
HAL Id: hal-00549814
https://hal.science/hal-00549814

Submitted on 22 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polychronous Design of Real-Time Applications with
Signal

Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin

To cite this version:
Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin. Polychronous Design of Real-Time Applications
with Signal. 2008. �hal-00549814�

https://hal.science/hal-00549814
https://hal.archives-ouvertes.fr

Polychronous Design of Real-Time Applications

with Signal

Thierry Gautier, Paul Le Guernic and Jean-Pierre Talpin ∗

June 30, 2008

Abstract. This paper provides an introduction to the synchronous, multi-
clocked, data-flow specification language Signal. The main operators are de-
scribed and their use is illustrated through a few simple examples. Basic tech-
niques for compiling Signal programs are outlined.

1 Introduction

High-level embedded system design has gained prominence in the face of rising
technological complexity, increasing performance requirements and shortening
time to market demands for electronic equipments. Today, the installed base of
intellectual property (IP) further stresses the requirements for adapting existing
components with new services within complex integrated architectures, calling
for appropriate mathematical models and methodological approaches to that
purpose.

Over the past decade, numerous programming models, languages, tools and
frameworks have been proposed to design, simulate and validate heterogeneous
systems within abstract and rigorously defined mathematical models. Formal
design frameworks provide well-defined mathematical models that yield a rig-
orous methodological support for the trusted design, automatic validation, and
systematic test-case generation of systems.

However, they are usually not amenable to direct engineering use nor seem
to satisfy the present industrial demand.

Despite overwhelming advances in embedded systems design, existing tech-
niques and tools merely provide ad-hoc solutions to the challenging issue of
the so-called productivity gap. The pressing demand for design tools has some-
times hidden the need to lay mathematical foundations below design languages.
Many illustrating examples can be found, e.g. the variety of very different for-
mal semantics found in state-diagram formalisms. Even though these design
languages benefit from decades of programming practice, they still give rise to
some diverging interpretations of their semantics.

∗INRIA Rennes – Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes Cedex, France.
{thierry.gautier, paul.le guernic, jean-pierre.talpin}@irisa.fr

1

The need for higher abstraction-levels and the rise of stronger market con-
straints now make the need for unambiguous design models more obvious. This
challenge requires models and methods to translate a high-level system spec-
ification into a distribution of purely sequential programs and to implement
semantics-preserving transformations and high-level optimizations such as hier-
archization (sequentialization) or desynchronization (protocol synthesis).

In this aim, system design based on the so-called “synchronous hypothesis”
has focused the attention of many academic and industrial actors. The syn-
chronous paradigm consists of abstracting the non-functional implementation
details of a system and lets one benefit from a focused reasoning on the logics
behind the instants at which the system functionalities should be secured.

With this point of view, synchronous design models and languages provide
intuitive models for embedded systems [7]. This affinity explains the ease of
generating systems and architectures and verify their functionalities using com-
pilers and related tools that implement this approach.

In the relational mathematical model behind the design language Signal,
the supportive data-flow notation of the integrated development environment
Polychrony, this affinity goes beyond the domain of purely sequential systems
and synchronous circuits and embraces the context of complex architectures
consisting of synchronous circuits and desynchronization protocols: globally
asynchronous and locally synchronous architectures (GALS).

This unique feature is obtained thanks to the fundamental notion of poly-
chrony [31]: the capability to describe systems in which components obey to
multiple clock rates. It provides a mathematical foundation to a notion of re-
finement: the ability to model a system from the early stages of its requirement
specifications (relations, properties) to the late stages of its synthesis and de-
ployment (functions, automata).

The notion of polychrony goes beyond the usual scope of a programming lan-
guage, allowing for specifications and properties to be described. As a result,
the Signal design methodology draws a continuum from synchrony to asyn-
chrony, from specification to implementation, from abstraction to refinement,
from interface to implementation. Signal gives the opportunity to seamlessly
model embedded systems at multiple levels of abstraction while reasoning within
a simple and formally defined mathematical model.

The inherent flexibility of the abstract notion of signal handled in Signal

invites and favors the design of correct-by-construction systems by means of
well-defined model transformations that preserve the intended semantics and
stated properties of the architecture under design.

Synchronous languages rely on the synchronous hypothesis, which lets com-
putations and behaviors be divided into a discrete sequence of computation
steps which are equivalently called reactions or execution instants. In itself this
assumption is rather common in practical embedded system design.

But the synchronous hypothesis adds to this the fact that, inside each in-
stant, the behavioral propagation is well-behaved (causal), so that the status
of every signal or variable is established and defined prior to being tested or
used. This criterion ensures strong semantic soundness by allowing universally

2

recognized mathematical models to be used as supporting foundations. In turn,
these models give access to a large corpus of efficient optimization, compilation,
and formal verification techniques.

In this article, we consider the Signal language, which is based on the
polychronous semantic model [31] and its associated toolset Polychrony to
design embedded real-time applications.

Outline. We present the main operators of the Signal language in Section
2, discussing first the principles of synchronized data-flow. We describe a few
simple examples allowing to illustrate constraint programming with Signal and
the specific feature of oversampling. Then in Section 3, we present the basic tools
for compilation: clock calculus and graph calculus. Sequential code generation
is illustrated and notions for partitioning programs toward separate compilation
or distributed code generation are introduced. Finally, a technique for temporal
analysis of Signal programs is briefly presented. Concluding remarks in Section
4 refer to the Polychrony workbench.

Historical notes. First of all, before introducing the language, we draw a
few steps of its “history”. The first studies for a new language started in
INRIA-Rennes in 1981 in a project for the design of software for signal pro-
cessing machines (the application domain was later widened). Le Guernic
and Benveniste were in charge of the design of the language, with Gautier.
The whole project was a cooperation between teams from INRIA-Rennes and
INRIA-Rocquencourt, and CNET (French telecommunication organism). The
first paper on Signal, viewed as an algebraic description of networks of flows,
was published by Le Guernic in 1982 [27]. It was recognized later that sev-
eral teams in France worked in parallel with similar ideas: this gave rise to the
so-called “synchronous school”, around the synchronous languages Esterel,
Lustre and Signal, with many contacts and fruitful scientific exchanges. The
first complete description of the Signal language (version 1) was provided by
Gautier in his PhD [18]. The encoding of clocks using Z/3Z was proposed by
Le Guernic and Benveniste in 1986 [28]. A full compiler, including clock cal-
culus (with hierarchies of Boolean clocks), was described by Besnard [11]. The
clock calculus was later improved by Amagbegnon [1], who defined arbores-
cent canonical forms. The semantics of the language has been described using
different models: operational semantics [9], denotational semantics [10], trace
semantics [29, 39] (used in the current reference manual for Signal V4 [12]),
tagged model [31] (now considered as a reference paper for the polychronous
model). Nowak [36] proposed a co-inductice semantics that was used for mod-
eling Signal in the proof assistant Coq. A number of PhD’s have been devoted
to different aspects of Signal implementation, many of these works were con-
ducted in the context of cooperative projects including European ones such as
Synchron, Syrf, Sacres, SafeAir, etc. To mention only some of them that are
in phase with the mainstream of the current Signal version: Chéron [13] pro-
posed optimization methods; Le Goff [26] defined clustering models for Signal

