
HAL Id: hal-01486804
https://hal.science/hal-01486804v1

Preprint submitted on 7 Jul 2011 (v1), last revised 10 Mar 2017 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reduction Method For Graph Cut Optimization
Nicolas Lermé, François Malgouyres

To cite this version:
Nicolas Lermé, François Malgouyres. A Reduction Method For Graph Cut Optimization. 2011. �hal-
01486804v1�

https://hal.science/hal-01486804v1
https://hal.archives-ouvertes.fr

A Reduction Method for Graph Cut Optimization

N. Lermé1,2 F. Malgouyres3

(1) LAGA UMR CNRS 7539, (2) LIPN UMR CNRS 7030

Université Paris 13, Avenue J-B. Clément – 93430 Villetaneuse

(3) IMT UMR CNRS 5219

Université Paul Sabatier, 118 route de Narbonne – F-31062 Toulouse Cedex 9

nicolas.lerme@lipn.univ-paris13.fr

francois.malgouyres@math.univ-toulouse.fr

July 7, 2011

Abstract

Since last decades, graph cuts have become a leading algorithm of computer vision due

to the introduction of a fast maximum-flow algorithm [BK04] and efficient heuristics in the

multi-labels case [BVZ99]. Nevertheless, graph cuts result in an excessive computational

burden for high-resolution data since underlying graphs contain billion of nodes and even

more edges. Except some rare exact methods [DB08, SK10, LB07], the heuristics generally

fail to fully capture shape complexities [LSGX05, SG06, KLR10, LSTS04, SDB07, CA08].

In this paper, we present a new strategy for reducing the size of these graphs in the image

segmentation context while preserving the same solution. The graph is progressively built by

only adding nodes which satisfy a given local condition. In the manner of [LSGX05, SG06,

KLR10, LB07], the resulting nodes belong to a narrow band around the object contours to

segment. However, unlike [LSGX05, SG06, KLR10, LSTS04, SDB07, CA08], the proposed

method preserve accurately details without requiring any other low-level segmentation tool.

Experiments for segmenting images exhibit a low memory usage while maintaining a solution

identical to the solution obtained with the whole graph. Extra parameters are also provided

to further reduce the size of these graphs and remove small segments in the segmentation.

Keywords: graph cuts, discrete optimization, denoising, segmentation.

1 Introduction

Graph cuts are a discrete optimization method based on maximum-flow / minimum-cut (max-

flow / min-cut) computations in graphs for minimizing energies frequently arising in computer

vision and graphics. Since last decades, this technique is become a cornerstone beside these

communities for solving a wide range of problems such as denoising, segmentation, registration,

stereo, scene reconstruction, optical flow, etc. We refer the reader to [BK04] for typical applica-

tions of graph cuts. Since seminal work of [GPS89] for denoising binary images, graph cuts have

known a quick development mainly due to the introduction of a fast max-flow algorithm [BK04]

and efficient heuristics for solving multi-labels problems [BVZ99].

1

A Reduction Method for Graph Cut Optimization

In parallel, technological advances in image acquisition have both increased the amount and

the diversity of data to process. As an illustration, in the satellite SPOT-5 launched by Arianes-

pace in 2002, the high geometric resolution sensors can capture multispectral and panchromatic

images with an imaging swath of 60 km × 60 km. Each image has a size of 12000 × 12000 which

amounts to about 1GB of data. Similarly, latest medical imaging systems are able to acquire 3D

and 3D+t volume data with several billions of voxels.

Although graph cuts can efficiently solve a wide range of problems, their huge memory con-

sumption remain a challenging problem. To obtain high-resolution output, graph cuts usually

build massive multidimensional grid-like graphs containing billion of nodes and even more edges.

These graphs do not fit in memory. Currently, most of the max-flow algorithms are totally im-

practicable to solve such large scale optimization problems. To overcome this situation, some

amount of work has recently been done in this direction and a number of heuristics [LSGX05,

SG06, KLR10, LSTS04, SDB07, CA08] and exact methods [LSGX05, SG06, KLR10] have been

proposed. However, the heuristics either fail to fully capture shape complexities [LSGX05, SG06,

KLR10] or strongly depend on a low-level segmentation tool [LSTS04, SDB07, CA08].

In this paper, we give a simple condition for testing if a node in a graph is really useful to

the max-flow computation [LML10a]. The reduced graph is progressively built by only adding

the nodes which satisfy this condition. This leads to a straightforward algorithm with a worst-

case additional complexity similar to a convolution. Thus, in the manner of [LSGX05, SG06,

KLR10, LB07], the remaining nodes are typically located in a narrow band surrounding the

object edges to segment. However, unlike [LSGX05, SG06, KLR10, LSTS04, SDB07, CA08],

the proposed method can accurately segment thin structures without requiring any other low-

level segmentation tool. Experiments clearly show that the solutions obtained on the reduced

graphs are identical to the solutions obtained on the whole graphs. Furthermore, the time

required by the reduction algorithm is sometimes compensated by the time for computing the

max-flow on the reduced graph. This paper complements the preliminary report [LML10a] by

giving algorithmic details, a detailed bibliography on the subject and massive experiments for

segmenting multidimensional grayscale and color images. Also, an extra parameter is introduced

for both further reduce the size of the graphs and remove small segments in the segmentation.

Notice that the reduction principle described in this paper has already been applied to minimize

an energy designed for interactive lung tumor segmentation [LMR10].

The rest of this document is organized as follows. In Section 2, we present the state-of-

the-art of methods to overcome the memory problem of graph cuts. We review in Section 3

the graph cuts framework in the image segmentation context. Then, we detail our strategy for

reducing graphs in Section 4 and present massive experiments for segmenting 2D, 2D+t and

3D grayscale/color images using two different energy models. We also provide an in-depth look

for measuring the influence of the reduction parameters in Section 4 and conclude this work in

Section 5.

N. Lermé, F. Malgouyres 2

A Reduction Method for Graph Cut Optimization

2 State of the art

The methods present in the literature for getting round the well known memory problem of

graph cuts can be divided into two main categories: single-machine algorithms and paral-

lelized/distributed algorithms. In the sequel, we first review the former and then the latter.

2.1 Sequential strategies

To our best knowledge, Li et al. seem to be the first ones to tackle the problem of memory

consumption of graph cuts [LSTS04]. Their algorithm works as follows. First, the image is

partitioned into small and numerous homogeneous regions thanks to a low-level segmentation

algorithm such as watershed [LSTS04, SDB07] or mean shift [CA08]. A region adjacency graph

is produced where each region corresponds to a node in the graph (see Figure 1). Then, the

max-flow is computed on this graph for getting the segmentation. The underlying assumption

is that the final contours are embedded into the pre-segmentation. While this observation is

generally not theoretically guaranteed, it is often verified when working on natural images not

corrupted by noise. Although this approach drastically reduce the computational burden of

graph cuts (about 6x faster according to [LSTS04]), the results strongly depend on the low-level

segmentation algorithm used and its noise-sensitivity. Moreover, as fairly observed in [SDB07],

this approach generally gives better results when over-segmentation occurs, which looses the

main benefit of such a reduction.

Figure 1: Working scheme of the heuristic using region adjacency graphs. A region adjacency

graph (right) is built from a pre-segmentation (left) obtained from a low-level segmentation

algorithm. Then, the max-flow is computed inside this graph for getting the final segmentation.

The picture is courtesy of [SD08].

Others have also reported band-based heuristics using a multi-resolution scheme [SG06,

LSGX05, KLR10]. The principle is to segment a low-resolution image/volume and propagate

the solution to the finer level by only building the graph in a narrow band surrounding the inter-

polated foreground/background interface at that resolution. More specifically, the acceleration

strategy consists of three stages (see Figure 2): first, a pyramid of images is built with a coarsen-

ing operator (coarsening). Next, the coarsest image is segmented and its contours are extracted

(segmentation at coarsest level). Finally, the contours are dilated and interpolated at the next

higher resolution for building a new reduced graph (uncoarsening). This process continues until

the bottom of the pyramid is reached. Such an approach greatly reduces time and memory

N. Lermé, F. Malgouyres 3

A Reduction Method for Graph Cut Optimization

consumption of standard graph cuts (about 8x faster and 4x less memory according to [SG06]).

Nevertheless, it generally fails to recover thin structures and is limited to the segmentation of

roundish objects. In medical imaging, this is a real drawback since elongated structures like

blood vessels are ubiquitous. Moreover, the parameter controlling the band dilation during the

projection, plays an important role. Indeed, one usually needs this parameter to be large enough

to fully capture details of various shapes complexities. On the other side, wider bands reduce

the computational benefits and may also introduce potential outliers far away from the desired

object contours.

Figure 2: Multi-resolution heuristic’s principle. A low-resolution image is first segmented and the

solution is propagated to the finer level by only building the graph in a narrow band surrounding

the interpolated foreground/background interface at that resolution. The picture is courtesy

of [LSGX05].

