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ABSTRACT

The widely-held view that Fitts' law expresses a&esp
accuracy trade-off is certainly correct but vagise outline a
simple trade-off theory of Fitts' law in which mawent time
and error trade for each other. The theory accoguite
accurately for the data of Fitts’ (1954) seminaldst as well
as some fresh data of our own. Although our expemtad
protocol differed from Fitts’ and we, unlike Fittgcused on
the best performance of our best performers, wendou
evidence in both data sets that the time/erroretat obeys a
power law. Fitts’ data suggest that the time/etrade-off
might boil down to a square root function with age
adjustable constant. Our data, which we could aeaore
thoroughly than Fitts’, are consistent with thisewi We
suggest that a combination of trade-off and infdromatheory
should improve the account of Fitts' law.
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1. INTRODUCTION

This paper introduces a new formulation of Fittivlwhich

specifies one sense in which the law can be sdid ta trade-
off. That Fitts' law is an instance of a “speedtmacy trade-
off” has been a traditional claim in HCI [12] as livas

psychology [15,16], but it will become apparentdvelthat

some clarification is needed.

A Fitts' law equation is an empirical regularityathrelates
mean movement timg; to an index of difficultyyD computed
as a simple mathematical transformDgfV, the ratio of target
distanceD to target widthw. A few well-known formulations
of the law are

Lr=a*log,(2D/W) +b  Fitts (1954) [2] 1)
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Mr =a*log, (D/W) +b  Crossman (1956) [1] (2)
Mr =a*log, (D/W+1) b MacKenzie (1992) [12] 3)
gr =a* (D/W)° Meyer et al. (1990) [15] 4) (

wherepr denotesnean movement time aredandb stand for
adjustable coefficientsag0). Why Equation 3, known as the
Shannon version of Fitts' law [11,12], is the mpspular in
HCl is an issue we will leave aside in the pregeager: rather
than the differences, here we must consider thévalgmce
class ur=f(D/W). The starting point of this analysis is that
Equations 1-4 dootdescribe a speed-accuracy trade-off.

2. THE BASIC MEASURES OF FITTS’ LAW: TIME AND
ERROR

2.1. Time Is Not Speed

First, the dependent variable that stands on thidmd side
of Fitts' law equations is a time measure. It ititively
obvious that the shorter thg the higher the average speed of
a movement. Nevertheless, it is only in casual lagg that
the confusion between a time measure and a speasuneeis
tolerable, if only because their physical dimensidiffer, [T]

vs. [LTY] [9].

2.2. Accuracy: Neither Information Nor Difficulty

Second, the quotient &@/W which determines thiD on the
right-hand side of the equations does not expjicitieasure
accuracy. In light of information theory [20], Etf2] assumed
that the information conveyed by a movement is(RI/W), a
formula which MacKenzie [11,12] corrected into
log,(D/WH1). The information and the accuracy of movements
must be linked somehow, but as far as we know lin&t
remains to be identified in the specific contexkifs' law.

The assumption that the mathematical transformsDAWV
which feature in Equations 1-4 estimate ttificulty of
movements tasks does not take us any closer toagure of
movement accuracy. In the Shannonian Fitts-Mackenzi
tradition, difficulty is measured in bits and cdbked, in the
way specified by Equations 1-3, from an objectiveperty of
the target layout—the ratio of lengtBsandW. But this is just
information. For lack of an operational definitiohits own, it

is hard to see how task difficulty might relateaturacy.

If one wants to characterize difficulty as rsetbjectiveeffort
[17], then one has the problem that none of thev@lids bear
a monotonic relationship with this effort. Therenis question
that in the upper region of thB spectrum (over 4 bits or so,



using the ShannolD), the higher thdD, the more difficult
the task. But the opposite is obviously true inltheer region
of the spectrum—ask any participant: when it cotod® = 3
and below, thdower the ID, the more difficult the task. It is
well known that participants, no matter their gouwdll,
systematically fail to produce large enough spreads
movement endpoints—effective width becomes less tha
nominal width and the error rate drops to z¢io4,12].
Bearing in mind that the kinetic-energy cost of aimed
movement varies with the square of its velocityfitis task
with a very lowlID is actually very difficult (physically). The
participants’ failure to comply with instructionsn isuch
conditions is likely to just reflect their reluctz®m or mere
inability to produce fast enough movements becafsthe

