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AbstractIn this paper, systems which interact permanently with their environmentare considered. Such systems are encountered, for instance, in real{timecontrol or signal processing systems, C3{systems, man{machine interfaces,to mention just a few. The design and implementation of such systemsrequire a concurrent programming language which can be used to verify andsynthetize the synchronization mechanisms, and to perform transformationsof the concurrent source code to match a particular target architecture.Synchronous languages are convenient tools for such a purpose: they relyon the assumption that: 1/ internal actions of synchronous systems areinstantaneous, and, 2/ communication with the environment is performedvia instantaneous ashes involving some external stimuli. In this paper, wepresent a mathematical model of synchronous languages and illustrate itsuse on the Signal language. This model is denotational, and encompassesboth relational and functional styles of speci�cation. It allows us to answerfundamental questions related to synchronous languages, such as \what arethe basic constructions which should be provided by such languages?"



1 IntroductionReactive systems1 are considered in this paper. These are systems which in-teract permanently with their environment at rates which may be driven bythis environment. Such systems are encountered, for instance, in real{timecontrol or signal processing systems, C3{systems, man{machine interfaces,to mention just a few. It is usually recognized that a reliable design ofsuch systems should be supported by a concurrent programming style. Onthe other hand, the highly demanding nature of these applications forcesto consider as well the requirement of highly e�cient and reliable imple-mentation, in both cases of sequential or distributed implementation. Thisrequires powerful formal tools to prove equivalence of such di�erent imple-mentations. Hence fundamental studies on mathematical models of reactivesystems are requested to provide the basis for the above mentioned tools.We shall not discuss here the drawbacks and merits of current tools inprogramming reactive systems (�nite state machines, Petri Nets, concurrentprogramming languages such as Ada or Occam); the interested reader isreferred to the excellent discussion in [8] [9] on this subject. We shall merelyconcentrate on the discussion of the synchronous approach we follow in thispaper.1.1 The basic synchronicity hypothesesWhile classical (i.e. asynchronous) concurent languages do implicitly orexplicitly refer to some external and universal time reference, the notion of\time" is completely di�erent in synchronous reactive systems. To be moreexplicit, synchronous reactive systems di�er from asynchronous ones in thefollowing aspects:1. The internal mechanisms of the system: every action (computation orinternal communication) is instantaneous, i.e. has a zero duration;2. The communications with the external world: the set of the possibleinput channels is �xed and known in advance, and the ows carriedby these channels are speci�ed through both� the values they carry� a total ordering of the \instants" at which these values are avail-able at the external ports.1this name was introduced in [19] [20], and extensively used in [8]1



Of course, this last requirement is the fundamental feature which character-izes the way synchronous reactive systems communicate with the externalworld, compared to asynchronous ones. Let us illustrate this point using asimple example. Consider a reactive system with two inputs:1. a data input carrying an ordered �le of data named x,2. an interrupt input port named s.Then, the speci�cation of an input history according to the synchronouspoint of view must be of the formx1 x2 x3 ?? s2 ? s4 etc:::(as usually, ? denotes the absence of data) i.e. both the values and theirglobal interleaving must be speci�ed; the integer index n = 1; 2; ::: is usedfor this purpose. The progression of this index n has to be considered asthe proper notion of time ow in synchronous systems. In other words, theessentially nondeterministic character of the communications with the exter-nal world in reactive systems is concentrated inside some (ignored) externalmechanism which decides this global ordering. Hence, the advantage of thesynchronous point of view is that the nondeterminism of external communi-cations is strictly concentrated on this mechanism, and it is not propagatedinside the body of the system itself.A �rst consequence is that any function of, or any constraint on these in-put stimuli may be speci�ed by mathematical recurrent equations. Anotherfundamental consequence is that the notion of time is local to a given sub-system: there is no universal time reference, as we shall see later whencommunications will be studied.Theses are the fundamental reasons of the power of the synchronousapproach. Among languages relying on this synchronicity assumption arethe imperative language Esterel ([8] [18]), the declarative and functionallanguage Lustre ([12] [11] [27]), and the declarative and relational languageSignal we discuss in this paper; related to the same formalism is also theapproach of Statecharts in [19] [20].1.2 On the semantics of SignalAs argued before, Signal must rely on a mathematical model; such a modeland the language were developed simultaneously. In fact, two models of2



di�erent styles were introduced.A didactic overview of the fundamental issues raised by Signal may befound in [7]. Then, an operational semantics was given in [6] in terms ofconditional rewriting rules �a la Plotkin [28], and, in [5], it was shown howthis operational semantics may be used to develop the Signal compiler. Onthe other hand, a data{ow oriented introduction to Signal is presented in[17], where the Trace model for Signal, we further develop in the presentpaper, was introduced �rst.The purpose of the present paper is di�erent. We want to concentrate onfundamental aspects of the synchronous approach for reactive systems. Thiswill be done by developping a new denotational semantics. This denotationalmodel is related to the mathematical notion of \discrete{time dynamicalsystem", or \system of recurrent equations", a discrete{time counterpart ofdi�erential systems. Such ideas are found in Lucid [3] [2] which is pro-posed as a model for data{ow languages. But the allowance of uncausalityand particular ways to handle timing make Lucid not suitable as a modelof reactive systems, as discussed in [11]. To our knowledge, the pioneeringwork relevant to the denotational style of semantics is the Dynamic NetworkProcessesmodel introduced in [22] [21]. DNP's are functions mapping inputhistories into output histories; their denotational semantics has been stud-ied in detail in [15]. Kahn's model has been used with suitable extensionsand modi�cations in [27] to cope with the synchronicity assumption as amodel for the Lustre language. Let us emphasize that these are non trivialmodi�cations of the original DNP model, which was essentially free fromany notion of synchronicity. Studies on synchronisation mechanisms withindata{ow languages are presented in the excellent article [13], see also [23]for a data{ow model loosely related to Signal.Here, we shall introduce our approach via the very simple mathematicalnotion of Multiple Clocked Recurrent Systems (MCRS), an immediate ex-tension of systems of recurrent equations to properly reason about synchro-nization and timing. From this easily accepted starting point, the relevanceof a \Trace" model of relational style will clearly follow. By \relational"we mean a model where behaviours are speci�ed via constraints or relationsrather than functions. This model may be considered as a suitable general-ization of !{languages (or B�uchi automata in the regular case [10][25][24])in order to handle synchronisation and data types which are not �nite al-phabets; they also have a avour of the theory of traces [1]. This Trace3



model is �rst used to give the semantics of Signal.Then our purpose is to study fundamental questions related to syn-chronous reactive systems such as: what are the basic constructions a syn-chronous language should provide? To study this, we must re�ne our purelyrelational Tracemodel in order to be able to introduce axioms that our basicsynchronisation tools (signals and clocks) should satisfy. This yields the 
model. The ideas behind the 
 model are borrowed from the probability andergodic theories ([26][14]). Its advantages are that1. it allows us to axiomatize the notions of signal and clock,2. it encompasses both relational and functional styles of speci�cation,3. parallelism is a built-in notion.Using this 
 model, we are able to prove that Signal provides the rightprimitives to achieve the maximum expressive power for synchronisationmechanisms in reactive systems.1.3 Organization of the paperSection 2 is devoted to an informal introduction to MCRS and the Signallanguage. The Tracemodel is presented in Section 3, and is used to formallyde�ne the Signal language. Section 4 is the core of the paper: the 
 modelis introduced and studied, and the �ltering and multiplexing are exhibited asfundamental primitives to build any synchronisation mechanism. Finally the
 model is used in Section 5 to study some properties of Signal and show bythe way that is possesses a maximum expressive power for synchronisationmechanisms.2 Multiple Clocked Recurrent Systems and theSignal language2.1 An informal introduction to Multiple Clocked RecurrentSystemsConsider a discrete-time dynamical system described by a set of recurrentequations: xn+1 = f(xn; yn)0 = g(xn; yn) (1)4



