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Abstract. Microarray experiments generate a large amount of data which is used to
discover the genetic background of diseases and to know the gene characteristics. Clus-
tering the tissue samples is an important tool for partitioning the dataset according to
co-expression patterns. This clustering task is even more difficult when we try to find
the rank of each gene (Gene Ranking) according to their abilities to distinguish differ-
ent classes of samples. Finding clusters for samples and rank of each gene for a specific
gene expression data in a single process is always better. In the literature many algo-
rithms are available for finding the clusters and gene ranking or selection separately.
A few algorithms for simultaneous clustering and feature selection are also available.
In this article, we propose a new approach to cluster the samples and rank the genes,
simultaneously. A novel encoding technique is proposed here for the problem of simul-
taneous clustering and ranking. Results have been demonstrated for both artificial and
real-life gene expression data sets.

1 Introduction
The microarray technology generates the global and simultaneous view of expression

levels for thousands of genes over different time points of different biological experi-
ments. This is an important tool in the research area of Molecular Biology and Bio-
Technology [1]. Analysis of microarray gene expression data finds the relationships
among the patterns present in the data. This data analysis has two parts: forming gene
expression matrix from raw data generated by microarray technology and analysis of
this matrix.

Appropriate mining strategies, e.g. clustering [2] and gene selection [3] are needed
for analysis of such information. The clustering process is sometimes also called the
unsupervised learning process. Clustering helps to partition the input space into K
regions, C1, C2, · · · , CK , on the basis of some similarity/dissimilarity metrics, where
the value of K may or may not be known previously. One important issue in cluster
analysis is the evaluation of clustering results to find the partitioning that best fit the
underlying data. The process of evaluating cluster is known as cluster validity [4]. Sev-
eral clustering algorithms are proposed in the literature. These algorithms are divided
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into different types according to their nature of operation (e.g. Hierarchical, Partitional,
Density-Based, Grid-Based). A brief discussion on each of them are available in [5]).

Another important subject of matter is the gene ranking [6]. Gene Selection is a com-
binatorial problem. So, instead of selecting a subset of genes, we can give the weight
or rank depending on the relevance, which is called gene weighting or gene ranking
[7, 8, 9]. Most of the gene ranking methods are based on the wrapper approaches or
filter methods. Some heuristic methods for gene weighting are: a) Gradient descent on
the input space [10]. b) AdaBoost when each model is trained on one feature only [11].

In this article, we have proposed a multi-objective approach for simultaneous cluster-
ing and gene ranking. To the best of our knowledge, the process of simultaneous clus-
tering and gene ranking by using multi-objective optimization is new in this area. The
rest of the article is organized as follows: In Section 2, we present an overview on multi-
objective Evolutionary paradigm with different concepts of MOO (Multi-objective Op-
timization). Section 3 presents a detailed discussion of our proposed algorithm with
different components used in the algorithm. Section 4 presents the experimental design
methods and results obtained during the experiments with a small discussion on them.
Section 5 concludes the article and gives some future direction for further improvement
of the proposed method.

2 Multi-Objective Optimization
Genetic Algorithms (GAs) are very popular meta-heuristic optimization method but

could not apply directly for multi-objective problems. Traditional GA are modified to
reuse for multi-objective problems by using specialized fitness functions and introduc-
ing methods to promote solution diversity. Two general approaches are available for
optimizing multiple objective. The first method is to combine every objective function
into a single composite function (e.g., utility theory, weighted sum method). The second
solution is to move all but one by one objective to the constraint set, a constraining value
must be established for each of these former objectives. In all cases, the optimization
method would return a single solution rather than a set of solutions that can be exam-
ined for trade-offs. For this reason, decision-makers often prefer a set of good solutions
considering all the multiple objectives.

Most of the real world engineering problems are generally have multiple conflicting
objectives. So, another solution for solving such multi-objective problem is to determine
an entire Pareto Optimal Solution Set or a representative subset. In the Pareto optimal
solution set, while moving from one solution to another, there is always a certain amount
of sacrifice in some objective(s) to achieve a certain amount of gain in the other(s).

