
HAL Id: hal-00602050
https://hal.science/hal-00602050

Preprint submitted on 21 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online algorithms for Nonnegative Matrix Factorization
with the Itakura-Saito divergence
Augustin Lefèvre, Francis Bach, Cédric Févotte

To cite this version:
Augustin Lefèvre, Francis Bach, Cédric Févotte. Online algorithms for Nonnegative Matrix Factor-
ization with the Itakura-Saito divergence. 2011. �hal-00602050�

https://hal.science/hal-00602050
https://hal.archives-ouvertes.fr

Online algorithms for Nonnegative Matrix Factorization

with the Itakura-Saito divergence

Augustin Lefèvre augustin.lefevre@inria.fr

INRIA/ENS Sierra project
23, avenue d’Italie, 75013 Paris

Francis Bach francis.bach@ens.fr

INRIA/ENS Sierra project
23, avenue d’Italie, 75013 Paris

Cédric Févotte fevotte@telecom-paristech.fr

CNRS LTCI; Télécom ParisTech

37-39, rue Dareau, 75014 Paris

Abstract
Nonnegative matrix factorization (NMF) is now a common tool for audio source separation.When
learning NMF on large audio databases, one major drawback is that the complexity in time
is O(FKN) when updating the dictionary (where (F,N) is the dimension of the input power
spectrograms, and K the number of basis spectra), thus forbidding its application on signals
longer than an hour. We provide an online algorithm with a complexity of O(FK) in time and
memory for updates in the dictionary. We show on audio simulations that the online approach is
faster for short audio signals and allows to analyze audio signals of several hours.

1 Introduction

In audio source separation, nonnegative matrix factorization (NMF) is a popular technique for
building a high-level representation of complex audio signals with a small number of basis spectra,
forming together a dictionary (Smaragdis et al., 2007; Févotte et al., 2009; Virtanen et al., 2008).
Using the Itakura-Saito divergence as a measure of fit of the dictionary to the training set allows
to capture fine structure in the power spectrum of audio signals as shown in (Févotte et al., 2009).

However, estimating the dictionary can be quite slow for long audio signals, and indeed in-
tractable for training sets of more than a few hours. We propose an algorithm to estimate Itakura-
Saito NMF (IS-NMF) on audio signals of possibly infinite duration with tractable memory and
time complexity. This article is organized as follows : in Section 2, we summarize Itakura-Saito
NMF, propose an algorithm for online NMF, and discuss implementation details. In Section 3, we
experiment our algorithms on real audio signals of short, medium and long durations. We show
that our approach outperforms regular batch NMF in terms of computer time.

1

2 Online Dictionary Learning for the Itakura-Saito di-

vergence

Various methods were recently proposed for online dictionary learning (Mairal et al., 2010; Hoff-
man et al., 2010; Bucak and Gunsel, 2009). However, to the best of our knowledge, no algorithm
exists for online dictionary learning with the Itakura-Saito divergence. In this section we summa-
rize IS-NMF, then introduce our algorithm for online NMF and explain briefly the mathematical
framework.

2.1 Itakura-Saito NMF

Define the Itakura-Saito divergence as dIS(y, x) =
∑

i(
yi
xi

− log yi
xi

− 1). Given a data set V =

(v1, . . . , vN) ∈ R
F×N
+ , Itakura-Saito NMF consists in finding W ∈ R

F×K
+ , H = (h1, . . . , hN) ∈

R
K×N
+ that minimize the following objective function :

LH(W) =
1

N

N
∑

n=1

dIS(vn,Whn) , (1)

The standard approach to solving IS-NMF is to optimize alternately in W and H and use
majorization-minimization (Févotte and Idier, in press). At each step, the objective function
is replaced by an auxiliary function of the form LH(W,W) such that LH(W) ≤ LH(W,W) with
equality if W =W :

LH(W,W) =
∑

fk

Afk
1

Wfk
+BfkWfk + c . (2)

where A,B ∈ R
F×K
+ and c ∈ R are given by:

Afk =
∑N

n=1HknVfn(WH)−2
fnW

2
fk ,

Bfk =
∑N

n=1Hkn(WH)−1
fn ,

c =
∑F

f=1

∑N
n=1 log

Vfn
(WH)fn

− F .