where the variables xn and yn are both vector valued and n = 1; 2; 3; ::::.The xn's are internal variables, or states, and we may de�ne some of thecomponents in yn to be input variables, and some as output variables andinvestigate the resulting input-output behaviour of this system. Clearly,depending on the peculiarity of the functions f and g, at a given instant,the output may not exist for a given input and state, or multiple solutionsmay exist. In this sense, this is a relational dynamical system.What is new is a certain kind of restricted asynchronism. This is ex-plained next. Assume that each variable, in addition to the normal valuesit takes in its range, can also take a special value representing the absenceof data at that instant. The symbol used for absence is ?. Therefore, anin�nite time sequence of a variable (we shall refer to informally as a signalin this discussion) may look like1;�4;?;?; 4; 2;?; ::: (2)which is interpreted as the signal being absent at the instants n = 3; 4; 7; :::etc. Systems such as (1) where the signals are of the form (2) will be termedMultiple Clocked Recurrent Systems (MCRS). The following questions areimmediate from this de�nition:(1) If a single signal is observed, should we distinguish the follow-ing samples from each other?1;�4;?;?; 4; 2;?; :::?; 1;?;�4;?; 4;?; 2;?; :::1;�4; 4; 2; :::Consider an \observer"2 who monitors this single signal and does nothingelse. Since he is assumed to observe only present values, there is no reasonto distinguish the samples above. In fact, the symbol ? is simply a tool tospecify the relative presence or absence of a signal, given an environment,i.e. other signals that are also observed. Jointly observed signals taking thevalue ? simultaneously for any environment will be said to possess the sameclock, and they will be said to possess di�erent clocks otherwise. Henceclocks may be considered as equivalence classes of signals that are presentsimultaneously. As a �rst consequence, we prefer to omit the time index nwhen referring to signals since clocks are only relative rather than absolutenotions.2in the common sense, no mathematical de�nition is referred to here5



(2) How to interconnect two MCRS of the form (1)? Consider thefollowing two MCRS: yn = if xn > 0 then xn else ? (3)and the usual addition on sequences, namelyzn = yn + un (4)In combining these MCRS, it is certainly preferable to match the successiveoccurrences y1; y2; ::: in (4) with the corresponding present occurrences in(3). But this is in contradiction with the immediate mathematical interpre-tation of the system of equationsyn = if xn > 0 then xn else ?zn = yn + unwhich yields zn = ? + un whenever xn � 0, and certainly does not matchthe usual interpretation of the addition of sequences. This kind of subtletyshould convince the reader that the naive writing (1) for MCRS is incon-venient as either a speci�cation technique or as a mathematical model. Inthe following section, we shall introduce informally the kernel of the Signallanguage to specify MCRS. A more extensive discussion of such and relatedissues may be found in [7].2.2 Signal-kernelWe shall introduce only the primitives of the Signal language, and dropany reference to typing, modular structure, and various declarations; theinterested reader is referred to [16]. Signal handles (possibly in�nite) se-quences of data with time implicit: such sequences will be referred to assignals. At a given instant, signals may have the status absent (denoted by?) and present. If x is a signal, we denote by fxngn�1 the sequence of itsvalues when it is present. Signals that are always present simultaneouslyare said to have the same clock, so that clocks are equivalence classes of si-multaneously present signals. Instructions of Signal are intended to relateclocks as well as values of the various signals involved in a given system. Weterm a system of such relations program; programs may be used as modulesand further combined as indicated later.A basic principle in Signal is that a single name is assigned to everysignal, so that in the sequel, identical names refer to identical signals. The6



kernel-language Signal possesses 6 instructions, the �rst of them being ageneric one.(i) R(x1,...,xp)(ii) y := x $ x0(iii) y := x when b(iv) y := u default v(v) P | Q(vi) P !! x1,...,xpTheir intuitive meaning is as follows (for a formal de�nition, see the section3):(i) direct extension of instantaneous relations into relations acting on sig-nals: R(x1; :::;xp) () 8n : R(x1n; :::; xpn) holdswhere R(:::) denotes a relation and the index n enumerates the instants atwhich the signals xi are present. Examples are functions such as z := x+y(8n : zn = xn + yn) or statements such as (a and b ) or c = true (8n :(an and bn) or cn = true). A byproduct of this instruction is that all re-ferred signals must be present simultaneously, i.e. they must have the sameclock. This is a generic instruction, i.e. we assume a family of relations isavailable. If one chooses an instantaneous relation accepting any p-uple, theresulting Signal instruction only constrains the involved signals to have thesame clock: this is the way we derive the instruction written synchro x,y,..which only forces the listed signals to have the same clock.(ii) shift register.y := x $ x0 () 8n > 1 : yn = xn�1; y1 = x0Here the index n refers to the values of the signals when they are present.Again this instruction forces the input and output signals to have the sameclock.(iii) condition (b is boolean): y equals x when the signal x and the booleanb are available and b is true; otherwise, y is absent; the result is an event-based undersampling of signals. Here follows a table summarizing this in-struction: 7



b true false ?xx x ? ?? ? ? ?(iv) y merges u and v, with priority to u when both signals are simulta-neously present; this instruction is the key to oversampling as we shall seelater. Here follows a table summarizing this instruction:u u ?vv u v? u ?The instructions (i-iv) specify the elementary programs.(v) combination of already de�ned programs: signals with common namesin P and Q are considered as identical. For example(| y := zy + a| zy := y $ x0|)denotes the system of recurrent equations:yn = zyn + anzyn = yn�1; zy1 = x0On the other hand, the program(| y := x when x>0| z := y+u|)yields if xn > 0 then ( yn = xnzn = yn + unelse yn = un = zn = ?where (xn) denotes the sequence of present values of x. Hence the commu-nication | causes ? to be inserted whenever needed in the second systemz:=y+u. This is what we wanted for the example (3,4).8



(vi) restriction to the listed set of signals: other signals are local to theconsidered program and therefore play no role in program communication.A formal semantics of Signal is presented in the section 3 using theTrace model.3 The Trace model for MCRS and a semantics ofSignalIn this section, a mathematical model for MCRS is presented, and used toformally de�ne Signal. The reader is referred to Section 2 for the motiva-tion of the following de�nitions.3.1 Histories, signals, clocksConsider an alphabet (�nite set) A of typed variables called ports. For eacha 2 A, Da is the domain of values (integers, reals, booleans: : : ) that may becarried by a at every instant. IntroduceDA = [a2A (Da [ f?g)where the additional symbol ? denotes the absence of the value associatedwith a port at a given instant. For two sets A and B, the notation A ! Bwill denote the set of all maps de�ned from A into B. Using this notation,we introduce the following objects.Events. Events specify the values carried by a set of ports at a consideredinstant. The set of the A-events (or \events" for short when no confusion islikely to occur) is de�ned as EA = A! DAEvents will be generally denoted by �. We shall denote by ? the \silent"event � such that �(a) = ? 8a 2 A.Traces. Traces are in�nite sequences of events. LetN+ = f1; 2; :::g denotethe set of integers, then the set of A-traces (or simply \traces") is de�ned as�A = N+ ! EA9