Consider that we want to optimize k objectives that are non-commensurable and
equally important. Without loss of generality, we consider that all objectives are of the
minimization type.

We also assume that the solution of this problem can be expressed by decision vari-
able vector {x1, x2, · · · , xn}. The solution space X is generally restricted by a series of
constraints, such as gj(x) = bj for j = 1, · · · , m and bounds on the decision variables.
A function f : X → Y evaluates the quality of a specific solution by assigning it an
objective vector (y1, y2, · · · , yk) in the objective space Y. Our aim is to find a vector x∗

that minimizes a given set of k objective functions y(x∗) = y1(x
∗), · · · , yk(x∗).

A formal definition of Pareto optimality from the viewpoint of the minimization
problem may be given as follows: A decision vector x∗ is called Pareto optimal if and
only if there is no x that dominates x∗, i.e., there is no x such that ∀i ∈ {1, 2, . . . , k},
yi(x) ≤ yi(x

∗) and ∃i ∈ {1, 2, . . . , k}, yi(x) < yi(x
∗). In words, x∗ is Pareto optimal

if there exists no feasible vector x which causes a reduction on some criterion without
a simultaneous increase in at least another. In general, Pareto optimum usually admits a
set of solutions called non-dominated solutions.
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2.1 Non-dominated Sorting Genetic Algorithm-II
For most of the multi-objective problems, entire Pareto optimal set identification is

practically impossible for its size. Therefore, the goal of the optimization is to find
an approximate Pareto set. The outcome of a Multi-Objective Evolutionary Algorithm
(MOEA) is considered to be a set of mutually non-dominated solutions. The Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) [12], a popular MOEA method, is
used here as the underlying optimization strategy. The brief algorithmic description of
NSGA-II [12] is provided in algorithm 1.

Actually, in NSGA-II [12], a random population P0 is created with N chromosome
and known as the initial parent population. According to their non-domination level,
they are sorted and give a rank to each one solution under the population equal to their
non-domination level. At first, they create a child population Qt of the same size as
parent by using selection, crossover and mutation operations. Then combine the par-
ent and child population and create a population of size Rt and sort according to their
non-domination level. Now the next parent population Pt+1 is created by selecting the
chromosome from Rt one by one according to their level. But it is not necessary that
L1 (the population of level 1) to Li (the last level of the selected population for Pt+1)
be the exact size of the population. So, here a crowded comparison method in descend-
ing order is included for selecting population from level Li to choose the best solutions
needed to fill all population slots. This crowded comparison operator is used to intro-
duce the diversity among the non-dominated solutions (called Diversity Preservation),
in selection phase and also in population reduction phase.

Algorithm 1 Algorithm NSGA-II
1: Create a random parent population P0 of size N. Set t = 0.
2: Apply crossover and mutation on P0 to create offspring population Q0 of size N.
3: if The stopping criterion is satisfied then
4: stop and return to Pt.
5: end if
6: Set Rt = Pt

∪
Qt.

7: Using the fast non-dominated sorting algorithm, identify the non-dominated fronts
F1, F2, · · · , Fk in Rt.

8: for i = 1 to k do
9: Calculate crowding distance of the solutions in Fi.

10: Create Pt+1 as follows:

Case 1: If |Pt+1|+ |Fi| ≤ N , then set Pt+1 = Pt+1

∪
Fi;

Case 2: If |Pt+1|+ |Fi| > N , then add the least crowded N −|Pt+1| solutions
from Fi to Pt+1.

11: Use binary tournament selection based on the crowding distance to select parents
from Pt+1.

12: Apply crossover and mutation to Pt+1 to create offspring population Qt+1 of size
N.