programs; Maffëıs [33] formalized the required notions for abstraction and sep-

3

arate compilation; Aubry [3] described distributed implementation (the PhD’s
mentioned here are written in French but corresponding articles written in En-
glish may be found on the Polychrony site). Many other studies, not detailed
here, concerned extensions of Signal, translations to or from Signal, specific
applications, etc. We also mention the definition of an affine clock calculus for
affine clocks by Smarandache [39] and the polychronous modeling of real-time
executive services of the ARINC avionic standard by Gamatié [17]. Belhadj [4],
Kountouris [23] and Le Lann [32], also with Wolinski, used Signal for hardware
description and synthesis ([23] describes also a method for temporal interpre-
tation of Signal programs). Dutertre [16], Le Borgne [25] and Marchand [34]
developed the theory of polynomial dynamical systems on Z/3Z, implemented
it in the Sigali tool and applied it for verification and controller synthesis on
Signal programs. Le Guernic and others had characterized specific classes of
polychronous programs such as endochronous ones. In [6], Benveniste, Cail-
laud and Le Guernic analyzed the links between synchrony and asynchrony and
introduced the property of isochrony in the context of synchronous transition
systems. In [31], Le Guernic, Talpin and Le Lann expressed the notion of endo-
isochrony in the tagged model of polychrony. A property of weak endochrony
was described by Potop-Butucaru, Caillaud and Benveniste [38]. In his PhD,
Ouy [37] introduced polyendochrony and showed that it is possible to test it in
a polynomial way.

The Polychrony workbench, which is now freely distributed from
http://www.irisa.fr/espresso/Polychrony, was built progressively during these
years and includes a lot of the previously mentioned works. It is regularly
updated. In parallel with the Polychrony academic set of tools, an industrial
implementation, called Sildex, was developed by the TNI company, now in-
cluded in Geensys. This commercial toolset, which is now called RT-Builder,
is supplied by Geensys (http://www.geensys.com/).

2 The Signal language

Signal [9] is a declarative design language expressed within the polychronous
model of computation. In the following, we present the Signal language and
its associated concepts.

2.1 Synchronized data-flow

Consider as an example the following program expressed in some conventional
data-flow formalism [22]:

if a > 0 then x = a; y = x + a

What is the meaning of this program? In an interpretation where the edges
are considered as FIFO queues [2], if a is a sequence with non-positive values,
the queue associated with a will grow forever, or (if a is a finite sequence) the
queue associated with x will eventually be empty although a is non-empty. It

4

is not clear that the meaning of this program is the meaning that the author
had in mind! Now, suppose that each FIFO queue consists of a single cell [15].
Then as soon as a negative value appears on the input, the execution can no
longer go on: there is a deadlock. This is usually represented by the special
undefined value ⊥ (stating for “no event”).

It would be somewhat significant if such deadlocks could be statically
prevented. For that, it is necessary to be able to statically verify timing
properties. Then the ⊥ should be handled when reasoning about time, but
it has to be considered with a non standard meaning. In the framework of
synchronized data-flow, the ⊥ will correspond to the absence of value at a
given logical instant for a given variable (or signal). In particular, it must be
possible to insert ⊥’s between two defined values of a signal. Such an insertion
corresponds to some resynchronization of the signal. However, the main
purpose of synchronized data-flow is that the whole synchronization should be
completely handled at compile time, in such a way that the execution phase
has nothing to do with ⊥. This will be assumed by a static representation of
the timing relations expressed by each operator. Syntactically, the timing will
be implicit in the language. Signal describes processes which communicate
through (possibly infinite) sequences of (typed) values with implicit timing: the
signals. For example, x denotes the infinite sequence {xt}t≥0 where t denotes
a logical time index. At any instant, a signal may be present, at which point
it holds a value; or absent and denoted by ⊥ in the semantic notation. There
is a particular type of signals called event. A signal of this type is always true
when it is present (otherwise, it is ⊥). Signals defined with the same time
index are said to have the same clock, so that clocks are equivalence classes
of simultaneous signals. The clock of a signal x, noted ^x in the language,
represents the set of instants at which the signal x is present. A process is a
system of equations over signals that specifies relations between values and
clocks of the signals. A program is a process.

Consider a given operator which has, for example, two input signals and
one output signal. We shall speak of synchronous signals if they are logically
related in the following sense: for any t, the tth token on the first input is
evaluated with the tth token on the second input, to produce the tth token on
the output. This is precisely the notion of simultaneity. However, for two tokens
on a given signal, we can say that one is before the other (chronology). Then,
for the synchronous approach, an event is a set of instantaneous calculations, or
equivalently, of instantaneous communications.

2.2 Signal constructs

Signal [30] relies on a handful of primitive constructs, which can be combined
using a composition operator. These core constructs are of sufficient expressive
power to derive other constructs for comfort and structuring. Here, we give
a sketch of the primitive constructs (bold-faced) and a few derived constructs

5

(italics) often used. For each of them, the corresponding syntax and definition
are mentioned.

Functions/Relations. Let f be a symbol denoting a n-ary function [[f]]
on instantaneous values (e.g., arithmetic or Boolean operation). Then, the
Signal expression

y:= f(x1,...,xn)

defines an elementary process such that:
yt 6=⊥⇔ x1t 6=⊥⇔ ... ⇔ xnt 6=⊥, ∀t : yt = f(x1t, ..., xnt),

where xik denotes the kth element of the sequence denoted by {xit}t≥0.

Delay. This operator defines the signal whose tth element is just the (t−1)th ele-
ment of its input, at any instant but the first one, where it takes an initialization
value. Then, the Signal expression

y:= x $ 1 init c

defines an elementary process such that:
xt 6=⊥⇔ yt 6=⊥, ∀t > 0 : yt = xt−1, y0 = c.

At the first instant, the signal y takes the initialization value c. Then, at any
instant, y takes the previous value of x.

Under-sampling. This operator has one data input and one Boolean “control”
input, but it has a different meaning when one of the inputs holds ⊥. In this
case, the output is also ⊥; at any logical instant where both input signals are
defined, the output will be different from ⊥ if and only if the control input holds
the value true. Then, the Signal expression

y:= x when b

defines an elementary process such that:
yt = xt if bt = true, else yt =⊥.