Compressions. The compression of an A-trace T (deleting the silentevents) is de�ned as the (unique) A-trace S such that:Sn = Tknwhere k0 = minfm � 0 : Tm 6= ?g; kn = minfm > kn�1 : Tm 6= ?gThe compression of a trace T will be denoted by T #.Histories and signals. The conditionT # = T 0 #de�nes an equivalence relation on traces we shall denote by T � T 0. Thecorresponding equivalence classes are called histories. The set of all possiblehistories on A will be denoted by 
A, so that we have3
A = (�A)=�Elements of 
A will be generically denoted by !A or simply ! when noconfusion can occur. While the notion of trace refers to a particular envi-ronment (since the ?'s are explicitly listed), the notion of history does not.Since 
A = [N+ ! (A! DA)]=�any !A 2 
A may be written as!A = (!a)a2A (5)and the !a's are termed signals. Hence a signal is a component of a historyspeci�ed by selecting a particular port in the alphabet A. The notion of\signal" has been informally discussed in section 2.1-(1), where we motivatedthe de�nition of signals and histories as equivalence classes with respect tothe relation �.3�=� denotes here the quotient space by the relation �10



Clocks. Extend the domains Da with another distinguished value >, in-tended to encode the status \present" regardless of any particular value.Consider the map chronosD 2 DA ! f?;>g de�ned bychronosD(?) = ?; chronosD(x) = > for x 6= ?For each event � 2 EA, there is a unique map in EA ! EA making thefollowing diagram commutative, denote it by chronosE :A� . & chronosE(�)DA chronosD�! DASimilarly, there is a unique map in �A ! �A, we denote by chronos�,making the following diagram commutativeN+T . & chronos�(T )EA chronosE�! EAThis map satis�es the condition T1 � T2 ) chronos�(T1) � chronos�(T2),so that it induces a map in 
A ! 
A we shall now denote by chronos:the chronos of a history is another history which summarizes the statusfpresent/absentg of each of its signals (i.e. components).Now, given ! 2 
A and a 2 A, consider the signal of port a of the historychronos(!): this signal summarizes the relative status present/absent of thesignal !a given the other signals involved in the history !. We shall call thissignal the clock of !a, or the clock of a for short when no confusion is likelyto occur, and denote it by clock(!a) or clock(a).3.2 MCRSDe�nition of MCRS. A MCRS is simply a subset
 � 
Aof the set of all histories on A. In other words, we consider the dynami-cal system (1), or, better, a Signal program, as a way to specify \legal"histories. 11



Restricting MCRS. Consider a subset A0 of the alphabet A. The inclu-sion A0 � A induces a projection from EA onto EA0 we denote by � �! �!!A0 .Following the same argument as for the de�nition of clocks, we derive thefollowing family of restrictions we generically denote by �!!A0 . First, thefollowing commutative diagram N+T . & T!!A0EA �!!A0�! EA0uniquely de�nes the restriction T �! T!!A0 on traces. Since T1 � T2 )(T1)!!A0 � (T2)!!A0 holds, a restriction on histories ! �! !!!A0 may be de�ned,which �nally yields a restriction on MCRS we denote by
 �! 
!!A0This restriction maps the set of MCRS de�ned over the alphabet A ontothe set of MCRS de�ned over the alphabet A0. The MCRS 
!!A0 is calledthe restriction of 
 to (the subalphabet) A0: only the signals with ports inA0 are visible from outside and may be used for MCRS communication weshall de�ne next.MCRS communication. Consider two MCRS 
1;
2 respectively de-�ned over the alphabets A1 and A2. Set A = A1 [ A2. Then 
1j
2 willdenote the maximal4 MCRS 
 de�ned over the alphabet A satisfying thefollowing conditions: 
!!A1 � 
1
!!A2 � 
2In other words, the communication constrains the signals in 
1 and 
2of shared port to be identical (i.e. to be present simultaneously and thencarry the same value). This is exactly what we wanted while discussing theexample of eqns (3,4).3.3 The de�nition of SignalAccording to the preceding section, in order to specify an MCRS over agiven alphabet, we have to describe a subset of all histories that can be4with respect to the order by inclusion 
0 � 
 de�ned on MCRS12



built upon this alphabet. Since histories are de�ned as equivalence classesof traces with respect to the relation �, this may be done by listing a familyof constraints on the set of all traces that can be built on this alphabet. Theequivalence classes of the so speci�ed traces are the speci�ed histories. Thisis what we shall do next.Instruction (i): R(x1,...xp)8n 2 N+; 8i : xin 6= ?8n 2 N+ : R(x1n; :::; xpn) holdsHere, the notation xin denotes the value carried by the port with name xiat the n-th instant of the considered trace. This notation will be furtherused in the sequel of this subsection.Instruction (ii): y := x $ x08n 2 N+ : xn 6= ?8n > 1 : yn = xn�1y1 = x0Instruction (iii): y := x when b8n 2N+; yn = ( if xn 6= ? and bn = true then xnelse ?Instruction (iv): y := u default v8n 2 N+; yn = 8><>: if un 6= ? then unelse if un = ? and vn 6= ? then vnelse ?Instruction (v): P | QWe already de�ned the operator j on MCRS.Instruction (vi): P !! x1,...,xpWe already de�ned the restriction of MCRS to a subset of ports.13



3.4 DiscussionAt this point the following question should be investigated: did we proposein the Signal language the right primitives to specify MCRS ? More specif-ically, we would like to prove that no loss occurs in using Signal instead ofthe general and abstract mathematical model of section 3.1 to specify con-straints and relations concerning timing in MCRS. This is the subject of therest of the paper.4 The 
 model for MCRS4.1 Criticizing the Trace modelIn the preceding section, we have introduced the Trace model for MCRS.Although simple, this model is not powerful enough to analyse the funda-mentals of timing. To illustrate this claim, let us consider the followingMCRS, that are speci�ed using Signal:1. y := u+v2. y := x when b3. y := u default vReferring to Section 3, the corresponding MCRS are de�ned via constraintson the set of all possible joint behaviours of the signals involved in theseinstructions. This is a relational style of speci�cation. Its advantage is toallow a very simple de�nition of the MCRS communication. However takingsystematically a relational point of view is certainly restrictive as shown bythe above examples: the signals on the righthand side may be certainlyconsidered as inputs and y as output. Therefore we shall extend our Tracemodel to allow mixed relational/functional styles of speci�cation.Moreover our intuition is that the example 2. possesses the clocks ofx and b as master clocks whereas the clock of y is entirely determined bythe two master clocks and the values of the boolean signal b. A similarargument holds for the example 3.Therefore what we would like to have is a mathematical model of MCRSwith the following features:� both relational as well as functional point of views should be encom-passed. 14