excessiveenergeticcost of the movements they are asked to

perform. Notice that this conjecture, which we jadgimost
trivial, is likely to be ignored in an approach ksively based
on Shannonian information. From the moment it togmized
that aimed movements involve not only bits of infiation,
but also joules of energy, it becomes clear thavement
difficulty, characterized as subjective effort, canly bear a
U-shaped relation with the variable known as lhein Fitts'
law research [7]. Information, as captured by Hhyestimate,
cannot be taken as an index of subjective difficatteffort.

Thus a typical Fitts' law equation expresses, notlation

between movement speed and movement accuracyattietr r
a relation between movement time and a certain rinaless
ratio whose relation with both accuracy and dififiguis

unclear. We now present some terminological diftns

which we think are useful to rephrase Fitts' lanaasexplicit

trade-off.

2.3. Relative Target Distance D/W vs. Relative Target

Tolerance W/D

When Fitts [2] (p. 266) introduced what he nameglittdex of
difficulty, he wrote ID=-log(W?2D), rather than
ID=10g,(2D/W). These being just two different ways of
writing the same thing mathematically, whether the
independent variable of Equations 1-DisV or W/D might be
judged an idle questionin fact that question must certainly be
asked because the quotients of these two divisi@sggnate
different measures in thehysical world of relevance to
experimenters. The quotient BfW is a measure afelative
targetdistance(RTD)—i.e., D scaled to, or expressed in units
of W. In contrastthe quotient ofA/D is a measure aklative
target tolerance (RTT)—i.e., target tolerance scaled to, or
expressed in units @.% Although it has been traditional in the
literature to formulate Fitts' law as an equatidntlee form

! Since P/W)° can be rewritten ad\(/D)®, a power law like Equation
4 is no less indeterminate with regard to the ptatsdentity of the
independent variable to which the expression igpesgd to refer.
Meyer et al. [15] used the phrase “speed-accurametoff’ in the
very title of their 1990 article, but they did netplain how theilD
(Equation 4) captures accuracy.

2 We apologize to the reader for using a numberoof-eonventional
terms and notations which turned out to be necgssgaglossary is
provided in Section 9.

pr=f(D/W), we may mention two independent reasons to
prefer the inverse writingy=f(W/D) [8].

One argument is based on scale of measurement
consideration [23]. Relative target distancdddV lacks a true
zero because the limiting case whBre0 andW>0 and hence
D/W=0 violates the very definition of a Fitts task—BE0,
then no movement is requirddn contrast, relative target
tolerance orW/D does enjoy a true zero: the limiting case
where W=0 andD>0, henceW/D=0, corresponds to a zero-
tolerance aiming task, which makes sense in Higsadigm
and has been actually investigated in [19]. Thudy on
RTT=W/D, and notRTD=D/W, runs on aatio (equal-interval)
scale of measurement [23]. The reason why this ersatis
because a higher level of measurement for expetahen
variables means a more constraining framework éstirig
theoretical hypotheses [18].

The other reason whR TT or W/D is preferable oveRTD or

D/W for the statement of Fitts' law is that any measaf

accuracy, whether absolute or relative, must ine@kror as a
component. It seems sensible to ground one’s cteaization

of accuracy on a measure of tolerance (i.e., parchiérror)

like W/D rather than on a measure of distance DRé/.

2.4. Task Geometry vs. Movement Performance

Considering the variables of relevance to the aamuissue,
there is a certain dichotomic distinction that heseived little
attention in the literature, perhaps becauseatlioo obvious.
On the one han® andW are two systematic, deterministic
variables over which experimenters have full cdnftoandW
characterize the geometrical layout of targets aad/e to
prescribe to Ps a certain mean amplitude of movésremd a
certain spread of movement endpoints, respectiv@ly.the
other hand we have variables that characterize Rse
performance. Here the elemental measures are tlagiauT
and the amplitudé\ of the movement, from which a terminal
error can be computed &A-D. Unlike D andW, variables
T and A (as well asE) are random variables, reflecting the
natural variability of human performance, and so efeen
need to distinguisii, A andE, to be measured at the level of
individual movements, from central-trend statistike means
M1, Ha, @ndpg, to be calculated over samples of movements.