(3)

Thus, updating W by Wfk =
√

Afk/Bfk yields a descent algorithm. Similar updates can be
found for hn so that the whole process defines a descent algorithm in (W,H) (for more details see,
e.g., (Févotte and Idier, in press)). In a nutshell, batch IS-NMF works in cycles: at each cycle,
all sample points are visited, the whole matrix H is updated, the auxiliary function in Eq. (2) is
re-computed, and W is then updated. We now turn to the description of online NMF.

2.2 An online algorithm for online NMF

When N is large, multiplicative updates algorithms for IS-NMF become expensive because at
the dictionary update step, they involve large matrix multiplications with time complexity in
O(FKN) (computation of matrices A and B). We present here an online version of the classical

2

multiplicative updates algorithm, in the sense that only a subset of the training data is used at
each step of the algorithm.

Suppose that at each iteration of the algorithm we are provided a new data point vt, and we
are able to find ht that minimizes dIS(vt,W

(t)ht). Let us rewrite the updates in Eq. (3). Initialize
A(0), B(0),W (0) and at each step compute :

A(t) = A(t−1) + (vt
(W (t−1)ht)2

h⊤t) · (W
(t−1))2 ,

B(t) = B(t−1) + 1
W (t−1)ht

h⊤t ,

W (t) =
√

A(t)

B(t) .

(4)

Now we may update W each time a new data point vt is visited, instead of visiting the whole
data set. This differs from batch NMF in the following sense : suppose we replace the objective
function in Eq. (1) by

LT (W) =
1

T

T
∑

t=1

dIS(vt,Wht) , (5)

where (v1, v2, . . . , vt, . . .) is an infinite sequence of data points, and the sequence (h1, . . . , ht, . . .) is
such that ht minimizes dIS(vt,W

(t)h). Then we may show that the modified sequence of updates
corresponds to minimizing the following auxiliary function :

L̂T (W) =
∑

k

∑

f

(

A
(T)
fk

1

Wfk
+B

(T)
fk Wfk

)

+ c . (6)

If T is fixed, this problem is exactly equivalent to IS-NMF on a finite training set. Whereas in the
batch algorithm described in Section 2.1, all H is updated once and then all W , in online NMF,
each new ht is estimated exactly and then W is updated once. Another way to see it is that in
standard NMF, the auxiliary function is updated at each pass through the whole dataset from
the most recent updates in H, whereas in online NMF, the auxiliary function takes into account
all updates starting from the first one.

Extensions Prior information on H or W is often useful for imposing structure in the factor-
ization (Lefèvre et al., 2011; Virtanen, 2007; Smaragdis et al., 2007). Our framework for online
NMF easily accomodates penalties such as :

• Penalties depending on the dictionary W only.

• Penalties on H that are decomposable and expressed in terms of a concave increasing function ψ
(Lefèvre et al., 2011): Ψ(H) =

∑N
n=1 ψ(

∑

kHkn).

2.3 Practical online NMF

We provided a description of a pure version of online NMF, we now discuss several extensions
that are commonly used in online algorithms and allow for considerable gains in speed.

3

Algorithm 1 Online Algorithm for IS-NMF

Input training set, W (0), A(0), B(0), ρ, β, η, ε.
t← 0
repeat

t← t+ 1
draw vt from the training set.
ht ← argminh dIS(ε+ vt, ε+Wh)
a(t) ← (ε+vt

(ε+Wht)2
h⊤

t) ·W
2

b(t) ← 1
ε+Wht

h⊤

t

if t ≡ 0 [β]

A(t) ← A(t−β) + ρ
∑t

s=t−β+1 a
(s)

B(t) ← B(t−β) + ρ
∑t

s=t−β+1 b
(s)

W (t) ←
√

A(t)

B(t)

for k = 1 . . .K
s←

∑

f Wfk , Wfk ← Wfk/s

Afk ← Afk/s , Bfk ← Bfk × s
end for

end if
until ‖W (t) −W (t−1)‖F < η

Finite data sets. When working on finite training sets, we cycle over the training set several
times, and randomly permute the samples at each cycle.

Sampling method for infinite data sets. When dealing with large (or infinite) training
sets, samples may be drawn in batches and then permuted at random to avoid local correlations
of the input.

Fresh or warm restarts. Minimizing dIS(vt,Wht) is an inner loop in our algorithm. Finding
an exact solution ht for each new sample may be costly (a rule of thumb is 100 iterations from a
random point). A shortcut is to stop the inner loop before convergence. This amounts to compute
only an upper-bound of dIS(vt,Wht). Another shortcut is to warm restart the inner loop, at the
cost of keeping all the most recent regression weights H = (h1, . . . , hN) in memory. For small data
sets, this allows to run online NMF very similarly to batch NMF : each time a sample is visited
ht is updated only once, and then W is updated. When using warm restarts, the time complexity
of the algorithm is not changed, but the memory requirements become O((F +N)K).