To avoid the loss of details, Lombaert et al. [LSGX05] used the information from a Laplacian

pyramid. At each level, the bands are extended by including pixels whose value significantly

differs between the image and the "coarsened-uncoarsened image". The idea is to capture thin

structures which are not visible in the coarse image. This inclusion is controlled by a thresholding

parameter which provides a smooth transition between [LSGX05] and traditional graph cuts.

Although the previous problem is notably reduced, it is still present for low-contrasted details.

In [KLR10], Kohli et al. proposed recently a finer band-based technique using the multi-

resolution scheme proposed in [SG06, LSGX05]. In contrast with [SG06, LSGX05], they first

define an energy from the full resolution image instead of the low resolution image. Experiments

show that this strategy results in significant improvements in both time and segmentation accu-

racy. But mostly, they compute uncertainty estimates using min-marginals 1 and use them to

determine which regions belong to the reduced graph. While their algorithm reaches low pixel

errors using only a few variables, this heuristic does not ensure to retrieve thin structures and

details as in [SG06, LSGX05].

1The min-marginal encodes the confidence associated with a variable being assigned the label in the optimal

solution. The min-marginal of a variable x corresponds to the energy obtained by fixing it to a particular label

and minimizing over all remaining variables. The exact min-marginals can be determined exactly and efficiently

by reusing previous max-flow computations [KT08].

N. Lermé, F. Malgouyres 4

A Reduction Method for Graph Cut Optimization

Finally, Lempitsky and Boykov presented more recently an interesting touch-expand algo-

rithm that is able to minimize binary energy functions with graph cuts in a narrow band, while

ensuring the global optimality on the solution [LB07]. The principle is to make a band evolve

around the object to segment by expanding the band when the min-cut touches its boundary.

This process is iterated until the band no longer evolves. Although the algorithm quickly con-

verges toward the global optimal solution, it strongly depends on the initialization and no bound

on the band size is given. Thus, the band can progressively increase to encompass the whole

volume in the worst case. However, depending on the initialization, the bands are reasonably

small in the context of [LB07] (volume reconstruction). As far as we know, this strategy has

not yet been adapted to image segmentation. In particular, the benefit of this strategy strongly

depends on the design of an initial band.

2.2 Parallel/distributed strategies

In a recent paper, Delong and Boykov design a method for solving the max-flow problem for

graphs which do not fit in memory. They propose a new parallelized max-flow algorithm yielding

near-linear speedup with the number of processors [DB08]. As an illustration, on a standard

computer, segmenting a volume of size 512 × 512 × 256 takes about 100 secs on a single core

against less than 20 secs on eight cores. However, numerical experiments also show that the

acceleration of this scheme is very limited since it needs a large number of processors to reach

the near-linear speedup and is sensitive to the amount of physical memory. Furthermore, the

proposed algorithm clearly remains less efficient on small graphs than standard graph cuts and

can only be applied to grid-like graphs.

More recently, Strandmark and Kahl in [SK10] introduced an original approach for minimiz-

ing binary energy functions in a parallelized/distributed fashion using the max-flow algorithm

of [BK04]. The idea is to decompose the original problem into optimizable sub-problems, solve

them independently and update them according to the results of the adjacent problems. This

process is iterated until convergence. The key point is that optimality is guaranteed by dual

decomposition.

More precisely, the solutions to the sub-problems are constrained to be equal on an overlap.

They solve the original problem by finding a saddle point of the Lagrangian of the constrained

problem. This min-max problem is solved by alternating minimization over its primal variables

and maximization over its dual variables. The minimizations are done independently of each

other on the calculus nodes. The maximization combines the results obtained on the overlapping

bands. It consists in an update of the dual variables. To reflect this change, the weights in

the graphs corresponding to the sub-problems are modified and the corresponding solutions are

recomputed. This scheme is repeated until the solutions of the variables on the overlap are equal.

This iterative scheme is efficient since only a few edge costs change between iterations and then

search trees can be efficiently reused [KT07]. Moreover, the number of edge costs which change

decrease as the number of iterations increase.

Experiments in [SK10] for image segmentation and stereo clearly demonstrate that both

faster processing on multi-core computers and the ability to solve large scale problems over a

distributed network. As an illustration, such an approach is able to segment a graph requiring

131GB of memory in 38 secs. To our best knowledge, the proposed work is the first to segment

N. Lermé, F. Malgouyres 5

A Reduction Method for Graph Cut Optimization

4D volume data of moderate size using graph cuts while keeping optimality on the solution.

Furthermore, in the image segmentation context, the algorithm is stable over a large range of

values of the regularization parameter. Nevertheless, the algorithm is slower for solving some

instances where the object to segment is not uniformly spread over the image. Also, notice that

the proposed strategy is only effective for graphs for which the max-flow algorithm of [BK04] is.

In particular, the latter becomes less effective than a push-relabel algorithm for dense graphs.

3 Graph cuts framework

3.1 Energy minimization via graph cuts

Consider an image I : P ⊂ Z
d → [0, 1]c (d > 0, c > 0) as a function, mapping each point

(called pixel) p ∈ P to a value Ip ∈ [0, 1]c. We define a binary segmentation as a mapping u

assigning each element of P with the value 0 for the background and 1 for the object and we write

u ∈ {0, 1}P . In the energy minimization approach, a popular strategy consists in minimizing a

Markov Random Field of the form [BJ01]:

E(u) = β ·
∑

p∈P

Ep(up) +
∑

(p,q)∈N

Ep,q(up, uq), (1)

among u ∈ {0, 1}P and for a fixed β ∈ R
+. The neighborhood system N ⊂ P2 is a subset of all

pixel pairs (p, q) ∈ P2. In this context, we will use the following standard neighborhoods:

N0 = {(p, q) ∈ P2 |
∑d

i=1 |qi − pi| = 1} or,

N1 = {(p, q) ∈ P2 | |qi − pi| ≤ 1 ∀1 ≤ i ≤ d},

where pi denotes the ith coordinate of p. In what follows, "connectivity 0" and "connectivity 1"

respectively refer to the use of N0 and N1 neighborhoods 2.

In equation (1), the data term Ep(.) is the cost for assigning the label up to the pixel p

without regards to its neighbors. On the other hand, the smoothness term Ep,q(.) assumes that

the boundaries of the segmentations are smooth. More precisely, it penalizes pixel pairs (p, q)

having different labels. It can also be used to better align boundaries of the segmentation on

the image edges having a strong gradient. Notice that we only consider pairwise interactions

between pixels and do not consider models using higher order derivatives.

Consider now a weighted directed graph G = (V, E , c) where V = P∪{s, t} is the set of nodes,

E ⊂ V2 is the set of edges and c : E → R
+ is a weighting function defining the edge capacities.

The terminal nodes s and t are respectively called the source and the sink. Additionally, we split

the set of edges E into two disjoint sets En and Et denoting respectively n-links (neighborhood

links) and t-links (terminal links) (see Figure 3):

En = {(p, q) ∈ E | p, q ∈ P2},

Et = {(s, p) ∈ E | p ∈ P}
⋃
{(p, t) ∈ E | p ∈ P}.

(2)

2As an illustration, each pixel has respectively 4 and 8 neighbors in 2D, 6 and 26 neighbors in 3D and finally

8 and 80 neighbors in 4D, for N0 and N1 neighborhoods.

N. Lermé, F. Malgouyres 6

A Reduction Method for Graph Cut Optimization

Figure 3: An example of a weighted directed graph defined on a 3 × 3 lattice. T-links are

represented by blue and red arrows while n-links are represented by yellow arrows. The min-cut

corresponds to the green dashed line. The picture is courtesy of [BK04].

We denote by C = (S, T) a s-t cut which is a partition of V such that s ∈ S and t ∈ T . For

any s-t cut C in G, we define the value of C by:

v(C) =
∑

(p,q)∈E
p∈S,q∈T

c(p, q).

We also define uC ∈ {0, 1}P as the underlying segmentation of C in G:

uC
p =

{
0 if p ∈ T

1 if p ∈ S
, ∀p ∈ P.

In other words, pixels in S belong to the object and those in T to the background.

Notice first that C → uC makes a one-to-one correspondence between s-t cuts in G and the

segmentations of the image. Then, the key idea of graph cuts is to build a graph G such that for

any s-t cut C in G, we have:

v(C) = E(uC) + K, (3)

for some additional constant K ∈ R independent of C. When Ep,q(.) is submodular, G can be

constructed as described in [KZ04]. Then, (3) guarantees that the min-cut in G corresponds

to a minimizer of (1). Moreover, as it is well known, the min-cut can be efficiently computed

using a max-flow algorithm such as [BK04]. Again, once the min-cut C∗ is computed in G with

a max-flow algorithm, uC∗
minimizes (1). In the next sections, we review two classical energy

models for segmenting images with graph cuts.