The derived statement y:= when b is equivalent to y:= b when b. In this
case, y has the type event (it is always true when present).

Deterministic merging. The unique output provided by this operator is
defined (i.e., with a value different from ⊥) at any logical instant where at least
one of its two inputs is defined (and non-defined otherwise); a priority makes it
deterministic. Then, the Signal expression

z:= x default y

defines an elementary process such that:
zt = xt if xt 6=⊥, else zt = yt.

6

Parallel composition: Resynchronizations (that is to say, possible insertions
of ⊥) have to take place when composing processes with common signals. How-
ever, this is only a formal manipulation. If P and Q denote two processes, the
composition of P and Q defines a new process, denoted by

(| P | Q |)

where common names refer to common signals. Then, P and Q communicate
through their common signals.

Restriction. This operator allows one to consider as local signals a subset of
the signals defined in a given process. If x is a signal defined in a process P,

P where x

defines a new process where communication ways (for composition) are those
of P, except x.

Derived operators are defined from the kernel of primitive operators. In
particular:
Clock extraction: h := ^x specifies the clock h of x as a signal of type event,
and can be defined as: h := (x = x).
Synchronization: x1 ^= x2 specifies that x1 and x2 have the same clock, and
is defined as: (| h := (^x1 = ^x2) |) where h.
Clock union: h := x1 ^+ x2 specifies the clock union of x1 and x2, which is
also defined as: h := ^x1 default ^x2.
Clock intersection: h := x1 ^∗ x2 specifies the clock intersection of x1 and
x2, which is also defined as: h := ^x1 when ^x2.
Memory: y := x cell b init y0 allows to memorize in y the latest value
carried by x when x is present or when b is true. It is defined as:
(| y := x default (y $ 1 init y0) | y ^= x ^+ (when b) |).

2.3 A simple example

The purpose of the following process is to define a signal v which counts in the
reverse order the number of occurrences of the events at which a Boolean signal
reset holds the value false; v is reinitialized (with a value v0) each time reset

is true.

(| zv := v $ 1 init 0

| vreset := v0 when reset

| zvdec := zv when (not reset)

| vdec := zvdec - 1

| v := vreset default vdec

| reach0 := when (zv = 1)

|) where integer zv, vreset, zvdec, vdec;

7

Comments : v is defined with v0 each time reset is present and has the value
true (operator when); otherwise (operator default), it takes the value of
zvdec-1, zvdec being defined as the previous value of v (delay), zv, when this
value is present and moreover, when reset is present and has the value false
(operator when). The Boolean signal reach0 is defined (with the value true)
when the previous value of v was equal to 1. Notice that v is decremented
when reset has a value false.

Model of process: The above process can be abstracted and declared as a model
of process, with its ways of communication, stated explicitly (some intermediate
variables have also been removed):

process RCOUNT =

{ integer v0; }

(? boolean reset;

! event reach0;

integer v;)

(| zv := v $ 1 init 0

| v := (v0 when reset) default ((zv when (not reset)) - 1)

| reach0 := when (zv = 1)

|)

where

integer zv;

end;

It may be referred to as, for example, RCOUNT(10) (v0 is a formal parameter
of the process; “?” stands as a tag for the input signals and “!” for the output
ones). Here, there are one input signal, reset, and two output signals, reach0
and v.

2.4 Constraint programming with Signal

We demonstrate definition of programs by property specification and addition
of constraints, that illustrates the style of programming that Signal leads to:
programming by composition of systems of equations. We consider the example
of a “mailbox”, defined in an incremental way.

In a first step, we define a simple memory, that may be represented by a cell
M_In with one input In and one output Out: each time a new value arrives on
the input In, it replaces the previously memorized one and is itself memorized
in M_In; each time a value is required on the output Out, the current value of
M_In is delivered on this output.

In Signal, this is specified by the following equations:

(a) M_In := In default (M_In $ 1 init V0)

(b) | Out := M_In when ^Out
(1)

8

(V0 represents a constant value, used as initial value of the memory). Memo-
rization is through the delay operator: memorized signals are the state variables
of a Signal program.

The notation ^Out is the syntax that represents the clock of the signal Out,
considered as an event-type signal (Boolean which is true when it is present).

Let us comment both equations of (1). To simplify, we name zM_In the
signal (M_In $ 1 init V0). The equation

M_In := In default zM_In

defines the signal M_In as made up from:� the values of the signal In when In is defined (i.e., at the instants of the
clock of In),� the values of the signal zM_In when In is not present, but zM_In is.

When neither In nor zM_In are present, M_In is also not defined. The instants
of the clock of the signal M_In are the union of the instants of In and of those
of zM_In. Since at each one of its instants, the signal zM_In has the value that
M_In had at the previous instant, equation (a) expresses indeed that M_In is
defined by In when a new value arrives on the input In and keeps its previous
value at the other instants.

In Signal, every signal is characterized by its clock (the set of instants
at which it is defined), including signals representing state variables. A signal
(X $ 1) always has the same clock as the corresponding signal X. Here, zM_In
and M_In have the same clock, which is written: zM_In ^= M_In. Thus, con-
sidering clocks, equation (a) states simply that the clock of M_In is at least as
frequent as the clock of In, which may be written: M_In ^> In.

Consider now equation (b) of (1). The signal Out is defined by the value
of the signal M_In when M_In is defined and the second argument of the when

operator (here, the signal ^Out), is also defined and has the value true (here,
the signal ^Out, which represents a clock, has the value true whenever it is
defined). Thus the instants of the clock of the signal Out are the intersection
of the instants of M_In and the instants at which the condition that forms the
second argument of the when is true. Here, the signal Out is defined by the value
of the memory at the instants of its own clock (the instants at which some value
is required on the output Out). Considering clocks, equation (b) states that the
clock of M_In is at least as frequent as the clock of Out: M_In ^> Out.

The process (1) does not fix the clock of the memory M_In. If one wants to
specify that this clock must be exactly the union of the instants of In and the
instants of Out, it is sufficient to add the following synchronization equation:

M_In ^= In ^+ Out

Let us declare and name this small program:

process MEM =

{ type T; T V0; }

9

(? T In;

! T Out;)

(| M_In := In default (M_In $ 1 init V0)

| Out := M_In when (^Out)

| M_In ^= In ^+ Out

|)

where

T M_In;

end;

Comments: There are two static parameters for this program: the first one is
the generic type, T, of memorized values; the second one is the initial value V0.

