
HAL Id: hal-00548887
https://hal.science/hal-00548887

Submitted on 20 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validation of Mixed Signal-Alpha Real-Time Systems
through Affine Calculus on Clock Synchronisation

Constraints
Irina Smarandache, Thierry Gautier, Paul Le Guernic

To cite this version:
Irina Smarandache, Thierry Gautier, Paul Le Guernic. Validation of Mixed Signal-Alpha Real-Time
Systems through Affine Calculus on Clock Synchronisation Constraints. World Congress on Formal
Methods in the Development of Computing Systems (FM’99), Sep 1999, Toulouse, France. pp.1364-
1383, �10.1007/3-540-48118-4_22�. �hal-00548887�

https://hal.science/hal-00548887
https://hal.archives-ouvertes.fr

Validation of Mixed Signal-Alpha Real-TimeSystems through A�ne Calculus on ClockSynchronisation ConstraintsIrina M. Smarandache1, Thierry Gautier2, and Paul Le Guernic21 The University of Reading, Department of Computer ScienceWhiteknights, PO Box 225, Reading RG6 6AY, United KingdomTel.: (44) 118 931 8611 (7626), Fax: (44) 118 975 1994I.M.Smarandache@reading.ac.uk2 IRISA-INRIA, Campus de Beaulieu, 35042 Rennes Cedex, FranceThierry.Gautier@irisa.fr, Paul.LeGuernic@irisa.frAbstract. In this paper we present the a�ne clock calculus as an exten-sion of the formal veri�cation techniques provided by the Signal lan-guage. A Signal program describes a system of clock synchronisationconstraints the consistency of which is veri�ed by compilation (clock cal-culus). Well-adapted in control-based system design, the clock calculushas to be extended in order to enable the validation of Signal-Alpha ap-plications which usually contain important numerical calculations. Thenew a�ne clock calculus is based on the properties of a�ne relations in-duced between clocks by the re�nement of Signal-Alpha speci�cationsin a codesign context. A�ne relations enable the derivation of a new setof synchronisability rules which represent conditions against which syn-chronisation constraints on clocks can be assessed. Properties of a�nerelations and synchronisability rules are derived in the semantical modelof traces of Signal. A prototype implementing a subset of the synchro-nisability rules has been integrated in the Signal compiler and used forthe validation of a video image coding application speci�ed using Signaland Alpha.1 IntroductionReal-time systems, and more generally reactive systems [4], are in continuousinteraction with their environment. Therefore, they must respond in time toexternal stimuli. Moreover, real-time systems must be safe, thus one would wishto prove their correctness. Time constraints and safety are two important aspectsto be considered in the design of a real-time application.Real-time systems may be constrained by very tight real-time deadlines.Moreover, a hardware implementation of parts of these systems is sometimesrequired, to meet speci�c constraints for instance. An example is an applicationconsisting of numerical calculations performed iteratively on large structures ofregular multidimensional data. In this case, a hardware/software implementationmay be envisaged, in which the numerical calculations are conveyed to hardware

for e�ciency reasons, while the control relating these parts is implemented insoftware.In general, designing a mixed hardware/software real-time system requires arigorous methodology that comprises methods and tools addressing, among oth-ers, system speci�cation and validation, optimal code generation and hardwaresynthesis. These aspects are dealt with in codesign [7] [9] which denotes the spec-i�cation, validation and implementation of an application which consists bothof a hardware part, in the form of a set of specialised integrated circuits, and asoftware part implemented on general programmable processors. The idea is toexplore various possible implementations of hardware/software systems in orderto improve their performance and to ensure the respect of cost constraints.1.1 Real-Time System CodesignSystem codesign is a complex process which can be decomposed into three mainactivities [7]: 1. The cospeci�cation of an application at various levels of abstrac-tion; 2. The validation of a speci�cation by formal veri�cation or simulation, alsoknown as cosimulation; 3. The hardware/software partitioning of an application,the evaluation of a partitioning from the point of view of the time constraintsand cost, the generation of executable code, the synthesis of hardware, and theproduction of the interface between hardware and software, i.e cosynthesis. Alot of work has been done, the purpose of which was to de�ne a well-structuredmethodology for codesign [7] [11] [19]. An important point was generally thedescription of both hardware and software using the same language, like for in-stanceVhdl enhanced with mechanisms for callingC functions [14], or high-levellanguages like C, C++ or Fortran extended with facilities for the descriptionof hardware systems [10]. These approaches enable the programming of both thehardware and software parts of a system in a unique framework and their vali-dation by simulation. However, they cannot guarantee system correctness. Thisaspect can be much improved by using formal languages for system speci�cation,re�nement of speci�cations towards lower levels of abstraction (implementation)and validation of the various speci�cations by formal veri�cation.De�ning a complete methodology of codesign requires addressing other rel-evant problems, most of them concerning cosynthesis. Among these problemsthere are the automatic partitioning into hardware and software, the synthesisof hardware and the generation of optimal code for software implementation.The work presented in this paper is part of a more general e�ort for buildinga hybrid framework in which the Signal [12] [13] and Alpha [20] languages canbe used for real-time system codesign.1.2 Cospeci�cation and Cosimulation of Signal-Alpha SystemsSignal is a synchronous [4] language developed for the speci�cation, validationand implementation of real-time systems. Signal variables represent �nite orin�nite sequences of values (data) which can be �ltered or merged before beingsubmitted to classical boolean or mathematical operations. A clock is implicitly