3.2 TV+L
2 energy model

Initially introduced by Rudin, Osher and Fatemi [ROF92], the TV+L2 (ROF) model and its

variants have been a very active research topic in image restoration. This model has also suc-

cessfully demonstrated his efficiency for segmenting cars in video [RCD07]. In what follows, we

assume that I is a grayscale image. Then, the minimizer is taken as the level-set of the minimizer

u∗ of

TV (u) + β‖u− I‖22, β ∈ R
+, (4)

where ‖.‖2 denotes the Euclidean distance in R
♯P , I ∈ R

P is initial data, and TV (u) denotes the

Total Variation of u ∈ R
P . While the second term maintains a proximity to a level-set of I, the

N. Lermé, F. Malgouyres 7

A Reduction Method for Graph Cut Optimization

solution is regularized by the first one. Expressing the two terms of (4) in terms of level sets, we

observe that the µ level set of u∗ is a minimizer of the binary energy

TV (uµ) + 2β
∑

p∈P

uµ
p [(µ−

1

2
)− Ip] + Ip, (5)

among uµ ∈ {0, 1}P (see [DS04]). The latter problem has the form described in (1) and can

be minimized by a graph cut. Remind that this formulation cannot handle color images. In

practice, color images need to be converted into grayscale images before they are segmented.

3.3 Boykov-Jolly energy model

In [BJ01], authors introduced an energy model for segmenting images using graph cuts. Unlike

the previous model, the user must provide object (O ⊂ P) and background seeds (B ⊂ P) in an

interactive fashion (see Figure 4).

Figure 4: Example of segmentation using a Boykov-Jolly model. Object and background seeds

(left) as well as the segmentation (right) are superimposed on the original image.

The role of these seeds is twofold: reducing the cuts space and computing probability distri-

butions of the intensity for the object and the background. Formally, we have:
{

Ep(1) = −log P(Ip|p ∈ O)

Ep(0) = −log P(Ip|p ∈ B)
and Ep,q(up, uq) = Bp,q · |up − uq|, (6)

where P(.) is a probability density function, Ip ∈ [0, 1]c denotes the intensity at voxel p and Bp,q

is a weighting function used to map similarity between voxels to graph weights. The distribution

of the object and the background are generally estimated either using normalized histograms

or Gaussian mixture models. As usual, the data term favors the belonging of each pixel p ∈ P

to the object or the background class while the smoothness term penalizes neighboring pixels p

and q having different labels. In its simplest form, the weight of this penalization only depends

on the gradient and favors boundaries with a strong gradient. Notice that the weight can also

embed more complex features such as textures or gradient direction. The most common choices

for these weighting functions come from the influential work of Perona and Malik on anisotropic

diffusion [PM90] and are used by almost every graph-based segmentation algorithms:

Gaussian: Bp,q = 1
‖p−q‖2

exp
(
−

‖Ip−Iq‖2
2

2σ2

)
, (7)

Reciprocal: Bp,q = 1
‖p−q‖2

1
1+‖Ip−Iq‖ω

ω
, (8)

N. Lermé, F. Malgouyres 8

A Reduction Method for Graph Cut Optimization

where σ ∈ R
+, ω > 1 represent free parameters, ‖.‖2 is the Euclidean norm (either in R

d or R
c)

and ‖.‖ω is the ℓω norm. Notice that some work has been recently done to study the difference

between the Gaussian and the Reciprocal weightings in a medical context (see [GJ08]). The

experimental results in [GJ08] show that the Reciprocal weighting (8) outperforms the Gaussian

weighting (7) in terms of both absolute performance achieved on segmentation differences and

stability over β values. In this paper, all experiments use the Gaussian weighting.

4 Reducing graphs

4.1 Principle

As we have seen before, the memory usage for segmenting high-resolution data by graph cuts

can be prohibitive. As an illustration, the max-flow algorithm of [BK04] (version 2.2) allocates

24♯P+14♯En bytes 3, where the operator ’♯’ stands for cardinality of a set. In Table 1, we observe

that for a fixed amount of RAM, the maximum volume size decreases quickly as the dimension

d increases.

❅
❅

❅❅

Connectivity 0 Connectivity 1

2D 6426 4459

3D 319 219

4D 68 45

Table 1: Maximum size of a square image for which the corresponding graph fits in 2GB of RAM.

Nevertheless, as showed in [LML10a], most of the nodes in the graph are useless during the

max-flow computation since they are not traversed by any flow (see Figure 5). Ideally, one would

like to extract the smallest possible graph G′ = (V ′, E ′) from G = (V, E) while keeping the max-

flow value f ′∗ in G′ identical or very close to the max-flow value f∗ in G. In words, we want to

minimize the relative size of the reduced graph defined as:

ρ =
♯V ′

♯V
, (9)

under the constraint that f∗ ≃ f ′∗. In fact, this is an ideal optimization problem which we

will not try to solve since the method for determining G′ also needs to be (very) fast. In order

to represent the potential of this idea, we represent on the middle image of Figure 5, the flow

only passing through the t-links when computing the segmentation of the image of Figure 5 with

the TV+L2 model (see Section 3.2). Light gray pixels (resp. dark gray pixels) indicates that a

positive amount of flow passed from the source s to a node p (resp. from a node p to the sink

t), for any pixel p ∈ P. Similarly, we represent on the right image of Figure 5 the outflow only

passing n-links using the same model and parameters. This time, the gray is proportional to the

sum of the flow leaving any node p. For the middle and the right images, gray (resp. black)

areas correspond respectively to the nodes not traversed by any flow in the graph. Clearly, only

a small part of the nodes is used during the max-flow computation.

3Remind that P is the set of pixels/voxels and En denotes the set of n-links (see (2)).

N. Lermé, F. Malgouyres 9

A Reduction Method for Graph Cut Optimization

Figure 5: Illustration of the flow passing through t-links (middle) and n-links (right) for seg-

menting a synthetic 2D image (left) using a TV+L2 model. On the middle image, light gray

pixels (resp. dark gray pixels) indicates that a positive amount of flow passed from s to p (resp.

from p to t). On the right image, the gray is proportional to the sum of the flow leaving any

node p. On the middle and the right images, gray (resp. black) areas correspond respectively to

the nodes not traversed by any flow in the graph.

First, let us introduce some terminology before describing our method for building G′. In

accordance with the graph construction given in [KZ04], we consider (without loss of generality)

that a node is linked to at most one terminal:

(s, p) ∈ Et ⇒ (p, t) 6∈ Et, ∀p ∈ P.

We also summarize the t-links capacities for any node p ∈ P by:

c(p) = c(s, p)− c(p, t).

For any B ⊂ Z
d (in practice, B will be a square centered at the origin) and p ∈ P, we denote by

B̃p the set translation of B by the point p:

B̃p = {q + p | q ∈ B}.

For Z ⊂ P and B ⊂ Z
d, we denote by Z̃B the dilation of Z by the structuring element B as:

Z̃B = {p + q | q ∈ B, p ∈ Z} =
⋃

p∈Z

B̃p.

We also define, for any Z ⊂ P, the maximal amount of flow that might get in and out through

the n-links by

Pin(Z) =
∑

p 6∈Z,q∈Z

(p,q)∈N
c(p, q), Pout(Z) =

∑
p∈Z,q 6∈Z

(p,q)∈N
c(p, q).

Finally, we define the maximum amount of flow passing through the t-links and the flow orien-

tation by

A(Z) =
∑

p∈Z

|c(p)|, O(Z) =
∑

p∈Z

sign(c(p)),

where the function sign(.) is defined as:

sign(t) =





1 if t > 0,

0 if t = 0,

−1 otherwise.

N. Lermé, F. Malgouyres 10

A Reduction Method for Graph Cut Optimization

Figure 6: Principle of the reduction. Red area and arrows (resp. green area arrows) denote

the flow which get in (resp. out of) Z̃B. The nodes from Z are removed since Z satisfies (10).

Remaining nodes are typically located in the narrow band Z̃B \ Z.

The intuitive idea for building G′ is to remove from the nodes of G any Z ⊂ P such that





either
(
O(Z̃B) = +♯Z̃B and A(Z̃B \ Z) ≥ Pout(Z̃B)

)
,

or
(
O(Z̃B) = −♯Z̃B and A(Z̃B \ Z) ≥ Pin(Z̃B)

)
.

(10)

As an illustration of these conditions, the last (resp. first) condition of the test (10) implies that

all the flow that might get in (resp. out of) the region Z̃B does so by traversing its boundary

and can be absorbed (resp. provided) by the band Z̃B \ Z (see Figure 6).

Building such sets Z is done by testing each individual pixel p ∈ Z. In order to do so, we

know that the conjunction of conditions (10) for every set {p}, where p ∈ Z, implies (10) for Z.

Considering B, a square window of size (2r + 1) (r > 0) centered at the origin, an even more

conservative test for p ∈ Z is:





either
(
∀q ∈ B̃p, c(q) ≥ +δ

)
,

or
(
∀q ∈ B̃p, c(q) ≤ −δ

)
.

(11)

where δ = P (B)
(2r+1)2−1

. Here, P (B) denotes the perimeter of B, i.e:

P (B) = max(♯{(p, q) : p ∈ B, q 6∈ B and (p, q) ∈ N},

♯{(q, p) : p ∈ B, q 6∈ B and (q, p) ∈ N}).