13: Set t = t + 1, and go to Step 3.
14: end for

3 Proposed Technique
We propose a novel approach that simultaneously identify the cluster of each sample

and rank of each feature (gene) according to their participation to create clusters of sam-
ples. As per our knowledge, the process of simultaneous clustering and gene ranking by
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using multi-objective optimization is new in this area. Here we identify the cluster of the
samples and rank the genes, simultaneously. A novel encoding technique is proposed
here for the problem to fit into multi-objective frame work. Since, the Multi-objective
Evolutionary Algorithms (MOEA) are known as the global search heuristics primarily
used for optimization tasks. We use this process for our simultaneous optimization.

3.1 Chromosome Representation and Initial Population
A gene expression matrix is represented by rows and columns corresponding to sam-

ples (experimental biological conditions) and genes. Consider, a gene expression matrix
D has d genes and s samples. The samples will be partitioned into K clusters and each
cluster has a center which is represented by d dimensions. One solution is represented
by one chromosome and each chromosome has (d+ (K × d)) bits to represent rank of
each gene and K cluster center with d dimensions. The first d bit represents the weight
of each gene and are used to encode the rank of the genes. The remaining bits are used
for cluster centers. The one population is composed of several such chromosomes. The
initial population is generated randomly.

3.2 Fitness Computation
Two validity indices, Xie-Beni(XB) [13] and Davis-Bouldin(DB) [14] are used as

two objective functions to validate the generated cluster centers. Both of these objective
functions are of minimization type.

The Xie-Beni index [13] is a representative index in the category of indices involving
the membership values and the dataset. Consider a fuzzy partitioning of the data set
X = xj; j = 1, · · · , n with vi(i = 1, · · · , K) the centers of each cluster and uij the
membership of data point j to cluster i. The fuzzy deviation, dij , of xj from cluster i,
is defined as the distance between xj and the center of cluster i, weighted by the fuzzy
membership of data point j to cluster i. Here, the crisp version of XB index is used
where membership values are either 0 or 1. i.e., the crisp version of fuzzy deviation is,
dij = ||xj − vi||. For a cluster i, the sum of the squares of deviation of the data points
denoted by σi, is called variation of cluster i. The total deviation π = (

∑K
i=1 σi). The

separation of the partitions is defined as the minimum distance between cluster centers.
i.e., Dmin = mini,j=1 to K,i̸=j ||vi − vj||

Then XB index is defined as,

XB =
π

n×Dmin

(1)

where n is the number of points in the data set. It is clear that small values of XB are
expected for compact and well-separated clusters.

In Davies-Bouldin(DB) [14], the similarity measure Rij between the clusters Ci and
Cj is defined based on a measure of dispersion of a cluster Ci and a dissimilarity mea-
sure between two clusters dij . The Rij is non-negative and symmetric. i.e., Rij =
(si+sj)/dij and the value of s for each cluster is calculated as, si = 1

|Ci|
∑

x∈Ci
||vi−x||.

Then the DB index is defined as

DBn =
1

n

n∑
i=1

Ri (2)

Ri = max
i,j=1 to n,i̸=j

Rij (3)

Another important idea, Weighted Distance Method, is used in our algorithm for
computing the validity index. We give a weight to each gene and rank them according to
their weight. The weight is also used to calculate the distance between two samples. In
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our algorithm, we use the Euclidean Distance in weighted form as the distance measure.
The equation of Weighted Euclidean Distance is:

D(x, y) =

√√√√ d∑
l=1

w2
l (xl − yl)2 (4)

For each chromosome, first we assign the sample in each cluster center present in
the chromosome based on nearest center criterion. After assigning the samples, we
update the cluster centers according to their sample values by taking the means. The
new cluster centers are used to update the chromosome.

3.3 Crossover
In this algorithm, each chromosome in the population has two parts, the gene weight

part and the cluster center part. The Uniform Crossover is used for the feature part of
the chromosome and Single Point Crossover is used in the cluster center part of the
chromosome. In both cases, the same Cp (Crossover Probability) value is used.

After crossover, a pair of parent chromosomes generates a pair of offspring chromo-
somes. So, the parent population generates the same size of offspring population. This
offspring population is used in the mutation process.