In a first step, we have defined a program MEM that works asynchronously,
according to arrivals and requests of messages, without particular constraints.
If ⊥ denotes the absence of value at a given instant, we have, for any instant t:

Int 6= ⊥ ⇒ M_Int = Int

Int = ⊥ ⇒ M_Int = M_Int−1

Outt 6= ⊥ ⇒ Outt = M_Int

(2)

Suppose now we want to add a first constraint to the program, that there is
no loss of messages: every data that arrives in the memory has to be read. For
any instant t:

Int 6= ⊥ ⇒ ∃s ≥ 0 Outt+s = Int (3)

For that purpose, we define a Boolean signal, accept, which is true when
some value is emitted to the environment (instants of ^Out) and false when
some value is received on the input of the memory (instants of ^In):

(| accept := (^Out) default (not ^In) default z_accept

| z_accept := accept $ 1 init true

|)

(4)

(note that (not ^In) means (false when ^In)). At the instants which are
not instants of In nor instants of Out, the Boolean accept keeps its previous
value.

The property (3) is easily translated as a constraint on the instants at which
Int 6= ⊥: a new input In can be accepted only when the previous value has
been emitted, i.e., when the Boolean accept was true at the previous instant.
In Signal, if we rename here WRITE_ACCEPT the previous value of the Boolean
accept:

(| WRITE_ACCEPT := z_accept

| In ^= In when WRITE_ACCEPT

|)

(5)

(the clock of the Boolean WRITE_ACCEPT could be fixed, for instance at the clock
of all instants at which a new input may be read). If we compose the program

10

MEM with the equations (4) and (5), we get a new program the behavior of which
is the intersection of the behaviors of its components. Thus it is a memory that
accepts a new input only when the previous value has been emitted.

Suppose now we accept loss of messages, but we want to avoid their possible
duplication on the output: a given message cannot be emitted several times on
the output Out. Here, we forget the equations (5), but we keep the definition
of the Boolean accept since the problem is the dual of the previous one: a
new value can be emitted on Out only from the input of a new value in the
memory, i.e., when the previous value of the Boolean accept was the value
false. However, keeping the same definition of accept, we must add as possible
instants of Out the instants at which there is, at the same time, some input on In

(if this is not forbidden: in that case, a value that arrives on In is immediately
emitted on Out):

(| READ_ACCEPT := not z_accept

| DIRECT_READ_ACCEPT := (^In) default READ_ACCEPT

| Out ^= Out when DIRECT_READ_ACCEPT

|)

(6)

Then, the composition of the program MEM with the equations (4) and (6) spec-
ifies a memory that emits at most once the memorized values.

If we want to add both constraints, in other words, to specify a mailbox,
for which every received message will be emitted once and only once, then it is
sufficient to compose the program MEM with the equations (4), (5) and (6).

2.5 Oversampling in Signal

We describe in this section, again with a small example, a characteristic feature
of the Signal language: the ability to specify oversampling, i.e. programs for
which outputs may be more frequent than inputs.

We consider a communication protocol for which FDMA accesses (frequency
division multiple access) are transformed into TDMA ones (time division mul-
tiple access). In addition, we suppose that the number of simultaneous users
varies along time. Part of the specification consists in receiving packets contain-
ing some variable number u of information, and re-emitting these information as
a sequence of u successive information. This mechanism of variable rate over-
sampling can be expressed as follows in Signal (we concentrate here on the
mechanism itself, forgetting the content of carried information):

process OVERSAMPLE =

(? integer u;

! boolean b;)

(| z := u default v (i)

| v := (z $ 1 init 1) - 1 (ii)

| b := v <= 0 (iii)

| u ^= when b (iv)

|)

11

where

integer z, v;

end;

A trace for this program is given below:

u : 3 2 5 ...
z : 3 2 1 2 1 5 ...
v : 0 2 1 0 1 0 ...
b : T F F T F T ...

Equation (iv) expresses that the clock of the input u is defined by the set
of instants at which the Boolean b is true Thus the input u is read when the
Boolean b is true. From equation (iii), the Boolean b is true at the instants
at which v is negative or null, and false at the other instants of v (from this
equation, b and v are also defined at the same instants, as it is always the
case for signals appearing in arithmetic or Boolean functions/relations). From
equation (ii), v is defined as the delayed value of z, decremented by 1 (from (ii),
v and z have also the same clock). Finally, equation (i) expresses that z is equal
to u as a priority, or by default to v when u is absent.

The clock of the output b is more frequent than the clock of the input u.

3 Compiling Signal programs

Among relevant questions when compiling Signal programs, there are the fol-
lowing ones:� Is the program deadlock free?� Has it an effective execution?� If so, what scheduling may be statically calculated (for a multiprocessor

implementation)?

To be able to answer these questions, two basic tools are used before execution
on a given architecture. The first one is the modeling of the synchronization
relations in F3 by polynomials with coefficients in the finite field Z/3Z of in-
tegers modulo 3. The second one is the directed graph of data dependencies.
These basic tools are used for all compiling services: program transformations,
optimizations, abstraction, code generation, temporal profiling, etc.

3.1 The synchronization space

First, let us consider Signal processes restricted to the single domain of Boolean
values. The equation

x3 := x1 when x2

expresses the following assertions:

12

� if x1 is defined, and x2 is defined and true, then x3 is defined and x3 = x1,� if x1 is not defined, or x2 is not defined, or x2 is defined and false, then
x3 is not defined.

It appears that useful information are (if x is a signal):� x is defined and false,� x is defined and true,� x is not defined.

They can be respectively encoded in the finite field Z/3Z of integers
modulo 3 as the following values: −1, 1 and 0. Then, if v is the encoding
value associated with the signal x, the presence of the signal x may be clearly
represented by v2. This representation of an indeterminate value of x (true
or false) leads to an immediate generalization to non-Boolean values: their
presence is encoded as 1 and their absence as 0. In this way, v2 may be
considered as the proper clock of the signal x.

This principle is used to represent synchronization relations expressed
through Signal programs. In the following, each signal and its encoding value
are denoted by the same variable. The coding of the elementary operators is
deduced from their definition. This coding is introduced below:� The equations

y2 = x2
1 = . . . = x2

n

denoting the equality of the respective clocks of signals y, x1, . . . , xn

are associated with y := f(x1, . . . , xn) (all the synchronous processes are
encoded in this way, however, “dynamical systems” in F3 must be used
to encode Boolean delays—this is not detailed here [8]).� Boolean relations may be completely encoded in F3. For instance,
x2 = −x1 corresponds to x2 := not x1:
if x1 = true, then x1 = 1 and −(x1) = −1, which is associated with false.� The equation

x3 = x1(−x2 − x2
2)

is associated with x3 := x1 when x2 (x1, x2, x3 Boolean signals); it may
be interpreted as follows: x3 holds the same value as x1 (x3 = x1) when
x2 is true (when −x2 − x2

2 = 1).