associated with each Signal variable: it represents a set of temporal indiceswhich denote the logical instants where the variable is present and has a value.The semantics of a Signal program can be described by a system of constraints(relations) on clocks and values, which is constructed and veri�ed for consistencyduring compilation. The veri�cation of the clock constraints is called clock cal-culus. The Signal environment is enhanced with tools for C [5] and Vhdl [3]code generation and formal veri�cation of dynamic properties [2].In its present form, Signal is well-adapted for the design of control-basedreal-time systems. Firstly, this is due to its limitations concerning the treatmentof computations on multidimensional data such as matrices. Only simple algo-rithms can be expressed in Signal and no signi�cant optimisation is performedat the level of the generation of executable C or Vhdl code concerning vectors.In contrast with Signal, the Alpha language has been developed primarily forthe speci�cation and implementation of algorithms on multidimensional data.Such algorithms can be described in Alpha using a�ne recurrence equationsover convex polyhedral domains [20] and be further transformed for optimalhardware or software implementation on parallel or sequential architectures [21].Given their complementary properties, the Signal and Alpha languagescan be used jointly for the design of real-time systems containing importantnumerical calculations on multidimensional data and control: numerical compu-tations are expressed in Alpha and the control is conveyed to Signal. When thereal-time requirements of the system are very tight, a mixed hardware/softwareimplementation may be envisaged. In [9] we propose a hybrid framework for thecombined use of Signal and Alpha in real-time system codesign. In order forthis framework to be operational, it is necessary to interface Signal and Alphaprograms both at the functional and architectural level. The former correspondsto a high-level mathematical representation of an algorithm in Alpha, while thelatter contains a set of new temporal indices corresponding to the execution ofthe algorithm on a parallel or sequential architecture.In Signal-Alpha systems, the re�nement of an Alpha program from afunctional level to an architectural level oriented toward a particular implemen-tation also induces a re�nement of the temporal indices in Signal. The newtime indices are obtained through a�ne transformations on the instants of timeof the initial Signal speci�cation. Consider clocks c and c1 in Signal whichare identical at the functional level (they are also denoted as synchronous). Af-ter re�nement, their relative position is such that clock c1 can be obtained byan a�ne transformation applied to clock c: the instants of time of c and c1,denoted respectively T and T1, can be described by a pair of a�ne functionsT = fnt+ '1 j t 2 T g, T1 = fdt+ '2 j t 2 T g, on the same set of instants T .With ' = '2 � '1, we will say that clock c1 is obtained by an (n; '; d)-a�netransformation applied to clock c, where n; d 2 IIN� the set of strictly positiveintegers and ' 2 6Z the set of integers. Clocks c and c1 are also said to be in an(n; '; d)-a�ne relation.Clocks obtained by a�ne transformation may be re-synchronised at the ar-chitectural level. As an example, consider clocks c, c1 and c2 which are identical

in the Signal functional speci�cation. At the architectural level, clocks c1 andc2 have been transformed such that c, c1 and c, c2 are respectively in a�nerelations of parameters (n1; '1; d1) and (n2; '2; d2). Whether clocks c1 and c2can be re-synchronised depends on the properties of the a�ne relations whichare induced from the values of (n1; '1; d1) and (n2; '2; d2). Moreover, the rela-tions between c, c1 and respectively, c, c2 may be expressions on (n; '; d)-a�nerelations constructed using operations like composition, union, etc. In this case,the re-synchronisation of clocks c1 and c2 depends on the properties of theseoperations.The Signal clock calculus performs the veri�cation of clock synchronisationconstraints using a set of synchronisability rules, i.e. conditions against whichthese constraints can be assessed. The current clock calculus depends on booleanequation resolution methods [5] [1] which have been successfully used for the val-idation of numerous control-based real-time applications. However, in order tovalidate mixed Signal-Alpha systems as presented above, it is necessary to ex-tend the current clock calculus with a set of synchronisability rules deduced fromthe properties of (n; '; d)-a�ne relations. The new set of rules de�nes the a�neclock calculus, which constitutes the main topic of this paper. We explore thespace of (n; '; d)-a�ne relations and study to which extent it is closed under themain operations that can be performed on a�ne relations. Following this study,we de�ne a set of synchronisability rules which, although incomplete, enablesthe validation of the principles underlying the cospeci�cation and cosimulationusing Signal and Alpha. The semantical model of traces of Signal [12] [16]constitutes the support for the study of the properties of a�ne relations and forthe de�nition of the new synchronisability rules.1.3 Organisation of the PaperIn Section 2 we present the integration of Signal and Alpha for system code-sign. Section 3 is the central core of this paper and is dedicated to the de�nitionand implementation of the a�ne clock calculus. The main concepts useful forthis purpose are progressively introduced: these are the model of traces of theSignal language, the properties of a�ne relations on clocks, the set of synchro-nisability rules induced by the latter, and �nally the necessary elements for theintegration of the a�ne clock calculus in the compiler. The a�ne clock calculushas been applied to the cospeci�cation and cosimulation of a video image codingapplication; this is briey illustrated in Section 4. In the same section we discussin which way the Signal and Alpha environments may further contribute tothe development of a complete codesign methodology based on both languages.Finally, in Section 5 we present conclusions and perspectives of our work.2 Signal and Alpha in Real-Time System CodesignFigure 1 summarizes the main elements of the environments around Signal andAlpha that make both languages well-adapted for real-time system codesign.

Signal and Alpha programs represent mathematical notations for the proper-ties of the processes they de�ne. The system of constraints on clocks and valuesassociated with a Signal program is transformed by compilation into a synchro-nised data ow graph (Sdfg). This data structure constitutes the support forexecutable code generation (C or Vhdl) or veri�cation of dynamic propertiesusing the formal tool Sigali [2].The Alpha compiler includes a powerful type checking mechanism based onthe structure of an Alpha variable as a function over convex polyhedra. Thesyntax tree obtained after compilation can be directly translated into C code forfunctional simulation, or it can be transformed into a subset ofAlpha calledAl-pha0 which exhibits the details of a parallel or sequential implementation. Thesyntax tree in Alpha0 form can be further translated in C or Vhdl executablecode or directly mapped on a netlist [21].The interface between Signal and Alpha is based on the fact that bothlanguages can be translated in C and executed for functional simulation. Fur-thermore, Signal o�ers the possibility to call external processes: such a processcan be the speci�cation of an algorithm in a language other than Signal. Aparticular type of an external process is a function, the execution of which isconsidered instantaneous from the point of view of Signal. A Signal functioncan be a prede�ned or a user-de�ned C function.

