by bold lower case letters and matrices by upper case ones. We define
for q ≥ 1 the ℓq-norm of a vector x in R

n as ‖x‖q := (
∑n

i=1 |xi|q)1/q, where xi denotes
the i-th coordinate of x, and ‖x‖∞ := maxi=1,...,n |xi| = limq→∞ ‖x‖q. We also define the
ℓ0-pseudo-norm as the number of nonzero elements in a vector:2 ‖x‖0 := #{i s.t. xi 6=
0} = limq→0+(

∑n
i=1 |xi|q). We consider the Frobenius norm of a matrix X in R

m×n:
‖X‖F := (

∑m
i=1

∑n
j=1X

2
ij)

1/2, where Xij denotes the entry of X at row i and column j.
For an integer n > 0, and for any subset J ⊆ {1, . . . , n}, we denote by xJ the vector of
size |J | containing the entries of a vector x in R

n indexed by J , and by XJ the matrix
in R

m×|J | containing the |J | colums of a matrix X in R
m×n indexed by J .

2Note that it would be more proper to write ‖x‖00 instead of ‖x‖0 to be consistent with the traditional
notation ‖x‖q . However, for the sake of simplicity, we will keep this notation unchanged in the rest of the
paper.

2

1.2 Loss functions

We consider in this paper convex optimization problems of the form

min
w∈Rp

f(w) + λΩ(w), (1.1)

where f : R
p → R is a convex differentiable function and Ω : R

p → R is a sparsity-
inducing—typically nonsmooth and non-Euclidean—norm.

In supervised learning, we predict outputs y in Y from observations x in X; these obser-
vations are usually represented by p-dimensional vectors with X = R

p. In this supervised
setting, f generally corresponds to the empirical risk of a loss function ℓ : Y × R → R+.
More precisely, given n pairs of data points {(x(i), y(i)) ∈ R

p×Y; i = 1, . . . , n}, we have
for linear models f(w) := 1

n

∑n
i=1 ℓ(y

(i),wTx(i)). Typical examples of differentiable loss
functions are the square loss for least squares regression, i.e., ℓ(y, ŷ) = 1

2(y − ŷ)2 with y in
R, and the logistic loss ℓ(y, ŷ) = log(1 + e−yŷ) for logistic regression, with y in {−1, 1}. We
refer the readers to [109] for a more complete description of loss functions.

1.3 Sparsity-Inducing Norms

In this section, we present various norms as well as their main sparsity-inducing effects.
These effects may be illustrated geometrically through the singularities of the corresponding
unit balls (see Figure 1.4).

Sparsity through the ℓ1-norm. When one knows a priori that the solutions w⋆ of
problem (1.1) should have a few non-zero coefficients, Ω is often chosen to be the ℓ1-norm,
i.e., Ω(w) =

∑p
j=1 |wj|. This leads for instance to the Lasso [114] with the square loss and

to the ℓ1-regularized logistic regression (see, for instance, [65, 110]) with the logistic loss.
Regularizing by the ℓ1-norm is known to induce sparsity in the sense that, a number of
coefficients of w⋆, depending on the strength of the regularization, will be exactly equal to
zero.

Grouped ℓ1-norms. In some situations, for example when encoding ordinal variables
by binary dummy variables, the coefficients of w⋆ are naturally partitioned in subsets, or
groups, of variables. It is then natural to select or remove simultaneously all the variables
forming a group. A regularization norm exploiting explicitly this group structure can be
shown to improve the prediction performance and/or interpretability of the learned mod-
els [52, 71, 92, 102, 120, 131]. Such a norm might for instance take the form

Ω(w) :=
∑

g∈G
dg‖wg‖2, (1.2)

where G is a partition of {1, . . . , p}, (dg)g∈G are some positive weights, and wg denotes the
vector in R

|g| recording the coefficients of w indexed by g in G. Without loss of generality

3

Figure 1.1: (Left) The set of blue groups to penalize in order to select contiguous patterns
in a sequence. (Right) In red, an example of such a nonzero pattern with its corresponding
zero pattern (hatched area).

we may assume all weights (dg)g∈G to be equal to one (when G is a partition, we can rescale
the values of w appropriately). As defined in Eq. (1.2), Ω is known as a mixed ℓ1/ℓ2-norm.
It behaves like an ℓ1-norm on the vector (‖wg‖2)g∈G in R

|G|, and therefore, Ω induces group
sparsity. In other words, each ‖wg‖2, and equivalently each wg, is encouraged to be set to
zero. On the other hand, within the groups g in G, the ℓ2-norm does not promote sparsity.
Combined with the square loss, it leads to the group Lasso formulation [131]. Note that
when G is the set of singletons, we retrieve the ℓ1-norm. More general mixed ℓ1/ℓq-norms
for q > 1 are also used in the literature [132]:

Ω(w) =
∑

g∈G
‖wg‖q :=

∑

g∈G
dg

{∑

j∈g
|wj|q

}1/q

.

In practice though, the ℓ1/ℓ2- and ℓ1/ℓ∞-settings remain the most popular ones. Note that
using ℓ∞-norms may have the undesired effect to favor solutions w with many components
of equal magnitude (due to the extra non-differentiabilities away from zero).

Grouped ℓ1-norms are typically used when extra-knowledge is available regarding an ap-
propriate partition, in particular in the presence of categorical variables with orthogonal
encoding [102], for multi-task learning where joint variable selection is desired [92], and for
multiple kernel learning (see Section 1.5).

Norms for overlapping groups: a direct formulation. In an attempt to better
encode structural links between variables at play (e.g., spatial or hierarchical links related
to the physics of the problem at hand), recent research has explored the setting where G in
Eq. (1.2) can contain groups of variables that overlap [9, 55, 56, 63, 104, 132]. In this case,
Ω is still a norm, and it yields sparsity in the form of specific patterns of variables. More
precisely, the solutions w⋆ of problem (1.1) can be shown to have a set of zero coefficients, or
simply zero pattern, that corresponds to a union of some groups g in G [56]. This property
makes it possible to control the sparsity patterns of w⋆ by appropriately defining the groups
in G. Note that here the weights dg should not be taken equal to one (see, [56] for more
details). This form of structured sparsity has notably proven to be useful in various contexts,
which we now illustrate through concrete examples:

4

Figure 1.2: Vertical and horizontal groups: (Left) the set of blue and green groups to pe-
nalize in order to select rectangles. (Right) In red, an example of nonzero pattern recovered
in this setting, with its corresponding zero pattern (hatched area).

- One-dimensional Sequence: Given p variables organized in a sequence, if we want
to select only contiguous nonzero patterns, we represent in Figure 1.1 the set of groups
G to consider. In this case, we have |G| = O(p). Imposing the contiguity of the nonzero
patterns is for instance relevant in the context of time series, or for the diagnosis of
tumors, based on the profiles of arrayCGH [98]. Indeed, because of the specific spatial
organization of bacterial artificial chromosomes along the genome, the set of discrim-
inative features is expected to have specific contiguous patterns.

- Two-dimensional Grid: In the same way, assume now the p variables are orga-
nized on a two-dimensional grid. If we want the possible nonzero patterns P to
be the set of all rectangles on this grid, the appropriate groups G to consider can
be shown (see [56]) to be those represented in Figure 1.2. In this setting, we have
|G| = O(

√
p). Sparsity-inducing regularizations built upon such group structures have

resulted in good performances for background subtraction [53, 75, 77], topographic
dictionary learning [62, 77], wavelet-based denoising [97], and for face recognition with
corruption by occlusions [60].

- Hierarchical Structure: A third interesting example assumes that the variables
have a hierarchical structure. Specifically, we consider that the p variables correspond
to the nodes of tree T (or a forest of trees). Moreover, we assume that we want to
select the variables according to a certain order: a feature can be select only if all its
ancestors in T are already selected. This hierarchical rule can be shown to lead to the
family of groups displayed on Figure 1.3.

This resulting penalty was first used in [132]; since then, this type of groups has led
to numerous applications, for instance, wavelet-based denoising [15, 53, 58, 132], hi-
erarchical dictionary learning for both topic modeling and image restoration [58, 59],
log-linear models for the selection of potential orders [104], bioinformatics, to exploit
the tree structure of gene networks for multi-task regression [63], and multi-scale min-
ing of fMRI data for the prediction of some cognitive task [57]. More recently, this
hierarchical penalty was proved to be efficient for template selection in natural lan-

5

Figure 1.3: Left: example of a tree-structured set of groups G (dashed contours in red),
corresponding to a tree T with p = 6 nodes represented by black circles. Right: example
of a sparsity pattern induced by the tree-structured norm corresponding to G: the groups
{2, 4}, {4} and {6} are set to zero, so that the corresponding nodes (in gray) that form
subtrees of T are removed. The remaining nonzero variables {1, 3, 5} form a rooted and
connected subtree of T. This sparsity pattern obeys the following equivalent rules: (i) if a
node is selected, the same goes for all its ancestors; (ii) if a node is not selected, then its
descendant are not selected.

guage processing [80].

- Extensions: The possible choices for the sets of groups G are not limited to the afore-
mentioned examples. More complicated topologies can be considered, for instance,
three-dimensional spaces discretized in cubes or spherical volumes discretized in slices;
for instance, see [121] for an application to neuroimaging that pursues this idea. More-
over, directed acyclic graphs that extends the trees presented in Figure 1.3 have no-
tably proven to be useful in the context of hierarchical variable selection [132, 9, 104],

Norms for overlapping groups: a latent variable formulation. The family of norms
defined in Eq. (1.2) is adapted to intersection-closed sets of nonzero patterns. However,
some applications exhibit structures that can be more naturally modelled by union-closed
families of supports. This idea was developed by [55] who, given a set of groups G, introduced
the following norm

Ωunion(w) := min
v∈Rp×|G|

∑

g∈G
dg‖vg‖2 such that

{ ∑
g∈G v

g = w,

∀g ∈ G, vgj = 0 if j /∈ g.
(1.3)

The norm defined above provides a different generalization of the ℓ1/ℓ2 norm to the case of
overlapping groups that the norm presented above. The choice of the weights dg is crucial in
this setting as well. It may be interpreted as duplicating the variables that belong to several

6

groups and penalizing the norms of all duplicates using an ℓ1/ℓ2-norm. Interestingly, it can
be interpreted as a convex relaxation of a non-convex penalty introduced in [53], which
encourages similar sparsity patterns.

Multiple kernel learning. For most of the sparsity-inducing terms described in this
paper, we may replace real variables and their absolute values by pre-defined groups of
variables with their Euclidean norms (we have already seen such examples with ℓ1/ℓ2-
norms), or more generally, by members of reproducing kernel Hilbert spaces. As shown in
Section 1.5, most of the tools that we present in this paper are applicable to this case as
well, through appropriate modifications and borrowing of tools from kernel methods, and
have applications in particular in multiple kernel learning. Note that this extension requires
tools from convex analysis presented in Section 1.4.

Trace norm. Given learning problem on matrices, such as matrix completion, the rank
plays a similar role than the cardinality of the support for vectors. Indeed, the rank of
a matrix M may be seen as the number of non-zero singular values of M. The rank of
M however is not a continuous function of M, and, following the convex relaxation of the
ℓ0-pseudo-norm into the ℓ1-norm, we may relax the rank of M into the sum of its singular
values, which happens to be a norm, and is often referred to as the trace norm or nuclear
norm of M, and which we denote ‖M‖∗. As shown in this paper, many of the tools designed
for the ℓ1-norm may be extended to the trace norm.

Using the trace norm as a convex surrogate for rank has many applications in control the-
ory [44], matrix completion [1, 112], multi-task learning [95], or multi-label classification [4],
where low-rank priors are adapted.

Sparsity-inducing properties: a geometrical intuition. Although we consider in
Eq. (1.1) a regularized formulation, we could equivalently focus on a constrained problem,
that is,

min
w∈Rp

f(w) such that Ω(w) ≤ µ, (1.4)

for some µ ∈ R+. The set of solutions of Eq. (1.4) parameterized by µ is the same as that
of Eq. (1.1), as described by some value of λµ depending on µ (e.g., see Section 3.2 in [20]).
At optimality, the gradient of f evaluated at any solution ŵ of (1.4) is known to belong to
the normal cone to B = {w ∈ R

p; Ω(w) ≤ µ} at ŵ [20]. In other words, for sufficiently
small values of µ, i.e., so that the constraint is active, the level set of f for the value f(ŵ)
is tangent to B.

As a consequence, the geometry of the ball B is directly related to the properties of the
solutions ŵ. If Ω is taken to be the ℓ2-norm, then the resulting ball B is the standard,
isotropic, “round” ball that does not favor any specific direction of the space. On the
other hand, when Ω is the ℓ1-norm, B corresponds to a diamond-shaped pattern in two
dimensions, and to a pyramid in three dimensions. In particular, B is anisotropic and
exhibits some singular points due to the non-smoothness of Ω. Moreover, these singular
points are located along the axis of Rp, so that if the level set of f happens to be tangent

7

at one of those points, sparse solutions are obtained. We display in Figure 1.4 the balls B
for the ℓ1-, ℓ2-, and two different grouped ℓ1/ℓ2-norms.

Extensions. The design of sparsity-inducing norms is an active field of research and
similar tools than the ones we present in this can be derived for other norms. As shown
in Section 3, computing the proximal operator readily leads to efficient algorithms, and for
the extensions we present below, these operators can be efficiently computed.

In order to impose prior knowledge on the support of predictor, the norms based on over-
lapping ℓ1/ℓ∞-norms can be shown to be convex relaxations of submodular functions of
the support, and further ties can be made between convex optimization and combinatorial
optimization (see [10] for more details).

Moreover, similar developments may be carried through for norms that try to enforce that
the predictors have many equal components and that the resulting clusters have specific
shapes, e.g., contiguous in a pre-defined order, see, e.g., [11, 32, 75, 122, 115] and references
therein.

1.4 Optimization Tools

The tools used in this paper are relatively basic and should be accessible to a broad audience.
Most of them can be found in classical books on convex optimization [18, 20, 25, 91], but
for self-containedness, we present here a few of them related to non-smooth unconstrained
optimization. In particular, these tools allow the derivation of rigorous approximate opti-
mality conditions based on duality gaps (instead of relying on weak stopping criteria based
on small changes or low-norm gradients).

Subgradients. Given a convex function g : Rp → R and a vector w in R
p, let us define

the subdifferential of g at w as

∂g(w) := {z ∈ R
p | g(w) + zT (w′ −w) ≤ g(w′) for all vectors w′ ∈ R

p}.

The elements of ∂g(w) are called the subgradients of g at w. Note that all convex functions
defined on R

p have non-empty subdifferentials at every point. This definition admits a clear
geometric interpretation: any subgradient z in ∂g(w) defines an affine functionw′ 7→ g(w)+
zT (w′ −w) which is tangent to the graph of the function g (because of the convexity of g,
it is a lower-bounding tangent). Moreover, there is a bijection (one-to-one correspondence)
between such “tangent affine functions” and the subgradients, as illustrated in Figure 1.5.
Subdifferentials are useful for studying nonsmooth optimization problems because of the
following proposition (whose proof is straightforward from the definition):

Proposition 1.1 (Subgradients at Optimality)
For any convex function g : Rp → R, a point w in R

p is a global minimum of g if and only
if the condition 0 ∈ ∂g(w) holds.

8

Note that the concept of subdifferential is mainly useful for nonsmooth functions. If g
is differentiable at w, the set ∂g(w) is indeed the singleton {∇g(w)}, and the condition
0 ∈ ∂g(w) reduces to the classical first-order optimality condition ∇g(w) = 0. As a simple
example, let us consider the following optimization problem

min
w∈R

1

2
(x− w)2 + λ|w|.

Applying the previous proposition and noting that the subdifferential ∂|·| is {+1} for w > 0,
{−1} for w < 0 and [−1, 1] for w = 0, it is easy to show that the unique solution admits a
closed form called the soft-thresholding operator, following a terminology introduced by [38];
it can be written

w⋆ =

{
0 if |x| ≤ λ
(1− λ

|x|)x otherwise,
(1.5)

or equivalently w⋆ = sign(x)(|x|−λ)+. This operator is a core component of many optimiza-
tion techniques for sparse methods, as we shall see later. Its counterpart for non-convex
optimization problems is the hard-thresholding operator. Both of them are presented in
Figure 1.6. Note that similar developments could be carried through using directional
derivatives instead of sugradients (see, e.g., [20]).

Dual Norm and Optimality Conditions. The next concept we introduce is the dual
norm, which is important to study sparsity-inducing regularizations [9, 56, 86]. It notably
arises in the analysis of estimation bounds [86], and in the design of working-set strategies
as will be shown in Section 6.1. The dual norm Ω∗ of the norm Ω is defined for any vector
z in R

p by
Ω∗(z) := max

w∈Rp
zTw such that Ω(w) ≤ 1. (1.6)

Moreover, the dual norm of Ω∗ is Ω itself, and as a consequence, the formula above holds
also if the roles of Ω and Ω∗ are exchanged. It is easy to show that in the case of an ℓq-norm,
q ∈ [1;+∞], the dual norm is the ℓq′-norm, with q′ in [1;+∞] such that 1

q +
1
q′ = 1. In

particular, the ℓ1- and ℓ∞-norms are dual to each other, and the ℓ2-norm is self-dual (dual
to itself).

The dual norm plays a direct role in computing optimality conditions of sparse regularized
problems. By applying Proposition 1.1 to Eq. (1.1), a little calculation shows that a vector
w in R

p is optimal for Eq. (1.1) if and only if − 1
λ∇f(w) ∈ ∂Ω(w) with

∂Ω(w) =

{
{z ∈ R

p; Ω∗(z) ≤ 1} if w = 0,

{z ∈ R
p; Ω∗(z) ≤ 1 and zTw = Ω(w)} otherwise.

