
dVirt: a Virtualized Infrastructure for
Experimenting BGP Routing

Iuniana Oprescu∗† , Mickaël Meulle∗
∗Orange Labs, France

{mihaela.oprescu, michael.meulle}@orange-ftgroup.com

Philippe Owezarski†‡
†CNRS ; LAAS ; 7 avenue du colonel Roche,

F-31077 Toulouse Cedex 4, France
‡ Université de Toulouse ;
UPS, INSA, INP, ISAE ;

UT1, UTM, LAAS ;
F-31077 Toulouse Cedex 4, France

owe@laas.fr

Abstract—In this paper we propose dVirt, a distributed virtu-
alized infrastructure enabling network operators to better grasp
the routing mechanisms and anticipate network behavior. dVirt
offers an emulated layer 2 connectivity that allows accurate simu-
lation of IP routing and protocol dynamics. Using virtualization
and Quagga routing software, we achieve scalable simulations
while keeping a realistic model of the routing layer.

To illustrate the benefits of simulating networks with dVirt,
we study a well-known simple Border Gateway Protocol (BGP)
topology subject to routing oscillations. dVirt allows for quick
deployment of this topology and easy monitoring of BGP message
exchanges.

Keywords-simulation, virtualization, routing, BGP

I. INTRODUCTION

The Internet is a collection of more than 35000 networks
called Autonomous Systems (ASes), each AS being under
the authority of a specific administrative entity. The Border
Gateway Protocol (BGP) is the de facto standard used for
communications between the ASes, whereas the routing within
a given AS is handled by an Interior Gateway Protocol (IGP).

Initially designed for exchanging reachability information
among several research networks, BGP plays a crucial role in
the current Internet: it handles inter-domain routing for pro-
tocols that support a wide range of aplications with different
traffic requirements. Facing an increasing number of Internet
users, however, BGP needs to adapt and keep up with demands
regarding complex architectures and new features [1].

Transitions to new routing conditions can be complex and
unexpected issues may arise. Despite the plethora of software
tools available to model and experiment BGP configurations,
there is no dedicated tool offering an automated testbed
that allows for accurate simulations and interactions with the
underlying protocol layers. dVirt federates multiple function-
alities into a flexible tool enabling the user to automatically
deploy and evaluate a network.

The ultimate goal for dVirt is to be able to “clone” a full
ISP network on top of a virtualized infrastructure running on a
smaller number of servers. dVirt aims to reproduce the actual
events in a network, experiment with the real configurations
and addressing schemes. The proposed framework can be

used to check correctness (e.g., avoid oscillations), compare
convergence time for different setups or even implement and
test additional features on top of the existing protocol stack.

dVirt relies on virtualization techniques and routing tools:
we use the Xen [2] hypervisor and virtual machines to
represent a large number of network equipments and we put
to work the Quagga [3] software routing suite for simulating
the multiple routing instances. We take advantage of sbgp [4],
a simple BGP4 speaker and listener, to mimic the behavior of
neighboring ASes by injecting external route advertisements
into the edge routers of the simulated network.

II. RELATED WORK

Previous inquiry methods fall back into three main cate-
gories: real testbeds, simulation and emulation. A network
testbed consists of the actual equipment being deployed,
configured and dedicated to conducting experiments. Despite
the accurate results provided, a real testbed is ill-suited for
large scale tests and has other inconvenients such as the cost
of the equipment, the time necessary for setting up the testbed
and tearing it down after the experiment.

Initiatives such as Cloonix [5], Virconel [6], NetKit [7],
AutoNetKit [8], Virtual Network User Mode Linux (VNUML)
[9], Virtual Square with its Virtual Distributed Ethernet [10]
framework or the Xen-based virtual integrated network emu-
lator viNEX [11] provide tools and general frameworks for
simulation or emulation purposes. The objectives of these
networking environments are diverse and often target specific
aspects of networking, whereas dVirt realistically emulates the
entire protocol stack starting with layer 2.

In the category of training platforms, Dynamips [12] and
its front-end Dynagen [13] offer an emulation of specific
Cisco equipment, running IOS [14] software on commodity
hardware. Several instances of virtual routers make it possible
to build a small network and run educational experiments.

A different environment consists of emulated networks lo-
cated on geographically distributed nodes. The shared testbeds
offer physical network equipment on which researchers can
conduct experiments in a granted slot. A drawback of using



such a testbed is the lack of control in the environment which
leads to unpredictable and unrepeatable experiments.

Among the many BGP tools available (see for example
[15]), the C-BGP solver [16] shows some limitations due to the
complexity of the model. C-BGP takes into account the logic
of the BGP decision process and can compute the outcome
of the path selection mechanism for networks of several
routers. It is possible to build a model of a large network
and investigate changes in the routing or in the topology of
such networks. The tool’s purpose does not include handling
the TCP connections, packet exchanges between the peers or
BGP timers such as the MRAI.