Fig. 1. Signal and Alpha in system codesign.2.1 Functional Cospeci�cation and CosimulationBeing a synchronous language, Signal is based on the following hypotheses [4]:1. All actions (communications and calculations) in a system have zero logical

duration (the elapsed time is represented by the precedence of successive valueson a same data ow); 2. Two or more actions can take place at the same logicalinstant, such actions being termed \simultaneous". From the point of view ofthe logical temporal properties of a system, only succession and simultaneityof instants are of interest. Although their exact time values are not considered,note however that they will be considered for a given implementation. The pro-cess associated with a Signal program represents thus a succession of logicalinstants, with each instant being associated one or more actions considered ofzero logical duration and involving process variables present at that instant.Consider for example a coding system for sequences of video images at 34Mbits/s [8]. A system of this type consists of a set of numerical treatmentsapplied iteratively on images of the same dimension. Images are divided intoluminance and chrominance blocks and treatments are applied to each block.Numerical treatments consist mainly of algorithms for inter and intra imagecoding which require operations like a discrete cosine transformation (Dct). Inorder to illustrate the interfacing between Signal and Alpha, we have isolatedfrom the coding application a simple Signal program and have illustrated theassociated process in Fig. 2. It consists of aDct operation applied in sequence todi�erent values Ai of the matrix of pixels A present at each logical instant of timeti. The matrixA corresponds to a block of luminance or chrominance of an image.The Dct can be expressed in Signal as B := Dct(A), where Dct is actually anexternal process. The Dct is a time consuming algorithm, particularly for largematrices or when applied to images containing a large number of blocks. In orderto improve the overall performance of the coding application, one would wishto execute each instance Bi := Dct(Ai) on a parallel integrated architecture asderived by the Alpha environment.The Dct can be easily described in Alpha. The Signal-Alpha cospeci�ca-tion and cosimulation of the new system is made possible at the functional levelas follows (see Fig. 2): 1. The Alpha system is translated in executable C code;2. The C function ALPHA C obtained at step 1 represents the external processimplementing the Dct in Signal. The function ALPHA C is considered instan-taneous in Signal; the clocks of the matrices A and B, denoted respectively byc and c1, are therefore synchronous. The overall system is thus represented asa Signal speci�cation executing instantaneously the functional description ofthe Alpha speci�cation. The system can be validated in the Signal environ-ment by formal veri�cation (compilation, model checking with Sigali) and/orsimulation.2.2 Implementation-oriented Cospeci�cation and CosimulationA mixed Signal-Alpha speci�cation at the functional level may be re�ned inorder to take into consideration the details of a particular implementation. TheAlpha program of Section 2.1 describing a Dct may be submitted to a sequenceof transformations for a parallel or sequential implementation. These transfor-mations guarantee the equivalence of the �nal speci�cation, noted ALPHA' inFig. 3, with the initial ALPHA system of Fig. 2. The system ALPHA' contains

Fig. 2. Signal-Alpha interface at functional level.the time indices corresponding to a particular scheduling of the Dct operation.In Fig. 3 these time indices are represented as the diagonal sets of micro-instants�tji associated with each macro-instant ti.The Signal speci�cation has to be re�ned accordingly in order to enable thevalidation of the overall system. Therefore, the micro-instants of time of ALPHA'are taken into consideration in the new process SIGNAL' and described as thesets of instants �Sti0, �Sti1, etc. (see Fig. 3). The C function ALPHA' C hasbeen derived from ALPHA' and transformed in order to describe the sequenceof operations performed at each micro-instant of time.

Fig. 3. Signal-Alpha interface at architectural level.The regularity of Alpha values manifests itself in Signal in several ways.First, the sets of micro-instants �Sti0, �Sti1, etc. have the same cardinality. Also,successive values for B are provided at speci�c micro-instants between any twosuccessive macro-instants ti and ti+1 in a regular manner. This situation is il-lustrated in Fig. 4 where the clocks of matrices A and B, denoted respectivelyby c and c1, are de�ned by the following instants of time: c = f0; 9; 18; :::g andc1 = f6; 15; :::g (after providing the values Bi at the instants of time de�ned byc1, the architecture implementing the operation Bi := Dct(Ai) may execute fur-ther computations like initialisations for the next operation Bi+1 := Dct(Ai+1)).

Fig. 4. Illustration of an a�ne relation.In Fig. 4, clock c0 is de�ned by the set of instants f0; 1; 2; 3; 4; 5; :::g. It canbe noticed that clocks c and c1 are placed in a regular manner on the sup-port clock c0: their relative position is such that c1 has been obtained throughan (9; 6; 9)-a�ne transformation applied to c. By de�nition, clock c1 is the re-sult of an (n; '; d)-a�ne transformation applied to clock c if it can be obtainedfrom c through steps 1 and 2 as follows: 1. Constructing a new clock c0 as theunion of c with the set of instants obtained by introducing n � 1 �ctive in-stants between any two successive instants of c (and �' �ctive instants beforethe �rst instant of c when ' is negative). 2. De�ning the clock c1 as the setof instants fdt+ ' j t 2 c0g, with c0 = ft j t 2 IINg (in other words, counting ev-ery d instant, starting with the 'th instant of c0, or with the �rst instant ofc0 when ' is negative). Clocks c and c1 are then said to be in an (n; '; d)-a�ne relation. The above de�nition can be expressed in an equivalent formas follows: clocks c and c1 are in (n; '; d)-a�ne relation if there exists a clockc0 such that c and c1 can be respectively expressed using the a�ne functions�t:(nt+ '1) and �t:(dt+ '2), with '2 � '1 = ', with respect to the time in-dices of c0: c0 = ft j t 2 IINg, c = fnt+ '1 j t 2 c0g, c1 = fdt+ '2 j t 2 c0g.Properties on a�ne relations can be exploited in order to verify thatclocks are synchronisable, that is, their sets of instants can be identi�ed (re-synchronised). Consider (Fig. 2) a Signal program which executes two succes-sive Dct operations at each macro-instant ti, one on a luminance block of animage, noted B := Dct(A), and the second one on the next block of red chromi-nance of the same image, described by D := Dct(C).Each Dct function is expressed in Alpha at the functional level and furtherre�ned according to a particular implementation. The Signal speci�cation isre�ned accordingly and we obtain the timing diagrams of Fig. 5: the clocks of Aand C are synchronous and equal to c, the clocks of B and D are respectivelyc1 and c2, and the clocks c0 and c00 describe the instants of the excution of theDct functions on a potential architecture derived in the Alpha environment.In the functional Signal-Alpha speci�cation, clocks c, c1 and c2 were syn-chronous (see Section 2.1 for details). After re�nement of the time indices inthe Signal-Alpha speci�cation, the clocks c1 and c2 should be re-synchronisedin order to preserve the temporal properties of the whole application. Whetherthe re-synchronisation of c1 and c2 is possible given their relative position asillustrated in Fig. 5, or after further adjustments of their time indices, can bedecided based on the properties of the a�ne relations existing between c, c1