(1.7)

As a consequence, the vector 0 is solution if and only if Ω∗(∇f(0)
)
≤ λ. Note that this shows

that for all λ larger than Ω∗(∇f(0)
)
, w = 0 is a solution of the regularized optimization

problem (hence this value is the start of the non-trivial regularization path). A proof of the
equality in Eq. (1.7) is postponed to the next section, in Remark 1.1.

9

These general optimality conditions can be specified to the Lasso problem [114], also known
as basis pursuit [33]:

min
w∈Rp

1

2
‖y −Xw‖22 + λ‖w‖1, (1.8)

where y is in R
n, and X is a design matrix in R

n×p. From Eq. (1.7) and since the ℓ∞-norm
is the dual of the ℓ1-norm we obtain that necessary and sufficient optimality conditions are

∀j = 1, . . . , p,

{ |XT
j (y −Xw)| ≤ λ if wj = 0

XT
j (y −Xw) = λ sgn(wj) if wj 6= 0,

(1.9)

where Xj denotes the j-th column of X, and wj the j-th entry of w. As we will see in
Section 6.2, it is possible to derive from these conditions interesting properties of the Lasso,
as well as efficient algorithms for solving it. We have presented a useful duality tool for
norms. More generally, there exists a related concept for convex functions, which we now
introduce.

Fenchel Conjugate and Duality Gaps. Let us denote by f∗ the Fenchel conjugate of
f [101], defined by

f∗(z) := sup
w∈Rp

[zTw − f(w)].

Fenchel conjugates are particulary useful to derive dual problems and duality gaps3. Under
mild conditions, the conjugate of the conjugate of a convex function is itself, leading to the
following representation of f as a maximum of affine functions:

f(w) = sup
z∈Rp

[zTw − f∗(z)].

In the context of this tutorial, it is notably useful to specify the expression of the conjugate
of a norm. Perhaps surprisingly and misleadingly, the conjugate of a norm is not equal to
its dual norm, but corresponds instead to the indicator function of the unit ball of its dual
norm. More formally, let us introduce the indicator function ιΩ∗ such that ιΩ∗(z) is equal to
0 if Ω∗(z) ≤ 1 and +∞ otherwise. Then, we have the equality ιΩ∗ = supw∈Rp [zTw−Ω(w)].
This result is well-known and appears in several text books (e.g., see Example 3.26 in [25]);
for the sake of completeness, we give below of proof of this equality:

Proposition 1.2 (Fenchel conjugate of a norm) Let Ω be a norm on R
p. The follow-

ing equality holds for any z ∈ R
p

sup
w∈Rp

[zTw − Ω(w)] =

{
0 if Ω∗(z) ≤ 1

+∞ otherwise.

Proof On the one hand, assume that the dual norm of z is greater than one, that is,
Ω∗(z) > 1. According to the definition of the dual norm (see Eq. (1.6)), and since the
supremum is taken over the compact set {w ∈ R

p; Ω(w) ≤ 1}, there exists a vector w in

3For many of our norms, conic duality tools would suffice (see, e.g., [25]).

10

this ball such that Ω∗(z) = z⊤w > 1. For any scalar t ≥ 0, consider v = tw and notice
that

z⊤v − Ω(v) = t[z⊤w − Ω(w)] ≥ t,
which shows that when Ω∗(z) > 1, the Fenchel conjugate is unbounded.

Now, assume that Ω∗(z) ≤ 1. By applying the generalized Cauchy-Schwartz’s inequality,
we obtain for any w

z⊤w − Ω(w) ≤ Ω∗(z)Ω(w)− Ω(w) ≤ 0.

Equality holds for w = 0, and the conclusion follows.

Remark 1.1 With Proposition 1.2 in place, we can formally (and easily) prove the rela-
tionship in Eq. (1.7) that explicits the subdifferential of a norm. Based on Proposition 1.2,
we indeed know that the conjuguate of Ω is ιΩ∗. Applying the Fenchel-Young inequality (see
Proposition 3.3.4 in [20]), we have

z ∈ ∂Ω(w)⇔
[
z⊤w = Ω(w) + ιΩ∗(z)

]
,

which leads to the desired conclusion.

For many objective functions, the Fenchel conjugate admits closed forms, and can therefore
be computed efficiently [20]. Then, it is possible to derive a duality gap for problem (1.1)
from standard Fenchel duality arguments (see [20]), as shown in the following proposition:

Proposition 1.3 (Duality for Problem (1.1))
If f∗ and Ω∗ are respectively the Fenchel conjugate of a convex and differentiable function
f and the dual norm of Ω, then we have

max
z∈Rp: Ω∗(z)≤λ

−f∗(z) ≤ min
w∈Rp

f(w) + λΩ(w). (1.10)

Moreover, equality holds as soon as the domain of f has non-empty interior.

Proof This result is a specific instance of Theorem 3.3.5 in [20]. In particular, we use the
fact that the conjugate of a norm Ω is the indicator function ιΩ∗ of the unit ball of the dual
norm Ω∗ (see Proposition 1.2).

If w⋆ is a solution of Eq. (1.1), and w,z in R
p are such that Ω∗(z) ≤ λ, this proposition

implies that we have

f(w) + λΩ(w) ≥ f(w⋆) + λΩ(w⋆) ≥ −f∗(z). (1.11)

The difference between the left and right term of Eq. (1.11) is called a duality gap. It
represents the difference between the value of the primal objective function f(w) + λΩ(w)
and a dual objective function −f∗(z), where z is a dual variable. The proposition says that
the duality gap for a pair of optima w⋆ and z⋆ of the primal and dual problem is equal to
0. When the optimal duality gap is zero one says that strong duality holds.

11

Duality gaps are important in convex optimization because they provide an upper bound
on the difference between the current value of an objective function and the optimal value,
which makes it possible to set proper stopping criteria for iterative optimization algo-
rithms. Given a current iterate w, computing a duality gap requires choosing a “good”
value for z (and in particular a feasible one). Given that at optimality, z(w⋆) = ∇f(w⋆)
is the unique solution to the dual problem, a natural choice of dual variable is z =
min

(
1, λ

Ω∗(∇f(w))

)
∇f(w), which reduces to z(w⋆) at the optimum and therefore yields

a zero duality gap at optimality.

Note that in most formulations that we will consider, the function f is of the form f(w) =
ψ(Xw) with ψ : Rn → R and X a design matrix; typically, the Fenchel conjugate of ψ is
easy to compute4 while the design matrix X makes it hard5 to compute f∗. In that case,
Eq. (1.1) can be rewritten as

min
w∈Rp,u∈Rn

ψ(u) + λ Ω(w) s.t. u = Xw, (1.12)

and equivalently as the optimization of the Lagrangian

min
w∈Rp,u∈Rn

max
α∈Rn

(
ψ(u)− λαTu

)
+ λ

(
Ω(w) +αTXw

)
, (1.13)

which is obtained by introducing the Lagrange multiplier α. The corresponding Fenchel
dual6 is then

max
α∈Rn

−ψ∗(λα) such that Ω∗(XTα) ≤ 1, (1.14)

which does not require any inversion of XTX (which would be required for computing the
Fenchel conjugate of f). Thus, given a candidatew, we considerα = min

(
1, λ

Ω∗(XTψ′(Xw))

)
ψ′(Xw),

and can get an upper bound on optimality using primal (1.12) and dual (1.14) problems.
Concrete examples of such duality gaps for various sparse regularized problems are pre-
sented in appendix D of [74], and are implemented in the open-source software SPAMS7,
which we have used in the experimental section of this paper.

1.5 Multiple Kernel Learning

A seemingly unrelated problem in machine learning, the problem of multiple kernel learning
is in fact intimately connected with sparsity-inducing norms by duality. It actually corre-
sponds to the most natural extension of sparsity to reproducing kernel Hilbert spaces. We
will show that for a large class of norms and, among them, many sparsity-inducing norms,
there exists for each of them a corresponding multiple kernel learning scheme, and, vice
versa, each multiple kernel learning scheme defines a new norm.

4For the least-squares loss with output vector y ∈ R
n, we have ψ(u) = 1

2
‖y − u‖22 and ψ∗(β) =

1

2
‖β‖22 + βTy. For the logistic loss, we have ψ(u) =

∑n
i=1

log(1 + exp(−yiui)) and ψ∗(β) =
∑n

i=1
(1 +

βiyi) log(1 + βiyi)− βiyi log(−βiyi) if ∀i, −βiyi ∈ [0, 1] and +∞ otherwise.
5It would require to compute the pseudo-inverse of X .
6Fenchel conjugacy naturally extends to this case; see Theorem 3.3.5 in [20] for more details.
7http://www.di.ens.fr/willow/SPAMS/

12

The problem of kernel learning is a priori quite unrelated with parsimony. It emerges as a
consequence of a convexity property of the so-called “kernel trick”, which we now describe.
Consider a learning problem with f(w) = ψ(Xw), but regularized this time by the square
of the norm

min
w∈Rp

f(w) +
λ

2
Ω(w)2. (1.15)

As in Eq. (1.12) we can introduce linear constraint

min
u∈Rn,w∈Rp

ψ(u) +
λ

2
Ω(w)2 s.t. u = Xw, (1.16)

and reformulate the problem as the saddle point problem

min
u∈Rn,w∈Rp

max
α∈Rn

ψ(u) +
λ

2
Ω(w)2 − λα⊤(u−Xw). (1.17)

Since the primal problem (1.16) is a convex problem with feasible linear constraints, it
satisfies Slater’s qualification conditions and the order of maximization and minimization
can be exchanged

max
α∈Rn

min
u∈Rn,w∈Rp

(ψ(u) − λα⊤u) + λ
(1
2
Ω(w)2 +α⊤Xw). (1.18)

Now, the minimization in u and w can be performed independently. One property of norms
is that the Fenchel conjugate of w 7→ 1

2Ω(w)2 is κ 7→ 1
2Ω

∗(κ)2; this can be easily verified by
finding the vector w achieving equality in the sequence of inequalities κ⊤w ≤ Ω(w)Ω∗(κ) ≤
1
2

[
Ω(w)2 +Ω∗(κ)2

]
. As a consequence, the dual optimization problem is

max
α∈Rn

−ψ∗(λα)− λ

2
Ω∗(X⊤α)2. (1.19)

If Ω is the Euclidean norm (i.e., the ℓ2-norm) then the previous problem is simply

G(K) := max
α∈Rn

−ψ∗(λα)− λ

2
α⊤Kα with K = XX⊤. (1.20)

Focusing on this last case, a few remarks are crucial:

1. The dual problem depends on the designX only through the kernel matrix K ∈ R
n×n.

2. G is a convex function of K (as a maximum of linear functions).

3. The solutions w∗ and α∗ to the primal and dual problems satisfy w∗ = X⊤α∗ =∑n
i=1 α

∗
ixi.

4. The exact same duality result applies for the generalization to w,xi ∈ H for H a
Hilbert space.

13

The first remark suggests a way to solve learning problems that are non-linear in the inputs
xi: in particular consider a non-linear mapping φ which maps xi to a high-dimensional
φ(xi) ∈ H with H = R

d for d≫ p or possibly an infinite dimensional Hilbert space. Then
problem (1.15) with f(w) = 1

n

∑n
i=1 ℓ(〈w, φ(xi)〉, yi) becomes high-dimensional to solve in

the primal, while it is simply solved in the dual by choosing a kernel matrix with entries
Ki,j = 〈φ(xi), φ(xj)〉, which is advantageous as soon as n2 ≤ d; this is the so-called “kernel
trick” (see more details in [105, 109]).

In particular if we consider functions h ∈ H where H is a reproducing kernel Hilbert space
(RKHS) with reproducing kernel K then

min
h∈H

1

n

n∑

i=1

ℓ(h(xi), yi) +
λ

2
‖h‖2H (1.21)

is solved by solving Eq. (1.20) with Ki,j = K(xi,xj). When applied to the mapping
φ : x 7→ K(x, ·), the third remark above yields the representer theorem of Kimmeldorf and
Wahba [64]8 stating that h∗(·) = ∑n

i=1 α
∗
iK(xi, ·).

The fact that G is convex function of K suggests the possibility of optimizing the objective
with respect to the choice of the kernel itself by solving a problem of the form minK∈KG(K)
where K is a convex set of kernel matrices.

In particular, given a finite set of kernel functions (Ki)1≤i≤p it is natural to consider to
find the best linear combination of kernels, which requires to add a positive definiteness
constraint on the kernel, leading to a semi-definite program [68]:

min
η∈Rp

G(
∑p

i=1 ηiKi) s.t.
∑p

i=1 ηiKi � 0, tr(
∑p

i=1 ηiKi) ≤ 1. (1.22)

Assuming that the kernels have equal trace, the two constraints of the previous program
are avoided by considering convex combinations of kernels, which leads to a quadratically-
constrained quadratic program (QCQP) [67]:

min
η∈Rp

+

G(
∑p

i=1 ηiKi) s.t.
∑p

i=1 ηi = 1. (1.23)

We now present a reformulation of Eq. (1.23) using sparsity-inducing norms (see [7, 13, 96]
for more details).

1.5.1 Variational formulation for sums of ℓ2-norms

Variational formulations of structured norms are quite useful, among others to propose a
general algorithmic scheme for learning problems regularized with this norm. We intro-
duce them here because they provide the simplest link with the multiple kernel learning
framework. See Section 5 for a generalization to all possible norms.

8Note that this provides a proof of the representer theorem for convex losses only and that the parameters
α are obtained through a dual maximization problem.

14

The two basic variational identity we use are

2ab = inf
η∈R∗

+

η−1a2 + η b2, (1.24)

where the infimum is attained at η = a/b, and for a ∈ R
p
+,

(p∑

i=1

ai
)2

= inf
η∈(R∗

+)p

p∑

i=1

a2
i

ηi
s.t.

p∑

i=1

ηi = 1. (1.25)

The last inequality is a direct consequence of the Cauchy-Schwartz inequality:

p∑

i=1

ai =

p∑

i=1

ai√
ηi
· √ηi ≤

(p∑

i=1

a2
i

ηi

)1/2(p∑

i=1

ηi
)1/2

. (1.26)

The infima in the previous expressions can be replaced by a minimization if the function
(x, y) 7→ x

y is extended in (0, 0) using the convention “0/0=0”, since the resulting function
is a proper closed convex function. We will use this convention implicitly from now on.
Applying these variational forms to the ℓ1- and ℓ1/ℓ2-norms (with non overlapping groups)
with ‖w‖ℓ1/ℓ2 =

∑
g∈G ‖wg‖2, with |G| = m, and with △p = {η ∈ R

p
+ |

∑p
i=1 ηi = 1} the

simplex, we obtain directly:

‖w‖1 = min
η∈Rp

+

1

2

p∑

i=1

[w2
i

ηi
+ ηi

]
, ‖w‖21 = min

η∈△p

p∑

i=1

w2
i

ηi
,

‖w‖ℓ1/ℓ2 = min
η∈Rm

+

1

2

∑

g∈G

[‖wg‖2
ηg

+ ηg
]
, ‖w‖2ℓ1/ℓ2 = min

η∈△m

∑

g∈G

‖wg‖2
ηg

.

These formulations have appeared in [60, 95, 96] and many extensions exist in the literature.
See further extensions in Sections 1.5.3 and 5.

1.5.2 From the group Lasso to MKL

With the previous variational formulation in hand the connection between the group Lasso
and MKL is almost immediate. We indeed have, assuming that G is a partition of {1, . . . , p},

min
w∈Rp

ψ(Xw) +
λ

2

(∑
g∈G‖wg‖2

)2

= min
w∈Rp,η∈△m

ψ(Xw) +
λ

2

∑

g∈G

‖wg‖22
ηg

= min
w̃∈Rp,η∈△m

ψ(
∑

g∈G η
1/2
g Xgw̃g) +

λ

2

∑

g∈G
‖w̃g‖22

= min
w̃∈Rp,η∈△m

ψ(X̃w̃) +
λ

2
‖w̃‖22 s.t. X̃ = [η1/2g1 Xg1 , . . . , η

1/2
gm Xgm]

= min
η∈△m

max
α∈Rn

−ψ∗(λα)− λ

2
α⊤(∑

g∈G ηgKg

)
α

= min
η∈△m

G(
∑

g∈G ηgKg),

15

where the third line results from the change of variable w̃gηg = wg.

Note that the Lasso corresponds to the special case where groups are singletons and where
Ki = xix

⊤
i is a rank-one kernel matrix. In other words, MKL with rank-one kernel matrices

(i.e., feature spaces of dimension one) is equivalent to ℓ1-regularization and thus simpler
algorithms can be brought to bear in this situation.

We have shown that learning convex combinations of kernels through Eq. (1.23) turns out
to be equivalent to an ℓ1/ℓ2-norm penalized problems. In other words, learning a linear
combination

∑m
i=1 ηiKi of kernel matrices, subject to η in the simplex △m is equivalent

to penalizing the empirical risk with an ℓ1-norm applied to norms of predictors ‖wg‖2.
This link between the ℓ1-norm and the simplex may be extended to other norms, namely
“subquadratic” norms, which are associated to other compact sets, and which we now
describe.

1.5.3 Variational formulations for subquadratic norms

We have seen that for w ∈ R
p, ‖w‖21 = minη∈△p

∑p
i=1

w2
i

ηi
. We now show that similar

representations are possible for certain norms.

Lemma 1.1 Let Ω and Ω∗ a pair of dual norms. Define Ω̄∗(w) = Ω(w1/2)2 where we noted

w1/2 = (w
1/2
1 , . . . ,w

1/2
p)⊤. If Ω̄∗ is a convex function — we then say that Ω is subquadratic,

it is a norm and if Ω̄ denotes the corresponding primal norm then

Ω(w) =
1

2
min
η∈Rp

+

∑

i

w2
i

ηi
+ Ω̄(η)

Ω(w)2 = min
η∈H

∑

i

w2
i

ηi
where H = {η, Ω̄(η) ≤ 1}.