We deliberately wrote Equations 1-4 above M§=f(D/W)
rather tharMT=f(A/W), the formulation of Fitts' law that has
been customary since Fitts [2] but which is somawiabbly.

If W unambiguously designates a property of the tdeyetut
(tolerance), it is always unclear whether the syimbo
designates a property of the movemepy) (or a property of
the target layoutly).

The accuracy issue can be approached in Fittstdgarafrom
two markedly different, though equally legitimasngles. In

3 with the reciprocal protocol movement may be sdpsibked of Ps
only so long asW/D<1 (i.e., W<D). If W/D>1, the two targets
overlap, precluding the very necessity of movenjght

* For they-intercept of an empirical regression line to heripretable
one needs a true physical zero onxkariable [8].



one approach, Fitts' law is all about the depenglehp upon
the dimensionless rathy/D (or its inverseD/W), as suggested
by the formulations we chose for Equations 1-4. &éhmhasis
in this approach is placed on the task geometry #me
problem of accuracy must be phrased in termis/@f or W/D.

In the alternative approach, Fitts' law is all abthe mutual
dependency of two random variables, movement time a
relative variable erroRVE We take the latter to be best
represented bya/pa, a regular coefficient of variation in

every individual placed in a given situation. Déwis a
method for estimating that amount is our first intpot
challenge here.

4. Less-than-Total Resource Exploitatiolm any Fitts' law
experiment Ps are instructed to constantly do thest —i.e.,
to invest 100% of their resources. Human effortvéneer, is
subject to random fluctuations and so the amoumesdurce
actually available to an individual at a given gamtime can
be less—but never more—than these 100%. The limited

which pa and o, denote the mean and standard deviation of .oqqrce pool, in other words, must be thoughtsofrupper

movement amplitude [8]. Thus Fitts' law can be folated

bound This realistic assumption seems to have escaped

either aspr=f(W/D), expressing the causal dependency of aresearchers’ attention so far, but we believe ih@datory in

temporal random variable upon a systematicallyedri
geometrical variable, or alternatively agir=f(ca/la),
expressing the mutual dependency of two randonalvkes.

In general HCI researchers need to evaluate origir¢te

pointing performance allowed by certain target leggoand so
they naturally adopt the former approach, assuntimat

movement performance is causally dependent on argett
layout. It is the alternative approach, howeveat thaves the
way for a trade-off analysis. If one wants to uistind Fitts'
law as a trade-off, one needs to write the lawhanform of a

any approach (including the information theorepprach) to
Fitts' law.

5. Resource allocation strategiFaced by resource scarcity in
a Fitts task, Ps can deliberately modulate thentoaldetween
their concurrent time-minimization and error-minaaiion
efforts. Quantifying that imbalance, estimating itsmge of
variation, and understanding its dependency upon
systematically-manipulated experimental conditions—
different target layouts in Fitts’ [2] experimer$égction 4),
different verbal instructions in ours (Section 5)enstitute the

mutual dependency, with movement time depending onsecond challenge of this analysis.

movement error and vice versa—it should not matteether
Fitts' law is written aspr=f(oa/4a) or, reciprocally, as
Oa/Ha =g (k).

3. ASIMPLE TRADE-OFF THEORY OF FITTS' LAW

A trade-off is a mutual dependency between twatiesl that
conflict with each other because they both drawttensame
limited-resource pool. The better the performance ame
front, the worse it is on the other. Below areelista set of
basic assumptions needed for a trade-off theonyitts' law.
Note that the trade-off we are considering hemoisbetween
speed and accuracy, but, strictly speaking, betwegrement
time pr and relative variable errétVE=0a/la.

4. FITTS' (1954) TAPPING DATA: EVIDENCE OF A

TIME/ERROR TRADE-OFF

This section aims to show that Fitts’ data can éulde
formulated explicitly as a trade-off between twaonftiating

utilities. Focusing on the min-min trade-off of nemment time
Mr and relative variable erroos/pa, we will introduce a
simple geometrical method for characterizing quatitiely
the size of the resource pool as well as the gfiatmbalance.