Fig. 5. Synchronisable clocks in the context of codesign with Signal and Alpha.and c, c2 respectively. Clocks c, c1 and c, c2 are respectively in (9; 6; 9) and(7; 3; 7)-a�ne relation in the process SIGNAL'. The relation existing betweenthe triplets (9; 6; 9) and (7; 3; 7) guarantees the equivalence of the correspondinga�ne relations. This will be detailed in Section 3. Informally, the equivalence ofthe above a�ne relations expresses the fact that the relative positions of clocksc and c1, respectively c and c2, are identical. Based on this observation, clocksc1 and c2 can be identi�ed without contradicting the temporal behaviour of theother clocks in the Signal program. The instants of time of clocks c0 and c00situated between two successive instants of c and c1 (or c2) are independent andcan be positioned with respect to each other in various manners; in Fig. 5 wehave illustrated one possibility. Therefore, c1 and c2 can be re-synchronised; wesay that c1 and c2 are synchronisable.The aim of the a�ne clock calculus discussed in Section 3 is to de�ne neces-sary and su�cient conditions for clock synchronisability based on the propertiesof a�ne relations on clocks. These conditions are expressed as a set of synchro-nisability rules and are derived in the semantical model of traces of Signal.Section 3 begins with an introdution to these concepts.3 A�ne Calculus on Clocks in SignalFigure 6 introduces the reader to the semantics of traces [12] [16] of Signal.The most important concepts in Signal are: 1. the signal, which denotes avariable of the language and represents a �nite or in�nite sequence of values;2. the clock, a variable associated with each signal which represents the set oflogical instants where the values of the signal are present. Signal operatorsmanipulate signals by imposing implicit or explicit constraints on their valuesand clocks. Constraints on clocks are usually expressed as identities between

clock expressions constructed using the operators of intersection (^), union (_)or di�erence (n). Clocks can be also subsets of other clocks de�ned as samplingsby boolean conditions. When no condition is explicitly or implicitly stated on apair of clocks, they are independent.

Fig. 6. Illustration of Signal semantics of traces.A Signal program describes a real-time system, which is in continuous inter-action with its environment. Input values are transformed corresponding to theactions of a given speci�cation and the results are provided to the environment.This situation is illustrated in Fig. 6 in the case of a program manipulating in-puts x and y and providing output z depending on the values of x and y. In casez is the addition of x and y, signals x, y and z are implicitly constrained by the+ operator in Signal to have the same clocks cx = cy = cz.The con�gurations F and F 0 illustrated in Fig. 6 correspond to two di�erentexecutions of the Signal program, involving sequences xi, yi and zi and respec-tively x0i, y0i and z0i. The set of all possible con�gurations, called traces, whichcan be exhibited during the execution of a Signal program, de�nes completelythe process P associated with the program. Consider A a subset of the set B ofsignals manipulated by a program. A trace may contain instants with no actioninvolving signals from A. However, each instant of this type contains actionswhich involve other signals from the set BnA. Given a subset A of signals, a owon A is a trace with at least one action involving signals from A for each logicalinstant. In the particular case of Fig. 6, if we consider the subset of signals tobe fx; y; zg, the traces illustrated are actually ows.More generally, the process P associated with a Signal program is a set ofows on the variables of the program. Each ow F in P is constrained by a systemof equations on the clocks and values of signals manipulated by P . Equationson values can be further expressed in the abstract form of a data dependencygraph (an example of a data dependency graph is illustrated in Fig. 6 for the +

operator). Besides the clock calculus, the compiler veri�es data consistency bychecking the absence of cycles in the data dependency graph. In the next sectionhowever, we will concentrate mainly on the clock calculus.3.1 Clock calculus & SynchronisabilityThe clock calculus is equivalent to the resolution of a system of clock equations.For example: c = c1c0 = (c1 ^ c2) _ c1c = c0 (1)can be a system derived from a Signal program which manipulates clocks c, c0,c1 and c2. In this simple system, c1 and (c1 ^ c2) _ c1 have clearly to be provedequivalent, which is an immediate consequence of the axioms of the booleanlattice. The space of clocks associated with a Signal program is a boolean lattice[6] the properties of which are extensively used for the proof of equivalences. Theresolution of the system is performed by triangularisation of the system [5] [1].Given a boolean signal Cd, its clock, denoted Ĉd, can be partitioned into theclock [Cd] where the signal Cd is present and true and the clock [:Cd] where Cdis present and false (the clocks [Cd] and [:Cd] represent samplings by booleanconditions). The relations between clocks Ĉd, [Cd] and [:Cd] are expressed bythe partition equations below:[Cd] _ [:Cd] = Ĉd[Cd] ^ [:Cd] = ; (2)The axioms of the boolean lattice together with the partition equations induceon the space of clocks a lattice of an order � \coarser" than the order � ofthe boolean lattice [5]. Clocks can be boolean formulas constructed either withsamplings by boolean conditions [Cd], [:Cd] or with free variables of the booleanlattice. The properties of the lattice of order � are actually used during thetriangularisation of any system of clock equations.The axioms of the lattice � represent a system of synchronisability rules inthe sense described below. Clocks c and c0 are synchronisable in the process P ,which is denoted by c P� c0, if there exists a ow F in P in which c and c0 aresynchronous: c P� c0 , 9F 2 P; c F= c0 (3)(we note c F= c0 the fact that c and c0 are synchronous in F).Whenever the property expressed by equation 3 is valid for each ow F in P ,the clocks c and c0 are said to be synchronous in P , which is denoted by c P= c0.This de�nition can be expressed as follows:c P= c0 , 8F 2 P; c F= c0 (4)