The equation

x2
3 = x2

1(−x2 − x2
2)

is associated with x3 := x1 when x2 when x1, x3 are non-Boolean signals.

13

� The equation

x3 = x1 + (1 − x2
1)x2

is associated with x3 := x1 default x2 (x1, x2, x3 Boolean signals); it is
interpreted as follows: x3 has a value when x1 is defined, i.e., when x2

1 = 1
(then x3 holds the same value as x1: x3 = x2

1x1 = x1), or when x2 is
defined but not x1, i.e., when (1−x2

1)x
2
2 = 1 (then x3 holds the same value

as x2: x3 = (1 − x2
1)x

2
2x2 = (1 − x2

1)x2).

The equation

x2
3 = x2

1 + (1 − x2
1)x

2
2

is associated with x3 := x1 default x2 when x1, x2, x3 are non-Boolean
signals.

Then the composition of Signal processes collects the clock expressions of
every composing process.

3.2 The clock calculus

The algebraic coding of the synchronization relations has a double function.
First, it is the way to detect synchronization constraints. Consider for example
the following program (which is that of section 2.1):

(| c := a>0 | x := a when c | y := x+a |)

The meaning of this program is “add a to (a when a > 0)”; remember
that it must be “rejected” if a can take any value since the clocks are then
inconsistent. More exactly, this program constrains the possible values of a. Its
algebraic encoding is

c2 = a2

x2 = a2(−c− c2)
y2 = x2 = a2

which results in c2 = a2 = y2 = x2 = a2(−c− c2)
and by substitution c2 = c2(−c− c2)
and then c = 1 or c = 0.

But c is the result of the evaluation of the non-Boolean signal a. However
the coding in F3 does not allow reasoning about non-Boolean values, therefore
the actual value (true or false) of c cannot be predicted.

The other function of this coding is to organize the control of the program.
An order relation may be defined on the set of clocks: a clock h2 is said to be
greater than a clock k2, which is denoted by h2 ≥ k2, if the set of instants of
k is included in the set of instants of h (k is an undersampling of h). The set
of clocks with this relation is a lattice. The purpose of the clock calculus is to
synthesize the upper bound of the lattice, which is called the master clock, and

14

to define each clock by some computation expression, i.e., an undersampling
of the master clock according to values of Boolean signals. However, for a
given Signal process, the master clock may not be the clock of a signal of the
process. In this case, several maxima (local master clocks) will be found.

For a program to be “correct”, the partial order induced by the inclusion
of instants, restricted to the undersamplings by a free Boolean condition (input
Boolean signal or Boolean expression on non-Boolean signals), must be a tree,
the root of which is the more frequent clock. Then such a program, also re-
ferred to as endochronous1, can be run in an autonomous way (master mode).
Otherwise, there are several local master clocks, and the process needs extra
information from its environment to be run in a deterministic way. So, an
endochronous program is deterministic [31].

Ck_iCk_1

T_i

Ck

Figure 1: Clock hierarchy of an endochronous program.

Fig. 1 illustrates the clock hierarchy of an endochronous program. It
is described by a unique tree where the root node represents the master
clock (Ck). We can notice that from this global tree, one can derive several
“endochronous” sub-trees (for example T i).

Clock expressions can be rewritten as Boolean expressions of a Signal pro-
gram. The operator ^+ represents the sum of clocks (upper bound) and the
operator ^∗ represents the product (lower bound). Then, any clock expression
may be recursively reduced to a sum of monomials, where each monomial is a
product of undersamplings (otherwise, the clock is a root).

1A more formal characterization of endochrony can be found in [31].

15

3.3 An example

Consider again the process RCOUNT of section 2.3 (in the version written with
intermediate signals). The clock calculus finds the following clocks:

reset2

vreset2 = −reset− reset2

v2 = zv2 = α2 = (−reset− reset2) + (reset− reset2)v2

vdec2 = zvdec2 = v2(reset− reset2)
reach02 = −α − v2

where α is the coding of zv = 1.

The clock calculus does not synthesize a master clock for this process.
In fact, it is not endochronous (and it is non-deterministic): when reset is
false, then zvdec is defined if zv is defined, i.e., if v is defined; but v is defined
(when reset is false) if vdec is defined, i.e., if zvdec is defined, and then, when
reset is false, an occurrence of v may occur, but does not necessarily occur.

The hierarchy of clocks is represented by the following Signal process, which
defines several trees (the roots of which are clk_reset, clk_vdec and clk_v):

(| (| clk_reset ^= reset

| (| clk_vreset := when reset

| clk_vreset ^= vreset

| clk_1_2 := when (not reset)

|)

|)

| (| clk_vdec := clk_1_2 ^* ck_v

| clk_vdec ^= vdec ^= zvdec

|)

| (| ck_v := ck_vreset ^+ clk_vdec

| ck_v ^= v ^= zv}

| (| reach0 := when (zv=1)

|)

|)

|)

The hierarchy is represented by the composition embeddings; the clk i’s
represent the names of the clocks considered as signals (the suffixes i are given
by the compiler), or they keep their own name if they are event-type signals
(like reach0).

Now, we consider the following process, where RCOUNT is used in some con-
text:

process USE_RCOUNT =

{ integer v0; }

(? boolean h;

16

! event reach0;

integer v;)

(| h ^= v

| reset := (^reach0 when (^h)) default (not (^h))

| (reach0, v) := RCOUNT {v0} (reset)

|)

where

boolean reset;

end;

An external Boolean clock h defines the instants at which v has a value. The
reset signal is also synchronous with h and it has the value true exactly when
reach0 is present. There is a master clock (h2 = v2 = reset2) and a tree may
be built by the compiler. Therefore, the program becomes endochronous.

3.4 The graph of conditional dependencies

The second tool necessary to implement a Signal program on a given architec-
ture is the graph of dependencies. Then, according to criteria to be developed,
it will be possible to define subgraphs that may be distributed on different
processors. However, a classical data-flow graph would not really represent the
dependencies of a Signal program. Since the language handles signals the
clocks of which may be different, the dependencies are not constant in time.
For that reason, the graph has to express conditional dependencies, where
the conditions are nothing but the clocks at which dependencies are effective.
Moreover, in addition to dependencies between signals, the following relation
has to be considered: for any signal x, the values of x cannot be known before
its clock; in other words, x depends on x2. This relation will be implicit below.

The Graph of Conditional Dependencies (GCD) calculated by the Signal

compiler for a given program is a labeled directed graph where:� the vertices are the signals, plus clock variables,� the edges represent dependence relations,� the labels are polynomials on F3 which represent the clocks at which the
relations are valid.