3.4 Mutation
Here, a very small mutation probability (Mp) is used. Each time, if mutation is

possible the actual value of the mutated bit is replaced by a random value. The range
of the random value is between [0,1], since our data sets are normalized. The same
technique is used for both part of the chromosome, i.e., gene weight and cluster center
part.

3.5 Selection, Elitism and Termination
In our method, we use binary tournament selection with crowded and rank compari-

son method [12]. After successful completion of the crossover and mutation operation
of a generation, the child population is combined with the parent population of that gen-
eration. From this combined population, the non-dominated chromosomes are selected
and a new population of the same size is created for the next generation. This prop-
erty of NSGA-II is called the Elitism. This technique ensures faster convergence of the
process by keeping track of the best solutions generated so far. The NSGA-II has been
executed for a fixed number of generations. This fixed number is supplied by the user
for terminating the process. After terminating, the process gives a set of non-dominated
solutions in the last generation.

3.6 Final Solution Selection
The final solution from the last non-dominated solution set is selected through the CP

index and the R index. Both indices are described in the next section. For artificial data,
the maximum value of CP index and R index of the solutions are selected but in case
of real life micro-array gene expression cancer data, only maximum value of CP index
is used. Our approach for simultaneous clustering and gene ranking is unsupervised but
the process which is used here for selecting the best solution from the non-dominated
set is supervised process. Rank of each genes in a chromosome is evaluated from the
first d bits. The highest rank is given to that gene whose weight value is maximum.

The Multiobjective Simultaneous Clustering and Feature Ranking Algorithm (MOSCFRA)
is summarized in algorithm 2.
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Algorithm 2 Algorithm MOSCFRA
1. Initialize the population of chromosomes.

2. Execute the NSGA-II algorithm to optimize the ranks as well as cluster center.

3. Choose the appropriate solution from the Pareto set solutions for the problem.

4 Experiments and Results
In this section, we present the experimental design procedure and the results of the

method with small discussion. For this task, two artificial data sets and two real data
sets are used to measure the performance of our proposed method. Two performance
measures, CP Index and R Index, are used for this purpose. After that, we compare the
performance of the proposed method with several other important methods in this area.

4.1 Experimental Design
Here, we have given the information about the datasets of both real and artificial.

Then, the required steps are given for the preprocessing of data sets.

Artificial Datasets
For our experiments, we create two artificial datasets viz., Arda25 30 3 and Arda50 75 5.

Arda25 30 3 have 25 genes and 30 samples with 3 classes and Arda50 75 5 have 50
genes and 75 samples with 5 classes. In both the data sets, the genes are artificially
generated so that they have different abilities in distinguishing the sample clusters.

Real Life Datasets
From several publicly available real life cancer datasets, two bench mark datasets,

viz., Brain tumor and Lung tumor data sets, available at http://algorithmics.molgen.mpg.-
de/Static/Supplements/CompCancer/datasets.htm, are used for our experiments. The
descriptions and their pre-processing are given here.
Brain tumor: This data set contains 42 tissue samples divided in 5 clusters (primi-
tive neuroectodermal tumours (PNETs) (8 samples), atypical teratoid/rhabdoid tumours
(Rhab) (10 samples), malignant gliomas (Mglio) (10 samples), medulloblastomas (MD)
(10 samples) and normal tissues (Ncer) (4 samples)). There are total 1379 genes in the
data set. Depending on the maximum variation of genes across the sample, the numbers
of genes are reduced to 100. Therefore, after pre-processing the data size is 42 × 100.
Lung tumor: Using oligonucleotide microarrays, mRNA expression levels correspond-
ing transcript sequences in 186 lung tumor samples and 17 normal lung tissues (NL) has
been analyzed. The lung tumors included adenocarcinoma (AD) (139 samples), small-
cell lung cancer (SCLC) (6 samples), pulmonary carcinoids (COID) (20 samples) and
squamous cell lung carcinomas (SQ) (21 samples). The number of genes in the data set
is 1543. Here also the same maximum variations of genes across the samples are used
as a preprocessing step. After pre-processing, the size is reduced to 203 × 100.