� the notion of communication should be easily described.� more fundamentally, we should be able to de�ne clocks via a set of self-explanatory axioms and to derive from these axioms how new clocksmay be created from given ones.Using such a model, we would be able to answer the question we raisedin the preceding section, namely does Signal provide the right primitivesto specify general synchronisation mechanisms for MCRS? The 
 modelwe shall introduce next as a re�nement of the Trace model has this as itsobjective.4.2 The fundamentals of timing4.2.1 Processes and information owsConsider a MCRS 
. For ! 2 
, denote byT#(!) (6)the unique trace such that (cf Section 3.1) 8T 2 !; T # = T#(!), i.e.T#(!) is the unique trace representing ! with no \silent" events. For twohistories !; !0 2 
, we de�ne the equivalence relation! �n !0 , 8m � n : [T#(!)]m = [T#(!0)]m (7)When (7) holds, we say that ! and !0 possess identical initial segments upto n. The equivalence relation �n on 
 de�nes a partition of 
 we denoteby �n. The family of partitions (�n) is ordered as follows: for m < n, �nis �ner than �m, written �m � �n, which means that every element of �mis a union of elements of �n. This yields the following de�nition where Ndenotes the set of nonnegative integers:De�nition 1 A process is a pair f
; (�n)n2Ng or f
;�g for short, where� 
 is a MCRS,� for every n, �n is a partition of 
 into sets of histories of identicalinitial segments up to n (cf. (7)), and �0 is the trivial partition f
; ;g.The ordered family of partitions (�n) is called the information ow of theprocess.�n is to be interpreted as \the information available at time n." Hence there�nement of the notion of process with respect to that of MCRS lies in theattention we pay to initial segments.15



4.2.2 ClocksThe purpose of this subsection is to generalize the notion of clock we intro-duced in the Trace model. Recall that in this model, signals are componentsof histories and clocks summarize the relative status present/absent of thesesignals. But taking components is just a particular function de�ned on his-tories, hence we shall extend this notion by allowing more general functionsto be considered. Such functions will have to satisfy special \causality"conditions as discussed in the next example.Example. In this example we use the same conventions as in Section 3.3to specify histories via constraints on traces. Consider the MCRS consist-ing of all possible single signals ! of integer type. Select a threshold � andconsider the successive instants n = n1; n2; ::: such that !n > � holds. Wede�ne a new signal by setting \yn = if n 2 fnkg then !n else ?", and theclock of this signal y is just de�ned by the sequence of instants fnkg. Toknow whether a given instant n is a tick of this clock, it su�ces to knowthe initial segment [!1; :::; !n] of ! up to the instant n. This is a sort ofa causality property that will serve as a basis for our axiomatic model weshall present now.In this example we illustrated how to create new clocks via (history-dependent)undersampling, but history-dependent oversampling is useful as well in spec-ifying synchronisation in MCRS (cf. [7]). For instance, the set Nk endowedwith the lexicographic order is useful to represent k � 1 nested loops thatare �red at each instant. To allow for oversampling, we need to considerwith some care what are the time index sets we want to handle.Given two totally ordered sets T and T 0, we shall writeT �o:p: T 0 (8)to mean that T is a subset of T 0 and that the natural injection from T intoT 0 is order preserving. SimilarlyT 0 ^o:p: T 00denotes the supremum of all T 's satisfying T �o:p: T 0 and T �o:p: T 00. If T 0and T 00 possess a common upperbound for the relation �o:p:, their supremumis well de�ned and is denoted byT 0 _o:p: T 0016



De�nition 2 A time index set is a denumerable, totally ordered set Tsuch that N �o:p: T . Time index sets are generically denoted by T and theirelements by the letters s; t; u; v: The elements 0 and 1 of N are assumed tobe respectively the in�mum and the supremum of T .Using the natural embedding ofN into T allows us to write expressions suchas s � n where s 2 T and n 2 N.Comment: we consider that there exists some master time index set N.The introduction of oversets ofN will allow to consider clocks that are morefrequent than N. To face the same need, Gonthier [18] uses the real lineas a universal time index set, but only discrete subsets are e�ectively used.We prefer our approach since referring to a universal notion of time mightbe misleading in our context.Clocks may be de�ned using three equivalent points of view: a set of in-stants, an increasing sequence of dates, an increasing counter. In any case,clocks are history-dependent, so that they will be de�ned as functions of his-tories. This is consistent with the discussion of Section 4.1. In the followingde�nition, we are given a time index set T .De�nition 3 A clock is de�ned via the following equivalent points of view:1. Using sets. A clock is speci�ed by a subset H � 
�T satisfying theproperty f(!; s) 2 H ; s < n+ 1; !0 �n !g ) f(!0; s) 2 Hg (9)We shall use the following notationsH(!; :) = fs 2 T : (!; s) 2 Hg (10)H(:; s) = f! 2 
 : (!; s) 2 Hg (11)2. Using dates. A clock is a functionH : 
�N! Tsatisfying the following propertiesH(!; 0) = 0 ; H(!;1) =1 (12)m < n and H(!; n) <1 ) H(!;m)< H(!; n) (13)H(!; n) < m+ 1 and !0 �m ! ) H(!0; n) = H(!; n) (14)We shall often write Hn(!) instead of H(!; n).17



These two de�nitions are related to each other via the formulae(!; s) 2 H , 9n : Hn(!) = s (15)Hn(!) = min ns : #fH(!; :) \ [0; s]g = nowhere #f:::g denotes cardinal. Counters were introduced for the same pur-pose in [12]. They may also be introduced here via the formula�Hs (!) = #fm 2 N : Hm(!) � sgComments1. The notion of clock we introduced in Section 3 may be viewed asa particular case of the �rst point of view. Given ! and a 2 A,the clock of !a may be represented by the set of indices n such that[T#(!)n](a) 6= ? (cf. the notation (6) and the de�nition of traces inSection 3). The causality condition (9) is immediate in this case. Onlyundersampling was encountered in the Trace model.2. The second point of view (using dates) will be more convenient thanthe �rst one in the sequel.3. The conditions (9) or (14) axiomatize the causality property we dis-cussed in the example of Section 4.1. In particular, (14) expressesthat, to decide whether Hn 2 [m;m+1), it su�ces to know the initialsegments up to and including m. This reects the fact that, whilethe \system" may live between m and m+ 1, it does not receive freshinformation during this period.Time changes. Suppose you have a clock, and you are interested in anin�nite sequence of data which are present at each occurrence of this clock.Then, you would probably like to forget the original time reference, andprefer to work with the above mentioned clock as if it were the time refer-ence. For this purpose, it is needed to de�ne how processes are carried outthrough such time changes.De�nition 4 Let f
; (�n)g be a process, and H a clock. De�ne! �Hn !0 , m � Hn(!) < m+ 1 and ! �m !0 (16)This is an equivalence relation. Formula (16) de�nes (�Hn) as the infor-mation ow associated with the clock H.18



The fact that (16) de�nes an equivalence relation is due to the property (14).The information ow associated with a clock is the good way to encode thenotion of initial segment in the case of time changes.4.2.3 SignalsTo encompass both relational and functional points of view, we shall gener-alize the notion of signal as introduced in Section 3. In this section, signalswere introduced as being components of histories. But selecting a componentis just a particular function. Hence we shall more generally de�ne signals asbeing functions of histories that satisfy suitable causality conditions.De�nition 5 Let f
;�g be a process, and H a clock. A f
;�; Hg{signal(or signal of clock H for short when no confusion is likely to occur) takingits values in a set � is a functionX : 
�N+ ! �; written (!; n)! Xn(!)satisfying the following property:!0 �Hn ! ) Xn(!0) = Xn(!) (17)De�nition 5 expresses the fact that Xn has to be considered as present andknown at time Hn; Hn(!) =1 means that Xn(!) is never delivered.Comment: The notion of signal introduced in the section 3 may be viewedas a particular case of the de�nition 5. Namely, for a 2 A, !a as de�ned in(5) is equally well speci�ed by the pairfclock(!a); ((!a)n1 ; (!a)n2 ; :::)gwhere nk is the k-th tick of clock(!a) and (!a)nk is the value of the k-thpresent occurrence of !a. Considering next ! as a variable yields exactly aparticular case of de�nition 5 since the condition (17) is immediate.4.3 The algebra of clocksThroughout this section, we are given a �xed process f
;�g, and all clockswe shall consider are de�ned on this process. The aim of this section willbe to introduce a \clock algebra": writing relations within this algebra willbe the convenient way to specify constraints on clocks. For this purpose we19