The following describes the dependencies associated with elementary pro-
cesses. The notation c2 : x1 → x2 means that x2 depends on x1 (or more
exactly, x1 cannot depend on x2) when c2 = 1. It has to be noticed that the
processes which involve only Boolean signals do not generate data dependencies.

17

Then, we consider only processes defining non-Boolean signals:

y := f(x1, . . . , xn) y2 : x1 → y, . . . , y2 : xn → y

y := x when b y2 : x → y, y2 : b → y2

z := x default y x2 : x → z, y2 − x2y2 : y → z

Notice that the delay does not produce data dependencies (nevertheless,
remember that any signal is preceded by its clock).

The graph, together with the clock hierarchy, represents all the necessary
control-flow and data-flow information. It is used to detect incorrect dependen-
cies. Such a bad dependency will appear as a circuit in the graph. However,
since dependencies are labeled by clocks, some circuits may not occur at any
time. An effective circuit is such that the product of the labels of its arcs is not
null. This may be compared with the cycle sum test of [40], to detect deadlock
on the dependence graph of a data-flow program.

All the above properties checked by the Signal compiler during the clock
calculus are mainly static. Properties such as reachability or liveness, which are
dynamic, cannot be addressed with the compiler. For that, the Sigali tool,
which implements a symbolic model checking technique, can be used [35]. Basi-
cally, a Signal program denotes an automaton in which states are described by
the so-called “state variables” that are defined by the delay operator. At each
logical instant, the current state of a program is given by the current values of
its state variables. The technique adopted in Sigali consists in manipulating
the system of equations resulting from the modeling of Signal programs in F3

instead of the sets of its states. This avoids the enumeration of the state space,
which can potentially explode. So, each set of states is uniquely characterized
by a predicate and operations on sets can be equivalently performed on the asso-
ciated predicates. A few experiments showed that the symbolic model-checking
technique adopted by Sigali enables to check properties on automata with sev-
eral millions of states within a reasonable delay. More details on Sigali can be
found in [35].

3.5 Sequential code generation

Automatic sequential code generation for endochronous Signal programs is
based on the clock hierarchy obtained from the clock calculus and on the graph
of conditional dependencies.

To illustrate code generation, we consider the following alternative specifi-
cation of a one-place buffer in Signal. It uses two sub-processes, one is the
process alternate which desynchronizes the signals i and o by synchronizing
them to the true and false values of an alternating Boolean signal b. The other
one is the process current. It defines a cell in which values are stored at the
input clock ^i and loaded at the output clock ^o.

18

process buffer = (? i; ! o;)

(| alternate (i, o)

| o := current (i)

|)

where

process alternate = (? i, o; !)

(| zb := b$1 init true

| b := not zb

| o ^= when (not b)

| i ^= when b

|) where boolean b, zb;

end;

process current = (? i; ! o;)

(| zo := i cell ^o init false

| o := zo when ^o

|) where zo;

end;

end;

The clock calculus determines three synchronization classes. We observe that
clk b, b, zb, zo are synchronous and define the master clock synchronization
class of buffer; clk i and clk o are sub-clocks of clk b, that correspond to
the true and false values of the Boolean flip-flop variable b, respectively. We
represent also the dependencies (scheduling relations) calculated by the compiler
(this may be written in the Signal syntax):

(| clk_b ^= b ^= zb ^= zo

| (| clk_i := when b

| clk_i ^= i

| clk_o := when (not b)

| clk_o ^= o

| (| {zo -> o} when clk_o |)

|)

| (| zb -> b

| {i -> zo} when clk_i

|)

|)

The compiler uses the hierarchization algorithm to find a sequential execu-
tion path starting from a system of clock relations. At the main clock clk b,
b and clk o are calculated from zb. At the sub-clock clk i, the input signal
i is read. At the sub-clock clk o the output signal o is written. Finally, zb
is calculated. Notice that the sequence of instructions follows the scheduling
relations determined during clock inference.

19

buffer_iterate () {

b = !zb;

c_o = !b;

if (b) {

if (!r_buffer_i(&i)) return FALSE;

};

if (c_o) {

o = i;

w_buffer_o(o);

};

zb = b;

return TRUE;

}

Such a piece of code is executed within an infinite loop, representing the
infinite sequence of reactions of the specified system. Each iteration step corre-
sponds to an instant of the master clock of the system.

3.6 Partitioning programs

The notions presented below are used for partitioning Signal programs into
clusters, so as to get abstractions for separate compilation, and from which it
is possible to generate code, either with static scheduling of the clusters, or
multi-threaded code with dynamic scheduling. It is also the base for generating
distributed code. Further technical details on this topic can be found in [19,
5]. In the following, an application is represented by a Signal program P =
P1 | P2 | ... | Pn, where each sub-program Pi can be itself recursively composed
of other sub-programs (i.e., Pi = Pi1 | Pi2 | ... | Pim). The following hypothesis
are assumed:

1. considered programs P are endochronous (see Section 3.2), hence deter-
ministic;

2. they do not contain any definition leading to cycles;

3. there is a set of processors q = {q1, q2, ..., qm}; and

4. a function locate : {Pi} −→ P(q), which associates with each subpart of
an application P = P1 | P2 | ... | Pn a non-empty set of processors (the
allocation can be done either manually or automatically).

First transformation. Let us consider a Signal program P = P1 | P2,
as illustrated in Fig. 2. Each sub-program Pi (represented by a circle) is
itself composed of four sub-programs Pi1, Pi2, Pi3 and Pi4. The program P is
distributed on two processors q1 and q2 as follows:

∀i ∈ {1, 2} ∀k ∈ {1, 2}, locate(Pik) = {q1}, and
∀i ∈ {1, 2} ∀k ∈ {3, 4}, locate(Pik) = {q2}

20

Hence, P can be rewritten into P = Q1 | Q2, where Q1 = P11 | P12 | P21 | P22

and Q2 = P13 | P14 | P23 | P24:

P = P1 | P2

= (P11 | P12 | P13 | P14) | (P21 | P22 | P23 | P24)
= (P11 | P12) | (P13 | P14) | (P21 | P22) | (P23 | P24)
= (P11 | P12) | (P21 | P22) | (P13 | P14) | (P23 | P24) (commutativity of |)
= (P11 | P12 | P21 | P22) | (P13 | P14 | P23 | P24)
= Q1 | Q2

The sub-programs Q1 and Q2 resulting from the partitioning of P are called
s-tasks [19]. This transformation yields a new form of the program P that
reflects a multi-processor architecture. It also preserves the semantics of the
transformed program (since it simply consists of program rewriting).