Both the artificial and real datasets are normalized along the column. So, the value
of all the data ranges from 0 to 1.

Parameter Settings
Our experiments are used to measure the quality of our proposed method for iden-

tifying the cluster and rank of genes. To compare with the different methods along
these lines, we therefore performed the experiments with 100 generations. In each case,
twenty trial runs were performed on each expression datasets and the average of the best
solution of each run is given in the result. The number of clusters parameter is fixed for
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particular datasets, the number of clusters for Arda25 30 3 is 3 for instance, and set to
5 for other artificial & real datasets. The crossover rate is 0.8, mutation rate is 0.01 and
population size is 50.

Performance Measures
The performance of the algorithm is measured in terms of both clustering and gene

ranking ability. These are measured in terms of CP index and a newly defined R index.
Only for artificial data sets, these indices calculation are possible, since class label and
rank of the features are known. But in the case of real life data sets, since no rank
information is available for the genes, the performance of clustering ability is calculated
based on the CP index only.

Percentage of CP Index (correctly Classified Pairs) has been used to find the quality
of the clustering results. CP index is used to compare a clustering solution with it actual
clustering present in the data set. Say for a gene expression data set, the true clustering
is C based on domain knowledge and c is a clustering result given by any clustering
algorithm. Also assume that, s, d and t be the same, different and total number of pairs
that belong to clusters in C and c, respectively. The percentage of CP index is defined
as:

CP (C, c) =
s+ d

t
× 100 (5)

From the above equation, we can say, higher value of CP means better clustering
solution given by the algorithm. So, for CP(C,C) = 100%.

To find the quality of the ranking for a solution, a newly defined index, R index
(Rank index) is used. In R index, we compare the generated ranking with true ranking.
For this, we first sort the genes according to their ranks in both true and generated
rankings. Thereafter, for first g genes, g = 1, . . . , d, the intersection and union of the
genes between true set and generated set are calculated and we divide the number of
genes in intersection with that in union.

The plot of the corresponding R index is called the R plot. Since the maximum value
of R index is 1, the R curve of better solution in the R plot will be nearer to 1.

Competitive Methods
The performance of MOSCFRA is determined by comparing the algorithm with its

single objective counter parts that minimizes the objective function DB × XB (SOSCFRA DX),
only DB (SOSCFRA DB) and only XB (SOSCFRA XB). All the parameters are exactly
same as that of multi-objective method MOSCFRA. Except these, two partitional clus-
tering methods, viz., K-means clustering, fuzzy C-means (FCM) clustering, and five hi-
erarchical clustering methods, viz., single linkage (HICSIL), average linkage (HICAL),
complete linkage (HICCOL), centroid linkage (HICCEL), ward linkage (HICWAL) are
used.

4.2 Result and Discussion
In table 1 and 2, the average value of the CP index over 20 runs on each artificial

data set and real life gene expression data set are given, respectively. In brackets, the
standard deviation of CP index is also shown. Moreover, higher value of CP index
and lower value of standard deviation in all artificial data sets indicate that each time
MOSCFRA outperforms other algorithms in terms of clustering.

The values of performance index generated from the other algorithms are inferior to
those generated from MOSCFRA. Because, these methods find cluster from the data
set by considering the same weight of the features which affect the clustering results.
Through this, we can show the significance of the importance of feature ranking. By
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Figure 1: R plot for the artificial data sets: (above) Arda25 30 3 data, (below) Arda50 75 5 data

comparing all the results generated from all the data sets, it is clear that MOSCFRA
technique gives the best clustering performance for these data sets.