Unless explicitly constrained through the Signal program, clocks c and c0 arecompletely independent in the associated P process. Therefore, their relativeposition can be such that in some ows F in P they are identical, while in someother ows F 0 in P their instants interleave in an arbitrary manner: obviously,if c and c0 are independent in P , they are synchronisable. When the relativeposition of clocks c and c0 is implicitly or explicitly constrained by the Signaloperators, ows F in P are subsequently constrained and the synchronisabilityof c and c0 depends on these constraints.In order to better understand the use of the synchronisability rules, considerfor example a process P derived from a Signal program Prg in which clocks cand c0 are de�ned by the �rst two equations of the system (1):c = c1c0 = (c1 ^ c2) _ c1 (5)Program Prg may be transformed into Prg 0 in which an additional constrainthas been expressed on clocks c and c0: c = c0 (in the Signal-Alpha context, Prgcould be part of a transformed Signal-Alpha speci�cation, as seen above, andPrg 0 the same speci�cation, in which clocks are resynchronised). Consider theprocess P 0 corresponding to the program Prg 0. The system of clock equationsassociated with Prg 0 is (1). Given the set of ows F 0 � P such that c F= c0,8F 2 F 0, it results P 0 = F 0. Therefore, verifying the consistency of (1), which isequivalent to testing that clocks c and c0 are equivalent in P 0, is further equivalentto testing the synchronisability of c and c0 in P . The rule (c1^ c2)_ c1 = c1 fromthe boolean lattice is indeed a synchronism rule: (c1 ^ c2) _ c1 P= c1 for everyprocess P . The same axiom holds for the process P associated with Prg . Andthus (c1 ^ c2) _ c1 P� c1, since synchronism implies synchronisability. Thereforein the example, F 0 is not empty and it can be concluded that P 0 is consistentfrom the point of view of the constraints expressed on its clocks.The rules of the lattice � represent synchronisability rules: each identityf1 = f2, with f1, f2 boolean formulas on clocks, is equivalent to f1 P= f2 whichimplies f1 P� f2 for every process P . These rules can be further extended usingthe properties of the a�ne relations between clocks. Figure 5 illustrates this idea:if P is the process associated with the program SIGNAL', the con�guration inwhich clocks c1 and c2 coincide represent a ow F 2 P such that c1 F= c2. Thus, c1and c2 are synchronisable in P . The reason here is that the (9; 6; 9) and (7; 3; 7)-a�ne relations existing respectively between c, c1 and c, c2 are equivalent. In thenext section, we de�ne the a�ne relation associated with a ow and a processand further explicitate the concept of equivalence of a�ne relations.3.2 A�ne Relations in SignalGiven n; d 2 IIN� and ' 2 6Z �xed, clocks c and c1 are in (n; '; d)-a�ne relation inthe ow F|which is denoted c RF(n;';d) c1 or (c; c1) 2 RF(n;';d)|if the relative

position of c and c1 in F can be induced by an (n; '; d)-a�ne transformation asde�ned in Section 2.2.Clocks c and c1 are in (n; '; d)-a�ne relation in process P , denotedc RP(n;';d) c1 or (c; c1) 2 RP(n;';d), if they are in (n; '; d)-a�ne relation in eachow F of P , i.e. c RF(n;';d) c1, 8F 2 P . Flows and processes are de�ned over theset of variables they manipulate. For a given set A, a ow F on A is a member ofthe set of ows FA that can be constructed with the variables of A. In a similarmanner, a process P on A belongs to the set of processes on A, i.e. P 2 PA.Because of the �nite nature of the sets of variables associated with ows andprocesses, a�ne relations can be de�ned as �nite sets as follows:8F 2 FA; RF(n;';d) = f(c; c1) 2 A�A j c RF(n;';d) c1g (6)8P 2 FA; RP(n;';d) = f(c; c1) 2 A�A j c RP(n;';d) c1g (7)Consider the process P 2 Pfc;c1;c2g de�ned as follows:P = fF 2 Ffc;c1;c2g j c RF(n1;'1;d1) c1; c RF(n2;'2;d2) c2g (8)(induced by a Signal program that manipulates only the clocks c, c1 and c2).From the de�nition of an a�ne relation associated with a process it resultsc RP(n1;'1;d1) c1 and c RP(n2;'2;d2) c2. Clocks c1 and c2 are synchronisable in Pif there exists F 2 P satisfying c1 F= c2. Consider Fs 2 P satisfying c1 Fs= c2.Obviously c RFs(n1;'1;d1) c1 and c RFs(n2;'2;d2) c2. Being identical in Fs, clocks c1and c2 can be replaced with each other and therefore c RFs(n1;'1;d1) c1 impliesc RFs(n1;'1;d1) c2 and c RFs(n2;'2;d2) c2 implies c RFs(n2;'2;d2) c1. It results thereforethat RFs(n1;'1;d1) = RFs(n2;'2;d2) = f(c; c1); (c; c2)g. In conclusion, a necessary con-dition for clocks c1 and c2 to be synchronisable in P is that RFs(n1;'1;d1) andRFs(n2;'2;d2) be equivalent. In the case of the process P de�ned by (8), it can beproved that this condition is also su�cient.The equivalence of a�ne relations depends on the closure properties of thespace of a�ne relations with respect to the main operations that can be appliedto it. These are either union, intersection or di�erence induced by the homonymoperations on clocks, or general operations on relations like inverse and com-position [15]. In the next section we propose a study of these properties in thesemantical model of traces of Signal.3.3 Properties on A�ne Relations & Synchronisability RulesThe semantics of traces. Consider a �nite set of signals A. The set of allpossible ows de�ned on A is denoted FA. Subsets of ows from FA can begrouped in processes which are members of the set PA of all processes that canbe de�ned on A. A Signal program on A de�nes a process P 2 PA; each ow