P11

P23

P24

P22
P12

P14

P13

P2P1

P21

Q1 ≡ s-task1

P

Q2 ≡ s-task2

Figure 2: Decomposition of a Signal process into two s-tasks Q1 and Q2.

The above transformation remains valid even if locate(Pik) is not a singleton.
In that case, Pik is split into new sub-programs which are considered at the same
level as Pjl’s where locate(Pjl) is a singleton. For instance, let us consider the
program P , it can be rewritten as:

P = P11 13 | P12 | P14 | P21 | P22 | P23 | P24

where locate(P11 13) = {q1, q2}. Then it follows that

P = P11 | P13 | P12 | P14 | P21 | P22 | P23 | P24 (P11 13 is split)
= P11 | P12 | P13 | P14 | P21 | P22 | P23 | P24 (commutativity of |)
= P1 | P2

Second transformation. We want to refine the level of granularity resulting
from the above transformation. For that, let us consider descriptions at
processor level (in other words, s-tasks). We are now interested in how to
decompose s-tasks into fine grain entities. An s-task can be seen as a set of
nodes (e.g. P11, P12, P21 and P22 in Q1). In order to have an optimized

21

execution at the s-task level, nodes are gathered in such a way that they can
be executed atomically. By atomic execution, we mean that nodes execution
completes without interruption. So, we distinguish two possible ways to define
such subsets of nodes, also referred to as clusters : either they are composed of
a single Signal primitive construct, or they contain more than one primitive
construct. The former yields a finer granularity than the latter. However, from
the execution point of view, the latter is more efficient since more actions can
be achieved at a same time (i.e. atomically).

The definition of atomic nodes uses the following criterion: all the expres-
sions present in such a node depend on the same set of inputs. This relies on a
sensitivity analysis of programs. We say that a causality path exists between a
node N1 (resp. an input i) and a node N2 if there is at least one situation where
the execution of N2 depends on the execution of N1 (resp. on the occurrence of
i). In that case, all the possible intermediate nodes are also executed.

Definition 3.1 Two nodes N1 and N2 are sensitively equivalent iff for each
input i: there is a causality path from i to N1 ⇔ there is a causality path from
i to N2.

P11

P22

P12

P21

Q1 ≡ s-task1

L1
L2

Figure 3: Decomposition of an s-task into two clusters L1 and L2.

Sensitively equivalent nodes belong to the same cluster. Inputs always pre-
cede outputs within a cluster. Also, if a transformed program is endochronous,
the resulting clusters are also endochronous. As a matter of fact, the clock
hierarchy associated with each cluster is an endochronous sub-tree of the global
clock tree characterizing the program. Hence, this ensures a deterministic
execution of each cluster. Fig. 3 shows a decomposition of the s-task Q1

into two clusters L1 and L2. The input of the sub-program P11 (bold-faced
arrow) is originally an input of P . The other arrows represent communications
between s-tasks (these message exchanges are local to P). We can notice
that after this second transformation, the semantic equivalence of the initial
program and the resulting one is strictly preserved.

The two transformations presented above describe a partitioning of Sig-

nal programs following a multi-task multi-processor architecture.

22

3.7 Temporal analysis of Signal programs

A technique has been defined in order to address timing issues of Signal pro-
grams on different implementation platforms [24]. Basically, it consists of
formal transformations of a program into another Signal program that
corresponds to a so-called temporal interpretation of the initial one. The new
program serves as an observer of the initial program. An observer of a program
P is an abstraction O(P) of P in which we only specify the properties we want
to check. The term “abstraction” means here that O(P) does not constrain
the original behavior of P when the two programs are composed. As shown in
Figure 4, the observer receives from the observed program the signals required
for analysis and indicates whether or not the considered properties have been
satisfied (this can be expressed, e.g., through Boolean output signals like in
Lustre programs [21]). The use of observers for verification is very practical
because they can be easily described in the same formalism as the observed
program. Thus, there is no need to combine different formalisms as in other
analysis techniques such as some model-checking techniques, which associate
temporal logics with automata [14].

O(P)

P

Figure 4: Composition of a program P together with its observer O(P).

The Polychrony environment associated with the Signal language pro-
vides functionalities including those mentioned in the above sections.

4 Conclusions

The Polychrony workbench is an integrated development environment and
technology demonstrator consisting of a compiler (set of services for, e.g., pro-
gram transformations, optimizations, formal verification, abstraction, separate
compilation, mapping, code generation, simulation, temporal profiling, etc.),
a visual editor and a model checker. It provides a unified model-driven en-
vironment to perform embedded system design exploration by using top-down
and bottom-up design methodologies formally supported by design model trans-
formations from specification to implementation and from synchrony to asyn-
chrony.

Polychrony supports the synchronous, multi-clocked, data-flow specifi-
cation language Signal. It is being extended by plugins to capture Sys-
temC modules or real-time Java classes within the workbench. It allows to

23

perform validation and verification tasks, e.g., with the integrated Sigali

model checker, or with the Coq theorem prover. It is freely distributed from
http://www.irisa.fr/espresso/Polychrony. Based on the Signal language, it pro-
vides a formal framework:

1. to validate a design at different levels,

2. to refine descriptions in a top-down approach,

3. to abstract properties needed for black-box composition,

4. to assemble predefined components (bottom-up with COTS).

Many documents, reference publications and examples are also available on
the Polychrony site.

Polychrony offers services for modeling application programs and architec-
tures starting from high-level and heterogeneous input notations and formalisms.
These models are imported in Polychrony using the data-flow notation Sig-

nal. Polychrony operates these models by performing global transformations
and optimizations on them (hierarchization of control, desynchronization pro-
tocol synthesis, separate compilation, clustering, abstraction) in order to deploy
them on mission specific target architectures. C, C++, multi-threaded and
real-time Java and SynDEx [20] code generators are provided.

In order to bring the synchronous multi-clock technology in the context of
model-driven environments, a metamodel of Signal has been defined and an
Eclipse plugin for Polychrony is being integrated in the open-source plat-
forms TopCased from Airbus (http://www.topcased.org/) and OpenEmbeDD
(http://www.openembedd.org/).

The Geensys company supplies a commercial implementation of Polychrony,
called RT-Builder, used for industrial scale projects by Snecma/Hispano-Suiza
and Airbus Industries (see http://www.geensys.com/).

References

[1] T. Amagbegnon. Forme canonique arborescente des horloges de Signal.
PhD thesis, Université de Rennes 1, November 1995.

[2] Arvind and K.P. Gostelow. Some Relationships between Asynchronous In-
terpreters of a Dataflow Language. North-Holland, 1978.

[3] P. Aubry. Mises en œuvre distribuées de programmes synchrones. PhD
thesis, Université de Rennes 1, IFSIC, October 1997.