At first sight, the suitability of Fitts’ 1954 expmental
protocol for a trade-off analysis of his data migigem
guestionable. Recall that Fitts did not ask higdminimize
movement time and relative error concurrently. Kieed them

1. Utility. Movement time and relative variable error are both to minimize a single variablgyr, under a variable tolerance

negativeutilities, that is, quantities that must be mirded—

constraint. As tolerance had (and still has todaytypical

the shorter theiy, the better the performance; the smaller the experiments) the status of a systematically-maaiedl factor,

RVE the better the performance.

2. Trade-off The two minimization efforts conflict with each
other: the less of one negative utility, the mofeéhe other.
This is a trade-off of the min-min categdry.

3. Limited Resource Poollhe trade-off results from the fact
that the two concurrent minimization efforts draverh a
common pool of resourcesnd this pool islimited. This
assumption is the counterpart, within the tradeto#oretical
approach, of Fitts’ [2] limited-capacity channelsasiption.
We may designate the content of the hypothetical, pehose
nature is unknown, as tkedfort We just need to assume, using
the usual economical analogy, that some generieiey is
convertible into speed and/or accuracy and thatatlalable
amount of this currency is finite, being a charaste of

> An example of amax-maxtrade-off is that between speed and
accuracy, both positive utilities: the faster ahd tore accurate the
movement, the better the performance.

3

it is easy to overlook that error, just like movernéme, is a
negative utility. A target layout is usually dispéal with
various levels oRTTto communicate various levels RVEto
the P. In fact, ifyr andRVE trade for each other and the Ps
invest all their instantaneous resources, as astwabeve, a
systematic variation of thRVErecommendation viRTT and

a systematic variation of the balance betwggnand RVE
amount to essentially the same.

We will consider the data Fitts [2] obtained in li@nous
reciprocal tapping experiment, tabulated in his l&ab (p.
264)° Fitts reportedu; estimates on average over his 16 Ps for
each of his 16 factorial combination BfandW. However, he
did not actually record the position of movementpoints,

® We focus on thdight-stylus version of Fitts’ tapping experiment,
whose data has been traditionally used as a bemkhf@ay., [10]).
This is not a critical option, however, as Fittsadbed essentially the
same results with a heavier stylus (464gr rathem #8g).



just tabulating percentages of target misses. @laitg on

Fitts’ report (p. 265) that undershoot and overshaimning

errors were about equally frequent in his lighttsgy
experiment, we simply assumag=D. To infer endpoint
spreads from error rates we used the techniqueidedcby

MacKenzie [10] (Section 2.5). For each combinatd® and

W we computed effective widtih, (for a fixed 4% error-rate
constraint, under the hypothesis of a Gaussianadpi

endpoints) and then calculateg=W,/4.133.

Note that our analysis below separates the diffdrels of
scale, characterized Iy or p,, following the recommendation
of Guiard [6]. We assume the two orthogonal factfr&itts’
paradigm to be the quotient of the Weber fractfD (or
oa/Ma), Which specifies relative target toleranBd T (resp.
relative variable erroRVE), and the scale fact@ (resp.ja),
which specifies the size of the target layout (resp the
movement).

4.1. A Power Relationship Between Movement Time and
Relative Variable Error
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Figure 1. A movement time vsRVE trade-off in Fitts’ data.

As shown in Figure 1, Fitts’ data is closely modelfor each
scale level, as a power function (.988«999):

pr =g * RVEP (5)
wherep andq represent adjustable coefficienps:0, g>0).’

4.2. Amount of Resources
Equation 5 may be rewritten as

ur* RVEP=q (6)
or, since relative variable errRVEis defined asa/Ha,

Hr * (OalMa) P = Q. (1)
Equation 7 is the statement of a constant prodAithin each
scale condition, the product pf andRVEraised to the power
—p was conserved despite Fitts’ systematic changleeofarget
layout and consequently pf. The conservation of quantity
is illustrated in Figure 2. For each of the foualscconditions
the slope of the regression line is virtually zems-movement
time varied over a range of about 2glremained remarkably
stable.