Proof Note that by construction, Ω̄∗ is homogenous, symmetric and definite (Ω̄∗(κ) =
0⇒ κ = 0). If Ω̄∗ is convex then Ω̄∗(12 (v+u)) ≤ 1

2

(
Ω̄∗(v)+ Ω̄∗(u)

)
, which by homogeneity

shows that Ω̄∗ also satisfies the triangle inequality. Together, these properties show that Ω̄∗

is a norm. For the first identity we have

Ω(w) = max
κ∈Rp

κ⊤|w| s.t. Ω∗(κ) ≤ 1

= max
κ∈Rp

+

p∑

i=1

κ
1/2
i |wi| s.t. Ω∗(κ1/2)2 ≤ 1

= max
κ∈Rp

+

min
η∈Rp

+

1

2

p∑

i=1

w2
i

ηi
+ κ⊤η s.t. Ω̄∗(κ) ≤ 1

= min
η∈Rp

+

max
κ∈Rp

+

1

2

p∑

i=1

w2
i

ηi
+ κ⊤η s.t. Ω̄∗(κ) ≤ 1,

16

which proves the first variational formulation. The second one follows similarly by applying
(1.25) instead of (1.24).

Ω(w)2 = max
κ∈Rp

(p∑

i=1

κ
1/2
i |wi|)2 s.t. Ω∗(κ1/2)2 ≤ 1

= max
κ∈Rp

+

min
η̃∈Rp

+

1

2

p∑

i=1

κiw
2
i

η̃i
s.t.

∑

i

η̃i = 1, Ω̄∗(κ) ≤ 1

= max
κ∈Rp

+

min
η∈Rp

+

1

2

p∑

i=1

w2
i

ηi
s.t. η⊤κ = 1, Ω̄∗(κ) ≤ 1

Thus, given a sub-quadratic norm, we may define a convex set H, namely the unit ball of

Ω̄, such that Ω(w)2 = minη∈H
∑p

i=1
w2

i
ηi

. Norms defined by this last variational formulation
for a given convex set H have been recently studied in [81].

We show that, for such norms, the dual norm has an explicit form:

Lemma 1.2 Define ΩH(w)2 = minη∈H
∑p

i=1
w2

i
ηi

. Then, if H is a compact convex set, ΩH

is a norm and the dual norm satisfies Ω∗
H(κ)

2 = maxη∈H
∑p

i=1 ηi κ
2
i .

Proof Symmetry, positive definiteness and homogeneity of Ω are straightforward from
the definitions. Ω is convex, since it is obtained by minimization of η in a jointly convex
formulation. Thus Ω is a norm. Finally

1

2
Ω∗
H(κ)

2 = max
w∈Rp

w⊤κ− 1

2
ΩH(w)2

= max
w∈Rp

max
η∈H

w⊤κ− 1

2
w⊤Diag(η)−1w.

The form of the dual norm follows by maximizing out w.r.t. w.

For norms that are not subquadratic, it is often the case that their dual norm is itself
subquadratic is which case symmetric variational forms can be obtained [2]. Finally, we
show in section 5 that all norms admit a quadratic variational form provided the bilinear
form considered is allowed to be non-diagonal.

17

1.5.4 Structured multiple kernel learning

For norms that have a variational form as in Lemma 1.2, we can generalize the equivalence
of the regularization by an ℓ1/ℓ2-norm with MKL to other structured norms. We have:

min
w∈Rp

ψ(Xw) +
λ

2
ΩH(w)2 (1.27)

= min
w∈Rp,η∈H

ψ(Xw) +
λ

2

p∑

i=1

w2
i

ηi

= min
w̃∈Rp,η∈H

ψ(
∑p

i=1 η
1/2
i Xiw̃i) +

λ

2

p∑

i=1

w̃2
i

= min
w̃∈Rp,η∈H

ψ(X̃w̃) +
λ

2
‖w̃‖22 s.t. X̃ = [η

1/2
1 X1, . . . ,η

1/2
p Xp]

= min
η∈H

max
α∈Rn

−ψ∗(λα)− λ

2
α⊤(∑p

i=1 ηiKi

)
α

= min
η∈H

G(
∑p

i=1 ηiKi).

This suggests a natural extension to the RKHS settings of structured norms. Indeed let,
h = (h1, . . . , hp) ∈ B := H1 × . . . × Hp, where Hi are RKHSes. It is easy to verify
that h 7→ ΩH

(
(‖h1‖H1

, . . . , ‖hp‖Hp) is a norm, using the variational formulation of ΩH .
Moreover, the learning problem

min
h∈B

ψ(h1(x) + . . .+ hp(x)) +
λ

2
ΩH

(
(‖h1‖H1

, . . . , ‖hp‖Hp)
2
)

(1.28)

is equivalent, by the above derivation, to the MKL problem minη∈H G(
∑p

i=1 ηiKi) with
[Ki]j,j′ = Ki(xj,xj′) for Ki the reproducing kernel of Hi.

Thus, for most of the structured sparsity-inducing norms that we have considered in Sec-
tion 1.3, we may replace individual variables by whole Hilbert spaces. For example, tree-
structured sparsity (and its extension to directed acyclic graphs) was explored in [9] where
each node of the graph was a RKHS, with application to non-linear variable selection.

18

(a) ℓ2-norm ball (b) ℓ1-norm ball

(c) ℓ1/ℓ2-norm ball without overlaps:
Ω(w) = ‖w{1,2}‖2 + |w3|

(d) ℓ1/ℓ2-norm ball with overlaps:
Ω(w) = ‖w{1,2,3}‖2 + |w1|+ |w2|

Figure 1.4: Comparison between different balls of sparsity-inducing norms in three dimen-
sions. The singular points appearing on these balls describe the sparsity-inducing behavior
of the underlying norms Ω.

19

w

(a) Smooth case

w

(b) Non-smooth case

Figure 1.5: Gradients and subgradients for smooth and non-smooth functions.

x

w⋆

λ

−λ

(a) soft-thresholding operator,
w⋆ = sign(x)(|x| − λ)+,
minw

1

2
(x−w)2 + λ|w|

x

w⋆

√
2λ

−
√
2λ

(b) hard-thresholding operator
w⋆ = 1|x|≥

√
2λx

minw
1

2
(x− w)2 + λ1|w|>0

Figure 1.6: Soft- and hard-thresholding operators.

20

Chapter 2

Generic Methods

The problem defined in Eq. (1.1) is convex, as soon as both the loss f and the regularizer
Ω are convex functions. In this section, we consider optimization strategies which are
essentially blind to problem structure, namely subgradient descent (see, e.g., [18]), which is
applicable under weak assumptions, and interior point methods solving reformulations such
as linear programs (LP), quadratic programs (QP) or more generally, second-order cone
programming (SOCP) or semidefinite programming (SDP) problems (see, e.g., [25]). The
latter strategy is usually only possible with the square loss and makes use of general-purpose
optimization toolboxes.

Subgradient descent. For all convex unconstrained problems, subgradient descent can
be used as soon as one subgradient can be computed efficiently. In our setting, this is
possible when a subgradient of the loss f , and a subgradient of the regularizer Ω can be
computed. This is true for all the norms that we have considered, and leads to the following
iterative algorithm

wt+1 = wt −
α

tβ
(s+ λs′), where s ∈ ∂f(wt), s

′ ∈ ∂Ω(wt)

with α a well-chosen positive parameter and β is typically 1 or 1/2. Under certain condi-
tions, these updates are globally convergent. More precisely, we have, from [87], F (wt) −
minw∈Rp F (w) = O(log t√

t
) for Lipschitz-continuous function and β = 1/2. However, the con-

vergence is in practice slow (i.e., many iterations are needed), and the solutions obtained
are usually not sparse. This is to be contrasted with the proximal methods presented in
the next section which are less generic but more adapted to sparse problems.

Reformulation as LP, QP, SOCP, SDP. For all the sparsity-inducing norms we con-
sider in this chapter the corresponding regularized least-square problem can be represented
by standard mathematical programming problems, all of them being SDPs, and often sim-
pler (e.g., QP). For example, for the ℓ1-norm regularized least-square regression, we can

21

reformulate minw∈Rp
1
2n‖y −Xw‖22 + λΩ(w) as

min
w+,w−∈Rp

+

1

2n
‖y −Xw+ +Xw−‖22 + λ(1⊤w+ + 1⊤w−),

which is a quadratic program. Other problems can be similarly cast (for the trace norm,
see [8, 44]).

General-purpose toolboxes can then be used, to get solutions with high precision (low duality
gap). However, in the context of machine learning, this is inefficient for two reasons: (1)
these toolboxes are generic and blind to problem structure and tend to be too slow, or
cannot even run because of memory problems, (2) as outlined by [22], high precision is
not necessary for machine learning problems, and a duality gap of the order of machine
precision (which would be a typical result from toolboxes) is not necessary.

We now present in the following sections methods that are adapted to problems regularized
by sparsity-inducing norms.

22

Chapter 3

Proximal Methods

3.1 Principle of Proximal Methods

Proximal methods are specifically tailored to optimize an objective of the form (1.1), i.e.,
which can be written as the sum of a generic smooth differentiable function f with Lipschitz-
continuous gradient, and a non-differentiable function λΩ. They have drawn increasing
attention in the machine learning community, especially because of their convergence rates
(optimal for the class of first-order techniques) and their ability to deal with large nonsmooth
convex problems (e.g., [17, 34, 89, 127]).

Proximal methods can be described as follows: at each iteration the function f is linearized
around the current point and a problem of the form

min
w∈Rp

f(wt)+∇f(wt)T (w −wt) + λΩ(w) +
L

2
‖w −wt‖22 (3.1)

is solved. The quadratic term, called proximal term, keeps the update in a neighborhood
of the current iterate wt where f is close to its linear approximation; L>0 is a parameter,
which should essentially be an upper bound on the Lipschitz constant of ∇f and is typically
set with a linesearch. This problem can be rewritten as

min
w∈Rp

1

2
‖w −

(
wt − 1

L∇f(wt)
)
‖22 + λ

LΩ(w). (3.2)

It should be noted that when the nonsmooth term Ω is not present, the solution of the
previous proximal problem just yields the standard gradient update rule wt+1 ← wt −
1
L∇f(wt). Furthermore, if Ω is the indicator function of a set ιC , i.e., defined by ιC(x) = 0
for x ∈ C and ιC(x) = +∞ otherwise, then solving (3.2) yields the projected gradient
update with projection on the set C. This suggests that the solution of the proximal problem
provides an interesting generalization of gradient updates, and motivates the introduction
of the notion of a proximal operator associated with the regularization term λΩ.

23

The proximal operator, which we will denote ProxµΩ, was defined by [82] as the function
that maps a vector u ∈ R

p to the unique1 solution of

min
w∈Rp

1

2
‖u−w‖22 + µΩ(w). (3.3)

This operator is clearly central to proximal methods since their main step consists in com-
puting Prox λ

L
Ω

(
wt − 1

L∇f(wt)
)
.

In section 3.3, we present analytical forms of proximal operators associated with simple
norms and algorithms to compute them in some more elaborate cases. Note that the
proximal term in Eq. (3.1) could be replaced by any Bregman divergences (see, e.g., [118]),
which may be useful in settings where extra constraint (such as non-negativity) are added
to the problem.

3.2 Algorithms

The basic proximal algorithm uses the solution of problem (3.2) as the next update wt+1;
however fast variants such as the accelerated algorithm presented in [89] or FISTA [17]
maintain two variables and use them to combine at marginal extra computational cost the
solution of (3.2) with information about previous steps. Often, an upper bound on the
Lipschitz constant of ∇f is not known, and even if it is2, it is often better to obtain a local
estimate. A suitable value for L can be obtained by iteratively increasing L by a constant
factor until the condition

f(w⋆
L) ≤ f(wt) +∇f(wt)T (w⋆

L −wt) + L
2 ‖w⋆

L −wt‖22 (3.4)

is met, where w⋆
L denotes the solution of (3.2).

For functions f whose gradients are Lipschitz-continuous, the basic proximal algorithm has
a global convergence rate in O(1t) where t is the number of iterations of the algorithm.
Accelerated algorithms like FISTA can be shown to have global convergence rate in O(1

t2
).

Perhaps more importantly, both basic (ISTA) and accelerated [89] proximal methods are
adaptive in the sense that if f is strongly convex — and the problem is therefore better
conditioned — the convergence is actually linear (i.e., with rates in O(Ct) for some constant
C < 1; see [89]). Finally, it should be noted that accelerated schemes are not necessarily
descent algorithms, in the sense that the objective does not necessarily decrease at each
iteration in spite of the global convergence properties.

1Since the objective is strongly convex.
2For problems common in machine learning where f(w) = ψ(Xw) and ψ is twice differentiable, then

L may be chosen to be the largest eigenvalue of 1

n
XTX times the supremum over u ∈ R

n of the largest
eigenvalue of the Hessian of ψ at u.

24

3.3 Computing the Proximal Operator

Computing the proximal operator efficiently and exactly is crucial to enjoy the fast con-
vergence rates of proximal methods. We therefore focus here on properties of this operator
and on its computation for several sparsity-inducing norms.

Dual proximal operator. In the case where Ω is a norm, by Fenchel duality, the follow-
ing problem is dual (see Proposition 1.3) to problem (3.2):

max
v∈Rp

−1

2

[
‖v − u‖22 − ‖u‖2

]
such that Ω∗(v) ≤ µ. (3.5)

Lemma 3.1 (Relation to dual proximal operator) Let ProxµΩ be the proximal oper-
ator associated with the regularization µΩ, where Ω is a norm, and Proj{Ω∗(·)≤µ} be the
projector on the ball of radius µ of the dual norm Ω∗. Then Proj{Ω∗(·)≤µ} is the proximal
operator for the dual problem (3.5) and, denoting the identity Id, these two operators satisfy
the relation

ProxµΩ = Id − Proj{Ω∗(·)≤µ}. (3.6)

Proof By Proposition 1.3, if w⋆ is optimal for (3.3) and v⋆ is optimal for (3.5), we have3

−v⋆ = ∇f(w⋆) = w⋆ − u. Since v⋆ is the projection of u on the ball of radius µ of the
norm Ω∗, the result follows.

This lemma shows that the proximal operator can always be computed as the residual of a
projection onto a convex set. More general results appear in [35].

ℓ1-norm regularization. Using optimality conditions for (3.5) and then (3.6) or subgra-
dient condition (1.7) applied to (3.3), it is easy to check that Proj{‖·‖∞≤µ} and Proxµ‖·‖1
respectively satisfy:

[
Proj{‖·‖∞≤µ}(u)

]
j
= min

(
1, µ

|uj |
)
uj ,

and [
Proxµ‖·‖1(u)

]
j
=

(
1− µ

|uj |
)
+
uj,

for j ∈ {1, . . . , p}, with (x)+ := max(x, 0). Note that Proxµ‖·‖1 is componentwise the
soft-thresholding operator of [38] presented in Section 1.4.

ℓ1-norm constraint. Sometimes, the ℓ1-norm is used as a hard constraint and, in that
case, the optimization problem is

min
w

f(w) such that ‖w‖1 ≤ C.

3The dual variable from Fenchel duality is −v in this case.

25

This problem can still be viewed as an instance of (1.1), with Ω defined by Ω(u) = 0 if
‖u‖1 ≤ C and Ω(u) = +∞ otherwise. Proximal methods thus apply and the corresponding
proximal operator is the projection on the ℓ1-ball, itself an instance of a quadratic continuous
knapsack problem for which efficient pivot algorithms with linear complexity have been
proposed [27, 73].

ℓ1/ℓq-norm (“group Lasso”). If G is a partition of {1, . . . , p}, the dual norm of the
ℓ1/ℓq norm is the ℓ∞/ℓq′ norm, with 1

q + 1
q′ = 1. It is easy to show that the orthogonal

projection on a unit ℓ∞/ℓq′ ball is obtained by projecting separately each subvector ug on
a unit ℓq′-ball in R

|g|. For the ℓ1/ℓ2-norm Ω : w 7→∑
g∈G ‖wg‖2 we have

[ProxµΩ(u)]g =
(
1− λ

‖ug‖2

)
+
ug, g ∈ G.

This is shown easily by considering that the subgradient of the ℓ2-norm is ∂‖w‖2 =
{

w
‖w‖2

}

if w 6= 0 or ∂‖w‖2 = {z | ‖z‖2 ≤ 1} if w = 0 and by applying the result of Eq. (1.7).

For the ℓ1/ℓ∞-norm, whose dual norm is the ℓ∞/ℓ1-norm, an efficient algorithm to compute
the proximal operator is based on Eq. (3.6). Indeed this equation indicates that the proximal
operator can be computed on each group g as the residual of a projection on an ℓ1-norm ball
in R

|g|; the latter is done efficiently with the previously mentioned linear-time algorithms.

In general, the case where groups overlap is more complicated because the regularization is
no longer separable. Nonetheless, in some cases it is still possible to compute efficiently the
proximal operator.

Hierarchical ℓ1/ℓq-norms. Hierarchical norms were proposed by [132]. Following [59],
we focus on the case of a norm Ω : w 7→ ∑

g∈G ‖wg‖q, with q ∈ {2,∞}, where the set of
groups G is tree-structured, meaning that two groups are either disjoint or one is included
in the other. Let � be a total order such that g1 � g2 if and only if either g1 ⊂ g2 or
g1 ∩ g2 = ∅.4 Then, if g1 � . . . � gm with m = |G|, and if we define Πg as (a) the proximal
operator wg 7→ Proxµ‖·‖q (wg) on the subspace corresponding to group g and (b) the identity
on the orthogonal, it can be shown [59] that:

ProxµΩ = Πgm ◦ . . . ◦ Πg1 . (3.7)

In other words, the proximal operator associated with the norm can be obtained as the
composition of the proximal operators associated to individual groups provided that the
ordering of the groups is well chosen. Note that this result does not hold for q /∈ {1, 2,∞}
(see [59] for more details).