Since the actual ranks of the features are available for the artificial data sets and
it is absent in case of real data sets, we can compute the R index as described above
only for the two artificial data sets. The Figure 1 shows the R plot of the R index for
the highest CP index of all the runs on each algorithm (MOSCFRA, SOSCFRA DX,
SOSCFRA DB, SOSCFRA XB) for the two artificial data sets, respectively. Since the
other algorithms does not generate ranks of the features, they are not shown in the
figures. From these figures, we can say that the proposed multiobjective algorithm
produces the good ranking result.

Another important thing is that, when the DB index and XB index are merged into
our single objective counter part, SOSCFRA DX, it gives the same result as given in the
SOSCFRA DB. So, from this result, we can say the DB index is affecting the goodness
of XB index and also DB index is not a good index in such cases.

From the brain tumor genes, the most frequently ranked top ten genes that are respon-
sible for that clustering through our proposed MOSCFRA algorithm are: S81957 at,
D38500 at, K02268 at, X64072 s at, M58297 at, J04132 at, M93119 at, J04444 at,
L36847 at, HG3141-HT3317 f at.

From the lung tumor genes, the most frequently ranked top ten genes that are re-
sponsible for that clustering through our proposed MOSCFRA algorithm are: 39022 at,
939 at, 32251 at, 33373 at, 37849 at, 40195 at, 32034 at, 40647 at, 33273 f at, 34335 at.
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CP index for Artificial Data Sets.
Algorithm Arda25 30 3 Arda50 75 5
MOSCFRA 100.00(±0.000) 86.6036(±3.428)
SOSCFRA DX 31.0345(±0.000) 18.9189(±0.000)
SOSCFRA DB 31.0315(±0.000) 18.9189(±0.000)
SOSCFRA XB 76.5977(±0.925) 84.8649(±0.680)
K-means 96.0115(±9.800) 84.3532(±2.371)
FCM 95.6322(±0.000) 80.5045(±0.388)
HICSIL 35.8621(±0.000) 25.3333(±0.000)
HICCOL 71.7241(±0.000) 81.6577(±0.000)
HICAL 91.7241(±0.000) 81.5495(±0.000)
HICCEL 77.2414(±0.000) 66.8468(±0.000)
HICWAL 91.7241(±0.000) 85.2973(±0.000)

Table 1: Experimental Result on Artificial Data Sets.

CP index for Real Life Data Sets.
Algorithm Brain Tumor Lung Tumor
MOSCFRA 82.0209(±8.515) 78.4193(±3.618)
SOSCFRA DX 19.6283(±0.000) 49.4659(±0.000)
SOSCFRA DB 19.6283(±0.000) 49.4659(±0.000)
SOSCFRA XB 81.9698(±0.878) 76.7605(±0.555)
K-means 73.8850(±11.458) 65.5229(±6.531)
FCM 69.1347(±4.047) 60.4251(±4.052)
HICSIL 30.3136(±0.000) 56.5381(±0.000)
HICCOL 44.0186(±0.000) 71.6919(±0.000)
HICAL 30.3136(±0.000) 57.4111(±0.000)
HICCEL 30.3136(±0.000) 57.4111(±0.000)
HICWAL 67.0151(±0.000) 77.1237(±0.000)

Table 2: Experimental Result on Real Life Data Sets.

5 Conclusion and Future Scope
In this work, we have described a new algorithm for simultaneous clustering and

gene ranking. Finding the rank corresponding to the weight is an important task in
clustering as well as in the data analysis. In this work, we address the problem of
unsupervised gene ranking and unsupervised clustering. Here we have used one general
multiobjective framework (NSGA-II) for simultaneous clustering and gene ranking of
gene expression dataset. A novel encoding technique is developed for our problem and
XB and DB index are used as optimization criteria which are minimized simultaneously.
The performance is demonstrated on two artificial data sets as well as two real-life data
sets.

As a scope of future work, the algorithm can be extended for unknown number of
clusters. Also, other important multiobjective algorithms can be applied and more sta-
tistical comparison method can be used. Furthermore, choice of objective functions and
selection of final solution from Pareto optimal set need closer look. The authors are
working in these directions.
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