The main advantage of (11) is that it can be easily computed. If moreover

c(p, q) ≤ 1 (p, q) ∈ E ,

(which is true for the energies described in Section 3.2 and 3.3 4) and (11) holds, one can easily

checks that the condition (10) holds for Z = {p}. For instance, the first condition of (11) implies:

A(B̃p \ {p}) =
∑

q∈ eBp\{p}
|c(q)|,

≥ [(2r + 1)2 − 1] · δ,

≥ P (B),

≥ Pout(B̃p).

In words, for any node p ∈ Z satisfying the first (resp. second) condition of (11), all its neighbors

q ∈ B̃p are only linked to s (resp. t) and the flow that might get in (resp. out) through t-links

in B̃p \ {p} suffices to saturate the n-links going out of (resp. in) B̃p. The node p is useless and

4If the condition (11) does not hold, δ can for instance be multiplied by max(p,q)∈N c(p, q).

N. Lermé, F. Malgouyres 11

A Reduction Method for Graph Cut Optimization

can be removed from G. Therefore, we consider G′ a subgraph of G such that V ′ = P ′ ∪ {s, t},

where:

P ′ = {p ∈ P | (11) does not hold for p}.

The experiments presented in Section 4.3.3 confirm the dependence between the size of the

reduced graph and the model parameters (see Figure 7). Indeed, when minimizing (1) via

graph cuts as described in Section 3.1, the t-links capacities are all multiplied by β. Thus, it is

straightforward to observe that the condition (11) is more difficult to satisfy as β decreases. In

such a situation, we need a larger window radius for decreasing δ in order to reduce the size of

the reduced graph. This results in wider bands around the object contours. Notice that when β

is small, the role of the regularization term Ep,q(.) is increased. Conversely, we can afford large δ

and therefore small window radius when β is large. Thus, the reduced graph consists of narrow

bands around the object edges.

(a) ρ = 5.75% (b) ρ = 32.58% (c) ρ = 50.24% (d) ρ = 64.77%

Figure 7: Tuning of the window radius for segmenting a synthetic 2D image with a TV+L2

model in connectivity 1. From left to right: reduced graphs are superimposed in yellow on the

original image for the window radius r = 1, 8, 15, 22. The relative size of the reduced graph is

indicated below each image.

Additionally, we investigate some ways to relax the condition (11) for further reducing the size

of the reduced graph. A simple way is to multiply δ by a factor γ ∈ [0, 1]. Then, as γ decreases

to 0, the condition (11) can be satisfied for a larger number of nodes. Typically, when γ = 0,

we only test the sign of contracted capacities (see (11)). Another way is to allow some nodes in

B̃p to fail complying with the test. The proportion of nodes satisfying the test is controlled by a

parameter called η ∈ [0, 1]. Then, as η decreases, the condition (11) can be satisfied more easily

since a larger proportion of nodes can be connected to opposite terminals. Embedding these two

extra parameters leads to the following condition:




either
(
♯{q ∈ B̃p | c(q) ≥ +δ · γ} ≥ η · ♯B̃p

)
,

or
(
♯{q ∈ B̃p | c(q) ≤ −δ · γ} ≥ η · ♯B̃p

)
.

(12)

Unlike the window radius parameter, γ and η parameters can further decrease the graph size but

do not offer any guarantee on the final segmentation. However, for time-critical applications,

this can be particularly useful when optimality does not represent a major constraint. As regard

to the parameter η, it can also be used to remove noise in the segmentation.

We prove in a forthcoming accompanying paper that the proposed reduction scheme is exact

but for a slightly stronger condition than (11). By exact, we mean that the max-flow value

obtained from the reduced graph G′ is equal to the one obtained in G. Moreover, the experiments

presented in Section 4.3.3 show important reduction rates while keeping a low pixel error on

N. Lermé, F. Malgouyres 12

A Reduction Method for Graph Cut Optimization

segmentations. The experiments show that the relative max-flow error between f∗ and f ′∗ (see

Appendix B) is generally equal to zero. Finally, notice that this work is protected by a pending

patent [LML10b]. In the next section, we detail a fast algorithm for building G′.

4.2 Algorithmic considerations

Unoptimized algorithm

From the Section 4.1, an easy-to-implement non-optimized algorithm emerges: for each pixel

p of the input image, we can check if the condition (12) holds by browsing the window of radius r

centered at p. If so, we do not add the node to G′. Since the neighborhood of each pixel is visited

exactly once, the graph construction resembles a convolution and has a worst-case complexity

of O(♯P♯B) (see Algorithm 1). Notice that δ is computed only once. When a node cannot be

removed from G, we connect it to its constructed neighbors. We keep track of these neighbors

with an array of dimension (d− 1).

Algorithm 1 General algorithm for building G′

Inputs: image I, square window B of size (2r + 1)

Outputs: reduced graph G′.

1. % We compute the scalar δ

2. δ ← compute_delta()

3. % We allocate memory for storing G′

4. G′ ← allocate_graph()

5. forall p ∈ P do

6. NbLargePositive← 0

7. NbLargeNegative← 0

8. forall q ∈ B̃p do

9. if c(q) ≥ +δ · γ then

10. NbLargePositive← NbLargePositive + 1

11. endif

12. if c(q) ≤ −δ · γ then

13. NbLargeNegative← NbLargeNegative− 1

14. endif

15. endfor

16. if |NbLargePositive| ≥ η · ♯B̃p or |NbLargeNegative| ≥ η · ♯B̃p then

17. % We add node p to G′ and connect it to its neighbors

18. endif

19. endfor

Incremental algorithm

For large window radii, the Algorithm 1 becomes inefficient as the image size and d increase.

Nevertheless, one can observe that the condition (12) can be decomposed as sums along the

dimensions d yielding an algorithm with a complexity of O(♯P), except for image borders. We

now detail this incremental algorithm in the 2D case with a connectivity 0. We consider a square

N. Lermé, F. Malgouyres 13

A Reduction Method for Graph Cut Optimization

window B of size (2r + 1), (r > 0). First, for any point p ∈ P and δ′ ≥ 0, we define:

gδ′(p) =

{
1 if c(p) ≥ +δ′,

0 otherwise.
(13)

We either denote gδγ(p) or gδγ(i, j) for any pixel p = (i, j) ∈ P (it will never be ambiguous once

in context). In what follows, we only describe the computation of ♯{q ∈ B̃p | c(q) ≥ +δ · γ}.

The other case can easily be deduced by adapting the definition of (13). The key idea is to

decompose ♯{q ∈ B̃p | c(q) ≥ +δ · γ} as two sums where the first one sums over each row in a

column while the second one sums over all columns. First, we introduce an array M whose size

is the image width, where each element contains the sum of the values of gδγ(.) over a vertical

segment of B̃p. More precisely, if we denote Mi0,j0 the state of table M at the beginning of the

computation at the pixel p = (i0, j0) ∈ P, we have:

Mi0,j0 [i] =

{ ∑+r
l=−r gδγ(i, j0 + l) if i ≤ i0 + r,

∑+r
l=−r gδγ(i, j0 + l − 1) if i > i0 + r,

(14)

except for image borders. Additionally, we maintain a variable Ni0,j0 summing the elements of

M along an interval of size 2r + 1:

Ni0,j0 =

+r∑

c=−r

Mi0,j0 [i0 + c], ∀(i, j) ∈ P.

We trivially have Ni0,j0 = ♯{q ∈ B̃p | c(q) ≥ δ · γ}, for p = (i0, j0). Then, for ensuring the

property (14) at the next pixel p = (i0 + 1, j0) ∈ P, we update M before N with:

Mi0+1,j0 [i0 + r + 1] ← Mi0,j0 [i0 + r + 1]− gδγ(i0 + r + 1, j0 − r − 1) + gδγ(i0 + r + 1, j0 + r)

Ni0+1,j0 ← Ni0,j0 −Mi0+1,j0 [i0 − r] + Mi0+1,j0 [i0 + r + 1]

i i

M12,2 . . . 2 3 3 2 . . . M13,2 . . . 2 3 3 3 . . .

11 12 13 14 11 12 13 14

0 . . . 0 0 0 0 . . . 0 . . . 0 0 0 0 . . .

j 1 . . . 0 1 1 1 . . . ⇒ 1 . . . 0 1 1 1 . . .

2 . . . 1 1 1 1 . . . 2 . . . 1 1 1 1 . . .

3 . . . 1 1 1 1 . . . 3 . . . 1 1 1 1 . . .

gδγ(.) gδγ(.)

N12,2 = 8

M13,2[14] ← M12,2[14]− gδγ(14, 0) + gδγ(14, 3)

← 2− 0 + 1 = 3

N13,2 ← N12,2 −M13,2[11] + M13,2(14)

← 8− 2 + 3 = 9

Figure 8: Illustration of the incremental algorithm for a 2D image with r = 1, γ = 1 and

η = 1. In this example, only the node corresponding to the pixel p = (13, 2) is added to G′ since

|N13,2| = (2r + 1)2 = 9.