shall introduce a partial order on the set of the clocks, and we shall introducetwo useful primitives on this set, namely the �ltering and the multiplexing.And we shall �nally prove that these primitives allow us to build any clockin �nitely many steps. This will be the �rst major result of our paper.Throughout this section, we shall use the notationT (H)to refer to the time index set where the clock H takes its values.4.3.1 A partial order on the set of the clocksGiven two clocks H and K such that T (K) �o:p: T (H) holds, we de�ne (cf.(10)) K � H , 8! : K(!; :)� H(!; :) (18)In other words, K � H means that the set of occurrences of K is includedin the set of the occurrences of H whatever the history ! is.Warning: since the intersection of two time index sets is a time index set,any two clocks H and K possess an in�mum. Unfortunately, the supremumof two time index sets is generally not a time index set, so that the supremumof two arbitrary clocks is not de�ned in general. The operations of in�mumand supremum (when the latter is properly de�ned) will be respectivelydenoted by K ^H; K _H (19)4.3.2 The �lteringLemma 1 Let H be a clock and T its time index set, and let B be a booleansignal with clock H. The formulaK = f(!; s) 2 
� T : 9n such that Hn(!) = s and Bn(!) = truegde�nes a new T {valued clock we shall denote byK = H # B (20)and is referred to as the clock obtained by �ltering H by B.20



Proof that K is a clock: easy, left to the reader.The meaning of the �ltering is the following: H # B extracts from Hthe instants where the boolean B is true. Conversely, we have the followingresult:Lemma 2 If K � H, then we have K = H # B where B is given byBn(!) = ( true if Hn(!) 2 K(!; :)false otherwiseThe proof is elementary, and is left to the reader. The �ltering is a primitiveinstruction of the languages Lustre and Signal (the when), and may bebuilt in Esterel.4.3.3 The multiplexingNo tool is usually provided in real time oriented languages to allow over-sampling at data dependent rates. Our purpose is now to investigate theo-retically the di�culties behind this notion within our 
 model.We are given a clock H taking values in a time index set T . Let C bean integer valued (nonnegative) signal with clock H , such that 0 � Cn <1for n �nite, and C1 = 0. Set T 0 = T �Nendowed with the lexicographic order de�ned by[s; k] < [s0; k0] , s < s0 or fs = s0 and k < k0gNote that T is naturally identi�ed with the subset T � f0g of T 0, we shalloften use this embedding in the sequel.De�nition 6 The multiplexing of the clock H by the signal C is denotedby K = H " Cand is the T 0{valued clock K de�ned as follows:(!; [s; k]) 2 K , f9m : Hm(!) = s and 0 � k � Cm(!)g (21)where C0(!) = 0 by convention. 21



Figure 1: The multiplexingThe �gure 1 depicts this procedure. The "'s denote an increase by 1 of thesecond component of H " C, whereas the #'s replace at the same time Hmby Hm+1 and k = Cm by k = 0. Cn speci�es how many additional instantshave to be inserted between the n{th and the (n+ 1){st instants of H . Tojustify the above de�nition, we have to prove the following result:Theorem 1 K = H " C is a f
;�g{clock.Proof: Using (21) we have(!; [s; k]) 2 K ) (!; s) 2 Hso that (!; [s; k]) 2 K[s; k] < n + 1!0 �n ! 9>=>; ) (!0; s) 2 H (22)since [s; k] < n + 1 ) s < n + 1 by de�nition of the lexicographic order.Then take m as in (18), since C is a signal of clock H , we have!0 �n ! ) Cm(!0) = Cm(!) (23)Finally, (22) and (23) together prove the theorem.The next theorem is the fundamental result of this paper. It expresses thefact that the �ltering and multiplexing are the right primitives to constructany clock.Theorem 2 Let H be a T {valued clock, whereT = NL; 0 < L <122



is endowed with the lexicographic order. Then H may be decomposed asfollows: H0 = IdH1 = H0 # B18l > 0 : H l+1 = �H l " Cl� # BlH = HL (24)where Bl and Cl respectively are boolean and nonnegative integer signals5,and Id denotes the clock \Identity" de�ned by Idn(!) = n. Furthermore,among all possible decompositions, there is a minimal one, we denote byH0� ; :::; HL� , such that 8l � L : H l� � H l (25)for any decomposition (24).Proof: Denote by projl the projection of T ontoNl obtained by discardingthe L � l last coordinates of t to get projl(t). Using the notation (9) wede�ne the clock H l by H l = projl(H) (26)To prove the theorem, it su�ces1. to verify that H l satis�es the condition (9),2. to prove that H l+1 and H l are related via (24).The �rst assertion is proved by induction over l. Write for shortt(l) = projl(t)and decompose t(l + 1) = [t(l); k]. Consider n such that n � t(l) < n + 1.The de�nition of the lexicographic order implies that n � t(l + 1) < n + 1also holds. The formula H l = projl(H l+1)implies in this case that6H l(:; t(l)) = projl �H l+1(:; t(l))�= [k H l(:; [t(l); k])5of suitable clocks so that the corresponding formulae make sense6we use the notation (11) 23



so that n(!; t(l)) 2 H l and !0 �n !o ) n(!0; t(l)) 2 H lowhich proves the �rst assertion by induction.To prove the second assertion, select m as in (21) and setClm(!) = maxnk � 0 : [t(l); k] 2 H l+1(!; :)oThen apply Lemma 1 to the clocks H l+1 � H l " Cl to get Bl.To prove (25) we remark that the formula (26) yields the desired decom-position. This �nishes the proof of Theorem 1.Comments.1. The most general time index set we may expect is any denumerableordinal T . But, if t denotes a limit ordinal in T , there exists anincreasing sequence in T converging to t. Hence only �nitely manysuch limit ordinals may exist in T , otherwise T would contain NNwith lexicographic order, but this latter ordinal is isomorphic to @owhich is not denumerable. Finally T must be a subset of NL for some�nite L, so that Theorem 2 is the most general one may expect.2. This theorem states that assuming that every clock is de�ned in termsof the most frequent one is incorrect from the mathematical point ofview: both multiplexing and �ltering should be used in general.3. The combined use of the operations " and _ on clocks may causedi�culties, as the following example shows. Consider two di�erentnonnegative integer signals C and C 0 of clock Id. Should we considerthat the two clocks Id " C and Id " C 0 take their values(a) in the same, or(b) in di�erentcopies of the setN�N? In the �rst case, the supremum (Id " C)_(Id "C 0) does exist, while it does not in the second case since no total orderis de�ned on the union of these two di�erent copies.Although simpler, the �rst choice is not very convenient, for it wouldresult in very strange situations. Take for instance C � 1 and C 0 � 3:one may expect that this should correspond to increasing the samplingby a rate 2 and 4 respectively. Unfortunately this is not what we getby applying the de�nition of multiplexing, which yields instead24