Developed by J. Qiu as a lighweight event-driven simulator,
simBGP [17] is able to perform large scale simulations while
ignoring the underlying protocols such as TCP or IP. Although
protocol dynamics can be investigated, simBGP does not
offer the full environment for an accurate study of the whole
communication mechanism.

III. DVIRT: A BGP SIMULATION FRAMEWORK

dVirt is a software library written in Python for automat-
ically deploying a given BGP network. It can be controlled
from a single machine through simple and flexible inputs that
avoid the individual provisioning of resources and configura-
tion of routing protocols. The typical use of dVirt is to simulate
the entire topology of one or more large ISP networks and
incorporate realistic configurations.

A. dVirt Overview

Compared to previous tools, dVirt is a heavier simulator
but removes many barriers thanks to its full customization.
dVirt relies on open-source software and runs real operating
systems, it supports many real network conditions such as
addressing, multitasking of the routing processes and inter-
protocol interactions.

dVirt creates an Ethernet topology of virtual machines
(VMs) running on top of hypervisors that are mutually reach-
able at the IP layer. dVirt emulates virtual point-to-point
Ethernet connectivity between pairs of router interfaces using
virtual switches provided by the Open vSwitch software. Open
vSwitch enables virtual Ethernet connectivity between two
routers located either on a single or two distinct hypervisors
by encapsulating Ethernet traffic inside GRE tunnels.

The OSPF and BGP topologies are automatically configured
to enable full reachability inside each AS and setup (mono-
hop) eBGP sessions. Routers are running the Quagga routing
software with OSPF and BGP daemons to simulate the de-
manded network. External neighbors of the deployed topology
are emulated using sbgp software instances running in one or
more additional VMs.

dVirt emulates the full protocol in each router and allows
the study of the BGP protocol dynamics by directly running
Quagga with all the implemented features. The tool can also
be used to deploy modified versions of the Quagga software
and therefore handles many routing protocol testing scenarios.

dVirt simplifies the instrumentation of experiments con-
ducted according to a simulation scenario. The user can
directly use python bindings to execute existing or user-defined
functions. Network monitoring functions run on routers and
provide information about the state of the BGP routers,
allowing thus to obtain exact measurement data.

B. dVirt Management Network

Fig. 1. An overview of the dVirt components: the user interacts through the
RPC with the remote hypervisors and the corresponding virtual machines.

To allow permanent communication between the user and
the routers, dVirt separates the infrastructure in two distinct
networks: a management network for remote access and a test
network for the actual simulation. Each VM has a local IP ad-
dress configured on the interface attached to the management
bridge defined on each hypervisor as seen in Fig. 1.

To interact with the remote routers, dVirt provides two
libraries to exchange files and do remote calls: SSH and RPC.
The SSH library allows to exchange files and send commands
to the VMs over an ssh connection with text output.

The RPC (remote procedure call) library enables the cre-
ation of a TCP tunnel between the user and any hypervisor
in order to execute requests directly on the hypervisor with
a simple function call. The output is a python object that is
serialized and sent back to the user over the TCP session. The
dVirt RPC library has the particular ability to allow transparent
execution of RPC requests from the user to a VM or router.
The RPC resorts to the hypervisor as an intermediate point
that forwards the request in an embedded call directed to the
virtual router, as shown in Fig. 2.

dVirt comes with a set of pre-defined functions for the
RPC server-side for interaction with hypervisors, VMs, routers
and their installed software. The user can easily improve
the existing library by adding new functions to the python
files in the library. During the next deployment, dVirt will
automatically update the RPC library of each hypervisor and
each VM making available the new user-defined functions.

C. Virtual Routers

dVirt relies on the Xen open-source software to achieve the
virtualization of x86 CPU architectures. The Xen hypervisor
allows one physical machine to run multiple router instances



Fig. 2. The user launches a request that can be executed either by the
hypervisor or the virtual machines. Note that for the calls on VMs, an
embedded request is forwarded by the hypervisor to the corresponding VM.

by acting as an abstraction layer to the bare hardware and
isolating the virtual machines from the external networks.

Xen handles the concurrent access of the VMs to the
resources and manages the execution of the guest OSes. In Xen
terminology, Dom0 is the first operating system that boots au-
tomatically and receives privileged rights regarding hardware
access and management. From the Dom0, the administrator
can launch new virtual machines, called DomUs and manage
all the existing guest machines. dVirt uses virsh management
interfaces of the libvirt [18] API to create machines from a
customizable xml file where memory and CPU allocation can
be changed for any router.