The contracted capacities are only evaluated once: when shifting from one position to the

next one. Therefore, the optimized algorithm builds the reduced graph with a complexity of

N. Lermé, F. Malgouyres 14

A Reduction Method for Graph Cut Optimization

O(♯P), except for image borders. In particular, the complexity becomes independent of the

window radius. Also, one can notice that the cost of such an algorithm is directly proportional

to the cost for evaluating the contracted capacities. However, for the energy models presented

in this document, these capacities can be efficiently pre-computed and stored in lookup tables.

The memory storage required by the incremental graph construction algorithm lies in the table

M which is of dimension d− 1. Thus, the extra memory usage is negligible with respect to both

the image and the graph size.

The Algorithm 1 remains quite general and can be extended in various ways. For instance,

one can imagine an adaptive version where r varies automatically according to the image con-

tent. This implies to guess the optimal window radius r∗ for each node. This can be done by

examining all window radii in a fixed range {0, . . . , rmax} (rmax > 1) until r∗ is found. Unlike the

Algorithm 1, the worst-case complexity now becomes O(♯P ·T (rmax)) where T (rmax) denotes the

cost for examining all nodes for an increasing radius up to rmax. Although this approach permits

to build smaller graphs, the construction of the graphs suffers from a higher computational cost.

It becomes also more difficult to avoid repetitive evaluations of the contracted capacities like in

the incremental algorithm.

Another point is that the reduction algorithm can easily be parallelized. First, due to the

locality of data and operations, the Algorithm 1 could also be easily parallelized on GPU 5

since the result of condition (12) can be independently evaluated on each node. Secondly, when

the reduced graph contains several connected components, we could solve the max-flow on each

connected component independently. In some situations (such as the segmentation of noisy

images), this approach could be very efficient since the max-flow computation would become

trivial for a large amount of connected components whose nodes are all linked to the same

terminal 6.

4.3 Numerical experiments

In the subsequent sections, all experiments are performed on an Athlon Dual Core 6000+ 3GHz

with 2GB of RAM using the max-flow algorithm of [BK04] 7. Running times include the graph

construction, the max-flow computation as well as the construction of the solution. Times are

averaged over 10 runs.

4.3.1 The window radius parameter

The Figure 9 measures the impact of the window radius with respect to speed and memory usage

and compares these results to standard graph cuts (bottom row) for segmenting 2D and 2D+t

data (top row) in connectivity 1. On the bottom row, the blue curves with squares correspond

to time consumption and the red curves with triangles correspond the memory of the reduced

graphs. Standard graph cuts correspond to r = 0.

First, the segmentations obtained by standard graph cuts and reduced graph cuts are iden-

5As an illustration, the CUDA SDK includes a sample for doing convolutions quickly using a separable kernel.
6Indeed, the condition (12) does not imply that both terminals are linked to the non-terminals nodes unless

we have γ = 0 and η = 1.
7The code is freely available at http://www.cs.cornell.edu/People/vnk/software.html

N. Lermé, F. Malgouyres 15

A Reduction Method for Graph Cut Optimization

tical. We also observe that the reduced graph cuts are always faster and requires less memory

than the former except for the image "plane". One can also observe that both curves are approx-

imately convex and the minimal relative size of the reduced graph (denoted by ρ∗) is reached

for some radius r∗ > 0. Notice that r∗ naturally depends both on the image structure and the

model parameters. The intuitive reason for both curves to be approximately convex is that each

individual test of (12) can be satisfied more easily when r increase, since δ decreases with r.

Nevertheless, when r is larger, the condition becomes more and more difficult to satisfy because

a larger number of individual test must hold. Notice that this experiment is chosen to illustrate

the behavior when r change. However, we generally take r = 1 for most of the images used (see

Tables 2 and 3).

plane – 1443 × 963 cells – 1536 × 1536 lena – 2048 × 2048 woman – 211 × 172 × 92

Image "plane" Image "cells" Image "lena" Image "woman"

Figure 9: Influence of window radius (bottom row) for segmenting 2D and 2D+t images (top

row) with a TV+L2 model in connectivity 1. On the bottom row, blue curve with squares and

red curve with triangles correspond respectively to execution time and the amount of memory

allocated for the graph. Standard graph cuts correspond to a window radius equal to 0.

4.3.2 Estimation of the distributions

Before presenting massive experiments, we detail how P(Ip|p ∈ O) and P(Ip|p ∈ B) are estimated

in (6) using Normalized Histograms (NH). Since we use the same strategy for the object and the

background, we only describe it for B. Let Nb ∈ N
∗ denotes the number of bins. We call, for

q ∈ {0, . . . , Nb − 1}c,

Hk =
♯{p ∈ B | qi

Nb
≤ (Ip)i <

qi+1

Nb
,∀1 ≤ i ≤ c}

♯B

where we remind that Ip ∈ [0, 1]c and (Ip)i is the ith channel of Ip. We then approximate

P(Ip|p ∈ B) by

(Gσ′ ∗H)Ip

where Gσ′ is a Gaussian kernel of standard deviation σ′. In what follows, we always take σ′ = 1.

In practice, we use the same number of bins Nb for the object and the background.

Notice that, as it is well known, when the number of bins Nb is too large, Hq is null for most

q ∈ {0, . . . , Nb− 1}c. Such observation grows as the number of channels c increases. As a result,

P(Ip|p ∈ B) is not accurately estimated and (the learned distribution law overfits the samples)

N. Lermé, F. Malgouyres 16

A Reduction Method for Graph Cut Optimization

most contracted capacities of the graph are set to 0. In practice, the model behaves as if we

had β = 0. On the other hand, when Nb is too small, the best possible estimate approximates

P(Ip|p ∈ B) by a piecewise constant function made of large square pieces. This time, Hq is not

null for a larger part of q ∈ {0, . . . , Nb−1}c but P(Ip|p ∈ B) is roughly approximated. Therefore,

the number of bins Nb should be a trade-off between these two situations. In practice, we adapt

the number of bins to the number of channels. Following results of the Figure 10, we empirically

choose a number of cells Nb = 256 and Nb = 50 for grayscale and color images, respectively.

Smoothing distributions allows to further increase the number of cells where Hq is not null and

can further reduce the size of the graph.

Figure 10: Evolution of the relative size of the reduced graph (blue curve) and the distance

between a ground truth image obtained from Table 3 with the number of bins Nb. The distance

between both segmentations is measured with the DSC (red curve) and the SRMSSD (green

curve). Seeds and parameters are the same as those used in Table 3.

4.3.3 Massive experiments on 2D, 2D+t and 3D images

For segmenting 2D, 2D+t and 3D grayscale/color images in connectivity 1, we compare the

performance of standard graph cuts against reduced graph cuts in terms of speed, memory con-

sumption and provide measures for assessing the differences between the segmentations obtained

with standard graph cuts and reduced graph cuts.

Let us now describe our experimental procedure. For each image, the seeds and the model

parameters are manually optimized for getting the best segmentation. Using these seeds and

parameters, a reference segmentation is computed with standard graph cuts: the same seeds and

parameters are then used for the reduced graph cuts. The differences between the segmentations

are estimated using three evaluation measures (DSC, MSASD and VO, see Appendix A) as well

as on the value of the flow in the graphs (see Appendix B). Also, the window radius r∗ for which

the relative size of the graph ρ∗ is minimum, is estimated. For both tables, notice that some 2D

images comes from the popular Berkeley segmentation dataset 8.

The results obtained using a TV+L2 model (see Section 3.2) are summarized in Table 2.

Similarly, the results obtained using a Boykov-Jolly model (see Section 3.3) are summarized in

Table 3. Segmentation results are also illustrated using a TV+L2 and a Boykov-Jolly model in

Figure 11 and 12, respectively.

8The dataset is freely available at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

N. Lermé, F. Malgouyres 17

A Reduction Method for Graph Cut Optimization

For both models, we observe that our algorithm generally outperforms standard graph cuts

in terms of memory while the differences between both segmentations is generally null (or remain

extremely small) 9. For some of the 2D+t and 3D images, standard graph cuts fail to compute

the segmentation while our algorithm is able to segment them in a reasonable time. Nevertheless,

the relative size of the reduced graphs of some noisy images like "circles+N (0, 20)", "zen-garden"

or "cells" is particularly large. This result reflects the fact that a lot of neighboring nodes are

linked to opposite terminals. The density of nodes linked to s and t is directly correlated to the

amount of noise in the image. Thus, an ideal situation consists of large area of nodes linked to

the same terminal separated by smooth borders. Notice that when these areas contain few nodes

linked to wrong terminals, we can obtain good reduction performances by relaxing (11) with the

parameter η (see (12)).

For some instances, the reduced graph cuts are even faster than standard graph cuts. In

words, it means that the time required by the reduction is compensated by the time for allocating

the useless nodes and the computation of the max-flow on the reduced graph. However, the

difference is generally small and becomes smaller as r∗ increases. In that case, most of the time

of the reduction is indeed spent on the borders. This drawback increases with the number of

channels. As an illustration, the time spent on the borders for segmenting a color image of size

481 × 321 can represent more than 50% of the time for reducing the graph with r = 5. This

percentage can rise to 80% for r = 10. Although it significantly reduces performances, this

also confirms that the reduction is fast almost everywhere. Therefore, a better management of

borders would lead to a substantial increase of speed of the proposed algorithm. However, this

situation does not occurs often since we generally have r∗ = 1.