F 2 P satis�es some constraints imposed by the Signal operators on the clocksand values of the signals from A.Signal disposes of four basic operators (kernel) which are su�cient for theconstruction of any program regardless of its complexity. Kernel operators arecombined through composition and restriction in order to build programs. Thecomposition and restriction of programs induce naturally the corresponding op-erations on processes and ows. Intuitively, the restriction of a ow F to a setof variables A0 � A is the ow �A0(F) which contains only those instants of Fwith actions involving signals from A0.Concerning processes, the main operations are de�ned as follows. Given a setof variables A0 � A, the restriction of P 2 PA to A0 (the projection of P on A0)contains the ows F 2 P manipulating exclusively variables of A0:�A0(P) = fF 0 2 FA0 j F 0 = �A0(F);8F 2 Pg (9)The composition of processes P1 2 PA1 and P2 2 PA2 , with A1, A2 arbitrarysets of variables, is de�ned by:P1 j P2 = fF 2 FA1 [A2 j �A1(F) 2 P1; �A2(F) 2 P2g (10)The following lemma describes the necessary and su�cient conditions|stated as �A2(P) � Q|for a property valid in the process Q to be also alsoin P :Lemma 1. 8P 2 PA1 , 8Q 2 PA2 , A2 � A1,�A2(P) � Q, P j Q = P (11)In other words, given the hypothesis described by the left hand side of (11), Qexpresses a property valid also in P .Properties on a�ne relations. Operations speci�c to relations in general,like inverse ()�1 and composition �, can be applied to a�ne relations [15]. As anexample, consider a process P 2 Pfc;c1;c2;c3g with clocks c, c1, c2 and c3 satisfyingc RP(n1;'1;d1) c1, c1 RP(n2;'2;d2) c2 and c RP(n3;'3;d3) c3. Obviously, it results thatc RP(n1;'1;d1) � RP(n2;'2;d2) c2 and the synchronisability of c2 and c3 depends onproperties of the composition. When the space of a�ne relations is closed undercomposition, the test of the synchronisability of c2 and c3 reduces itself to theveri�cation of the equivalence of a�ne relations.A�ne relations can be further combined through union [r, intersection \rand di�erence nr induced by the homonym operations on clocks (_, ^, n). A sim-ilar argument as before conducts to the necessity of studying closure propertiesof these operators with respect to the space of a�ne relations.Here is a brief presentation of the main steps and results obtained in thestudy of a�ne relations.

Equivalence of A�ne Relations. An equivalence relation, noted�, can be de�nedbetween triplets (n; '; d) as follows: (n; '; d) � (n0; '0; d0) i� either nd0 = n0d andn'0 = n0', for G j ' (i.e., G is a divisor of ') and G0 j '0, or nd0 = n0d andhdt+'n i = h d0t+'0n0 i;8t 2 IIN; dt+' � 0, for G 6 j ' and G0 6 j '0, with G = gcd(n; d)the greatest common divisor of n and d, G0 = gcd(n0; d0) and [x] the integerpart of x 2 IIN. The equivalence of a�ne relations depends exclusively on thevalues of the associated triplets (n; '; d) [17]:Proposition 1.RF(n;';d) = RF(n0;'0;d0); 8 F 2 FA , (n; '; d) � (n0; '0; d0) (12)Canonical Form. In order to reduce the complexity of the test of the equivalence�, we have then de�ned a canonical form (nCF ; 'CF ; dCF) for a triplet (n; '; d)[18] as follows:Proposition 2.a) G j ') (nCF ; 'CF ; dCF) = (nG ; 'G ; dG)b) G 6 j ') (nCF ; 'CF ; dCF) = (2 nG ; (2�'G�+ 1); 2 dG) (13)Consequently, the canonical form of RF(n;';d) is RF(nCF ;'CF ;dCF) and the ver-i�cation of the identity of two a�ne relations is thus reduced to the veri�cationthat two triplets of integers are identical:Proposition 3.RF(n;';d) = RF(n0;'0;d0) , (nCF ; 'CF ; dCF) = (n0CF ; '0CF ; d0CF) (14)Operations on a�ne relations. If any expression on a�ne relations could berewritten as an a�ne relation, the veri�cation of clock synchronisability wouldconsist only in a test of equivalence on a�ne relations as above. But it has beenobserved that this was not the case in general. The closure property is truefor the inverse of an a�ne relation. Also, the a�ne relation RF(1;0;1) is neutralwith respect to composition. However, the closure property is lost when dealingwith composition. The composition of two general a�ne relations RF(n;';d) andRF(n0;'0;d0) does not generally produce an a�ne relation. Nevertheless, it hasbeen possible to identify in the space of the a�ne relations RF(n;';d) a subspaceconsisting of relations of the form RF(1;';d), with ' � 0, in which the closureproperty is true. Following this observation, we have distinguished two cases, asdetailed in the sequel.Properties of a�ne relations RF(1;';d), with ' � 0. It has been demonstrated [16]that the space of a�ne relations RF(1;';d), although closed under composition �and intersection \r , is not closed under union [r and di�erence nr. It is there-fore necessary to de�ne necessary and su�cient conditions for the equivalence