Mini-batch. UpdatingW every time a sample is drawn costs O(FK) : as shown in simulations,
we may save some time by updating W only every β samples i.e., draw samples in batches and
then update W . This is also meant to stabilize the updates.

4

Scaling past data. In order to speed up the online algorithm it is possible to scale past
information so that newer information is given more importance :

A(t+β) = A(t) + ρ
∑t+β

s=t+1 a
(s) ,

B(t+β) = B(t) + ρ
∑t+β

s=t+1 b
(s) ,

(7)

where we choose ρ = rβ/N . We choose this particular form so that when N → +∞, ρ = 1.
Moreover, ρ is taken to the power β so that we can compare performance for several batch sizes
and the same parameter r. In principle this rescaling of past information amounts to discount
each new sample at rate ρ, thus replacing the objective function in Eq. (5) by :

1
∑T

t=1 r
t

T
∑

t=1

rT+1−tl(vt,W) , (8)

Rescaling W . In order to avoid the scaling ambiguity, each time W is updated, we rescale
W (t) so that its columns have unit norm. A(t), B(t) must be rescaled accordingly (as well as H
when using warm restarts). This does not change the result and avoids numerical instabilities
when computing the product WH.

Dealing with small amplitude values. The Itakura-Saito divergence dIS(y, x) is badly
behaved when either y = 0 or x = 0. As a remedy we replace it in our algorithm by dIS(ε+y, ε+x).
The updates were modified consequently in Algorithm 1.

Overview. Algorithm 1 summarizes our procedure. The two parameters of interest are the
mini-batch size β and the forgetting factor r. Note that when β = N , and r = 0, the online
algorithm is equivalent to the batch algorithm.

3 Experimental study

In this section we validate the online algorithm and compare it with its batch counterpart. A
natural criterion is to train both on the same data with the same initial parameters W (0) (and
H(0) when applicable) and compare their respective fit to a held-out test set, as a function of
the computer time available for learning. The input data are power spectrogram extracted from
single-channel audio tracks, with analysis windows of 512 samples and 256 samples overlap. All
silent frames were discarded.

We make the comparison for small, medium, and large audio tracks (resp. 103, 104, 105 time
windows). W is initialized with random samples from the train set. For each process, several
seeds were tried, the best seed (in terms of objective function value) is shown for each process.
Finally, we use ε = 10−12 which is well below the hearing threshold.

Small data set (30 seconds). We ran online NMF with warm restarts and one update of h
every sample. From Figure 1, we can see that there is a restriction on the values of (β, r) that we
can use : if r < 1 then β should be chosen larger than 1. On the other hand, as long as r > 0.5,
the stability of the algorithm is not affected by the value of β. In terms of speed, clearly setting

5

r < 1 is crucial for the online algorithm to compete with its batch counterpart. Then there is a
tradeoff to make in β : it should picked larger than 1 to avoid instabilities, and smaller than the
size of the train set for faster learning (this was also shown in (Mairal et al., 2010) for the square
loss).

10
−1

10
0

10
1

10
2

10
3

10
4

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

CPU time

te
st

 c
os

t

r = 1.00

10
0
10

1
10

2
10

31.34

1.36

1.38

β 1.0e+00
β 1.0e+01
β 1.0e+02
β 1.0e+03
batch

10
−1

10
0

10
1

10
2

10
3

10
4

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

CPU time
te

st
 c

os
t

r = 0.90

10
0
10

1
10

2
10

31.34

1.36

1.38

β 1.0e+00
β 1.0e+01
β 1.0e+02
β 1.0e+03
batch

10
−1

10
0

10
1

10
2

10
3

10
4

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

CPU time

te
st

 c
os

t

r = 0.50

10
0
10

1
10

2
10

31.34

1.36

1.38

β 1.0e+00
β 1.0e+01
β 1.0e+02
β 1.0e+03
batch

Figure 1: Comparison of online and batch algorithm on a thirty-seconds long audio track.

Medium data set (4 minutes). We ran online NMF with warm restarts and one update
of h every sample. The same remarks apply as before, moreover we can see on Figure 2 that the
online algorithm outperforms its batch counterpart by several orders of magnitude in terms of
computer time for a wide range of parameter values.