Combined ℓ1 + ℓ1/ℓq-norm (“sparse group Lasso”). The possibility of combining
an ℓ1/ℓq-norm that takes advantage of sparsity at the group level with an ℓ1-norm that

4For a tree-structured G such an order exists.

26

induces sparsity within the groups is quite natural [45, 111]. Such regularizations are in
fact a special case of the hierarchical ℓ1/ℓq-norms presented above and the corresponding
proximal operator is therefore readily computed by applying first soft-thresholding and then
group soft-thresholding.

Overlapping ℓ1/ℓ∞-norms. When the groups overlap but do not have a tree structure,
computing the proximal operator has proven to be more difficult, but it can still be done
efficiently when q =∞. Indeed, as shown by [76], there exists a dual relation between such
an operator and a quadratic min-cost flow problem on a particular graph, which can be
tackled using network flow optimization techniques. Moreover, it may be extended to more
general situations where structured sparsity is expressed through submodular functions [10].

Trace norm. The proximal operator for the trace norm, i.e., the unique minimizer of
1
2‖M−N‖2F +λ‖M‖∗ may obtained by computing a singular value decomposition of N and
then replacing the singular values by their soft-thresholded versions.

3.4 Proximal methods for structured MKL

In this section we show how proximal methods can be applied to solve multiple kernel
learning problems. More precisely, we follow [83] who showed, in the context of plain MKL
that proximal algorithms are applicable in a RKHS. We extend and present here this idea to
the general case of structured MKL, showing that the proximal operator for the structured
RKHS norm may be obtained from the proximal operator of the corresponding subquadratic
norms.

Given a collection of reproducing kernel Hilbert spaces H1, . . . ,Hp, we consider the Carte-
sian productB := H1×. . .×Hp, equipped with the norm ‖h‖B := (‖h1‖2H1

+. . .+‖hp‖2Hp
)1/2,

where h = (h1, . . . , hp) with hi ∈ Hi.

The set B is a Hilbert space, in which gradients and subgradients are well defined and in
which we can extend some algorithms that we considered in the Euclidean case easily.

In the following, we say that a norm is monotonic if Ω(w+ γ ei) > Ω(w) when γwi > 0. It
is well-known that monotonic norms are exactly norms so that Ω(w) depends only of the
absolute values |wi| of the components wi, norms which are often referred to as absolute
norms [16].

It should be noted that in particular all norms that have a diagonal quadratic variational
form (see Lemma 1.2) are monotonic.

Lemma 3.2 Let Ω be a monotonic norm on R
p with dual norm Ω∗, then Λ : h 7→

Ω
(
(‖h1‖H1

, . . . , ‖hp‖Hp)
)
is a norm on B whose dual norm is Λ∗ : g 7→ Ω∗((‖g1‖H1

, . . . , ‖gp‖Hp)
)
.

Moreover the subgradient of Λ is ∂Λ(h) = A(h) with A(h) := {(u1s1, . . . , upsp) | u ∈
B(h), si ∈ ∂‖ · ‖Hi

(hi)} with B(h) := ∂Ω
(
(‖h1‖H1

, . . . , ‖hp‖Hp)
)
.

27

Proof It is clear that Λ is symmetric, positive and homogenous. The triangle inequality
results from the fact that Ω is monotonic. Indeed the latter property implies that Λ(h+g) =
Ω
(
(‖hi + gi‖Hi

)1≤i≤p
)
≤ Ω

(
(‖hi‖Hi

+ ‖gi‖Hi
)1≤i≤p

)
and the result follows from applying

the triangle inequality for Ω.

Moreover, we have the generalized Cauchy-Schwarz inequality:

〈h, g〉B =
∑

i

〈hi, gi〉Hi
≤

∑

i

‖hi‖Hi
‖gi‖Hi

≤ Λ(h) Λ∗(g),

and it is easy to check that equality is attained if and only if g ∈ A(h). This simultaneously
shows that Λ(h) = maxg∈B〈h, g〉B − Λ∗(g) and that ∂Λ(h) = A(h).

We consider now a learning problem of the form:

min
h∈B

ψ(h1, . . . , hp) + λΛ(h) (3.8)

with ψ(h) = 1
n

∑n
i=1 ℓ(h(xi),yi). The structured MKL case corresponds more specifically

to the case where ψ(h) = 1
n

∑n
i=1 ℓ(h1(xi)+ . . .+hp(xp),yi). Note the problem we consider

here is regularized with Λ and not Λ2 as opposed to the formulations (1.21) and (1.28)
considered in section 1.5.

To apply the proximal methods introduced in this chapter in B using ‖ · ‖B as the proximal
term requires to be able to solve the proximal problem:

min
h∈B

1

2
‖h− g‖2B + µΛ(h). (3.9)

The following lemma shows that if we know how to compute the proximal operator of Ω
for an ℓ2 proximity term in R

p, we can readily compute the proximal operator of Λ for the
proximity defined with the Hilbert norm on B:

Lemma 3.3 ProxµΛ(g) = (y1s1, . . . , ypsp) where si = 0 if gi = 0,

si =
gi
‖gi‖Hi

if gi 6= 0 and y = ProxµΩ
(
(‖gi‖Hi

)1≤i≤p
)
.

Proof To lighten the notations, we write ‖hi‖ for ‖hi‖Hi
if hi ∈ Hi. The optimal-

ity condition for problem (3.9) is h − g ∈ −µ∂Λ so that we have hi = gi − µ siui, with
u ∈ B(h), si ∈ ∂‖ · ‖Hi

(hi). The last equation implies that hi, gi and si are colinear. If
gi = 0 then the fact that Ω is monotonic implies that hi = si = 0. If on the other hand,
gi 6= 0 we have hi = gi (1− µ ui

‖gi‖)+ and thus ‖hi‖ = (‖gi‖ − µui)+ and hi = si ‖hi‖, but by
definition of yi we have yi = (‖gi‖ − µui)+, which shows the result.

This results shows how to compute the proximal operator at an abstract level. For the
algorithm to be practical, we need to show that the corresponding computation can be
performed by manipulating a finite number of parameters.

28

Fortunately, we can appeal to a representer theorem to that end, which leads to the following
lemma

Lemma 3.4 Assume that for all i, gi =
∑n

j=1αijKi(xj , ·). Then the solution of problem

(3.9) is of the form hi =
∑n

j=1βijKi(xj , ·). Let y = ProxµΩ
(
(
√

α⊤
kKkαk)1≤k≤p

)
. Then if

αi 6= 0, βi =
yi√

α⊤
i Kiαi

αi and otherwise βi = 0.

Proof We first show that a representer theorem holds. For each i let h//

i be the component
of hi in the span of (Ki)(xj)1≤j≤n and h⊥i = hi − h//

i . We can rewrite the objective of
problem (3.9) as5

1

2

p∑

i=1

[
‖h//

i ‖2 + ‖h⊥i ‖2 − 2〈h//

i , gi〉Hi
+ ‖gi‖2

]
+ µΩ

(
(‖h//

i ‖2 + ‖h⊥i ‖2)1≤i≤p
)

from which, given that Ω is assumed monotonic, it is clear that setting h⊥i = 0 for all i can
only decrease the objective. To conclude, the form of the solution in β results from the
fact that ‖gi‖2Hi

=
∑

1≤j,j′≤nαijαij′〈Ki(xj , ·),Ki(xj′ , ·)〉Hi
and 〈Ki(xj , ·),Ki(xj′ , ·)〉Hi

=
Ki(xj ,xj′) by the reproducing property, and by identification (Note that if the kernel ma-
trix Ki is not invertible the solution might not be unique in βi).

Finally, in the last lemma we assumed that the function gi in the proximal problem could
be represented as a linear combination of the Ki(xj , ·). Since gi is typically of the form
hti − 1

L
∂
∂hi
ψ(ht1, . . . , h

t
p), then the result follow by linearity from the fact that the gradient

is in the span of the Ki(xj , ·). But we have the following lemma.

Lemma 3.5 For ψ(h) = 1
n

∑n
j=1 ℓ(h1(xj), . . . , hp(xj), yj) then

∂

∂hi
ψ(h) =

n∑

j=1

αiKi(xj, ·) for αij =
1

n
∂iℓ(h1(xj), . . . , hp(xj), yj),

where ∂iℓ denote the partial derivative of ℓ w.r.t. to its ith scalar component.

Proof This result follows from the rules of composition of differentiation applied to the
functions

(h1, . . . , hp) 7→ ℓ
(
〈h1,K1(xj , ·)〉H1

, . . . , 〈hp,Kp(xj , ·)〉Hp , yj
)

and the fact that, since hi 7→ 〈hi,Ki(xj , ·)〉Hi
is linear, its gradient in the RKHS Hi is just

Ki(xj , ·).

5We denote again ‖hi‖ for ‖hi‖Hi
, when the RHKS norm used is implied by the argument.

29

Chapter 4

(Block) Coordinate Descent
Algorithms

Coordinate descent algorithms solving ℓ1-regularized learning problem go back to [47]. They
optimize (exactly or approximately) the objective with respect to one variable at a time
while all others are kept fixed. Note that, in general, coordinate descent algorithm are not
necessarily convergent for non-smooth optimization; they are however applicable in this
setting because of a separability property of the nonsmooth regularizer we consider (see end
of Section 4.1).

4.1 Coordinate descent for ℓ1-regularization

We consider first the following special case of one-dimensional ℓ1-regularized problem:

min
w∈R

1

2
(w − w0)

2 + λ|w|. (4.1)

As shown in (1.5), w⋆ can be obtained by soft-thresholding :

w⋆ = Proxλ |·|(w0) :=
(
1− λ

|w0|
)
+
w0. (4.2)

Lasso case. In the case of the least-square loss, the minimization with respect to a single
coordinate can be written as

min
wj∈R

∇jf(wt) (wj −wt
j) +

1

2
∇2
jj f(w

t)(wj −wt
j)

2 + λ|wj |,

with ∇jf(w) = XT
j (Xw − y) and ∇2

jjf(w) = XT
j Xj independent of w. Since the above

equation is of the form (4.1), it is solved in closed form:

w⋆
j = Proxλ|·|

(
wt
j −∇jf(wt

j)/∇2
jjf

)
. (4.3)

30

In other words, w⋆
j is obtained by solving the unregularized problem with respect to coor-

dinate j and soft-thresholding the solution.

This is the update proposed in the shooting algorithm of Fu [47], which cycles through all
variables in a fixed order.1 Other cycling schemes are possible (see, e.g., [90]).

An efficient implementation is obtained if the quantity Xwt − y or even better ∇f(wt) =
XTXwt −XTy is kept updated.2

Smooth loss. For more general smooth losses, like the logistic loss, the optimization
with respect to a single variable cannot be solved in closed form. It is possible to solve it
numerically using a sequence of modified Newton steps as proposed by [110]. We present
here a fast algorithm of Tseng and Yun [119] based on solving just a quadratic approximation
of f with an inexact line search at each iteration.

Let Lt > 0 be a parameter and let w⋆
j be the solution of

min
wj∈R

∇jf(wt) (wj −wt
j) +

1

2
Lt (wj −wt

j)
2 + λ|wj |,

Given d = w⋆
j − wt

j where w⋆
j is the solution of (4.3), the algorithm of Tseng and Yun

performs a line search to choose the largest step of the form αd with α = α0β
k and α0 >

0, β ∈ (0, 1), k ∈ N, such that the following modified Armijo condition is satisfied:

F (wt + αdej)− F (wt) ≤ σα
(
∇jf(w)d+ γLtd2 + |wt

j + d| − |wt
j |
)
,

where F (w) := f(w) + λΩ(w), and 0 ≤ γ ≤ 1 and σ < 1 are parameters of the algorithm.

Tseng and Yun [119] show that under mild conditions on f the algorithm is convergent
and, under further assumptions, asymptotically linear. In particular, if f is of the form
1
n

∑n
i=1 ℓ(y

(i)w⊤x(i)) with ℓ(yi, ·) a twice continuously differentiable convex function with
strictly positive curvature, the algorithm is asymptotically linear for Lt = ∇2

jjf(w
t
j). We

refer the reader to section 4.2 and to [119, 126] for results under much milder conditions. It
should be noted that the algorithm generalizes to other separable regularizations than the
ℓ1-norm.

Variants of coordinate descent algorithms have also been considered by [49], by [66], by
[128]. Generalizations based on the Gauss-Southwell rule have been considered by [119].

Convergence of coordinate descent algorithms. In general, coordinate descent algo-
rithms are not convergent for non-smooth objectives. Therefore, using such schemes always

1Coordinate descent with a cyclic order is sometimes called Gauss-Seidel procedure.
2In the former case, at each iteration, Xw − y can be updated in Θ(n) operations if wj changes and

∇jt+1f(w) can always be updated in Θ(n) operations. The complexity of one cycle is therefore O(pn).

However a better complexity is obtained in the latter case, provided the matrix XTX is precomputed (with
complexity O(p2n)). Indeed ∇f(wt) is updated in Θ(p) iterations only if wj does not stay at 0. Otherwise,
if wj stays at 0 the step costs O(1); the complexity of one cycle is therefore Θ(ps) where s is the number of
non-zero variables at the end of the cycle.

31

require a convergence analysis. In the context of the ℓ1-norm regularized smooth objective,
the non-differentiability is separable (i.e., is a sum of non-differentiable terms that depend
on single variables), and this is sufficient for convergence [18, 119]. In terms of convergence
rates, coordinate descent behaves in a similar way than first-order methods such as proximal
methods, i.e., if the objective function is strongly convex [90, 119], then the convergence is
linear, while it is slower if the problem is not strongly convex, i.e., in the learning context,
if there are strong correlations between input variables [107].

4.2 Block-coordinate descent for ℓ1/ℓq regularization

When Ω(w) is the ℓ1/ℓq-norm with groups g ∈ G forming a partition of {1, . . . , p}, the
previous methods are generalized by block-coordinate descent (BCD) algorithms, that have
been the focus of recent work by Tseng and Yun [119] and Wright [126]. These algorithms
do not attempt to solve exactly a reduced problem on a block of coordinates but rather
optimize a surrogate of F in which the function f is substituted a quadratic approximation.

Specifically, the BCD scheme of [119] solves at each iteration a problem of the form:

min
wg∈R|g|

∇gf(wt)T (wg −wt
g) +

1

2
(wg −wt

g)
THt(wg −wt

g) + λ‖wg‖q, (4.4)

where the positive semi-definite matrix Ht ∈ R
|g|×|g| is a parameter. The above problem is

solved in closed form if Ht = LtI|g| for some scalar Lt and q ∈ {2,∞}3. In particular for
q = 2, the solution w⋆

g is obtained by group-soft-thresholding :

w⋆
g = Prox λ

Lt ‖·‖2
(
wt
g −

1

Lt
∇gf(wt

g)
)
,

with
Proxµ ‖·‖2(w) =

(
1− µ

‖w‖2

)
+
w.

In the case of general smooth losses, the descent direction is given by d = w⋆
g − wt

g with
w⋆
g as above. The next point is of the form wt + αd, where α is a stepsize of the form

α = α0 β
k, with α0 > 0, 0 < β < 1, k ∈ N. k is chosen large enough to satisfy the following

modified Armijo condition

F (wt + αd) − F (wt) ≤ σα
(
∇gf(w)Td+ γ d⊤HtXd+ ‖wt

g + d‖q − ‖wt
g‖q

)
,

for parameters 0 ≤ γ ≤ 1 and σ < 1.

If f is convex continuously differentiable, lower bounded on R
p and F has a unique min-

imizer, provided that there exists τ, τ̄ fixed constants such that for all t, τ � Ht � τ̄ for
all t, the results of Tseng and Yun show that the algorithm converges (see Theorem 4.1 in
[119] for broader conditions). Wright [126] proposes a variant of the algorithm, in which the
line-search on α is replaced by a line search on the parameter Lt, similar to the line-searches
used in proximal methods.

3More generally for q ≥ 1 and Ht = LtI|g| , it can be solved efficiently coordinate-wise using bisection
algorithms.

32

4.3 Block-coordinate descent for MKL

Finally, block-coordinate descent algorithms are also applicable to classical multiple kernel
learning (and also to all group Lasso formulations [131]). We consider the same setting and
notations as in Section 3.4 and we consider specifically the optimization problem:

min
h∈B

ψ(h1, . . . , hp) + λ

p∑

i=1

‖hi‖Hi

A block-coordinate algorithm can be applied by considering each RKHS Hi as one “block”;
this type of algorithm was considered by [99]. Applying the lemmas 3.4 and 3.5 of section
3.4, we know that hi can be represented as hi =

∑n
j=1αijKi(xj , ·).

The algorithm then consists in performing successively group soft-thresholding in each
RKHS Hi. This can be done by working directly with the dual parameters αi, with a
corresponding proximal operator in the dual simply formulated as:

Proxµ ‖·‖Ki
(αi) =

(
1− µ

‖αi‖Ki

)
+
αi.

with ‖α‖2K = α⊤Kα.

33

Chapter 5

Reweighted-ℓ2 Algorithms

Approximating a nonsmooth or constrained optimization problem by a series of smooth
unconstrained problems is common in optimization (see, e.g., [25, 88, 91]). In the con-
text of objective functions regularized by sparsity-inducing norms, it is natural to consider
variational formulations of these norms in terms of squared ℓ2-norms, since many efficient
methods are available to solve ℓ2-regularized problems (e.g., linear system solvers for least-
squares regression).

In this section, we show on our motivating example of sums of ℓ2-norms of subsets how such
formulations arise (see, e.g., [37, 60, 95, 96]).