of arbitrary expressions constructed with a�ne relations of the form RF(1;';d)using composition, union, intersection and di�erence. Given the complexity ofthe space of expressions on a�ne relations RF(1;';d) and the necessity of e�cientalgorithms for testing their equivalence, the question of the existence of a canon-ical form appears. Our attempt to provide a canonical form using exclusively the[r operator|based on the observation that any expression in this space can berewritten as a union of a�ne relationsRF(1;';d)|has failed because of the in�nitenumber of possibilities in which a relation RF(1;';d) can be rewritten as a union ofa�ne relations of the same type. However, in [16] we propose a relative normalform which reduces partially the complexity of the equivalence calculus.Properties of general a�ne relations RF(n;';d). Deciding that two arbitrary ex-pressions on general a�ne relations are equivalent is a di�cult problem. Aninitial step may be to isolate subsets of triplets (n; '; d) and (n0; '0; d0) whichrespect the condition that the result of the operation RF(n;';d) opr RF(n0;'0;d0),with opr 2 f�;[r;\r; nrg, is an a�ne relation. In [16] we propose a subsetof such triplets f(n; '; d); (n0; '0; d0)g, for which the above property is true, forthe composition. Computing this subset f(n; '; d); (n0; '0; d0)g is an NP-completeproblem. Future work may consider the applicability of heuristic search methodsfor this computation. Another open problem is the study of the properties of theunion [r, intersection \r and di�erence nr of general a�ne relations.Synchronisability rules. The main results concerning the particular a�nerelations RF(1;';d), with ' � 0, and the general ones RF(n;';d) have respectivelypermitted the induction of a set of synchronism rules and a set of synchronisabil-ity rules. These rules actually represent a set of conditions which are necessaryand su�cient for the synchronism and respectively the synchronisability of twoclocks.An example of synchronism rule is given below. Consider the process P 2Pfc;c1;c2;c3g de�ned by:P = fF 2 Ffc;c1;c2;c3g j c RF(1;'1;d1) c1; c1 RF(1;'2;d2) c2; c RF(1;'3;d3) c3g (15)Obviously c RP(1;'1;d1) c1, c1 RP(1;'2;d2) c2 and c RP(1;'3;d3) c3. The calculuson a�ne relations RF(1;';d) induces RF(1;'1;d1) � RF(1;'2;d2) = RF(1;'1+d1'2;d1d2)which is valid also for processes: RP(1;'1;d1) � RP(1;'2;d2) = RP(1;'1+d1'2;d1d2).Therefore c RP(1;'1+d1'2;d1d2) c2, and c2 and c3 are synchronisable if and onlyif RP(1;'1+d1'2;d1d2) = RP(1;'3;d3). With Propositions 2 and 3, RP(1;'1+d1'2;d1d2)and RP(1;'3;d3) are equivalent if and only if (1; '1 + d1'2; d1d2) and (1; '3; d3)are identical, that is, '1 + d1'2 = '3 and d1d2 = d3. This result is expressed inthe following synchronism rule:Proposition 4. 8P 2 Pfc;c1;c2;c3g with c, c1, c2 and c3 satisfyingc RP(1;'1;d1) c1, c1 RP(1;'2;d2) c2 and c RP(1;'3;d3) c3, the following equivalences are

veri�ed: c2 P� c3 , �'1 + d1'2 = '3d1d2 = d3 �, c2 P= c3 (16)In Fig. 7 the particular case '1 = 6, d1 = 2, '2 = 1, d2 = 2, and '3 = 8,d3 = 4 is illustrated. It can be observed that clock c1 is an a�ne sampling ofphase '1 and period d1 on clock c. Clock c2 is de�ned similarly by an a�nesampling of parameters '2 and d2 on c1. The same clock c2 can be obtained byan a�ne sampling of '3 and d3 on c; the clock c3 constructed in this manner issynchronous, and therefore synchronisable, with c2.Following a sequence of steps similar as for Proposition 4, we have deriveda system of synchronism rules which is minimal; it enables the veri�cation ofthe synchronisability of two arbitrary clocks related by an expression on a�nerelations RF(1;';d), with ' � 0. The results concerning the equivalence of generala�ne relations RF(n;';d), summarized by Propositions 1, 2 and 3, and the partialresult on composition of general a�ne relations, have allowed the derivation ofa set of synchronisability rules which are su�cient for the validation of Signalprograms for which the single operation performed on a�ne relations is composi-tion. Further work should be dedicated to the study of the union [r, intersection\r and di�erence nr of general a�ne relations.

Fig. 7. Illustration of Proposition 4.3.4 Implementation of the A�ne Clock CalculusA prototype implementing the synchronisability rules introduced in Section 3.3has been integrated with the existing clock calculus and used for the validationof the Signal-Alpha interface on the video image coding application intro-duced in Section 2. In Section 3.1 we have explained that the existing (boolean)

clock calculus relies on the properties of the lattice � existing on the space ofclocks, and that it is equivalent to a system of synchronisability rules. The im-plementation of the a�ne clock calculus is briey described now. By choosingan appropriate implementation of a general a�ne relation RP(n;';d) as detailedin [16], the considered clock expressions contain formulas constructed only witha�ne clocks, that is, a�ne samplings of speci�ed phase and period on a givenbasis clock. Thus, the order �aff de�ned by�aff = f(c1; c2)j 9'i � 0; di > 1;RPt = EXP(: : : ;RP(1;'i;di); : : :); c1RPt c2g (17)with EXP a general expression on a�ne relations, induces on the space of a�neclocks a lattice structure. The system of equations on a�ne clocks associatedwith a Signal program is solved by triangularisation. When the equivalence oftwo clock expressions has to be demonstrated, synchronisability rules such thatdeduced in Section 3.3 are applied. Finally, for the integration of the a�ne andboolean clock calculus, each synchronisability rule which has been deduced in aprocess Q 2 PA2 , is used in a larger context P 2 PA1 , with A2 � A1, satisfying�A2(P) � Q. Following Lemma 1, the synchronisability rule is also valid in P .4 ApplicationThe a�ne clock calculus has been used for the validation of the video imagecoding application described in Section 2. This application contains an importantcontrol part, which has been programmed in Signal, and operations like theDct, which have been expressed in Alpha. The application has been speci�edand simulated at both functional and architectural levels as described in Section2. In the coding system described in [8], each image is decomposed into a �xednumber of macro-blocks, each macro-block consisting of one block of luminanceand two blocks of chrominance (red and blue). At the architectural level, wehave re�ned the Alpha speci�cations of the Dcts corresponding to the blocksof luminance and red chrominance of a macro-block. These temporal re�nementshave been expressed in Signal by means of two general a�ne relations betweenclocks c, c1 and c, c2 as illustrated in Fig. 5. The synchronisability of c1 and c2has been veri�ed by compilation and the entire Signal-Alpha system has beensimulated in C.Most of the operations involved in image coding applications are critical fromthe point of view of execution time or resources. Therefore, a codesign approachcan be considered. The a�ne clock calculus represents an important elementin de�ning a complete codesign methodology based on the Signal and Alphalanguages. Besides the cospeci�cation and cosimulation of an application, usingSignal and Alpha in a codesign framework is interesting since it o�ers solu-tions to other codesign problems such as the automatic synthesis of specialisedcircuits for regular algorithms, or the generation of optimal code for the soft-ware implementation of both calculations and control. Concerning the latter,one might consider the hardware/software partitioning of an application corre-sponding to the partitioning into Signal and Alpha subsystems. Therefore,