ticks of Id: � � �ticks of Id " C: � � � � � �ticks of Id " C0: � � � � � � � � � � � �Finally, the most reasonable choice is the second one, namely to alwaysassume that di�erent signals C create clocks with values in di�erenttime index sets. This should be kept in mind in the sequel.4. The main result of this section is that the algebra of the clocks ofa given process is equipped with the operations ^ and _ in anatural way, and that the �ltering and the multiplexing are theconvenient constructions to build any clock. Obviously (as ithas been pointed out in [27]), these two constructions may be combinedinto a single one provided that in De�nition 6, Cn be interpreted as theamount of instants inside the semi{closed interval [Hn; Hn+1) insteadof the open one (Hn; Hn+1) as we have done. But we preferred to keepthis distinction since only the multiplexing may create problems.4.4 Isomorphisms and process algebraNotice that, given two processes P = f
;�g and P 0 = f
0;�0g, their com-munication P jP 0 is well de�ned: just take the MCRS 
j
0 and consider itsinformation ow according to De�nition 1. The same holds for the restric-tion P !!A which is built over 
!!A. Hence the set of processes equipped withthe communication and restriction will be called the process algebra. Westate now a notion of isomorphism within the process algebra.De�nition 7 Two processes P = f
;�g and P 0 = f
0;�0g are said to beisomorphic, written P �= P 0if there exists a bijection � : 
! 
0 such that �(�n) = �0nClearly, this notion of isomorphism is a congruence, namelyP �= P 0 and Q �= Q0 ) P jQ �= P 0jQ0A natural notion of morphism may be de�ned as well: the map � introducedin the above de�nition is amorphism from P into P 0 if ��1(�0n) � �n, where��1 denotes the inverse map of � (wich acts on subsets of 
0), and � is theordering on partitions we introduced just before the de�nition 1. But weshall not discuss the notion of morphism any further.25



4.5 Processes revisited: a more abstract de�nitionIn De�nition 4 we introduced time changes. Referring to this de�nition wemay wish to set ~�n = �Hn and consider objects such as f
; ~�g. Unfortu-nately, such objects are not covered by De�nition 1 since the elements of thepartition ~�n are not initial segments of 
 of length n.However it is not until the beginning of subsection 4.4 that we used thefact that the 
's are MCRS and the �'s associated information ow of initialsegments. In fact this property has only been explicitly used in de�ning theprocess communication P jP 0. In all other statements and proofs the onlyproperties we really needed on the objects 
;�n;�n were the following:� 
 is a set.� (�n) is an ordered family of partitions of 
 and ! �n !0 if by de�nition! and !0 belong to the same element of the partition �n.Let us state this more precisely.De�nition 1 revisited A process is a pair f
; (�n)n2Ng or f
;�g forshort, where� 
 is a set� for every n, �n is a partition of 
 and we write ! �n !0 to mean that! and !0 belong to the same element of the partition �n,� the family of partitions (�n) is ordered by re�nement, i.e. for m � n,each element of �m is a union of elements of �n; moreover, �0 =f
; ;g.The ordered family of partitions (�n) is called the information ow of theprocess.Everything in this section 4 carries out to this more abstract notion ofprocess, except the de�nition of process communication for which the de�-nition we gave explicitly used the fact that 
 is a MCRS. In particular, wemay use the results on the algebra of clocks for the (time changed) processf
; ~�g we introduced at the beginning of this subsection, and we may alsouse the notion of process isomorphism. This generalization will be requiredin Section 5 where some properties of Signal are studied.26



In fact, the whole 
 model might have been developed entirely based onthis abstract de�nition, including the notion of process communication. Thismakes the whole theory harder to follow so that we preferred the presentationof this paper. The reader interested in the abstract version of the 
 modelis referred to [4] [5].4.6 DiscussionWe have introduced the 
 model as a re�nement of the Tracemodel. We �rstequipped the notion of MCRS with the structure of initial segments to derivethe notion of process. Then we built on this new notion a denotational theorywhich encompasses both relational and functional styles of speci�cation.Finally we have shown how this theory may perfectly �t a more abstractnotion of process that covers in particular the use of time changes.We used this model to study the algebra of clocks and shown that the�ltering and multiplexing are convenient primitives to build any synchroni-sation mechanism. Unfortunately it appeared that the multiplexing as suchcauses di�culties to occur since the supremum of two clocks obtained viamultiplexing is generally not properly de�ned. The 
 model will be used inthe next section to investigate the properties of Signal.5 Properties of SignalIn this section, we show that Signal satis�es the following properties:1. The semantics of any program may be stated using a process whichpossesses Id as the most frequent7 clock. Consequently, no multiplex-ing is involved in such semantics and we do not encounter the problemsthat may be caused by the simultaneous use of _ and " operators onclocks (cf. the warning of subsection 4.3.1 and the comment 3. follow-ing the proof of theorem 2).2. However Signal allows to simulate the multiplexing in a sense weshall formalize. Hence this ensures that Signal has the maximum de-scriptive power to specify synchronisation mechanisms in synchronousreactive systems.3. The 
 model may be used to de�ne di�erent semantics of a Signalprogram, from purely relational to purely functional ones, and these7or maximal in the sense of the ordering on the clock algebra27



di�erent semantics are shown to be bisimulation equivalent in a sensewe shall make precise.Because of point 3, we shall indicate explicitly whether we consider theTrace{semantics of a Signal program, or one of its 
{semantics. In han-dling Signal programs and their semantics, we shall use the following nota-tions: for each signal X involved in a Signal program, we denote by X andH(X) the corresponding signal and its clock in the considered semantics.5.1 Signal does not use the multiplexing as suchTheorem 3 The Trace{semantics of any Signal program may be statedwithout the use of multiplexing.Proof: this is an immediate consequence of the two following facts:1. the Trace{semantics of Signal has been given in terms of the Tracemodel of Section 3,2. no oversampling of clocks is possible within the Trace model, cf. thecomment 1. following de�nition 3.5.2 Signal allows to \simulate" the multiplexingThe unde�ned notations may be found in Section 4.3.3. Consider the clockH = Id " CWe may write Hk = [Nk;Mk] (27)where8 Nk = if (Mk�1 = CNk�1) then Nk�1 + 1 else Nk�1Mk = if (Mk�1 = CNk�1) then 0 else Mk�1 + 1 (28)We shall translate these formulae into a Signal program. The currentinstant is k: it will be handled implicitly.However we also need to handle the signal CNk : this signal may beproduced by the following program:8these formulae are an immediate writing of the �gure 128



(| CURRENT_C := C default LAST_C| LAST_C := CURRENT_C $ 0| synchro CURRENT_C, M, N|)The last instruction speci�es that the three mentioned signals must have thesame clock. Then, CURRENT C carries the most recent value of C, and Cnk isrepresented by the signal CURRENT C.The boolean signal (mk�1 = Cnk�1) is also needed. The input signal Cis received the instant following a true occurrence of this boolean (this isexpressed by the last synchro instruction). The corresponding program is(| DOWN_NEXT_TIME := (M = CURRENT_C)| DOWN := DOWN_NEXT_TIME $ true| synchro C, true when DOWN|)Then it remains to encode the two equations (28):(|(| N := (ZN+1 when DOWN) default ZN| ZN := N $ 0|)|(| M := (0 when DOWN) default ZM+1| ZM := M $ 0|)|)This gives �nally the program9MUX { ? C ! N,M } % ? list of inputs, ! list of outputs %=(|(| CURRENT_C := C default LAST_C| LAST_C := CURRENT_C $ 0| synchro CURRENT_C, M, N|)|(| DOWN_NEXT_TIME := (M = CURRENT_C)| DOWN := DOWN_NEXT_TIME $ true| synchro C, true when DOWN9a much more concise program exhibiting a multiplexing mechanism has been presentedin [7], it is based on a decreasing counter; the present form is useful for our theoreticalpurpose 29