The variational formulation we have presented in the previous proposition allows to consider
the following function H(w,η) defined as

H(w,η) = f(w) +
λ

2

p∑

j=1

{ ∑

g∈G,j∈g
η−1
g

}
w2
j +

λ

2

∑

g∈G
ηg.

It is jointly convex in (w,η); the minimization with respect to η can be done in closed
form, and the optimum is equal to F (w) = f(w) + λΩ(w); as for the minimization with
respect to w, it is a ℓ2-regularized problem.

Unfortunately, the alternating minimization algorithm that is immediately suggested is not
convergent in general, because the function H is not continuous (in particular around η

which has zero coordinates). In order to make the algorithm convergent, two strategies are
commonly used:

- Smoothing: we can add a term of the form ε
2

∑
g∈G η

−1
g , which yields a joint cost

function with compact level sets on the set of positive numbers. Alternating mini-
mization algorithms are then convergent (as a consequence of general results on block
coordinate descent), and have two different iterations: (1) minimization with respect
to η in closed form, through ηg =

√
‖wg‖22 + ε, and (2) minimization with respect to

w, which is an ℓ2-regularized problem, which can be for example solved in closed form
for the square loss. Note however, that the second problem need not be optimized
exactly at all iterations.

34

- First order method in η: While the joint cost function H(η,w) is not continuous,
the function I(η) = minw∈Rp H(w,η) is continuous, and under general assumptions,
continuously differentiable, and is thus amenable to first-order methods (e.g., proximal
methods, gradient descent). When the groups in G do not overlap, one sufficient
condition is that the function f(w) is of the form f(w) = ψ(Xw) for X ∈ R

n×p any
matrix (typically the design matrix) and ψ a strongly convex function on R

n. This
strategy is particularly interesting when evaluating I(η) is computationally cheap.

In theory, the alternating scheme consisting in optimizing alternatively over η and w can
be used to solve learning problems regularized with any norms: we indeed show in the
next section that any norm admits a quadratic variational formulation. To illustrate the
principle of ℓ2-reweighted algorithms, we first consider the special case of multiple kernel
learning; in Section 5.1, we consider the case of the trace norm.

Structured MKL. Reweighted-ℓ2 algorithms are fairly natural for norms which admit
a diagonal variational formulation (see Lemma 1.2 and [81]) and for the corresponding
multiple kernel learning problem. We consider the structured multiple learning problem
presented in Section 1.5.4.

The alternating scheme applied to equation (1.27) then takes the following form: for η

fixed, one has to solve a single kernel learning problem with the kernel K =
∑

i ηiKi; the
corresponding solution in the product of RKHSesH1×. . .×Hp (see section 3.4) is of the form
h(x) = h1(x) + . . . + hp(x) with hi(x) = ηi

∑n
j=1αjKi(xj, ·). Since ‖hi‖2Hi

= η2
iα

⊤Kiα,
for fixed α, the update in η then takes the form:

ηt+1 ← argmin
η∈H

p∑

i=1

(ηti)
2αt⊤Kiα

t + ε

ηi
.

Note that these updates produce a non-increasing sequence of values of the primal objective.
Moreover, this MKL optimization scheme uses a potentially much more compact parame-
terization than proximal methods since in addition to the variational parameter η ∈ R

p a
single vector of parameter α ∈ R

n is needed as opposed to up to one such vector for each
kernel in the case of proximal methods. MKL problems can also be tackled using first order
methods in η described above: we refer the reader to [96] for an example in the case of
classical MKL.

5.1 Quadratic variational formulation for general norms

We now investigate a general variational formulation of norms that naturally leads to a
sequence of reweighted ℓ2-regularized problems. The formulation is based on approximating
the unit ball of a norm Ω with enclosing ellipsoids. See Figure 5.1. The following proposition
shows that all norms may be expressed as a minimum of Euclidean norms:

Proposition 5.1 Let Ω : Rp → R a norm on R
p, then there exists a function g defined on

the cone of positive semi-definite matrices S+
p , such that g is convex, strictly positive except

35

Figure 5.1: Example of a sparsity-inducing ball in two dimensions, with enclosing ellipsoids.
Left: ellipsoids with general axis for the ℓ1-norm, middle: ellipsoids with horizontal and
vertical axis for the ℓ1-norm, right: ellipsoids for another polyhedral norm.

at zero, positively homogeneous and such that

∀w ∈ R
p, Ω(w) = min

Λ∈S+
p , g(Λ)61

√
wTΛ−1w =

1

2
min
Λ∈S+

p

{
wTΛ−1w + g(Λ)

}
. (5.1)

Proof Let Ω∗ be the dual norm of Ω, defined as Ω∗(s) = maxΩ(w)61 w
Ts [25]. Let g be

the function defined through g(Λ) = maxΩ∗(s)61 s
TΛs. This function is well-defined as the

maximum of a continuous function over a compact set; moreover, as a maximum of linear
functions, it is convex and positive homogeneous. Also, for nonzero Λ, the quadratic form
s 7→ sTΛs is not identically zero around s = 0, hence the strict positivity of g.

Let w ∈ R
p and Λ ∈ S+

p ; there exists s such that Ω∗(s) = 1 and wTs = Ω(w). We then
have

Ω(w)2 = (wTs)2 6 (wTΛ−1w)(sTΛs) 6 g(Λ)(wTΛ−1w).

This shows that Ω(w) 6 min
Λ∈S+

p , g(Λ)61

√
wTΛ−1w. Proving the other direction can

be done using the following limiting argument. Given w0 ∈ R
p, consider Λ(ε) = (1 −

ε)w0w
T
0 + ε(wT

0 w0)I. We have wT
0 Λ(ε)−1w0 = 1 and g(Λ(ε)) → g(w0w

T
0) = Ω(w0)

2.

Thus, for Λ̃(ε) = Λ(ε)/g(Λ(ε)), we have that
√

wT
0 Λ̃(ε)−1w0 tends to Ω(w0), thus Ω(w0)

must be no smaller than the minimum over all Λ. The right-hand side of Eq. (5.1) can be
obtained by optimizing over the scale of Λ.

Note that while the proof provides a closed-form expression for a candidate function g, it
is not unique, as can be seen in the following examples, the domain of g (matrices so that
g is finite) may be reduced (in particular to diagonal matrices for the ℓ1-norm and more
generally the sub-quadratic norms defined in Section 1.5.3):

• For the ℓ1-norm: g(Λ) = ‖Λ1/2‖21/2, where Λ1/2 is the positive square root of Λ, but

we could use g(Λ) = trΛ if Λ is diagonal and +∞ otherwise.

• For subquadratic norms (Section 1.5.3), we can take g(Λ) to be zero for non-diagonal
Λ, and equal to the gauge function of the set H defined in Section 1.5.3, which

36

is Ω̄, applied to the diagonal of Λ. For all of these norms, it is straightforward to
apply to structured multiple kernel learning, i.e., following Section 1.5, replacing single
variables by kernel matrices. In this situation, the ℓ2-regularized problems may be
solved using the kernel trick.

• For the ℓ2-norm: g(Λ) = λmax(Λ) but we could of course use g(Λ) = 1 if Λ = I and
+∞ otherwise.

• For the trace norm: w is assumed to be of the form w = vect(W) and the trace norm
of W is regularized. We consider this case in more details.

The trace norm admits the variational form (see [6]) :

‖W ‖∗ =
1

2
min
D�0

tr(W⊤D−1W +D) s.t. D ≻ 0. (5.2)

But tr(W⊤D−1W) = w⊤(I ⊗D)−1w, which shows that the regularization by the
trace norm takes the form of equation (5.1) in which we can choose g(Λ) equal to
tr(D) if Λ = I ⊗D for some D ≻ 0 and +∞ otherwise.

The solution of the above optimization problem is given by D∗ = (WW⊤)1/2 which
can be computed via a singular value decomposition of W .

The reweighted-ℓ2 algorithm to solve

min
W∈Rp×k

f(W) + λ‖W ‖∗

therefore consists in iterating between the two updates (see, e.g., [6] for more details):

W ← argmin
W

f(W) +
λ

2
tr(W⊤D−1W) and

D ← (WW⊤ + ε Ik)
1/2

where ε is a smoothing parameter that arises from adding a term ελ
2 tr(D−1) to

Eq. (5.2) and prevents the matrix from becoming singular.

37

Chapter 6

Working-Set and Homotopy
Methods

In this section, we consider methods that explicitly take into account the fact that the
solutions are sparse, namely working set methods and homotopy methods.

6.1 Working-Set Techniques

Working-set algorithms address optimization problems by solving an increasing sequence of
small subproblems of (1.1). The working set, that we will denote J , refers to the subset of
variables involved in the optimization of these subproblems.

Working-set algorithms proceed as follows: after computing a solution to the problem re-
stricted to the variables in J , global optimality is checked to determine whether the algo-
rithm has to continue. If this is the case, new variables enter the working set J according
to a strategy that has to be defined. Note that we only consider forward algorithms, i.e.,
where the working set grows monotonically. In other words, there are no backward steps
where variables would be allowed to leave the set J . Provided this assumption is met, it is
easy to see that these procedures stop in a finite number of iterations.

This class of algorithms is typically applied to linear programming and quadratic pro-
gramming problems (see, e.g., [91]), and here takes specific advantage of sparsity from a
computational point of view [9, 56, 69, 92, 102, 104, 113], since the subproblems that need
to be solved are typically much smaller than the original one.

Working-set algorithms require three ingredients:

• Inner-loop solver: At each iteration of the working-set algorithm, problem (1.1)
has to be solved on J , i.e., subject to the additional equality constraint that wj = 0
for all j in Jc:

min
w∈Rp

f(w) + λΩ(w), such that wJc = 0. (6.1)

38

The computation can be performed by any of the methods presented in this chapter.
Working-set algorithms should therefore be viewed as “meta-algorithms”. Since so-
lutions for successive working sets are typically close to each other the approach is
efficient if the method chosen can use warm-restarts.

• Computing the optimality conditions: Given a solution w⋆ of problem (6.1), it
is then necessary to check whether w⋆ is also a solution for the original problem (1.1).
This test relies on the duality gaps of problems (6.1) and (1.1). In particular, if w⋆ is
a solution of problem (6.1), it follows from Proposition 1.3 in Section 1.4 that

f(w⋆) + λΩ(w⋆) + f∗(∇f(w⋆)) = 0.

In fact, the Lagrangian parameter associated with the equality constraint ensures the
feasibility of the dual variable formed from the gradient of f at w⋆. In turn, this
guarantees that the duality gap of problem (6.1) vanishes. The candidate w⋆ is now
a solution of the full problem (1.1), i.e., without the equality constraint wJc = 0, if
and only if

Ω∗(∇f(w⋆)) ≤ λ. (6.2)

Condition (6.2) points out that the dual norm Ω∗ is a key quantity to monitor the
progress of the working-set algorithm [56]. In simple settings, for instance when Ω
is the ℓ1-norm, checking condition (6.2) can be easily computed since Ω∗ is just the
ℓ∞-norm. In this case, condition (6.2) becomes

|[∇f(w⋆)]j | ≤ λ, for all j in {1, . . . , p}.

Note that by using the optimality of problem (6.1), the components of the gradient
of f indexed by J are already guaranteed to be no greater than λ.

For more general sparsity-inducing norms with overlapping groups of variables (see
Section 1.3), the dual norm Ω∗ cannot be computed easily anymore, prompting the
need for approximations and upper-bounds of Ω∗ [9, 56, 104].

• Strategy for the growth of the working set: If condition (6.2) is not satisfied for
the current working set J , some inactive variables in Jc have to become active. This
point raises the questions of how many and how these variables should be chosen.

First, depending on the structure of Ω, a single or a group of inactive variables have
to be considered to enter the working set. Furthermore, one natural way to proceed
is to look at the variables that violate condition (6.2) most. In the example of ℓ1-
regularized least squares regression with normalized predictors, this strategy amounts
to selecting the inactive variable that has the highest correlation with the current
residual.

The working-set algorithms we have described so far aim at solving problem (1.1) for a fixed
value of the regularization parameter λ. However, for specific types of loss and regularization
functions, the set of solutions of problem (1.1) can be obtained efficiently for all possible
values of λ, which is the topic of the next section.

39

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Regularization parameter

w
ei

gh
ts

Figure 6.1: The weights w⋆(λ) are represented as functions of the regularization parameter
λ. When λ increases, more and more coefficients are set to zero. These functions are all
piecewise affine. Note that some variables (here one) may enter and leave the regularization
path.

6.2 Homotopy methods

We present in this section an active-set1method for solving the Lasso problem [114] of
Eq. (1.8). We recall the Lasso formulation:

min
w∈Rp

1

2
‖y −Xw‖22 + λ‖w‖1, (6.3)

where y is in R
n, and X is a design matrix in R

n×p. Even though generic working-set
methods introduced above could be used to solve this formulation, a specific property of
the ℓ1-norm associated with a quadratic loss makes it possible to address it more efficiently.

Under mild assumptions (which we will detail later), the solution of Eq. (6.3) is unique, and
we denote it by w⋆(λ). We call regularization path the function λ 7→ w⋆(λ) that associates
to a regularization parameter λ the corresponding solution. We will show that this function
is piecewise linear, a behavior illustrated in Figure 6.1, where the entries of w⋆(λ) for a
particular instance of the Lasso are represented as functions of λ.

An efficient algorithm can thus be constructed by chosing a particular value of λ, for which
finding this solution is trivial, and by following the piecewise affine path, computing the di-
rections of the current affine parts, and the points where the direction changes (also known
as kinks). This piecewise linearity was first discovered and exploited by [79] in the con-
text of portfolio selection, revisited by [94] describing an homotopy algorithm, and studied

1Active-set and working-set methods are very similar; their differ in that active-set methods allow (or
sometimes require) variables returning to zero to exit the set.

40

by [40] with the LARS algorithm.2 Similar ideas also appear early in the optimization
literature: Finding the full regularization path of the Lasso is in fact a particular instance
of a parametric quadratic programming problem, for which path following algorithms have
been developed [100].

Let us show how to construct the path. From the optimality conditions we have presented
in Eq. (1.9), denoting by J := {j; |XT

j (y −Xw⋆)| = λ} the set of active variables, and

defining the vector t in {−1; 0; 1}p as t := sgn
(
XT (y − Xw⋆)

)
, we have the following

closed-form expression

{
w⋆
J(λ) = (XT

J XJ)
−1(XT

J y − λtJ)
w⋆
Jc(λ) = 0,

where we have assumed the matrix XT
J XJ to be invertible (which is a sufficient condition

to guarantee the uniqueness of w⋆). This is an important point: if one knows in advance
the set J and the signs tJ , then w⋆(λ) admits a simple closed-form. Moreover, when J and
tJ are fixed, the function λ 7→ (XT

J XJ)
−1(XT

J y−λtJ) is affine in λ. With this observation
in hand, we can now present the main steps of the path-following algorithm. It basically
starts from a trivial solution of the regularization path, follows the path by exploiting this
formula, updating J and tJ whenever needed so that optimality conditions (1.9) remain
satisfied. This procedure requires some assumptions—namely that (a) the matrix XT

J XJ

is always invertible, and (b) that updating J along the path consists of adding or removing
from this set a single variable at the same time. Concretely, we proceed as follows:

1. Set λ to ‖XTy‖∞ for which it is easy to show from Eq. (1.9) that w⋆(λ) = 0 (trivial
solution on the regularization path).

2. Set J := {j; |XT
j y| = λ}.

3. Follow the regularization path by decreasing the value of λ, with the formula w⋆
J(λ) =

(XT
J XJ)

−1(XT
J y − λtJ) keeping w⋆

Jc = 0, until one of the following events occur

• There exists j in Jc such that |XT
j (y −Xw⋆)| = λ. Then, add j to the set J .

• There exists j in J such that a non-zero coefficient w⋆
j hits zero. Then, remove

j from J .

We suppose that only one of such events can occur at the same time (b). It is also
easy to show that the value of λ corresponding to the next event can be obtained in
closed form.

4. Go back to 3.

Let us now briefly discuss assumptions (a) and (b). When the matrix XT
J XJ is not invert-

ible, the regularization path is non-unique, and the algorithm fails. This can easily be fixed

2Even though the basic version of LARS is a bit different from the procedure we have just described, it
is closely related, and indeed a simple modification makes it possible to obtain the full regularization path
of Eq. (1.8).

41

by addressing instead a slightly modified formulation. It is possible to consider instead the
elastic-net formulation of [134] that uses Ω(w) = λ‖w‖1 + γ

2 ‖w‖22. Indeed, it amounts to
replacing the matrix XT

J XJ by XT
J XJ + γI, which is positive definite and therefore always

invertible, and to apply the same algorithm. The second assumption (b) can be unsatisfied
in practice because of the machine precision. To the best of our knowledge, the algorithm
will fail in such cases, but we consider this scenario unlikely with real data, though possible
when the Lasso/basis pursuit is used multiple times such as in dictionary learning, presented
in Section 7.3. In such situations, a proper use of optimality conditions can detect such
problems and more stable algorithms such as proximal methods may then be used.

The complexity of the above procedure depends on the number of kinks of the regularization
path (which is also the number of iterations of the algorithm). Even though it is possible
to build examples where this number is large, we often observe in practice that the event
where one variable gets out of the active set is rare. The complexity also depends on
the implementation. By maintaining the computations of XT

j (y −Xw⋆) and a Cholesky

decomposition of (XT
J XJ)

−1, it is possible to obtain an implementation in O(psn+ps2+s3)
operations, where s is the sparsity of the solution when the algorithm is stopped (which we
approximately consider as equal to the number of iterations). The product psn corresponds
to the computation of the matrices XT

J XJ , ps
2 to the updates of the correlations XT

j (y −
Xw⋆) along the path, and s3 to the Cholesky decomposition.