Alpha processes would be implemented in hardware by automatic synthesis,while Signal processes would be translated into C code for general purposearchitectures. However, the proposed partitioning is not unique and automatichardware/software partitioning remains an open problem, as it is the implemen-tation of the hardware/software interface.5 ConclusionThe joint use of the Signal andAlpha languages in hardware/software codesignhas introduced the problem of the validation of mixed Signal-Alpha speci�ca-tions both at the functional and architectural levels. The re�nement of Signal-Alpha speci�cations towards the architectural level and their subsequent val-idation necessitates the extension of the formal clock calculus implemented inthe Signal compiler. This paper presents the new a�ne clock calculus basedon the properties of a�ne relations induced between clocks by the re�nement ofSignal-Alpha speci�cations. The properties of a�ne relations are studied inthe semantical model of traces of the Signal language, but can be extended toany general model with similar characteristics. Based on this study, a new setof synchronisability rules is de�ned and integrated with the set already imple-mented by the existing formal clock calculus.The a�ne clock calculus is relevant for the de�nition and implementationof a codesign methodology using the Signal and Alpha languages. Techniquesfor real-time system validation (formal veri�cation, simulation) available in theSignal and Alpha environments can be used for cospeci�cation and cosimu-lation. Both environments also have tools for automatic generation of optimalimplementations which can be used in a complementary manner for hardwaresynthesis and/or implementation on general architectures. Further work shouldbe devoted to the complete integration of the Signal and Alpha languagesthus making possible the use of the most adapted formalism and environmentfor a given application.References1. Amagbegnon T., Besnard L., Le Guernic P.: Arborescent Canonical Form ofBoolean Expressions. INRIA Research Report 2290, IRISA/INRIA - Rennes,France, 19942. Amagbegnon T., Le Guernic P., Marchand H., Rutten E.: The Signaldataow methodology applied to a production cell. IRISA Research Report 917,IRISA/INRIA - Rennes, France, 19953. Belhadj M.: \Using Vhdl for Link to Synthesis Tools". Proceedings of the NorthAtlantic Test Workshop, June 1994, Nmes, France4. Benveniste A., Berry G.: \Real-Time systems design and programming", Proceed-ings of the IEEE, September 1991, 79, (9)5. Besnard L.: Compilation de Signal : horloges, dpendances, environnement, PhDThesis, University of Rennes 1, France, September 19926. Birkho� G.: Lattice Theory, AMS colloquium publications, 1973

7. De Micheli G.: \Computer-Aided Hardware-Software Codesign", IEEE Micro,August 1994, 14, (4)8. ETSI (European Telecommunication Standards Institute) Speci�cation of Compo-nent TV codecs 32-45 Mbit/s. December 19909. Gautier T., Le Guernic P., Quinton P., Rajopadhye S., Risset T., Smarandache I.:\Projet CAIRN: conception d'architectures partir de Signal et Alpha" CODE-SIGN Conception conjointe logiciel-matriel, Eyrolles, Collection Technique et Sci-enti�que des Tlcommunications, 199810. Gupta R.K., Coelho C.N., De Micheli G.: \Program Implementation Schemes forHardware-Software Systems" Computer, January 1994, pp. 48-5511. Kalavade A., Lee E.A.: \A Hardware-Software Codesign Methodology for DspApplications" IEEE Design & Test of Computers, September 1993, 10, (3), pp.16-2812. Le Guernic P., Gautier T.: \Data-Flow to von Neumann: the Signal Approach",Advanced Topics in Data-Flow Computing, (Gaudiot J.-L. and Bic L., 1991), pp.413-43813. Le Guernic P., Gautier T., Le Borgne M., Le Maire C.: \Programming Real-timeApplications with Signal", Proceedings of the IEEE, September 1991, 79, (9), pp.1321-133614. Salinas M.H., Johnson B.W., Aylor J.H.: \Implementation-Independent Model ofan Instruction Set Architecture in Vhdl" IEEE Design & Test of Computers,September 1993, 10, (3), pp. 42-5415. Sanderson J.G.: A Relational Theory of Computing, Springer Verlag 1980, 80,Goss G. and Hartmanis J.16. Smarandache I.: Transformations a�nes d'horloges : application au codesign desyst�emes temps-r�eel en utilisant les langages Signal et Alpha, PhD Thesis, Uni-versity of Rennes 1, France, October 199817. Smarandache I., Le Guernic P.: \A�ne Transformations in Signal andTheir Applications in the Speci�cation and Validation of Real-Time Systems"Transformation-Based Reactive Systems Development, Proceedings of the 4th In-ternational AMAST Workshop on Real-Time Systems and Concurrent and Dis-tributed Software, Palma, Spain, LNCS 1231, Springer Verlag, 199718. Smarandache I., Le Guernic P.: A Canonical Form for A�ne Relations in Signal.INRIA Research Report 3097, IRISA/INRIA - Rennes, France, 199719. Thomas D.E., Adams J.K., Schmit H.: \A Model and Methodology for Hardware-Software Codesign" IEEE Design & Test of Computers, September 1993, 10, (3),pp. 6-1520. Wilde D.: The Alpha Language. IRISA Research Report 827, IRISA/INRIA -Rennes, France, 199421. Wilde D., Si�e O.: Regular array synthesis using Alpha. IRISA Research Report829, IRISA/INRIA - Rennes, France, 1994