Another important point is that our algorithm can allocate a larger amount of memory. This

situation typically occurs when β is too small, leading to a very large relative size of the reduced

graph (see image "circles+N (0, 20)"). Since we do not know the size of G′ before running our

algorithm, we sometimes need to reallocate an extra memory space for storing the following nodes

and edges. In practice, the max-flow algorithm of [BK04] reallocates memory by adding the half

of the size of the memory storage used by nodes and edges. In order to avoid reallocations, we

can adapt simple strategies to get an upper bound on the number of nodes and edges belonging

to G′. For instance, we can use (12) by testing individually each pixel p ∈ P with δ1 or by

randomly polling some amount of pixels in the image.

Let us now describe the results obtained in Tables 2 and 3. For the TV+L2 model, the

average relative size of the reduced graph is 33.5% with a standard deviation of 47.39%. For 21

images out of 28, reduced graph cuts allocate less memory than standard graph cuts. Similarly,

for 11 images out of 28, reduced graph cuts are faster than standard graph cuts. For some

instances, the optimal window radius is far from being equal to one because the boundary of the

segmentation is very rigid for avoiding undesired objects (see image "zen-garden" and "sweets"

in Figure 11). This leads to a small value of β and therefore a large window radius r∗ for lowering

δ in order to obtain a smaller graph.

For the Boykov-Jolly model, the average relative size of the reduced graph is 19.24% with a

standard deviation of 31.09%. For 29 images out of 31, reduced graph cuts allocate less memory

than standard graph cuts. Similarly, for 17 images out of 31, reduced graph cuts are faster than

9The theoretical elements guaranteeing the exactness of our method will be published in a forthcoming paper.

N. Lermé, F. Malgouyres 18

A Reduction Method for Graph Cut Optimization

standard graph cuts.

"white-buttons" (6.91%) "rice" (21.77%) "zen-garden" (94.72%) "sweets" (83.97%)

"ct-thorax" (7.87%) "cells" (17.46%) "circles+N (0, 20)" (94.85%)

Figure 11: Segmentation results using a TV+L2 model in connectivity 1. The segmentation is

superimposed on the original image by transparency. The minimal relative size of the reduced

graph is indicated in parenthesis below each image.

"red-starfish" (13.95%) "horses" (5.60%) "snow-and-clouds" (15.24%) "text1" (50.18%)

"interview-man1" (6.91%) "fluorescent-cell" (5.88%) "ct-thorax" (17.30%) "circles+N (0, 20)" (94.57%)

Figure 12: Segmentation results using a Boykov-Jolly model in connectivity 1. The segmentation

(bottom row) as well as seeds (top row) are superimposed on the original image by transparency.

The minimal relative size of the reduced graph is indicated in parenthesis below each image.

N. Lermé, F. Malgouyres 19

❅
❅
❅

Volume name Size
Standard GC Reduced GC

ρ∗ (%) r∗ RME DSC (%) VO (%) MSASD
Time Memory Time Memory

2D

plane 481 ×321 0.12 22.90 Mb 0.42 14.54 Mb 49.89 14 0.0000 100.0000 100.0000 0.0000

zen-garden 481 ×321 0.12 22.90 Mb 0.27 23.39 Mb 94.72 10 0.0000 100.0000 100.0000 0.0000

oriental-man 321 ×481 0.26 22.90 Mb 0.48 23.39 Mb 79.85 13 0.0001 100.0000 100.0000 0.0000

ct-thorax-z 512 ×512 0.18 38.91 Mb 0.11 2.05 Mb 5.74 1 0.0000 100.0000 100.0000 0.0000

book 3012 ×2048 2.68 917.26 Mb 1.67 78.95 Mb 8.64 1 0.0000 100.0000 100.0000 0.0000

cells-z 512 ×512 0.20 38.91 Mb 0.33 35.09 Mb 76.39 6 0.0011 100.0000 100.0000 0.0000

beans 256 ×256 0.07 9.70 Mb 0.13 10.40 Mb 99.83 4 0.0001 100.0000 100.0000 0.0000

sweets 800 ×600 0.81 71.28 Mb 2.51 78.95 Mb 83.97 22 0.0000 100.0000 100.0000 0.0000

text1 1600 ×1200 0.82 285.39 Mb 0.57 25.76 Mb 10.56 1 0.0000 100.0000 100.0000 0.0000

text2 1024 ×768 0.36 116.84 Mb 0.36 35.09 Mb 28.78 1 0.0000 100.0000 100.0000 0.0000

yeasts1 512 ×512 0.23 38.91 Mb 0.34 49.08 Mb 95.32 3 0.0016 100.0000 100.0000 0.0000

yeasts2 512 ×512 0.19 38.91 Mb 0.15 6.93 Mb 18.83 1 0.0001 99.9730 99.9460 0.0000

angiography1 512 ×512 0.18 38.91 Mb 0.11 3.08 Mb 7.97 1 0.0001 100.0000 100.0000 0.0000

angiography2 350 ×643 0.13 33.39 Mb 0.09 2.26 Mb 7.51 1 0.0000 100.0000 100.0000 0.0000

f117 588 ×392 0.12 34.20 Mb 0.06 623.05 Kb 1.71 1 0.0000 100.0000 100.0000 0.0000

black-cat 600 ×400 0.12 35.61 Mb 0.07 415.38 Kb 1.14 1 0.0000 100.0000 100.0000 0.0000

viking-symbol2 660 ×740 0.27 72.53 Mb 0.28 35.09 Mb 37.06 3 0.0000 100.0000 100.0000 0.0000

white-buttons 300 ×300 0.06 13.33 Mb 0.03 934.60 Kb 6.91 1 0.0000 100.0000 100.0000 0.0000

rice 256 ×256 0.04 9.70 Mb 0.04 2.05 Mb 21.77 1 0.0002 100.0000 100.0000 0.0000

blood-cells 425 ×280 0.08 17.64 Mb 0.05 3.08 Mb 18.84 1 0.0000 100.0000 100.0000 0.0000

poppy 409 ×613 0.16 37.21 Mb 0.09 1.01 Mb 2.93 1 0.0002 100.0000 100.0000 0.0000

2D+t

interview-girl 320 ×240 ×150 OM 4.72 Gb 8.96 771.00 Mb 15.04 1 NSR NSR NSR NSR

interview-old-man 256 ×256 ×128 OM 3.43 Gb 8.50 771.00 Mb 18.83 1 NSR NSR NSR NSR

interview-woman 352 ×288 ×154 OM 6.40 Gb 10.42 1.13 Gb 13.36 1 NSR NSR NSR NSR

3D

ct-thorax 409 ×409 ×252 OM 17.33 Gb 21.43 1.17 Gb 7.87 1 NSR NSR NSR NSR

circles-pyramid+sigma20 128 ×128 ×128 5.01 874.57 Mb 7.16 1.10 Gb 94.85 1 0.0138 100.0000 100.0000 0.0000

cells 409 ×409 ×101 OM 6.92 Gb 14.23 1.13 Gb 17.46 1 NSR NSR NSR NSR

brain-p3 181 ×217 ×181 OM 2.91 Gb 6.00 342.67 Mb 12.63 1 NSR NSR NSR NSR

Table 2: Standard graph cuts (GC) are compared to our algorithm in terms of speed (in secs) and memory for segmenting data using a TV+L2 model in

connectivity 1. Label OM stands for "Out of Memory" while label NSR stands for "No Segmentation Reference".

❅
❅
❅

Volume name Size
Standard GC Reduced GC

ρ∗ (%) r∗ RME DSC (%) VO (%) MSASD
Time Memory Time Memory

2D

eagle-c 481 ×321 0.20 22.90 Mb 0.15 1.37 Mb 5.54 1 0.0000 100.0000 100.0000 0.0000

zen-garden-c 481 ×321 0.22 22.90 Mb 0.34 23.39 Mb 90.75 1 0.0000 100.0000 100.0000 0.0000

columns-c 481 ×321 0.22 22.90 Mb 0.12 276.92 Kb 1.17 1 0.0000 100.0000 100.0000 0.0000

red-flowers-c 481 ×321 0.19 22.90 Mb 0.21 6.93 Mb 23.30 1 0.0000 100.0000 100.0000 0.0000

snow-and-clouds-c 481 ×321 0.19 22.90 Mb 0.15 4.62 Mb 15.24 1 0.0000 100.0000 100.0000 0.0000

marker-c 481 ×321 0.19 22.90 Mb 0.13 623.05 Kb 2.46 1 0.0000 100.0000 100.0000 0.0000

pyramid-c 481 ×321 0.18 22.90 Mb 0.13 304.97 Kb 1.46 1 0.0000 100.0000 100.0000 0.0000

red-starfish-c 481 ×321 0.19 22.90 Mb 0.15 3.08 Mb 13.95 1 0.0000 100.0000 100.0000 0.0000