In light of the trade-off theory outlined in Secti8, it is clear

were available to Fitts’ Ps, in fact on averagerdie 16 of
them—for lack of Fitts’ individual data, we cannoheck
whetherg was an individual constant, as one must suppose.
The constang is indicative, not of an amount of resources, but
more exactly of resourcgcarcity. The smaller the product of
the two negative utilities, the better the perfoncea

y =-0.0003x + 0.1037 e—©

S A a

y =-0.0006x + 0.0888
g =ur*RVE?® y =0.0008x + 0.0571
(S) 0.06 o ° 7..
[ —m

0.04 y =0.0002x + 0.0505
D =5.08cm

D =10.16cm

D =20.32cm

e > m o

D = 40.64cm

0.0 01 02 03 04 05 06 07 08

Movement time pr  (s)

Figure 2. Conservation, within each scale conditigrof the
product q across the variation ofjr.

The rather different elevations of the four flatvas of Figure
2 suggest that the amount of resources availabltts Ps
was scale dependent. The constprdached a minimum in the
D=10.16cm condition, presumably reflecting a scat@gnoum.

Scale condition D = 40.64cm

Hr
(s)

0.0

T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

(CATAES O

Figure 3. A plot of Equation 7 for theD=40.64cm scale condition,
where exponentp is -0.3509. ABCD are Fitts’ actual data points.
Point E is an arbitrary extrapolation on the same tade-off
function.

Figure 3 plots Equation 7 for the cd3e40.64cm, whose best
fit is pr=0.1038RVE’**" (r2=.9992, see Figure 1), with the
curve extrapolated on both sides of the actual gaofyx
values. It is easy to see that the rectangle oédalny drawing
straight horizontal and vertical lines to the aftesn any point
of the curve has a constant surface areg=@f’x, thenxy=q).
This area is no other than the coefficienbf Equation 7,
whose estimate in that particular scale condit®rD.i1036s.

that the constar tells us about the amount of resources that

" The logarithmic fit is nearly as good as the poferAveraging
over the four scale condition$=.993 and .996 respectively.

8 Needless to say, essentially the same flat cuolsesin whetheq is
plotted againsRVEor RTT.



The rectangle’s surface area is the same not onlkyifts’ four
data points, but also for any point of the extraped curve
like point E.

4.3. Resource Allocation: Strategic Imbalance
It is important to realize that different point®mad the curve of
Figure 3 correspond, for a given amount of resajrde
different degrees of imbalance between the connutime-
and error-minimization efforts. While the produxy (the
rectangular surface area in the figure) is conskalé along
the curve, reflecting the limitation of resourctse ratioy/x
(the rectangle’s aspect ratio) changes graduabfleating
different resource-allocation options. For any datant of the
curve the actualstrategic imbalance(Sl) of Ps can be
quantitatively characterized by this aspect rdtiaf is,
Sl=ur / RVEP. 9)
Since relative variable err&®VE= 0a/la, We may write
SI=pr/ (Oalua)™. (10)
With this definition of the aspect ratio (which vaebitrarily
chose to compute g#x rather tharx/y), Slincreases in Figure
3 from right to left: the more cautious (and thewstr) the
movement, the higher th8l. Thus theSl index correlates
positively with—is an index of—the relative strengdf the
error-minimization component of the effort.
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— 9

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Relative target tolerance RTT = W/D (-)

Figure 4. Sl as a function ofRTT in Fitts’ data.

Figure 4 shows the dependencySif which characterizes the
actual strategy of Fitts’ Ps, upoRTT, the geometrical
characteristic of the target layout which Fitts ipatated as
an attempt to control his Ps’ strategy. This depecy is
highly non-linear, confirming that the target-layou
manipulation technique that Fitts introduced in 1864 study
actually provided him with mediocre control ovee ttesource
allocation strategy of his Ps.

That mediocrity is also visible in Figure 5, whiplots RVE, a
characterization of performance, as a function R¥T, a
characterization of the target layout. Althoughd-itaried the
tolerance over a very large rarigeeed (in fact up to the point
where the two targets touched each other, W¢D=1 or

W=D),° RVE hardly exceeded 10% in the most tolerant

condition.

o Using the reciprocal protocol, the conditi®v=D, which yields a

1.0
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0.0 fea-B— . . : ‘ ‘ ‘ |
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Relative target tolerance  RTT =W/D (-)

Figure 5.RVE as a function ofRTT (the dashed line represents
the theoretical case wher®@VE=RTT).