42

Chapter 7

Sparsity and Nonconvex
Optimization

In this section, we consider alternative approaches to sparse modelling, which are not based
in convex optimization, but often use convex optimization problems in inner loops.

7.1 Greedy Algorithms

First, we consider the following ℓ0-constrained signal decomposition problem

min
w∈Rp

1

2
‖y −Xw‖22 s.t. ‖w‖0 ≤ s, (7.1)

where s is the desired sparsity of the solution, and we assume for simplicity that the columns
of X have unit norm. Even though this problem can be shown to be NP-hard [84], greedy
procedures can provide an approximate solution. Under some assumptions on the matrix X,
they can also be shown to have some optimality guarantees [116].

Several variants of these algorithms with different names have been developed both by the
statistics and signal processing communities. In a nutshell, they are known as forward
selection techniques in statistics (see [124]), and matching pursuit algorithms in signal
processing [78]. All of these approaches start with a null vector w, and iteratively increase
the sparsity of w until it reaches the threshold s.

The algoritm dubbed matching pursuit, was introduced in the 90’s in [78], and can be seen
as a non-cyclic coordinate descent procedure for minimizing Eq. (7.1). It selects at each
step a column xı̂ that is the most correlated with the residual according to the formula

ı̂← argmin
i∈[1;p]

|r⊤xi|,

43

where r denotes the residual y−Xw. Then, the residual is projected on xı̂ and the entry wı̂

is updated according to

wı̂ ← wı̂ + r⊤xı̂

r ← r − (r⊤xı̂)xı̂.

Such a simple procedure is guaranteed to decrease the objective function at each iteration,
but is not to converge in a finite number of steps (the same variable can be selected several
times during the process). Note that such a scheme also appears in statistics in boosting
procedures [46].

Orthogonal matching pursuit was proposed as a major variant of matching pursuit that
ensures the residual of the decomposition to be always orthogonal to all previously selected
columns of X. Such technique existed in fact in the statistics literature under the name
forward selection [124], and a particular implementation exploiting a QR matrix factoriza-
tion also appears early in [84]. More precisely, the algorithm is an active set procedure,
which sequentially adds one variable at a time to the active set, which we denote by J .
It provides an approximate solution of Eq. (7.1) for every sparsity value s′ ≤ s, and stops
when the desired sparsity is reached. Thus, it builds a regularization path, and shares many
similarities with the homotopy algorithm for solving the Lasso [40], even though the two
algorithms address different optimization problems. These similarities are also very strong
in terms of implementation: Identical tricks as those described in Section 6.2 for the homo-
topy algorithm can be used, and in fact both algorithms have roughly the same complexity
(if most variables do not leave the path once they have entered), and have many steps in
common. At each iteration, one has to choose which new predictor should enter the active
set J . A possible choice is to look for the column of X most correlated with the residual
as in the matching pursuit algorithm, but another criterion is to select the one that helps
most reducing the objective function

ı̂← argmin
i∈Jc

min
w′∈R|J|+1

1

2
‖y −XJ∪{i}w

′‖22.

Whereas this choice seem at first sight computationally expensive since it requires solving
|Jc| least-squares problems, the solution can in fact be obtained efficiently using a few tricks,
based on Cholesky matrix decomposition and basic linear algebra, which we will not detail
here for simplicity reasons (see [36] for more details).

After this step, the active set is updated J ← J ∪{ı̂}, and the corresponding residual r and
coefficients w are

w ← (X⊤
J XJ)

−1X⊤
J y,

r ← (Ip −XJ (X
⊤
J XJ)

−1X⊤
J)y,

where r is the residual of the orthogonal projection of y onto the linear subspace spanned
by the columns of XJ . It is worth noticing that one does not need to compute these two
quantities in practice, but only updating the Cholesky decomposition of (X⊤

J XJ)
−1 and

computing directly X⊤r, via simple linear algebra relations.

44

These greedy algorithms for solving the ℓ0 sparse approximation problem admit several
extensions when the regularization is more complex than the ℓ0 pseudo-norm. For instance,
they are used in the context of non-convex group-sparsity in [117], or with structured
sparsity formulations [15, 53].

Other possibilities than greedy methods exists for optimizing Eq. (7.1). For instance, one
can use the algorithm ISTA (i.e., the non-accelerated proximal method) presented in Sec-
tion 3 when the function f is convex and its gradient Lipshitz continuous. Under this
assumption, it is easy to see that ISTA can iteratively decrease the value of the nonconvex
objective function. Such proximal gradient algorithms when Ω is the ℓ0 pseudo-norm often
appear under the name of iterative hard-thresholding methods [51].

7.2 DC-Programming, Reweighted-ℓ1 Algorithms

We present in this section optimization schemes dedicated to particular non-convex regu-
larization functions. More precisely, we address problem (7.1) but we now consider Ω which
is a nonconvex penalty that is separable and takes the form Ω(w) :=

∑p
i=1 ψ(|wi|), where

w is in R
p, and ψ : R→ R

+ is a concave non-decreasing differentiable function. Examples
of such penalties include variants of ℓq-penalties for q < 1 defined as ψ : t 7→ (|t| + ε)q,
log-penalties ψ : t 7→ log(|t|+ ε), the quantity ε > 0 being here to ensure the function ψ to
be differentiable at 0. Other nonconvex regularization functions have been proposed in the
statistics community, such as the SCAD penalty [43].

The main motivation for such approaches is that these penalties induce more sparsity than
the ℓ1-norm, but can be addressed with other tools than greedy methods. The unit balls
corresponding to the ℓq pseudo-norms and norms for several values of q are illustrated in
Figure 7.1. When q decreases, the ℓq-ball get “closer” to the ℓ0-ball, and better induces
sparsity.

(a) ℓ0-ball, 2D (b) ℓ0.5-ball, 2D (c) ℓ1-ball, 2D (d) ℓ2-ball, 2D

Figure 7.1: Unit balls in 2D corresponding to ℓq-penalties.

Even though the optimization problem (7.1) is not convex and not smooth, it is possible
to iteratively decrease the value of the objective function by solving a sequence of convex
problems. Such algorithmic schemes appear early in the optimization literature under the
name DC (difference of convex) programming (see [48] and references therein), and were
recently revisited in reweighted-ℓ1 algorithms [29]. The idea here is relatively simple. It
consists at iteration k of the algorithm of minimizing a convex surrogates g̃k which is tangent
to the graph of the objective function around the current estimate wk.

45

Obtaining such a surrogate is easy when exploiting the concavity of the functions ψ on R
+,

which are always below their tangents, as illustrated in Figure 7.2. The iterative scheme
can then be written

wk+1 ← argmin
w∈Rp

f(w) + λ

p∑

i=1

ψ′(|wk
i |)|wi|,

which is a reweighted-ℓ1 sparse decomposition problem. To initialize the algorithm, the
first step is usually a simple Lasso, with no weights. In practice, the effect of the weights
ψ′(|wk

i |) is to push to zero the smallest non-zero coefficients from iteration k − 1, and two
or three iterations are usually enough to obtain the desired sparsifying effect.

wk

(a) red: ψ(w) = log(|w|+ ε).
blue: convex surrogate ψ′(wk)|w|+C.

wk

(b) red: f(w) + ψ(w).
blue: f(w) + ψ′(wk)|w|+ C

Figure 7.2: Surrogate function used in the DC-programming approach.

7.3 Sparse Matrix Factorization and Dictionary Learning

Sparse linear models for regression in statistics and machine learning assume a linear rela-
tion y ≈Xw, where y in R

n is a vector of observations, X in R
n×p is a design matrix whose

rows can be interpreted as features, and w is a weight vector in R
p. Similar models are

used in the signal processing literature, where y is a signal approximated by a linear com-
bination of columns of X, which are called dictionary elements, or basis element when X

is orthogonal.

Whereas a lot of attention has been devoted to cases where X is fixed and pre-defined,
other works have addressed the problem of learning X from training data. In the context
of sparse linear models, this problem was first introduced in the neuroscience community
by Olshausen and Field [93] to model the spatial receptive fields of simple cells in the
mammalian visual cortex. Concretely, given a training set of q signals Y = [y1, . . . ,yq]
in R

n×q, one looks for a dictionary matrix X in R
n×p and a coefficient matrix W =

[w1, . . . ,wq] in R
p×q such that each signal yi admits a sparse approximation Xwi. In

other words, we want to find a dictionary X and a sparse matrix W such that Y ≈XW .

46

A natural formulation is the following non-convex matrix factorization problem:

min
X∈X,W∈Rn×q

1

q

q∑

i=1

1

2
‖yi −Xwi‖22 + λΩ(wi), (7.2)

where Ω is a sparsity-inducing penalty function, and X ⊆ R
n×p is a convex set, which is

typically the set of matrices whose columns have less than unit ℓ2-norm. Without any sparse
priors (i.e., for λ = 0), then the solution of this factorization problem is obtained through
principal component analysis (PCA) (see, e.g., [28] and references therein). However, when
λ > 0, the solution of Eq. (7.2) has a different behavior, and may be used as an alternative
to PCA for unsupervised learning.

A successful application of this approach is when the vectors yi are small natural image
patches, for example of size n = 10 × 10 pixels. A typical setting is to have an overcom-
plete dictionary—that is, the number of dictionary elements can be greater than the signal
dimension but a large number of training signals, for example p = 200 and q = 100 000.
For this sort of data, dictionary learning finds linear subspaces of small dimension where
the patches live, leading to effective applications in image processing [41]. Examples of
dictionary elements are given in Figure 7.3.

Figure 7.3: Left: Example of dictionary with p = 256 elements, learned on a database of
natural 12 × 12 image patches when Ω is the ℓ1-norm. Right: Dictionary with p = 400
elements, learned with a structured sparsity-inducing penalty Ω (see [77]).

In terms of optimization, Eq. (7.2) is nonconvex and no algorithm has a guarantee of
providing a global optimum in general, whatever the choice of penalty Ω is. A typical
approach is a block-coordinate scheme, which optimizes X and W in turn, while keeping
the other one fixed [42]. Other alternatives include the K-SVD algorithm [3], and online
learning techniques [75, 93] that have proven to be particularly efficient when the number

47

of signals q is large. Convex relaxations of dictionary learning have also been proposed
in [14, 26].

7.4 Bayesian Methods

While our survey paper focused mainly on frequentist approaches to sparsity, i.e., ap-
proaches that minimize regularized empirical losses, many of the norms that we consider in
Section 1.3 may be considered in a Bayesian framework.

For example, the first (naive) Bayesian interpretation of the Lasso is simply a maximum a
posteriori (MAP) estimate in a Gaussian linear model, with independent Laplace priors on
the loading vectors wi (see, e.g., [106]). However, when full Bayesian inference is performed,
i.e., the full posterior distribution of w is considered instead of simply its mode, exact zeros
occur with probability zero, while small values are often obtained. In the Bayesian setting,
sparse methods are thus often turned into methods with heavy-tail priors (having exact
zeros or small values do not change significantly the predictive performance).

The heavy-tailed prior distribution on wi is thus key to obtaining posterior estimates with
many small values, and this effect is stronger when the tails are heavier, in particular
with Student’s t-distribution. An important computational (in particular for variational
methods) and theoretical aspect of these prior distributions is that they can be expressed
as scaled mixture of Gaussians [5, 30], and thus enter the classical framework of automatic
relevance determination [85]. Note that in order to perform empirical Bayes estimation
(e.g., maximum likelihood estimation of hyperparameters), iterative methods based on DC
programming may be efficiently used [125].

Another line of work using Bayesian inference considers using priors on the loading vectors
wi that put non-zero mass on exact zeros, leading to so-called “spike-and-slab” priors [54].
However, inference with such priors does not lead to convex optimization problems, and
sampling methods, while also simple to implement, do not have any guarantees, in particular
in high-dimensional settings.

48

Chapter 8

Quantitative Evaluation

To illustrate and compare the methods presented in this paper, we consider in this section
three benchmarks. These benchmarks are chosen to be representative of problems regular-
ized with sparsity-inducing norms, involving different norms and different loss functions.
To make comparisons that are as fair as possible, each algorithm is implemented in C/C++,
using efficient BLAS and LAPACK libraries for basic linear algebra operations. Most of
these implementations have been made available in the open-source software SPAMS1. All
subsequent simulations are run on a single core of a 3.07Ghz CPU, with 8GB of memory.
In addition, we take into account several criteria which strongly influence the convergence
speed of the algorithms. In particular, we consider

(a) different problem scales,

(b) different levels of correlations between input variables,

(c) different strengths of regularization.

We also show the influence of the required precision by monitoring the time of computation
as a function of the objective function.

For the convenience of the reader, we list here the algorithms compared and the acronyms
we use to refer to them throughout this section: the homotopy/LARS algorithm (LARS),
coordinate-descent (CD), reweighted-ℓ2 schemes (Re-ℓ2), simple proximal method (ISTA)
and its accelerated version (FISTA). Note that all methods except the working set methods
are very simple to implement as each iteration is straightforward (for proximal methods
such as FISTA or ISTA, as long as the proximal operator may be computed efficiently). On
the contrary, as detailed in Section 6.2, homotopy methods require some care in order to
achieve the performance we report in this section.

We will also include in the comparisons generic algorithms such as a subgradient descent
algorithm (SG), and a commercial software2 for cone (CP), quadratic (QP) and second-order
cone programming (SOCP) problems.

1http://www.di.ens.fr/willow/SPAMS/
2Mosek, available at http://www.mosek.com/.

49

8.1 Speed Benchmarks for Lasso

We first present a large benchmark evaluating the performance of various optimization
methods for solving the Lasso.

We perform small-scale (n = 200, p = 200) and medium-scale (n = 2000, p = 10000)
experiments. We generate design matrices as follows. For the scenario with low correlations,
all entries of X are independently drawn from a Gaussian distribution N(0, 1/n), which is
a setting often used to evaluate optimization algorithms in the literature. For the scenario
with large correlations, we draw the rows of the matrix X from a multivariate Gaussian
distribution for which the average absolute value of the correlation between two different
columns is eight times the one of the scenario with low correlations. Test data vectors
y = Xw+n wherew are randomly generated, with two levels of sparsity to be used with the
two different levels of regularization; n is a noise vector whose entries are i.i.d. samples from
a Gaussian distribution N(0, 0.01‖Xw‖22/n). In the low regularization setting the sparsity
of the vectors w is s = 0.5min(n, p), and in the high regularization one s = 0.01min(n, p),
corresponding to fairly sparse vectors. For SG, we take the step size to be equal to a/(k+b),
where k is the iteration number, and (a, b) are the best3 parameters selected on a logarithmic
grid (a, b) ∈ {103, . . . , 10} × {102, 103, 104}; we proceeded this way not to disadvantage SG
by an arbitrary choice of stepsize.

To sum up, we make a comparison for 8 different conditions (2 scales × 2 levels of correlation
× 2 levels of regularization). All results are reported on Figures 8.1, 8.2, by averaging 5
runs for each experiment. Interestingly, we observe that the relative performance of the
different methods change significantly with the scenario.

Our conclusions for the different methods are as follows:

• LARS/homotopy methods: For the small-scale problem, LARS outperforms all
other methods for almost every scenario and precision regime. It is therefore definitely
the right choice for the small-scale setting. Unlike first-order methods, its performance
does not depend on the correlation of the design matrix X, but rather on the sparsity
s of the solution. In our larger scale setting, it has been competitive either when the
solution is very sparse (high regularization), or when there is high correlation in X

(in that case, other methods do not perform as well). More importantly, LARS gives
an exact solution and computes the regularization path.

• Proximal methods (ISTA, FISTA): FISTA outperforms ISTA in all scenarios but
one. Both methods are close for high regularization or low correlation, but FISTA
is significantly better for high correlation or/and low regularization. These methods
are almost always outperformed by LARS in the small-scale setting, except for low
precision and low correlation.

Both methods suffer from correlated features, which is consistent with the fact that
their convergence rate depends on the correlation between input variables (conver-
gence as a geometric sequence when the correlation matrix is invertible, and as the

3“The best step size” is understood here as being the step size leading to the smallest objective function
after 500 iterations.

50

inverse of a degree-two polynomial otherwise). They are well adapted to large-scale
settings, with low or medium correlation.

• Coordinate descent (CD): The theoretical analysis of these methods suggest that
that they behave in a similar way than proximal methods [107, 90]. However, empiri-
cally, we have observed that the behavior of CD often translates into a first “warm-up”
stage followed by a fast convergence phase.

Its performance in the small-scale setting is competitive (even though always behind
LARS), but less efficient in the large-scale one. For a reason we cannot explain, it
suffers less than proximal methods from correlated features.

• Reweighted-ℓ2: This method was outperformed in all our experiments by other
dedicated methods.4 Note that we considered only the smoothed alternating scheme
of Section 5 and not first order methods in η such as that of [96]. A more exhaustive
comparison should include these as well.

• Generic Methods (SG, QP, CP): As expected, generic methods are not adapted
for solving the Lasso and are always outperformed by dedicated ones such as LARS.

Among the methods that we have presented, some require an overhead computation of the
Gram matrix XTX: this is the case for coordinate descent and reweighted-ℓ2 methods.
We took into account this overhead time in all figures, which explains the behavior of
the corresponding convergence curves. Like homotopy methods, these methods could also
benefit from an offline pre-computation of XTX and would therefore be more competitive
if the solutions corresponding to several values of the regularization parameter have to be
computed.

We have considered in the above experiments the case of the square loss. Obviously, some
of the conclusions drawn above would not be valid for other smooth losses. On the one
hand, the LARS does no longer apply; on the other hand, proximal methods are clearly
still available and coordinate descent schemes, which were dominated by the LARS in our
experiments, would most likely turn out to be very good contenders in that setting.

8.2 Group-Sparsity for Multi-task Learning

For ℓ1-regularized least-squares regression, homotopy methods have appeared in the previ-
ous section as one of the best techniques, in almost all the experimental conditions.