|)|(|(| N := (ZN+1 when DOWN) default ZN| ZN := N $ 0|)|(| M := (0 when DOWN) default ZM+1| ZM := M $ 0|)|)|) !! C,M,N % visible ports %For each of the three modules we have introduced, it is straightforward al-though tedious to verify using the Trace{semantics of Section 3.3 that itimplements the desired formulae, namely (27) and (28).Next, consider the following two processes:10PRIMITIVE MUX = f
C;�Cg ; where (29)C is the alphabet fCg
C is the set of all possible histories of Cand �C is the associated information ow, andMUX = f
;�g ; where (30)
 is the Trace{semantics of program MUX, cf Section 3.3and � is the associated information ow. According to (5), each ! 2 
 is ofthe form ! = (!C; !N; !M)and we denote by � the �rst projection:� : ! 2 
 �! !C 2 
COn the other hand, denote by H the clock of C in MUX , and consider thetime{changed information ow (cf. De�nition 4)~�k �= �Hkon MUX . Then we have the following theorem where the abstract notionof process as in De�nition 1 revisited is used:10cf. Section 3.1 and 4.2 for unde�ned notations30



Theorem 4 1. We have! �Hn !0Hn(!) � k < Hn+1(!) ) ) ! �k !02. The map � is an isomorphism from the process n
; ~�no onto the pro-cess f
C; (�C)ng, and the image by � of the N2{valued signal [N;M ]is the clock Id " C:Comment: the �rst statement expresses that no fresh information is re-ceived by MUX between two successive occurrences of C, so that no lossoccurs by replacing the original information ow (�n) by the time changedone (~�n). And the second statement gives a precise meaning to what wemean by \simulating the multiplexing".Proof: For Hn(!) � k < Hn+1(!) (31)it is easily checked on the Trace{semantics ofMUX that this process evolvesas follows: Nk+1(!) = Nk(!); Mk+1(!) = Mk(!) + 1which proves statement 1 since the condition (31) only depends on the initialsegment of length Hn.That � is a bijection is a consequence of the fact that the behaviourof the process MUX is entirely determined by its input C. Finally, that[N;M ] is mapped onto Id " C is an immediate consequence of the fact thatthe program MUX implements the formulae (27)(28).Discussion: The reader may have found what is the deep reason for Sig-nal to be able to simulate the multiplexing. The key tool is in fact processcommunication. The multiplexing is rebuilt within the program MUX accord-ing the following two pieces:1. The �rst piece is the two following instructions(| CURRENT_C := C default LAST_C| LAST_C := CURRENT_C $ 0|) 31



The communication causes the two signals LAST C and CURRENT C tohave the same clock, and the �rst instruction asserts that C is less fre-quent than the two other signals. This program causes a (non deter-minate) amount of ?'s to be inserted between successive occurrencesof C. More generally, the e�ect of the communication as de�ned in Sec-tion 3 may also be expressed on the \compressed" traces (i.e. traceswith no silent events): in P jQ the traces of P and Q are \expansed"(i.e. silent events are inserted) to allow for signals of shared ports to beidentical. This expansion mechanism is a sort of \weak" multiplexing,i.e. a multiplexing which is not determined entirely by P , but needs acommunication with another process in order to occur.2. The second piece is the instruction(| synchro C, true when DOWN|)Since DOWN is a function of C, this instruction speci�es the amount ofinserted silent events between successive occurrences of C as a func-tion of C itself. This �xes the \weak" multiplexing created by thecommunication and makes it a deterministic operator.5.3 From Trace{semantics to 
{semantics of Signal programsTheorem 4 states that at least two di�erent semantics may be of interest forthe program MUX f?C !N,Mg, and that they are related via a time changefollowed by the isomorphism �. We shall show that this situation may begeneralized.Example: a semantics of the instruction Y := X when B may be given inthe two following ways:1. Its Trace{semantics, namely P1 = f
;�gwhere 
 is the Trace{semantics built according to the rules of Section3.3 and � is the associated ow of initial segments. This is a purelyrelational style of semantics. 32



2. A new semantics, namelyP2 = n
fX;Bg;�fX;Bgowhere 
fX;Bg is the set of all histories on the alphabet fX; Bg, as de�nedin Section 3.3 and �fX;Bg is the associated ow of initial segments,whereas Y and its clock H(Y ) are de�ned byH(Y ) = H(X) ^ (H(B) # B)H(Y )n(!) = H(X)m(!) ) Yn(!) = Xm(!) (32)This is a purely functional style of semantics as wished at the beginningof Section 4.In either case 1 or 2, however, a triple fY;X;Bg of signals were de�ned on aprocess f
;�g, which satis�ed the relations (32). This is a situation similarto that of Section 5.2, and we show next that both examples are particularcases of a general result.5.3.1 DeterminismConsider a Signal program P and partition the set of its signals as fU1,...,Up;Y1,...,Yqg. Denote by 
 its Trace{semantics. We consider also the associ-ated process P = f
;�g where � is the information ow of initial segmentsof 
.The information on P an observer may learn by having access to U1,...,Uponly is represented by an information ow we denote by �U and call theinformation ow generated by the Ui's. This information ow may be con-structed as follows. Consider the family of all information ows on 
 makingeach of the Ui (i = 1; :::; p) to be a signal of clock H(Ui). This set is notempty since it contains �. Referring to the order on information ows de-�ned by �0 � �00 if by de�nition 8n;�0n � �00n, this set is stable by �nitein�mum. Hence a minimal information ow does exist within this set: thisis �U . The information ow �U is characterized by the following property:for (!; k) de�ne the index ni viaH(Ui)ni(!) � k < H(Ui)ni+1(!)then, we have ! ��Uk !0 (33)33



m8i = 1; :::; p; n � ni : ( H(Ui)n(!0) = H(Ui)n(!)(Ui)n(!0) = (Ui)n(!)This formula expresses that �U is entirely known when the Ui's are observed.De�nition 8 The program P is said to be deterministic w.r.t. U1,...,Upif �Un = �n (34)holds (no information is lost by observing only the Ui's).It turns out that the reasoning of Section 5.2 may be borrowed here. SetH = H(U1) _ :::_H(Up)and write ~�n = �Hn . Then the following theorem holds:Theorem 5 If P is deterministic w.r.t. U1,...,Up then1. no fresh information is received between Hn and Hn+1:! �Hn !0Hn(!) � k < Hn+1(!) ) ) ! �k !0 (35)2. writing ! = �!U1; :::; !Up;!Y1; :::; !Yq�, the map� : ! �! �!U1; :::; !Up�is an isomorphism from f
; ~�g onto f
!!U;�!!Ug where 
!!U is the re-striction of 
 to the subalphabet U = fU1; :::; Upg and �!!U is the asso-ciated information ow of initial segments.Proof: statement 1 is just a rewriting of (33), and statement 2 is an im-mediate consequence of 1. Notice that it is not assumed here that the Ui'sare free intputs: they may be constrained, hence the use of the restriction
!!U which is in general di�erent from the set of all possible histories on thealphabet fU1; :::; Upg.Su�cient conditions to guarantee for a Signal program to be determin-istic are checked by the Signal compiler as shown in [6] [5].34