[4] M. Belhadj. Conception d’architectures en utilisant Signal et VHDL. PhD
thesis, Université de Rennes I, IFSIC, December 1994.

[5] A. Benveniste. Safety critical embedded systems design: the SACRES
approach. In Formal Techniques in Real-Time and Fault Tolerant systems,
FTRTFT’98 school, Lyngby, Denmark, September 1998.

24

[6] A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in
dataflow synchronous languages: specification and distributed code gen-
eration. Information and Computation, 163(1):125–171, 2000.

[7] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and
R. de Simone. The synchronous languages twelve years later. Proceedings
of the IEEE, 91(1):64–83, January 2003.

[8] A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the
signal language. IEEE transactions on Automatic Control, 35(5):535–546,
May 1990.

[9] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous program-
ming with events and relations: the Signal language and its semantics.
Science of Computer Programming, 16:103–149, 1991.

[10] A. Benveniste, P. Le Guernic, Y. Sorel, and M. Sorine. A denotational
theory of synchronous reactive systems. Information and Computation,
99(2):192–230, August 1992.

[11] L. Besnard. Compilation de Signal : horloges, dépendances, environ-
nements. PhD thesis, Université de Rennes I, IFSIC, September 1992.

[12] L. Besnard, T. Gautier, and P. Le Guernic. SIGNAL V4-INRIA version:
Reference Manual (working version), May 2008.

[13] B. Chéron. Transformations syntaxiques de Programmes Signal. PhD
thesis, Université de Rennes I, IFSIC, September 1991.

[14] C. Daws and S. Yovine. Two Examples of Verification of Multirate Timed
Automata with Kronos. In Proceedings of the 16th IEEE Real Time Sys-
tems Symposium (RTSS’95), Pisa, Italy, December 1995. IEEE Press.

[15] J. B. Dennis, J. B. Fossen, and J. P. Linderman. Data flow schemas.
In A. Ershov and V. A. Nepomniaschy, editors, International Symposium
on Theoretical Programming, pages 187–216. Lecture Notes in Computer
Science, 5, Springer-Verlag, 1974.

[16] B. Dutertre. Spécification et preuve de systèmes dynamiques. PhD thesis,
Université de Rennes I, IFSIC, December 1992.

[17] A. Gamatié. Modélisation polychrone et évaluation de systèmes temps réel.
PhD thesis, Université de Rennes I, Rennes, France, May 2004.

[18] T. Gautier. Conception d’un langage flot de données pour le temps réel.
PhD thesis, Université de Rennes I, December 1984.

[19] T. Gautier and P. Le Guernic. Code generation in the Sacres project.
In Safety-critical Systems Symposium, SSS’99, Springer, Huntingdon, UK,
February 1999.

25

[20] T. Grandpierre and Y. Sorel. From algorithm and architecture specifica-
tions to automatic generation of distributed real-time executives: a seam-
less flow of graphs transformations. In Formal Methods and Models for
Codesign Conference, Mont-Saint-Michel, France, June 2003.

[21] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and
the verification of reactive systems. In Algebraic Methodology and Soft-
ware Technology, pages 83–96, Enschede, The Netherlands, 1993. Springer-
Verlag 1994.

[22] G. Kahn. The semantics of a simple language for parallel programming. In
J. L. Rosenfeld, editor, Information Processing 74, pages 471–475. North-
Holland, 1974.

[23] A. Kountouris. Outils pour la validation temporelle et l’optimisation de pro-
grammes synchrones. PhD thesis, Université de Rennes I, Rennes, France,
October 1998.

[24] A. Kountouris and P. Le Guernic. Profiling of Signal programs and its
application in the timing evaluation of design implementations. In Proceed-
ings of the IEE Colloq. on HW-SW Cosynthesis for Reconfigurable Systems,
pages 6/1–6/9, Bristol, UK, February 1996. HP Labs.

[25] M. Le Borgne. Systèmes dynamiques sur des corps finis. PhD thesis, Uni-
versité de Rennes I, IFSIC, September 1993.

[26] B. Le Goff. Inférence de contrôle hiérarchique : application au temps réel.
PhD thesis, Université de Rennes I, IFSIC, 1989.

[27] P. Le Guernic. Signal : Description algébrique des flots de signaux. In Ar-
chitecture des machines et systèmes informatiques, pages 243–252. Hommes
et Techniques, November 1982.

[28] P. Le Guernic and A. Benveniste. Real-time, synchronous, data-flow pro-
gramming: the language Signal and its mathematical semantics. Technical
Report 533 (revised version: 620), INRIA, June 1986.

[29] P. Le Guernic and T. Gautier. Data-flow to von Neumann: the Signal

approach. In J. L. Gaudiot and L. Bic, editors, Advanced Topics in Data-
Flow Computing, pages 413–438, 1991.

[30] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming
real-time applications with Signal. Proceedings of the IEEE, 79(9):1321–
1336, Sep. 1991.

[31] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for System
Design. Journal for Circuits, Systems and Computers, 12(3):261–304, April
2003.

26

[32] J.-C. Le Lann. Simulation et synthèse de circuits s’appuyant sur le modèle
synchrone. PhD thesis, Université de Rennes 1, IFSIC, March 2002.

[33] O. Maffëıs. Ordonnancements de graphes de flots synchrones ; application
à la mise en œuvre de Signal. PhD thesis, Université de Rennes I, IFSIC,
January 1993.

[34] H. Marchand. Méthodes de synthèse d’automatismes décrits par des
systèmes à événements discrets finis. PhD thesis, Université de Rennes
1, IFSIC, October 1997.

[35] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis
of discrete-event controllers based on the Signal environment. Discrete
Event Dynamic System: Theory and Applications, 10(4):325–346, October
2000.

[36] D. Nowak. Spécification et preuve de systèmes réactifs. PhD thesis, Uni-
versité de Rennes 1, IFSIC, October 1999.

[37] J. Ouy. Génération de code asynchrone dans un environnement polychrone
pour la production de systèmes GALS. PhD thesis, Université de Rennes
1, IFSIC, January 2008.

[38] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in syn-
chronous systems. Formal Methods in System Design, 28(2):111–130, 2006.

[39] I. Smarandache. Transformations affines d’horloges : application au code-
sign de systèmes temps-réel en utilisant les langages Signal et Alpha. PhD
thesis, Université de Rennes 1, IFSIC, October 1998.

[40] W. W. Wadge. An extensional treatment of dataflow deadlock. In G. Kahn,
editor, Semantics of Concurrent Computation, pages 285–299. Lecture
Notes in Computer Science, 70, Springer-Verlag, 1979.

27