By default, each VM in dVirt is a router or it hosts sbgp
software instances to simulate external BGP neighbors. Each
VM has a dedicated SWAP filesystem, a CPU, a dedicated
memory of 512 MB, and a generic pre-installation of the
Linux Debian Lenny operating system (distribution 2.6.26-
2-xen-686) customized with the required software such as
Quagga or Python.

D. Virtual Ethernet

In the Dom0 of each hypervisor, dVirt configures the
management network through virsh and uses Open vSwitch
to emulate point-to-point links in the experimental network.
Quagga runs as a regular application on each virtual machine
and takes over the kernel routing of the virtual machine. As
seen in Fig. 3, for a pair of source-destination routers, two sce-
narios are possible: if the routers run on the same hypervisor,
they interconnect through a dedicated virtual switch (e.g., R2
and R3 linked with grebr3 on hypervisor B); otherwise the two
ends of the link are on distinct hypervisors and dVirt needs to
define two Open vSwitches, one for the test interface of each
router. The traffic between the routers is then transparently
forwarded inside a GRE tunnel (e.g., R1 and R2 connect
respectively to grebr1 on hypervisor A and B).

A GRE tunnel is setup between two hypervisors only if
two distant routers share a point-to-point link. Multiple links
between the same two hypervisors can take the same tunnel
since isolation is guaranteed by Open vSwitch.

Fig. 3. An overview of the communication in point-to-point mode: the
bridges that have the source-destination pair on distinct hypervisors will be
encapsulated in the GRE tunnel between the hypervisors.

E. Simulated BGP Network

OSPF handles routing within the AS, whereas BGP in-
terconnects different ASes through external BGP (eBGP)
sessions. OSPF achieves full intra-AS reachability and external
neighbors are directly connected on the specified interfaces,
later redistributed inside the OSPF network.

For inter-domain routing, Quagga implements many BGP
features, going from different types of BGP sessions (iBGP
or eBGP, route reflector or route-server) to ACLs, filtering,
prefix aggregation, etc. During the test phase, the routers are
fully capable of forwarding traffic, performing the BGP best
path decision process as well as receiving or sending OSPF
and BGP protocol messages.

F. dVirt Typical Usage

dVirt requires privileged access to a set of hypervisors run-
ning Xen with pre-installed software (an SSH server, Python
interpreter, Open vSwitch, Quagga and libvirt).

To automatically deploy the testbed, dVirt needs as an input
a topology file describing the actual network. Table I illustrates
the elements for defining the simulation: routers, links, BGP
sessions. dVirt uses the specified attributes to instantiate a
VM for the router RR3, with all the required configuration
parameters (distinct management and test addresses, BGP
loopback and AS number, etc.). A link between the routers
RR3 and Rc is another entry in the topology file, just as the
different types of BGP sessions with the desired options.

Once a network has been deployed with dVirt, the user can
perform specific tasks by running customized code: simulate
network events such as incoming routes, link failures, etc. It
is possible to run any software application or traffic generator
on any of the existing virtual routers or in additional virtual
machines. Opposed to most of the existing BGP simulators
or emulators, dVirt does not restrict the set of potential
experiments on top of the deployed BGP network.

By default, dVirt simulates external BGP neighbors of
routers with the sbgp software. One or more dedicated vir-
tual machines can host sbgp software instances, where each
instance emulates one external BGP neighbor. Sbgp can inject
BGP routes from a customizable mrt file but dVirt also
includes functions to randomly generate routes.



Another feature of dVirt is that it enables different monitor-
ing strategies (tap the traffic over network interfaces, query the
Quagga routing daemon periodically or call functions through
the command line) to collect protocol and router behavior data.

IV. EXAMPLE

We setup an example BGP topology to illustrate the dVirt
framework. Fig. 4 depicts a classical example of a “no
solution” topology that permanently oscillates [19].

Consider a route to a given prefix ρ advertised by Rx, Ry
and Rz. The border routers Ra, Rb and Rc will prefer their
direct eBGP path. Due to the specific topology and the IGP
metrics on the links, the route reflectors RR1, RR2 and RR3
will never reach an agreement about the best path to ρ.

Fig. 4. Topology of experimentation.

To setup the routers in the topology, the user provides the
input file containing the description of the BGP network:
routers, links and sessions.

Once all the VMs are instantiated and the Quagga routing
software is configured, the simulation can start with the
injection of prefixes into the border routers Ra, Rb and Rc
using three sbgp instances simulating Rx, Ry and Rz.