Large data set (1 hour 20 minutes). For the large data set, we use fresh restarts and 100
updates of h for every sample. Since batch NMF does not fit into memory any more, we compare

6

10
−1

10
0

10
1

10
2

10
3

10
4

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

CPU time

te
st

 c
os

t

r = 0.90

10
0
10

1
10

2
10

30.78

0.8

0.82

0.84

β 1.0e+00
β 1.0e+02
β 1.0e+03
β 1.0e+04
batch

10
−1

10
0

10
1

10
2

10
3

10
4

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

CPU time

te
st

 c
os

t

r = 0.70

10
0
10

1
10

2
10

30.78

0.8

0.82

0.84

β 1.0e+00
β 1.0e+02
β 1.0e+03
β 1.0e+04
batch

10
−1

10
0

10
1

10
2

10
3

10
4

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

CPU time

te
st

 c
os

t

r = 0.50

10
0
10

1
10

2
10

30.78

0.8

0.82

0.84

β 1.0e+00
β 1.0e+02
β 1.0e+03
β 1.0e+04
batch

Figure 2: Comparison of online and batch algorithm on a three-minutes long audio track.

7

online NMF with batch NMF learnt on a subset of the training set. In Figure 3, we see that
running online NMF on the whole training set yields a more accurate dictionary in a fraction of
the time that batch NMF takes to run on a subset of the training set. We stress the fact that we
used fresh restarts so that there is no need to store H offline.

10
−1

10
0

10
1

10
2

10
3

10
40.8

0.9

1

1.1

1.2

1.3

1.4

1.5

CPU time

te
st

 c
os

t

r = 0.70

β 1.0e+03
batch

Figure 3: Comparison of online and batch algorithm on an album of Django Reinhardt (1 hour 20
minutes).

Summary. The online algorithm we proposed is stable provided minimal restrictions on the
values of the parameters (r, β) : if r = 1, then any value of β is stable. If r < 1 then β should
be chosen large enough. Clearly there is a tradeoff in choosing the mini-batch size β, which is
explained by the way it works : when β is small, frequent updates of W are an additional cost as
compared with batch NMF. On the other hand, when β is small enough we take advantage of the
redundancy in the training set. From our experiments we find that choosing r = 0.7 and β = 103

yields satisfactory performance.

4 Conclusion

In this paper we make several contributions : we provide an algorithm for online IS-NMF with
a complexity of O(FK) in time and memory for updates in the dictionary. We propose several
extensions that allow to speedup online NMF and summarize them in a concise algorithm (code
will be made available soon). We show that online NMF competes with its batch counterpart on
small data sets, while on large data sets it outperforms it by several orders of magnitude. In a
pure online setting, data samples are processed only once, with constant time and memory cost.
Thus, online NMF algorithms may be run on data sets of potentially infinite size which opens up
many possibilities for audio source separation.

8

References

S. Bucak and B. Gunsel. Incremental subspace learning via non-negative matrix factorization. Pattern
Recognition, 42(5):788–797, 2009.

C. Févotte and J. Idier. Algorithms for nonnegative matrix factorization with the beta-divergence. Neural
Computation, in press.

C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factorization with the Itakura-Saito diver-
gence: With application to music analysis. Neural Comput., 21(3):793–830, 2009.

Matthew D. Hoffman, David M. Blei, and Francis Bach. Online learning for latent dirichlet allocation. In
Neural Information Processing Systems, 2010.

A. Lefèvre, F. Bach, and C. Févotte. Itakura-Saito nonnegative matrix factorization with group sparsity.
In Proc. Int. Conf. on Acous., Speech, and Sig. Proc. (ICASSP), 2011.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding.
Journal of Machine Learning Research, 11:19–60, 2010.

P. Smaragdis, B. Raj, and M.V. Shashanka. Supervised and semi-supervised separation of sounds from
single-channel mixtures. In Proc. Int. Conf. on ICA and Signal Separation. London, UK, September
2007.

T. O. Virtanen, A. T. Cemgil, and S. J. Godsill. Bayesian extensions to nonnegative matrix factorisation
for audio signal modelling. In Proc. of IEEE ICASSP, Las Vegas, 2008. IEEE.

T.O. Virtanen. Monaural sound source separation by non-negative matrix factorization with temporal
continuity and sparseness criteria. IEEE Trans. on Audio, Speech, and Lang. Proc., 15(3), March 2007.

9