This second speed benchmark explores a setting where this homotopy approach cannot
be applied anymore. In particular, we consider a multi-class classification problem in the
context of cancer diagnosis. We address this problem from a multi-task viewpoint [92].
To this end, we take the regularizer to be ℓ1/ℓ2- and ℓ1/ℓ∞-norms, with (non-overlapping)

4Note that the reweighted-ℓ2 scheme requires solving iteratively large-scale linear system that are badly
conditioned. Our implementation uses LAPACK Cholesky decompositions, but a better performance might
be obtained using a pre-conditioned conjugate gradient, especially in the very large scale setting.

51

groups of variables penalizing features across all classes [92, 70]. As a data-fitting term, we
now choose a simple “1-vs-all” logistic loss function.

We focus on two multi-class classification problems in the “small n, large p” setting, based on
two datasets5 of gene expressions. The medium-scale dataset contains n = 83 observations,
p = 2308 variables and 4 classes, while the large-scale one contains n = 308 samples,
p = 15009 variables and 26 classes. Both datasets exhibit highly-correlated features.

In addition to ISTA, FISTA, and SG, we consider here the block coordinate-descent (BCD)
from [119] presented in Section 4. We also consider a working-set strategy on top of BCD,
that optimizes over the full set of features (including the non-active ones) only one every
four iterations. As further discussed in Section 4, it is worth mentioning that the multi-task
setting is well suited for [119] since an appropriate approximation of the Hessian can be
easily computed.

All the results are reported in Figures 8.3 and 8.4. As expected in the light of the benchmark
for the Lasso, BCD appears as the best option, regardless of the sparsity/scale conditions.

8.3 Structured Sparsity

In this second series of experiments, the optimization techniques of the previous sections
are further evaluated when applied to other types of loss and sparsity-inducing functions.
Instead of the ℓ1-norm previously studied, we focus on the particular hierarchical ℓ1/ℓ2-
norm Ω introduced in Section 3. From an optimization standpoint, although Ω shares some
similarities with the ℓ1-norm (e.g., the convexity and the non-smoothness), it differs in that
it cannot be decomposed into independent parts (because of the overlapping structure of
G). CD schemes hinge on this property and as a result, cannot be straightforwardly applied
in this case.

8.3.1 Denoising of natural image patches

In this first benchmark, we consider a least-squares regression problem regularized by Ω
that arises in the context of the denoising of natural image patches [59]. In particular,
based on a hierarchical set of features that accounts for different types of edge orientations
and frequencies in natural images, we seek to reconstruct noisy 16×16-patches. Although
the problem involves a small number of variables (namely p = 151), it has to be solved
repeatedly for thousands of patches, at moderate precision. It is therefore crucial to be able
to solve this problem efficiently.

The algorithms that take part in the comparisons are ISTA, FISTA, Re-ℓ2, SG, and SOCP.
All results are reported in Figure 8.5, by averaging 5 runs.

We can draw several conclusions from the simulations. First, we observe that across all levels
of sparsity, the accelerated proximal scheme performs better, or similarly, than the other

5The two datasets we use are SRBCT and 14 Tumors, which are freely available at
http://www.gems-system.org/.

52

approaches. In addition, as opposed to FISTA, ISTA seems to suffer in non-sparse scenarios.
In the least sparse setting, the reweighted-ℓ2 scheme matches the performance of FISTA.
However this scheme does not yield truly sparse solutions, and would therefore require a
subsequent thresholding operation, which can be difficult to motivate in a principled way. As
expected, the generic techniques such as SG and SOCP do not compete with the dedicated
algorithms.

8.3.2 Multi-class classification of cancer diagnosis.

This benchmark focuses on multi-class classification of cancer diagnosis and reuses the two
datasets from the multi-task problem of Section 8.2. Inspired by [63], we build a tree-
structured set of groups of features G by applying Ward’s hierarchical clustering [61] on the
gene expressions. The norm Ω built that way aims at capturing the hierarchical structure
of gene expression networks [63]. For more details about this construction, see [57] in the
context of neuroimaging. The resulting datasets with tree-structured sets of features contain
p = 4615 and p = 30017 variables, for respectively the medium- and large-scale datasets.

Instead of the square loss function, we consider the multinomial logistic loss function,
which is better suited for multi-class classification problems. As a direct consequence,
the algorithms whose applicability crucially depends on the choice of the loss function
are removed from the benchmark. This is for instance the case for reweighted-ℓ2 schemes
that have closed-form updates available only with the square loss (see Section 5). Im-
portantly, the choice of the multinomial logistic loss function requires to optimize over a
matrix with dimensions p times the number of classes (i.e., a total of 4615 × 4 ≈ 18 000
and 30017 × 26 ≈ 780 000 variables). Also, for lack of scalability, generic interior point
solvers could not be considered here. To summarize, the following comparisons involve
ISTA, FISTA, and SG.

All the results are reported in Figure 8.6. The benchmark especially points out that the
accelerated proximal scheme performs overall better that the two other methods. Again, it
is important to note that both proximal algorithms yield sparse solutions, which is not the
case for SG. More generally, this experiment illustrates the flexibility of proximal algorithms
with respect to the choice of the loss function.

8.3.3 General overlapping groups of variables

We consider a structured sparse decomposition problem with overlapping groups of ℓ∞-
norms, and compare the proximal gradient algorithm FISTA [17] consider the proximal
operator presented in Section 3.3 (referred to as ProxFlow [76]). Since, the norm we use is
a sum of several simple terms, we can bring to bear other optimization techniques which
are dedicated to this situation, namely proximal splitting method known as alternating
direction method of multipliers (ADMM) (see, e.g., [34, 24]). We consider two variants,
(ADMM) and (Lin-ADMM)—see more details in [77].

We consider a design matrix X in R
n×p built from overcomplete dictionaries of discrete

cosine transforms (DCT), which are naturally organized on one- or two-dimensional grids

53

and display local correlations. The following families of groups G using this spatial informa-
tion are thus considered: (1) every contiguous sequence of length 3 for the one-dimensional
case, and (2) every 3×3-square in the two-dimensional setting. We generate vectors y in
R
n according to the linear model y = Xw0 + ε, where ε ∼ N(0, 0.01‖Xw0‖22). The vector

w0 has about 20% nonzero components, randomly selected, while respecting the structure
of G, and uniformly generated in [−1, 1].
In our experiments, the regularization parameter λ is chosen to achieve the same level
of sparsity (20%). For SG, ADMM and Lin-ADMM, some parameters are optimized to
provide the lowest value of the objective function after 1 000 iterations of the respective
algorithms. For SG, we take the step size to be equal to a/(k + b), where k is the iteration
number, and (a, b) are the pair of parameters selected in {10−3, . . . , 10}×{102, 103, 104}.
The parameter γ for ADMM is selected in {10−2, . . . , 102}. The parameters (γ, δ) for Lin-
ADMM are selected in {10−2, . . . , 102}×{10−1, . . . , 108}. For interior point methods, since
problem (1.1) can be cast either as a quadratic (QP) or as a conic program (CP), we show
in Figure 8.7 the results for both formulations. On three problems of different sizes, with
(n, p) ∈ {(100, 103), (1024, 104), (1024, 105)}, our algorithms ProxFlow, ADMM and Lin-
ADMM compare favorably with the other methods, (see Figure 8.7), except for ADMM
in the large-scale setting which yields an objective function value similar to that of SG
after 104 seconds. Among ProxFlow, ADMM and Lin-ADMM, ProxFlow is consistently
better than Lin-ADMM, which is itself better than ADMM. Note that for the small scale
problem, the performance of ProxFlow and Lin-ADMM is similar. In addition, note that
QP, CP, SG, ADMM and Lin-ADMM do not obtain sparse solutions, whereas ProxFlow
does.

8.4 General Comments

We conclude this section by a couple of general remarks on the experiments that we pre-
sented. First, the use of proximal methods is often advocated because of their optimal
worst case complexities in O(1

t2
) (where t is the number of iterations). In practice, in our

experiments, these and several other methods exhibit empirically convergence rates that
are at least linear, if not better, which suggests that the adaptivity of the method (e.g., its
ability to take advantage of local curvature) might be more crucial to its practical success.
Second, our experiments concentrated on regimes that are of interest for sparse methods
in machine learning where typically p is larger than n and where it possible to find good
sparse solutions. The setting where n is much larger than p was out of scope here, but
would be worth a separate study, and should involve methods from stochastic optimization.
Also, even though it might make sense from an optimization viewpoint, we did not consider
problems with low levels of sparsity, that is with more dense solution vectors, since it would
be a more difficult regime for many of the algorithms that we presented (namely LARS,
CD or proximal methods).

54

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP
QP

(a) corr: low, reg: low

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP
QP

(b) corr: low, reg: high

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP
QP

(c) corr: high, reg: low

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP
QP

(d) corr: high, reg: high

Figure 8.1: Benchmark for solving the Lasso for the small-scale experiment (n = 200, p =
200), for the two levels of correlation and two levels of regularization, and 8 optimization
methods (see main text for details). The curves represent the relative value of the objective
function as a function of the computational time in second on a log10 / log10 scale.

55

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP

(a) corr: low, reg: low

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP

(b) corr: low, reg: high

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP

(c) corr: high, reg: low

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP

(d) corr: high, reg: high

Figure 8.2: Benchmark for solving the Lasso for the medium-scale experiment n = 2000, p =
10000, for the two levels of correlation and two levels of regularization, and 8 optimization
methods (see main text for details). The curves represent the relative value of the objective
function as a function of the computational time in second on a log10 / log10 scale.

56

−2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
sqrt

Fista
Ista
BCD
BCD (active set)

(a) scale: medium, regul: low

−2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
sqrt

Fista
Ista
BCD
BCD (active set)

(b) scale: medium, regul:
medium

−2 −1 0 1 2
−5

−4

−3

−2

−1

0

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
sqrt

Fista
Ista
BCD
BCD (active set)

(c) scale: medium, regul: high

0 1 2 3 4
−3

−2

−1

0

1

2

3

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
sqrt

Fista
Ista
BCD
BCD (active set)

(d) scale: large, regul: low

0 1 2 3 4
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
sqrt

Fista
Ista
BCD
BCD (active set)

(e) scale: large, regul: medium

0 1 2 3 4
−5

−4

−3

−2

−1

0

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
sqrt

Fista
Ista
BCD
BCD (active set)

(f) scale: large, regul: high

Figure 8.3: Medium- and large-scale multi-class classification problems with an ℓ1/ℓ2-
regularization, for three optimization methods (see details about the datasets and the meth-
ods in the main text). Three levels of regularization are considered. The curves represent
the relative value of the objective function as a function of the computation time in second
on a log10 / log10 scale. In the highly regularized setting, the tuning of the step-size for
the subgradient turned out to be difficult, which explains the behavior of SG in the first
iterations.

57

−2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
sqrt

Fista
Ista
BCD
BCD (active set)

(a) scale: medium, regul: low

−2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
sqrt

Fista
Ista
BCD
BCD (active set)

(b) scale: medium, regul:
medium

−2 −1 0 1 2
−5

−4

−3

−2

−1

0

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
sqrt

Fista
Ista
BCD
BCD (active set)

(c) scale: medium, regul: high

0 1 2 3 4
−3

−2

−1

0

1

2

3

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
sqrt

Fista
Ista
BCD
BCD (active set)

(d) scale: large, regul: low

0 1 2 3 4
−4

−3.5

−3

−2.5

−2

−1.5

−1

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
sqrt

Fista
Ista
BCD
BCD (active set)

(e) scale: large, regul: medium

0 1 2 3 4
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
sqrt

Fista
Ista
BCD
BCD (active set)

(f) scale: large, regul: high

Figure 8.4: Medium- and large-scale multi-class classification problems with an ℓ1/ℓ∞-
regularization for three optimization methods (see details about the datasets and the meth-
ods in the main text). Three levels of regularization are considered. The curves represent
the relative value of the objective function as a function of the computation time in second
on a log10 / log10 scale. In the highly regularized setting, the tuning of the step-size for
the subgradient turned out to be difficult, which explains the behavior of SG in the first
iterations.

58

−3 −2 −1 0
−8

−6

−4

−2

0

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista
Re−L2
SOCP

(a) scale: small, regul: low

−3 −2 −1 0
−8

−6

−4

−2

0

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista
Re−L2
SOCP

(b) scale: small, regul: medium

−3 −2 −1 0
−8

−6

−4

−2

0

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista
Re−L2
SOCP

(c) scale: small, regul: high

Figure 8.5: Benchmark for solving a least-squares regression problem regularized by the
hierarchical norm Ω. The experiment is small scale, n = 256, p = 151, and shows the
performances of five optimization methods (see main text for details) for three levels of
regularization. The curves represent the relative value of the objective function as a function
of the computational time in second on a log10 / log10 scale.

59

−2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

3

4

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista

(a) scale: medium, regul: low

−2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista

(b) scale: medium, regul:
medium

−2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista

(c) scale: medium, regul: high

−1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista

(d) scale: large, regul: low

−1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista

(e) scale: large, regul: medium

−1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista

(f) scale: large, regul: high

Figure 8.6: Medium- and large-scale multi-class classification problems for three optimiza-
tion methods (see details about the datasets and the methods in the main text). Three
levels of regularization are considered. The curves represent the relative value of the ob-
jective function as a function of the computation time in second on a log10 / log10 scale. In
the highly regularized setting, the tuning of the step-size for the subgradient turned out to
be difficult, which explains the behavior of SG in the first iterations.

−2 0 2 4
−10

−8

−6

−4

−2

0

2
n=100, p=1000, one−dimensional DCT

log(Seconds)

lo
g(

P
rim

al
−

O
pt

im
um

)

 ProxFlox
SG
ADMM
Lin−ADMM
QP
CP

−2 0 2 4
−10

−8

−6

−4

−2

0

2
n=1024, p=10000, one−dimensional DCT

log(Seconds)

lo
g(

P
rim

al
−

O
pt

im
um

)

ProxFlox
SG
ADMM
Lin−ADMM
CP

−2 0 2 4
−10

−8

−6

−4

−2

0

2
n=1024, p=100000, one−dimensional DCT

log(Seconds)

lo
g(

P
rim

al
−

O
pt

im
um

)

ProxFlox
SG
ADMM
Lin−ADMM

Figure 8.7: Speed comparisons: distance to the optimal primal value versus CPU time
(log-log scale). Due to the computational burden, QP and CP could not be run on every
problem.

60

Chapter 9

Extensions

We obviously could not cover exhaustively the literature on algorithms for sparse methods
in this chapter.

Surveys and comparisons of algorithms for sparse methods have been proposed by [103] and
[130]. These papers present quite a few algorithms, but focus essentially on ℓ1-regularization
and unfortunately do not consider proximal methods. Also, it is not clear that the metrics
used to compare the performance of various algorithms is the most relevant to machine
learning; in particular, we present the full convergence curves that we believe are more
informative than the ordering of algorithms at fixed precision.

Beyond the material presented here, there a few topics that we did not develop and that
are worth mentioning.

In terms of algorithms, it is possible to relax the smoothness assumptions that we made on
the loss. For instance, some proximal methods are applicable with weaker smoothness as-
sumptions on the function f , such as the Douglas-Rachford algorithm (see details in [34]).
The related augmented Lagrangian techniques (see [24, 50, 34] and numerous references
therein) or more precisely their variants known as alternating-direction methods of multi-
pliers are also relevant in that setting. These methods are in particular applicable to cases
where several regularizations are mixed.

In the context of proximal methods, the metric used to define the proximal operator can
be modified by judicious rescaling operations, in order to fit better the geometry of the
data [39]. Moreover, they can be mixed with Newton and quasi-Newton methods, for
further acceleration (see, e.g., [72]).

Finally, from a broader outlook, our—a priori deterministic—optimization problem (1.1)
may also be tackled with stochastic optimization approaches, which has been the focus of
much recent research [21, 23, 108, 129].

61

Chapter 10

Conclusions

We presented and compared four families of algorithms for sparse methods: proximal meth-
ods, block-coordinate descent algorithms, reweighted-ℓ2 algorithms and the LARS that are
representative of the state of the art. We did not aim at being exhaustive. The properties
of these methods can be summarized as follows:

• Proximal methods provide efficient and scalable algorithms that are applicable to a
wide family of loss functions, that are simple to implement, compatible with many
sparsity-inducing norms and often competitive with the other methods considered.

• For the square loss, the homotopy method remains the fastest algorithm for (a) small
and medium scale problems, since its complexity depends essentially on the size of
the active sets, (b) cases with very correlated designs. It computes the whole path
up to a certain sparsity level. Its main drawback is that it is difficult to implement
efficiently, and it is subject to numerical instabilities. On the other hand, coordinate
descent and proximal algorithms are trivial to implement.

• For smooth losses, block-coordinate descent provides one of the fastest algorithms but
it is limited to separable regularizers.

• For the square-loss and possibly sophisticated sparsity inducing regularizers, ℓ2-reweighted
algorithms provides generic algorithms, that are still pretty competitive compared to
subgradient and interior point methods. For general losses, these methods currently
require to solve iteratively ℓ2-regularized problems and it would be desirable to relax
this constraint.

Acknowledgements

Francis Bach, Rodolphe Jenatton and Guillaume Obozinski are supported in part by ANR
under grant MGA ANR-07-BLAN-0311 and the European Research Council (SIERRA
Project). Julien Mairal is supported by the NSF grant SES-0835531 and NSF award CCF-
0939370.

62

Bibliography

[1] J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. A new approach to collabora-
tive filtering: Operator estimation with spectral regularization. Journal of Machine
Learning Research, 10:803–826, 2009.