5.3.2 BisimulationsConsider a process f
;�g where 
 is a MCRS and � the associated infor-mation ow of initial segments. Then assume we are given another processf
0;�0g in the generalized sense of De�nition 1 revisited.De�nition 9 A bisimulation from f
;�g onto f
0;�0g is a pair (H;�)where1. H is a clock on f
;�g satisfying the condition (35)2. � is an isomorphism from f
; ~�g onto f
0;�0g where ~�n = �Hn.We write f
;�gH;�! f
0;�0gto refer to the above property and we de�ne the bisimulation equivalenceas its transitive and reexive closure.Comment: Hence, observing two processes that are bisimulation equiva-lent provides the same information, however at rates that may be di�erent(cf. the theorem 6 below for a precise statement of this). The communica-tion of a given process with two processes that are bisimulation equivalentalso yields two processes that are bisimulation equivalent. These remarksjustify the use of the name \bisimulation" which is classical in process cal-culi. Finally, note that theorem 5 relates bisimulation with determinism.Theorem 6 We are given a bisimulationf
;�gH;�! f
0;�0gand we set Cn(!) = Hn+1(!)�Hn(!). We de�ne the map(H;�)� : K �! K0where K is a clock on the process f
;�g which we decompose according totheorem 211 K = �:::(Id # B1)::: " CL� # BL11we use in fact the \minimal" decomposition labelled with :�'s in theorem 235



and K 0 is then given by12K 0 = h�:::([Id " C] # B1)::: " CL� # BLi ���1Then the map (H;�)� is an isomorphism between the clock algebras off
;�g and f
0;�0g.Proof:1. C ���1 is a signal of clock Id on f
0;�0g. Since H is a clock, we haveHn+1(!1) > k!2 �k !1 )) Hn+1(!2) > kFrom this and condition (35) we deriveCn(!1) > k �Hn(!1)!2 �Hn !1 )) Cn(!2) > k �Hn(!2)so that !2 �Hn !1 ) Cn(!2) � Cn(!1)whence equality follows by symmetry: this proves step 1. Conse-quently Id " (C � ��1) is a clock on f
0;�0g.2. K 0 is a clock on f
0;�0g and the image by � of the partition �Kn isthe partition �0K0n . We prove this by induction on the length L of thedecomposition of K. The result for L = 1 was proved in step 1. Hencewe assume the result to hold for K as in the theorem, and prove it forthe clock (K " CL+1) # BL+1. By de�nition of the multiplexing!2 �Kn !1 ) CL+1n (!2) = CL+1n (!1)But by assumption!2 �Kn !1 , �(!2) �K0n �(!1)so that CL+1n � ��1 is constant on the elements of the partition �0K0n ,whence (K " CL+1)���1 is a clock. Similarly we prove thatBL+1���1is constant on the elements of the partition �0K00n where K 00 = (K "CL+1) � ��1. This proves step 2.12f � g denotes the composition of the maps f and g36



program clocks signalsR(x1,...,xp) H = H(x1) = ::: = H(xp) H : R(x1; :::; xp)y := x $ xo H = H(y) = H(x) H : yn = xn�1y := x when b H = H(y) = H(x) ^ (H(b) # b) H : y = xY := u default v H(y) = H(u) _H(v) H(u) : y = uH(v)�H(u) : y = vP|Q H(P) [H(Q) sig(P)[ sig(Q)Table 1:3. The map (H;�)� is invertible and its inverse is K0 ! K whereK 0 = �:::(Id # B01)::: " C 0L� # B0Land K = �:::(H # B1)::: " CL� # BLwhere Bl = B0l � �; Cl = C0l � �. This is easy although tedious toverify.4. That (H;�)� is an isomorphism of clock algebras follows immediatelyfrom the preceding steps. For instance K2 = K1 # B yields K02 =K 01 # B0 where B0 = B � ��1. Similarly K = K1 _ K2 rewrites toK1 = K # B1 and K2 = K # B2 where B1orB2 = true which carriesout through the map (H;�)�. This �nishes the proof of the theorem.5.3.3 The 
{semantics of a Signal programConsider the table 1 where H : y = x is a short-hand to mean[Hk(!) = H(y)n(!) = H(x)m(!)]) [yn(!) = xm(!)];H(v)�H(u) denotes the unique clockK such thatH(v) = K_(H(u)^H(v)).This table shows how to derive the system of clock equationsH(P) and signalequations sig(P) associated with the program P.De�nition 10 We are given a Signal program P with involved signalsfu1,...,up; y1,...,yqg and we assume P to be deterministic w.r.t. u1,...,up.Then we term a 
{semantics of P a triple f
U;�U; [u1; :::; up; y1; :::; yq]gwhere 37



� 
U is the Trace{semantics of the program P!!u1,...,up13 and �U isthe associated information ow of initial segments� for i = 1; :::; p; ui is the i{th signal of the history !U 2 
U and H(ui)its clock� for j = 1; :::; q; yj is a signal of clock H(yj) on the process f
U;�Ugand the family of signals [u1; :::; up; y1; :::; yq] satisfy the constraints speci�edby the program P according to the table 1.Summary. The 
{semantics of a program is generally not unique asshown by the examples of the MUX and of the when. Theorems 5 and 6provide a way to build di�erent 
{semantics of a program by starting fromits Trace{semantics and selecting any t-uple making this program determin-istic. The so obtained 
{semantics are bisimulation equivalent.6 ConclusionStarting from elementary discussions related to systems of dynamical equa-tions we motivated the introduction of Signal as a language to specify andprogram reactive systems. As a �rst attempt to provide a denotational se-mantics of Signal we introduced the Tracemodel which is purely relationaland exhibits built-in parallelism: objects within this model are de�ned asrestrictions on the set of all possible joint behaviours of \signals". To furtherinvestigate fundamental issues related to synchronous languages and reactivesystems we introduced a drastically new 
 model which encompasses bothrelational and functional styles of speci�cation, and allowed us to introducethe notions of clock and signal via axioms. Then two basic constructionswhere proved able to build any new clock from a master one, namely the�ltering (or event based undersampling) and multiplexing (or event basedoversampling). Finally we proved that Signal possesses the �rst construc-tion as a built-in primitive while the second one may be \simulated" in someprecise sense. This shows in particular that Signal possesses maximum de-scriptive power for synchronisation mechanisms. Finally, we have shownhow the 
 model may be used as an alternative semantic domain of Signalto obtain di�erent semantics (from relational to purely functional ones) thatare bisimulation equivalent.13the restriction of P to the listed signals38



We believe that, although probably unfamiliar to the computer sciencecommunity, our 
 model is a signi�cant contribution to fundamental stud-ies on synchronous reactive systems. In particular a variation of this modelprovided us recently with a multiple clocked generalisation of Leiserson andSaxe's theory of retiming that may be applied to various proofs of equivalenceof synchronous reactive systems. This will be presented in a forthcomingpaper.ACKNOWLEDGEMENT: the authors wish to thank two reviewers who helpedin improving a previous version of this paper, and Paul Caspi and ThierryGautier for fruitful discussions.Appendix: notationsT # compression of a trace sect. 3.1
A; !A histories on A sect. 3.1!a signal of port a sect. 3.1clock(a); clock(!a) clock of a sect. 3.1
 MCRS sect. 3.2 and 4
 a set sect. 5!! restriction sect. 3.2
1j
2 MCRS communication sect. 3.2(Trace){semantics sect. 3.3�n initial segments sect. 4.2, eqn. (7)�;�n information ows sect. 4.2 def. 1, 5f
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