The routing oscillation from Fig. 4 can be observed with
dVirt. Indeed, each of the RRs has one client, but the IGP
configuration makes RR1 prefer RR2’s client, Rb; RR2 prefers
RR3’s client, Rc; RR3 prefers the client of RR1, Ra due to

TABLE I
CONFIGURATION ELEMENTS IN THE TOPOLOGY FILE

[RR3] [RR3-RC link]
type=vm type=vm link

hypervisor=A src=rr3
bridge ipaddress=10.0.0.104 dst=rc

router id=203.0.113.198 src ip=203.0.113.98
name=rr3 dst ip=203.0.113.97

as=64497 netmask=255.255.255.252
bgp scantime=5 cost=5

cost2=5

[RR1-RR3] [RR3-RC]
type=bgp session type=bgp session

src=rr1 src=rr3
dst=rr3 dst=rc

session type=ibgp session type=rr
mrai=10 mrai=0

lower metrics. Initially, all RRs know the route advertised by
their own client and they advertise it to their peers. But as soon
as they each receive the routes from their peers, they select
as best path the one advertised by the peer and hence they
each withdraw their own path. Simultaneously, the neighbor
withdraws in its turn the path it had advertised, so the current
best path becomes unavailable. Every RR switches back to its
own client route and the situation continues indefinitely.

We analyze the messages exchanged between the routers
and find that RR3 keeps updating and withdrawing its adver-
tised routes as seen in Fig. 5.

Withdraw

Update

0 20 40 60 80 100 120

time (sec)

RR3 -> RR2
RR3 -> RR1

Fig. 5. Route oscillation as seen on RR3: the messages sent by RR3 to its
peers, RR1 and RR2.

V. CONCLUSION

In this work we present dVirt, a distributed virtualized
testbed for experimenting network scenarios related to BGP
routing. We implement features allowing for automated de-
ployment of a BGP topology over a virtual Ethernet. Each
BGP router is emulated by routing software in a dedicated vir-
tual machine and links are emulated through virtual switches.

To the best of our knowledge, dVirt is the first BGP
simulator able to keep an accurate model of the protocol
stack. It can also reproduce routing dynamics, replay network
traces in realistic conditions and take into account protocol
interactions between OSPF and BGP as illustrated in the
example of an oscillating topology.

REFERENCES

[1] V. V. den Schrieck, P. François, and O. Bonaventure, “BGP Add-Paths:
The scaling/performance tradeoffs,” IEEE Journal on Selected Areas in
Communications, vol. 28, no. 8, pp. 1299 – 1307, 2010.

[2] The Xen Project, http://www.xen.org/.
[3] K. Ishiguro, “Quagga Software Routing Suite,” http://www.quagga.net/.
[4] C. Labovitz and M. Hirabaru, “MRT: Merit’s Multi-Threaded Routing

Toolkit ,” http://mrt.sourceforge.net/.
[5] Cloonix, http://cloonix.net/.
[6] Y. Benchaı̈b and A. Hecker, “VIRCONEL: A new emulation environ-

ment for experiments with networked IT systems,” in Proc. of High
Performance Computing and Simulation Conference (HPCS), 2008.

[7] Netkit, http://wiki.netkit.org/index.php/Main Page.
[8] S. Knight, H. Nguyen, M. Roughan, N. Falkner, O. Maennel, and

R. Bush, “How to build complex, large-scale emulated networks,” Proc.
of TridentCom, 2010.

[9] F. Galán, D. Fernández, W. Fuertes, M. Gómez, and J. López de Vergara,
“Scenario-based virtual network infrastructure management in research
and educational testbeds with VNUML,” Annals of Telecommunications,
vol. 64, pp. 305–323, 2009.

[10] L. Bigliardi, “Design e implementazione del nuovo framework Virtual
Distributed Ethernet: analisi delle prestazioni e validazione sulla prece-
dente architettura,” Master’s thesis, Università di Bologna.



[11] A. M. Mukwevho, J. A. van der Poll, and R. M. Jolliffe, “A Virtual
Integrated Network Emulator on Xen (viNEX),” in Proc. of SIMUTools
International Conference on Simulation Tools and Techniques, 2009.

[12] C. Fillot, “Dynamips,” http://www.ipflow.utc.fr/index.php/Cisco 7200
Simulator.

[13] G. Anuzelli, “Dynagen,” http://www.dynagen.org/.
[14] Cisco IOS, http://www.cisco.com/.
[15] The Border Gateway Protocol Advanced Internet Routing Resources,

http://www.bgp4.as/tools.
[16] B. Quoitin and S. Uhlig, “Modeling the routing of an autonomous system

with c-bgp,” IEEE Network, vol. 19, no. 6, November 2005.
[17] J. Qiu, “SimBGP : Python Event-driven BGP simulator,”

http://www.bgpvista.com/simbgp.php.
[18] Libvirt - The virtualization API, http://www.libvirt.org/.
[19] T. G. Griffin and G. Wilfong, “On the correctness of iBGP configura-

tion,” SIGCOMM Computer Communications Review, vol. 32, no. 4, pp.
17–29, 2002.