[2] J. Aflalo, A. Ben-Tal, C. Bhattacharyya, J.S. Nath, and S. Raman. Variable sparsity
kernel learning. The Journal of Machine Learning Research, 12:565–592, 2011.

[3] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing over-
complete dictionaries for sparse representation. IEEE Trans. Signal Processing,
54(11):4311–4322, 2006.

[4] Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering shared structures in multi-
class classification. In Proceedings of the International Conference on Machine Learn-
ing, 2007.

[5] C. Archambeau and F. Bach. Sparse probabilistic projections. In Advances in Neural
Information Processing Systems 21 (NIPS), 2008.

[6] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine
Learning, 73(3):243–272, 2008.

[7] F. Bach. Consistency of the group lasso and multiple kernel learning. Journal of
Machine Learning Research, 9:1179–1225, 2008.

[8] F. Bach. Consistency of trace norm minimization. Journal of Machine Learning
Research, 9:1019–1048, 2008.

[9] F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In
Neural Information Processing Systems, volume 21, 2008.

[10] F. Bach. Structured sparsity-inducing norms through submodular functions. In Adv.
NIPS, 2010.

[11] F. Bach. Shaping level sets with submodular functions. Technical Report 00542949-v2,
HAL, 2011.

[12] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex optimization with sparsity-
inducing norms. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for
Machine Learning. MIT Press, 2011.

63

[13] F. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality,
and the SMO algorithm. In Proceedings of the International Conference on Machine
Learning (ICML), 2004.

[14] F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizations. Arxiv preprint
arXiv:0812.1869, 2008.

[15] R.G. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compressive
sensing. IEEE Trans. Information Theory, 56(4):1982–2001, 2010.

[16] FL Bauer, J. Stoer, and C. Witzgall. Absolute and monotonic norms. Numerische
Mathematik, 3(1):257–264, 1961.

[17] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[18] D. P. Bertsekas. Nonlinear programming. Athena Scientific Belmont, 1999.

[19] P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig
selector. Annals of Statistics, 37(4):1705–1732, 2009.

[20] J.M. Borwein and A.S. Lewis. Convex analysis and nonlinear optimization: Theory
and Examples. Springer-Verlag, 2006.

[21] L. Bottou. Online algorithms and stochastic approximations. Online Learning and
Neural Networks, 5, 1998.

[22] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Neural Informa-
tion Processing Systems, volume 20, pages 161–168, 2008.

[23] L. Bottou and Y. LeCun. Large scale online learning. In Advances in Neural Infor-
mation Processing Systems, volume 16, pages 217–224, 2004.

[24] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–124, 2011. to appear.

[25] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
March 2004.

[26] D.M. Bradley and J.A. Bagnell. Convex coding. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pages 83–90, 2009.

[27] P. Brucker. An O(n) algorithm for quadratic knapsack problems. Operations Research
Letters, 3(3):163–166, 1984.

[28] C. Burges. Dimension reduction: A guided tour. Machine Learning, 2(4):275–365,
2009.

[29] E.J. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted l1 minimiza-
tion. Journal of Fourier Analysis and Applications, 14:877–905, 2008.

64

[30] F. Caron and A. Doucet. Sparse Bayesian nonparametric regression. In 25th Inter-
national Conference on Machine Learning (ICML), 2008.

[31] V. Cehver, M. Duarte, C. Hedge, and R.G. Baraniuk. Sparse signal recovery using
markov random fields. In Neural Information Processing Systems, 2008.

[32] A. Chambolle. Total variation minimization and a class of binary MRF models. In
Energy Minimization Methods in Computer Vision and Pattern Recognition, pages
136–152. Springer, 2005.

[33] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit.
SIAM Journal on Scientific Computing, 20:33–61, 1999.

[34] P.L. Combettes and J.C. Pesquet. Fixed-Point Algorithms for Inverse Problems in
Science and Engineering, chapter Proximal Splitting Methods in Signal Processing.
New York: Springer-Verlag, 2010.

[35] P.L. Combettes and V.R. Wajs. Signal recovery by proximal forward-backward split-
ting. Multiscale Modeling and Simulation, 4(4):1168–1200, 2006.

[36] S.F. Cotter, J. Adler, B. Rao, and K. Kreutz-Delgado. Forward sequential algorithms
for best basis selection. In IEEE Proceedings of Vision Image and Signal Processing,
pages 235–244, 1999.

[37] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk. Iteratively reweighted
least squares minimization for sparse recovery. Communications on Pure and Applied
Mathematics, 63(1):1–38, 2010.

[38] D.L. Donoho and I.M. Johnstone. Adapting to unknown smoothness via wavelet
shrinkage. Journal of the American Statistical Association, 90(432):1200–1224, 1995.

[39] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 2011. to appear.

[40] B. Efron, T. Hastie, and R. Johnstone, I.and Tibshirani. Least angle regression.
Annals of Statistics, 32(2):407–499, 2004.

[41] M. Elad and M. Aharon. Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Trans. Image Processing, 15(12):3736–3745, 2006.

[42] K. Engan, S.O. Aase, H. Husoy, et al. Method of optimal directions for frame design.
In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1999. ICASSP’99., volume 5, pages 2443–2446, 1999.

[43] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456):1348–1360, 2001.

[44] M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to
minimum order system approximation. In Proceedings American Control Conference,
volume 6, pages 4734–4739, 2001.

65

[45] J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and a sparse
group lasso. preprint, 2010.

[46] J.H. Friedman. Greedy function approximation: a gradient boosting machine. Annals
of Statistics, 29(5):1189–1232, 2001.

[47] W.J Fu. Penalized regressions: the bridge versus the lasso. Journal of computational
and graphical statistics, 7(3):397–416, 1998.

[48] G. Gasso, A. Rakotomamonjy, and S. Canu. Recovering sparse signals with non-
convex penalties and dc programming. IEEE Trans. Signal Processing, 57(12):4686–
4698, 2009.

[49] A. Genkin, D.D Lewis, and D. Madigan. Large-scale bayesian logistic regression for
text categorization. Technometrics, 49(3):291–304, 2007.

[50] R. Glowinski and P. Le Tallec. Augmented Lagrangian and operator-splitting methods
in nonlinear mechanics. Society for Industrial Mathematics, 1989.

[51] K.K. Herrity, A.C. Gilbert, and J.A. Tropp. Sparse approximation via iterative thresh-
olding. In Proceedings of the International Conference on Acoustics, Speech and Signal
Processing, (ICASSP), volume 3, 2006.

[52] J. Huang and T. Zhang. The benefit of group sparsity. Technical report, 2009. Preprint
arXiv:0901.2962.

[53] J. Huang, Z. Zhang, and D. Metaxas. Learning with structured sparsity. In Proc.
Intl. Conf. Machine Learning, 2009.

[54] H. Ishwaran and J.S. Rao. Spike and slab variable selection: frequentist and Bayesian
strategies. Annals of Statistics, 33(2):730–773, 2005.

[55] L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlaps and graph Lasso.
In Proceedings of the International Conference on Machine Learning (ICML), 2009.

[56] R. Jenatton, J-Y. Audibert, and F. Bach. Structured variable selection with sparsity-
inducing norms. Technical report, 2009. Preprint arXiv:0904.3523v1.

[57] R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, F. Bach, and B. Thirion. Multi-
scale mining of fMRI data with hierarchical structured sparsity. In International
Workshop on Pattern Recognition in Neuroimaging (PRNI), 2011.

[58] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical
sparse coding. Technical report, Preprint arXiv:1009.2139v2, 2010. To appear in
Journal Machine Learning Research.

[59] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse
hierarchical dictionary learning. In Proceedings of the International Conference on
Machine Learning (ICML), 2010.

66

[60] R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component anal-
ysis. In Proceedings of International Workshop on Artificial Intelligence and Statistics,
2010.

[61] S.C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.

[62] K. Kavukcuoglu, M.A. Ranzato, R. Fergus, and Y. Le-Cun. Learning invariant fea-
tures through topographic filter maps. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009.

[63] S. Kim and E.P. Xing. Tree-guided group lasso for multi-task regression with struc-
tured sparsity. In Proc. Intl. Conf. Machine Learning, 2010.

[64] G.S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J.
Math. Anal. Applicat., 33:82–95, 1971.

[65] K. Koh, S. J. Kim, and S. Boyd. An Interior-Point Method for Large-Scale l 1-
Regularized Logistic Regression. Journal of Machine Learning Research, 8:1555, 2007.

[66] B. Krishnapuram, L. Carin, et al. Sparse multinomial logistic regression: Fast al-
gorithms and generalization bounds. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 957–968, 2005.

[67] G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A
statistical framework for genomic data fusion. Bioinformatics, 20:2626–2635, 2004.

[68] G.R.G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M.I. Jordan. Learn-
ing the kernel matrix with semidefinite programming. Journal of Machine Learning
Research, 5:27–72, 2004.

[69] H. Lee, A. Battle, R. Raina, and A.Y. Ng. Efficient sparse coding algorithms. In
Neural Information Processing Systems, volume 20, 2007.

[70] H. Liu, M. Palatucci, and J. Zhang. Blockwise coordinate descent procedures for the
multi-task lasso, with applications to neural semantic basis discovery. In Proceedings
of the International Conference on Machine Learning (ICML), pages 649–656, 2009.

[71] K. Lounici, M. Pontil, A. B. Tsybakov, and S. van de Geer. Taking advantage of
sparsity in multi-task learning. Technical report, Preprint arXiv:0903.1468, 2009.

[72] S. Sra M. Schmidt, D. Kim. Projected Newton-type methods in machine learning.
In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for Machine Learning.
MIT Press, 2011.

[73] N. Maculan and G. Galdino de Paula. A linear-time median-finding algorithm for
projecting a vector on the simplex of Rn. Operations research letters, 8(4):219–222,
1989.

[74] J. Mairal. Sparse coding for machine learning, image processing and computer
vision. PhD thesis, Ecole Normale Supérieure de Cachan, 2010. http://tel.

archives-ouvertes.fr/tel-00595312.

67

[75] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization
and sparse coding. Journal of Machine Learning Research, 11:19–60, 2010.

[76] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for
structured sparsity. In Neural Information Processing Systems, 2010.

[77] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Convex and network flow opti-
mization for structured sparsity. Technical report, Preprint arXiv:1104.1872, 2011.

[78] S. Mallat and Z. Zhang. Matching pursuit in a time-frequency dictionary. IEEE
Trans. Signal Processing, 41(12):3397–3415, 1993.

[79] H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

[80] A.F.T. Martins, N.A. Smith, P.M.Q. Aguiar, and M.A.T. Figueiredo. Structured
sparsity in structured prediction. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2011.

[81] C.A. Micchelli, J.M. Morales, and M. Pontil. Regularizers for structured sparsity.
Technical report, 2011. Preprint arXiv:1010.0556v2.

[82] J.J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien.
CR Acad. Sci. Paris Sér. A Math, 255:2897–2899, 1962.

[83] S. Mosci, L. Rosasco, M. Santoro, A. Verri, and S. Villa. Solving structured sparsity
regularization with proximal methods. Machine Learning and Knowledge Discovery
in Databases, pages 418–433, 2010.

[84] B.K. Natarajan. Sparse approximate solutions to linear systems. SIAM journal on
computing, 24:227, 1995.

[85] R.M. Neal. Bayesian learning for neural networks, volume 118. Springer Verlag, 1996.

[86] S. Negahban, P. Ravikumar, M.J. Wainwright, and B. Yu. A unified framework for
high-dimensional analysis of M-estimators with decomposable regularizers. In Neural
Information Processing Systems, 2009.

[87] Y. Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer
Academic Publishers, 2004.

[88] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Program-
ming, 103(1):127–152, 2005.

[89] Y. Nesterov. Gradient methods for minimizing composite objective function. Tech-
nical report, Center for Operations Research and Econometrics (CORE), Catholic
University of Louvain, Tech. Rep, 2007.

[90] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. Core discussion papers, 2010.

68

[91] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Verlag, 2006. second
edition.

[92] G. Obozinski, B. Taskar, and M.I. Jordan. Joint covariate selection and joint subspace
selection for multiple classification problems. Statistics and Computing, 20(2):231–
252, 2009.

[93] B.A. Olshausen and D.J. Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381:607–609, 1996.

[94] M.R. Osborne, B. Presnell, and B.A. Turlach. On the Lasso and its dual. Journal of
Computational and Graphical Statistics, 9(2):319–37, 2000.

[95] M. Pontil, A. Argyriou, and T. Evgeniou. Multi-task feature learning. In Advances
in Neural Information Processing Systems, 2007.

[96] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal of
Machine Learning Research, 9:2491–2521, 2008.

[97] N.S. Rao, R.D. Nowak, S.J. Wright, and N.G. Kingsbury. Convex approaches to
model wavelet sparsity patterns. In International Conference on Image Processing
(ICIP), 2011.

[98] F. Rapaport, E. Barillot, and J.-P. Vert. Classification of arrayCGH data using fused
SVM. Bioinformatics, 24(13):i375–i382, Jul 2008.

[99] P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. Sparse additive models. Journal
of the Royal Statistical Society. Series B, statistical methodology, 71:1009–1030, 2009.

[100] K. Ritter. Ein verfahren zur lösung parameterabhängiger, nichtlinearer maximum-
probleme. Mathematical Methods of Operations Research, 6(4):149–166, 1962.

[101] R.T. Rockafellar. Convex analysis. Princeton University Press, 1997.

[102] V. Roth and B. Fischer. The Group-Lasso for generalized linear models: uniqueness
of solutions and efficient algorithms. In Proc. Intl. Conf. Machine Learning, 2008.

[103] M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for L1 regulariza-
tion: A comparative study and two new approaches. Machine Learning: ECML 2007,
pages 286–297, 2007.

[104] M. Schmidt and K. Murphy. Convex structure learning in log-linear models: Beyond
pairwise potentials. In Proceedings of International Workshop on Artificial Intelligence
and Statistics, 2010.

[105] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.

[106] M.W. Seeger. Bayesian inference and optimal design for the sparse linear model. The
Journal of Machine Learning Research, 9:759–813, 2008.

69

[107] S. Shalev-Shwartz and A. Tewari. Stochastic methods for ℓ1-regularized loss minimiza-
tion. In Proceedings of the International Conference on Machine Learning (ICML),
2009.

[108] A. Shapiro, D. Dentcheva, A. Ruszczyński, and A.P. Ruszczyński. Lectures on stochas-
tic programming: modeling and theory. Society for Industrial Mathematics, 2009.

[109] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[110] S.K. Shevade and S.S. Keerthi. A simple and efficient algorithm for gene selection
using sparse logistic regression. Bioinformatics, 19(17):2246, 2003.

[111] P. Sprechmann, I. Ramirez, G. Sapiro, and Y.C. Eldar. Collaborative Hierarchical
Sparse Modeling. Arxiv preprint arXiv:1003.0400, 2010.

[112] N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factoriza-
tion. In Advances in Neural Information Processing Systems 17, 2005.

[113] M. Szafranski, Y. Grandvalet, and P. Morizet-Mahoudeaux. Hierarchical penalization.
In Neural Information Processing Systems, volume 20, 2007.

[114] R. Tibshirani. Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc. B,
58(1):267–288, 1996.

[115] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smooth-
ness via the fused Lasso. J. Roy. Stat. Soc. B, 67(1):91–108, 2005.

[116] J.A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE
Trans. Signal Processing, 50(10):2231–2242, October 2004.

[117] J.A. Tropp, A.C. Gilbert, and M.J. Strauss. Algorithms for simultaneous sparse
approximation. part i: Greedy pursuit. Signal Processing, special issue ”sparse ap-
proximations in signal and image processing”, 86:572–588, 2006.

[118] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization.
submitted to SIAM Journal on Optimization, 2008.

[119] P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable
minimization. Mathematical Programming, 117(1):387–423, 2009.

[120] B.A. Turlach, W.N. Venables, and S.J. Wright. Simultaneous variable selection. Tech-
nometrics, 47(3):349–363, 2005.

[121] G. Varoquaux, R. Jenatton, A. Gramfort, G. Obozinski, B. Thirion, and F. Bach.
Sparse structured dictionary learning for brain resting-state activity modeling. In
NIPS Workshop on Practical Applications of Sparse Modeling: Open Issues and New
Directions, 2010.

70

[122] J.P. Vert and K. Bleakley. Fast detection of multiple change-points shared by many
signals using group LARS. In Neural Information Processing Systems, volume 23,
2010.

[123] M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of spar-
sity using ℓ1- constrained quadratic programming. IEEE transactions on information
theory, 55(5):2183, 2009.

[124] S. Weisberg. Applied Linear Regression. Wiley, 1980.

[125] D. Wipf and S. Nagarajan. A new view of automatic relevance determination. Ad-
vances in neural information processing systems, 20:1625–1632, 2008.

[126] S.J. Wright. Accelerated block-coordinate relaxation for regularized optimization.
Technical report, Technical report, University of Wisconsin-Madison, 2010.

[127] S.J. Wright, R.D. Nowak, and M.A.T. Figueiredo. Sparse reconstruction by separable
approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009.

[128] T.T Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression.
Annals of Applied Statistics, 2(1):224–244, 2008.

[129] L. Xiao. Dual averaging methods for regularized stochastic learning and online opti-
mization. Journal of Machine Learning Research, 9:2543–2596, 2010.

[130] G.X. Yuan, K.W. Chang, C.J. Hsieh, and C.J. Lin. A comparison of optimization
methods for large-scale l1-regularized linear classification. Technical report, Depart-
ment of Computer Science, National University of Taiwan, 2010.

[131] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. J. Roy. Stat. Soc. B, 68:49–67, 2006.

[132] P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped
and hierarchical variable selection. Annals of Statistics, 37(6A):3468–3497, 2009.

[133] P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine
Learning Research, 7:2541–2563, 2006.

[134] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society Series B, 67(2):301–320, 2005.

71