black-cow-c 481 ×321 0.21 22.90 Mb 0.15 304.97 Kb 1.51 1 0.0000 100.0000 100.0000 0.0000

church2-c 481 ×321 0.20 22.90 Mb 0.13 1.37 Mb 5.07 1 0.0000 100.0000 100.0000 0.0000

snake2-c 481 ×321 0.20 22.90 Mb 0.15 1.01 Mb 4.95 1 0.0000 100.0000 100.0000 0.0000

birds2-c 321 ×481 0.21 22.90 Mb 0.16 1.37 Mb 6.40 1 0.0001 100.0000 100.0000 0.0000

eagle2-c 481 ×321 0.18 22.90 Mb 0.13 623.05 Kb 2.25 1 0.0000 100.0000 100.0000 0.0000

greek-temple-c 481 ×321 0.20 22.90 Mb 0.14 2.05 Mb 8.03 1 0.0000 100.0000 100.0000 0.0000

horses4-c 481 ×321 0.20 22.90 Mb 0.14 1.37 Mb 5.60 1 0.0000 100.0000 100.0000 0.0000

meadow-and-mountains-c 481 ×321 0.20 22.90 Mb 0.25 15.59 Mb 56.00 1 0.0000 100.0000 100.0000 0.0000

traditional-houses-c 481 ×321 0.19 22.90 Mb 0.13 934.60 Kb 4.30 1 0.0000 100.0000 100.0000 0.0000

ct-thorax-z 512 ×512 0.44 38.91 Mb 0.29 4.62 Mb 10.85 1 0.0000 99.7832 99.5674 0.0000

book 3012 ×2048 7.54 917.26 Mb 5.06 78.95 Mb 8.18 1 0.0000 100.0000 100.0000 0.0000

cells-z 512 ×512 0.46 38.91 Mb 0.49 23.39 Mb 48.91 2 0.0007 100.0000 100.0000 0.0000

text1 1600 ×1200 2.15 285.39 Mb 2.49 177.63 Mb 50.18 1 0.0000 100.0000 100.0000 0.0000

viking-symbol2 660 ×740 0.59 72.53 Mb 0.39 3.39 Mb 5.13 1 0.0023 99.9981 99.9962 0.0000

2D+t

interview-man1-c 320 ×240 ×203 OM 6.40 Gb 18.75 514.00 Mb 6.91 1 NSR NSR NSR NSR

interview-man2-c 426 ×240 ×180 OM 7.55 Gb 19.86 228.44 Mb 3.21 1 NSR NSR NSR NSR

plane-take-off-c 492 ×276 ×180 OM 10.03 Gb 28.91 532.00 Mb 6.20 1 NSR NSR NSR NSR

talk-c 370 ×276 ×190 OM 7.96 Gb 32.51 1.13 Gb 15.44 1 NSR NSR NSR NSR

fluorescent-cell-c 478 ×396 ×121 OM 9.39 Gb 30.08 514.00 Mb 5.88 1 NSR NSR NSR NSR

3D

ct-thorax 245 ×245 ×151 OM 3.71 Gb 17.25 771.00 Mb 17.30 1 NSR NSR NSR NSR

circles-pyramid+sigma20 128 ×128 ×128 8.13 874.57 Mb 11.41 1.10 Gb 94.57 1 0.0043 100.0000 100.0000 0.0000

cells 230 ×230 ×57 9.27 1.23 Gb 9.78 771.00 Mb 51.38 1 0.0029 100.0000 100.0000 0.0000

brain-p3 181 ×217 ×181 OM 2.91 Gb 14.45 771.00 Mb 24.38 1 NSR NSR NSR NSR

Table 3: Standard graph cuts (GC) are compared to our algorithm in terms of speed (in secs) and memory for segmenting data using a Boykov-Jolly model

in connectivity 1. Label OM stands for "Out of Memory" while label NSR stands for "No Segmentation Reference". Color images are suffixed by "c" in

their names.

A Reduction Method for Graph Cut Optimization

4.3.4 The parameter γ

Similarly, the Figure 13 illustrates the role of the parameter γ using the same model, images

and parameters as in Figure 9. This experiment shows how far the condition (11) can be relaxed

while nearly having an exact solution. In Figure 13, the window radii are chosen to minimize

the memory consumption. The differences between the segmentations with the standard graph

cuts and the reduced graph cuts are estimated using two evaluation measures: the DSC and the

MSASD (see Appendix A). Then, we display the DSC (green curve), the MSASD (purple curve)

as well and the execution time (blue curve) and the memory consumption (red curve) over a fixed

range of γ values ranging from 0 to 1. As γ decreases to 0, we naturally observe that we get a

coarser approximation of the solution. In practice, we obtain nearly exact solutions for γ ≥ 0.5.

For γ < 0.4, the solution is slightly different but remains close from the original segmentation.

plane – 1443 × 963 cells – 1536 × 1536 lena – 2048 × 2048 woman – 211 × 172 × 92

Image "plane" Image "cells" Image "lena" Image "woman"

Figure 13: Influence of the parameter γ (bottom row) for segmenting 2D and 2D+t images (top

row) with a TV+L2 model in connectivity 1. On the bottom row, blue curve with squares and

red curve with triangles correspond respectively to the gain in time and the amount of memory

allocated for the reduced graph. Green curves with circles and purple curves with diamonds

correspond respectively to the DSC and the MSASD between γ-parametrized segmentations and

the segmentations obtained with standard graph cuts.

4.3.5 The parameter η

A lower bound for η

For a fixed window radius, notice first that the value of η must be sufficiently large for keeping

the graph in a whole piece (see Figure 15). Below some value (denoted by ηmin), the reduced

graph can be unfortunately split into several connected components and pixels can be wrongly

labeled in the segmentation. The Figure 14 illustrates a situation where such value can be easily

computed with an image consisting of two contrasted areas. Using reduced graph cuts with a

square window of radius r and η = 1, the reduced graph corresponds to a thin band of size 2r.

An easy estimate of ηmin is to impose that ηmin permits to segment these two contrasted

areas. In order to do so, we want the test (12) to be false for any pixel p located on the boundary

between these areas. For such a pixel, we have (e.g. if we assume c(p) ≥ +δγ):

♯{q ∈ B̃p | c(q) ≥ +δγ} = (r + 1)(2r + 1)d−1.

N. Lermé, F. Malgouyres 22

A Reduction Method for Graph Cut Optimization

Figure 14: Minimalist example for computing the lower bound ηmin.

As a consequence, if

η ≤
(r + 1)(2r + 1)d−1

(2r + 1)d
,

the pixel p does not belong to the reduced graph G′. Since we want to avoid the situation, we

therefore must have:
η >

(r+1)(2r+1)d−1

(2r+1)d

= 1− r
2r+1 = ηmin.

(15)

Thus, as r tends to infinity, the maximum proportion of nodes allowed being linked to opposite

terminals tends to 50%. Notice that this lower bound no longer holds in connectivity 0. Indeed,

the lower bound can be too small in areas with high-curvature and the reduced graph would be

disconnected into multiple pieces (see Figure 15). Consequently, the min-cut is no longer ensured

of being fully contained in G′.

η = 1.0 η = 0.8 η = 0.6 η = 0.53 η = 0.52

Figure 15: Illustration of the lower bound ηmin for segmenting a 2D synthetic image using a

TV+L2 model. In this experiment, ηmin ≃ 0.523 and we set r = 10 using connectivity 1.

On all images, the pixels belonging to V ′ are superimposed in yellow to the original image by

transparency. The middle and the bottom rows correspond respectively to close-ups of the red

and cyan areas. Observe how the reduced graph split into multiple pieces as soon as η ≤ ηmin.

N. Lermé, F. Malgouyres 23

A Reduction Method for Graph Cut Optimization

Reducing further the graphs using η

We now detail how the parameter η can be used for reducing the memory usage. The Figure 16

illustrates how far the condition (11) can be relaxed for further reducing graphs while getting

nearly the same segmentation. In this experiment, the segmentation and the reduced graph are

shown for segmenting a synthetic noisy 2D image with a Boykov-Jolly model using connectivity

1. Since the condition (12) becomes easier to satisfy when η decreases, the graph around the

object contours becomes thicker.

η 1.0 0.9 0.8 0.7 0.6

ρ 93.28% 30.99% 5.74% 3.65% 2.00%

Figure 16: Memory gain when segmenting a 2D synthetic image corrupted by 10% of impulsive

noise, using a Boykov-Jolly model (left). Top row shows the nodes of the reduced graph in light

gray while bottom row shows the corresponding segmentation. In this experiment, we set r = 3,

γ = 1 and use connectivity 1. In this experiment, ηmin ≃ 0.571.

Denoising using η

The parameter η can be also used for denoising the segmentation. Indeed, it can be tuned to

remove small regions of the segmentation and therefore denoise it. This behavior is illustrated

in Figure 17 for segmenting a 3D noisy image from a confocal microscope with a Boykov-Jolly

model. In this picture, white spots correspond to cell nuclei in a mouse cerebellum. Observe

how the denoising acts for small values of η: small regions in the graph and in the segmentation

are progressively removed as η decreases. Typically, this parameter is useful for denoising images

corrupted by a noise behaving like an impulsive noise. Finally, unlike traditional filters, our

method does not require any pre or post-processing steps.

5 Conclusion

In this paper, a new strategy for reducing graphs in the image segmentation context has been

detailed. The massive experiments presented in Section 4.3.3 globally depict promising results

for segmenting 2D, 2D+t and 3D grayscale/color images using a TV+L2 and a Boykov-Jolly

model. The results strongly suggests that the proposed algorithm provides an exact solution

when γ = 1, η = 1 and behaves like an heuristic as γ and η decrease to zero. Currently, we have

proved the exactness of the reduction but for a slightly stronger condition than (11). The proof

will be detailed in a forthcoming paper.

Although traditional graph cuts remain sometimes more efficient in terms of speed in the

N. Lermé, F. Malgouyres 24

A Reduction Method for Graph Cut Optimization

η 1.0 0.9 0.8 0.7 0.6

ρ 55.70% 37.15% 18.26% 12.65% 8.87%

Figure 17: Simultaneous segmentation and denoising of a 3D image using a Boykov-Jolly model

(left) in connectivity 1. In this picture, white spots correspond to cell nuclei in a mouse cerebel-

lum. Top row shows the nodes of the reduced graph in light gray while bottom row shows the

corresponding segmentation. In this experiment, we set r = 5 and γ = 1.

numerical experiments, the reduction remains well suited for segmenting large volume data while

keeping a very low-pixel error on the segmentations. As an illustration, the average relative size

of the reduced graphs are respectively equal to 33.5% and 19.24% for the TV+L2 and the Boykov-

Jolly model. On the other side, the proposed algorithm is highly parallelizable and could be used

for instance with the dual decomposition scheme [SK10].

Acknowledegments

The authors would like to thank L. Létocart, J-M. Rocchisani, F. Dibos and S. Li-Thiao-Té

for contributing to this work and for all fruitful discussions on that subject.

N. Lermé, F. Malgouyres 25

A Reduction Method for Graph Cut Optimization

References

[BJ01] Y. Boykov and M-P. Jolly. Interactive graph cuts for optimal boundary and region

segmentation of objects in N-D images. In ICCV, volume 1, pages 105–112, 2001.

[BK04] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow

algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(9):1124–1137, 2004.

[BVZ99] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via

graph cuts. In ICCV, volume 1, pages 377–384, 1999.

[CA08] C. Cigla and A.A. Alatan. Region-based image segmentation via graph cuts. In ICIP,

pages 2272–2275, 2008.

[DB08] A. Delong and Y. Boykov. A scalable graph-cut algorithm for N-D grids. In CVPR,

pages 1–8, 2008.

[Dic45] L. Dice. Measure of the amount of ecological association between species. Ecology,

26(3):297–302, 1945.

[DS04] J. Darbon and M. Sigelle. Exact optimization of discrete constrained total variation

minimization problems. In IWCIA, volume 3322, pages 548–557, 2004.

[GJ08] L. Grady and M-P. Jolly. Weights and topology: A study of the effects of graph

construction on 3D image segmentation. In Proceedings of MICCAI, volume 1, pages

153–161, 2008.

[GPS89] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori es-

timation for binary images. Journal of the Royal Statistical Society, 51(2):271–279,

1989.

[KLR10] P. Kohli, V. Lempitsky, and C. Rother. Uncertainty driven multi-scale energy opti-

mization. In DAGM, pages 242–251, 2010.

[KT07] P. Kohli and P. H. S. Torr. Dynamic graph cuts for efficient inference in markov

random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence,

29(12):2079–2088, 2007.

[KT08] P. Kohli and P. H. S. Torr. Measuring uncertainty in graph cut solutions. Computer

Vision and Image Understanding, 112(1):30–38, 2008.

[KZ04] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph

cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–

159, 2004.

[LB07] V. Lempitsky and Y. Boykov. Global optimization for shape fitting. In CVPR, pages

1–8, 2007.

[LML10a] N. Lermé, F. Malgouyres, and L. Létocart. Reducing graphs in graph cut segmenta-

tion. In ICIP, pages 3045–3048, 2010.

N. Lermé, F. Malgouyres 26

A Reduction Method for Graph Cut Optimization

[LML10b] N. Lermé, F. Malgouyres, and L. Létocart. Reduction of "vision graphs". Patent No.

FR-1050407, January 2010.

[LMR10] N. Lermé, F. Malgouyres, and J-M. Rocchisani. Fast and memory efficient segmenta-

tion of lung tumors using graph cuts. In MICCAI – Workshop on Pulmonary Image

Analysis, pages 9–20, 2010.

[LSGX05] H. Lombaert, Y.Y. Sun, L. Grady, and C.Y. Xu. A multilevel banded graph cuts

method for fast image segmentation. In ICCV, volume 1, pages 259–265, 2005.

[LSTS04] Y. Li, J. Sun, CK. Tang, and HY. Shum. Lazy Snapping. ACM Transactions on

Graphics, 23(3):303–308, 2004.

[PM90] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639,

1990.

[RCD07] F. Ranchin, A. Chambolle, and F. Dibos. Total variation and graph cuts approaches

for variational segmentation. In Proceedings of SSVM, pages 743–753, June 2007.

[ROF92] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal

algorithms. Physica D, 60:259–268, 1992.

[SD08] J. Stawiaski and E. Decencière. Region merging via graph cuts. Image Analysis and

Stereology, 27(1):39–45, March 2008.

[SDB07] J. Stawiaski, E. Decencière, and F. Bidault. Computing approximate geodesics and

minimal surfaces using watershed and graph-cuts. In ISMM, pages 349–360, 2007.

[SG06] A.K. Sinop and L. Grady. Accurate banded graph cut segmentation of thin structures

using laplacian pyramids. In MICCAI, volume 9, pages 896–903, 2006.

[SK10] P. Strandmark and F. Kahl. Parallel and distributed graph cuts by dual decomposi-

tion. In CVPR, pages 2085–2092, 2010.

N. Lermé, F. Malgouyres 27

A Reduction Method for Graph Cut Optimization

Appendix

A Evaluation measures

This appendix describes the evaluation measures used in this document. Let SG,GT ⊂ {0, 1}N

(N > 0) denote respectively a machine-obtained segmentation and the ground truth. The

function ∂S : {0, 1}N → {0, 1}N will correspond to the border of any set S ⊂ {0, 1}N which is

formally defined as:

∂S = {p ∈ S| ∃(p, q) ∈ N , q 6∈ S}.

Dice Similarity Coefficient (DSC) (%):

Dice Similarity Coefficient is a similarity measure related to the Jaccard Index and introduced

by L. R. Dice [Dic45]. This coefficient is defined as twice the shared information (intersection)

over the combined set. Its value is 1 for a perfect segmentation and 0 otherwise. We have:

DSC(SG,GT) = 2 ·
♯(SG

⋂
GT)

♯SG + ♯GT
× 100

Volumetric Overlap (VO) (%):

This is the number of voxels in the intersection of the segmentation and the ground truth,

divided by the number of voxels in the union of the segmentation and the ground truth:

V O(SG,GT) =
♯(SG

⋂
GT)

♯(SG
⋃

GT)
× 100

Its value is 100 for a perfect segmentation and is bounded from below by 0, when there is no

overlap at all between the segmentation and the ground truth.

Symmetric RMS Surface Distance (SRMSSD):

We have:

SRMSSD(SG,GT) =

√(∑
p∈∂SG minq∈∂GT d(p, q)2 +

∑
q∈∂GT minp∈∂SG d(p, q)2

♯∂SG + ♯∂GT

)

The final value gives the symmetric RMS surface distance and is 0 for a perfect segmentation.

Maximum Symmetric Absolute Surface Distance (or Hausdorff distance) (MSASD):

We have:

MSASD(SG,GT) = max{ max
p∈∂SG

min
q∈∂GT

d(p, q), max
q∈∂GT

min
p∈∂SG

d(p, q)}

This value is 0 for a perfect segmentation.

N. Lermé, F. Malgouyres 28

A Reduction Method for Graph Cut Optimization

B Reduction measures

Let S and S ′ denote respectively the object computed with standard graph cuts and the reduced

graph cuts. Similarly, let f∗ and f ′∗ denote the max-flow values in G and G′ respectively. Differ-

ences between both segmentations are estimated by measuring the relative error (in percents) of

the max-flow and the number of pixels in S and S ′.

Relative Max-flow Error (RME) (%):

The Relative Max-flow Error corresponds to the percentage of the relative error between f∗

and f ′∗. Notice that this quantity is always non-negative since a larger amount of flow cannot

be rooted from the source to the sink in G′ because it contains less edges than in G. This value

is 0 when the max-flow is the same. The RME is defined as:

RME(G,G′) =
(f∗ − f ′∗)

f∗
× 100

N. Lermé, F. Malgouyres 29