Back to Figure 4, notice the intriguing suggestioat Fitts’ Ps
had two different strategic attitudes in the facke four
different movement scales. ConsideriR§1<25%, where the
x ranges covered by the four curves substantialgrlap, thus
making it possible to compar@ls for geometrically-similar
target layouts, it seems that Fitts’ Ps had abmaiseme set of
strategic imbalances in the two larger-scale camtitD=20
and 40cm, while they apparently had another, mardiaus
set of strategies in the two smaller-scale conalétio=5 and
10cm. This finding, whose statistical reliabilityarmot of
course be tested, might have resulted from thetfattlarge
speeds cannot be attained over small amplitudes.

It should be remarked that if the pattern is qadaspicuous in
the plot of Figure 4, it is virtually undetectabtethe classic
plot of pur vs. ID. Also note that it could not have been
deduced from our previous observation that theuresopool
was maximal in Fitts’ Ps for 10cm movements (Fig@je-
the aspect ratio (the quotient j@f/RVEP) and the surface area
(the constant produci=p*RVEP) of the rectangles of Figure
3 are two independent quantities.

4.4. Discussion
The foregoing shows that Fitts' classic data can be
satisfactorily interpreted as a trade-off between hegative
utilities, time and error. Thus, not only can wewiFitts' law
as the demonstration that throughput—the inverdbefaw’s
slope, whose dimensions are bits/s—is conservetieasask
ID is made to vary, we can just as well view the lasv
evidence that a certain pool of effort resourcesisserved in
the people across the variation of strategic inm@aBoth the
information theoretic approach and the trade-offrapch may
help us understand Fitts' law.

5. SOME FRESH DATA: TIME/ERROR TRADE-OFF IN A
NEW VARIANT OF FITTS TASK
This section reports a very simple experiment whicty

varied task instructions so as to induce a systematiation

ShannonID of 1, corresponds to the highest possible level of Of the Ps’ strategic imbalance in the face of thecurrent

tolerance. IW>D, hencdD>1, the two targets overlap [8].
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time- and error-minimization efforts. Movement aiye
was invariably a comfortable 150mth.

Among our motivations for running a fresh experitemas
the fact that Fitts’ [2] individual data are notadeble. From
the standpoint of trade-off theory, one expects eom
guantities—notably the coefficiegtof Equation 5—to behave
as within-individual constants while at the sammetivarying
from participant to participant. Also of considdeinterest is
the variability of the strategic imbalance amongl awithin
individuals. Whether experimenters manipulate tlaeget
layout, as has been customary since Fitts, or épeadacy
instructions, they face human beings with idioswgticr
strategic styles. No two participants will identiganterpret
instructions to move, say, as fast as possible; two
participants will show the same degree of flexipilin
response to changing instructions.

Our discussion of Fitts’ data above did not refetess-than-
total resource exploitation, assumption #4 of our trafie-o
theory, whose illustration or testing require indival data.
Below we will see that this assumption is quite fuls¢o
estimate individual trade-offs.

There were two notable differences between ouropotand
Fitts’. The first is that our aiming task wdsscrete rather than
reciprocal, our Ps having to return to a fixed hoposition
after each aimed movement. This option makes isiptEs to
clarify the status of our temporal and spatial ables.
Whereas in the reciprocal protoqe} is the time it takes not
only to carry out a movement, but also to evalubhte error
inherited from the previous movement and to preplagenext
[3], in the discrete protocqlr measures the duration of a pure
movement-execution process. The meaning of the merés
endpoint spread, is also interpretable more safely in the
discrete case, that variability being generated jug the
execution of the movement, whereas in the reciproasec,
must also reflect, to some unknown extent, theatslity of
the start point [3]. Finally, one should perhapsatiethat most
pointing actions in real world of HCI are of thescliete sort.

The other notable difference is that we did notcH#pe
toleranceW, just specifying target distand2 by displaying
two lines indicating the start point and the desieedpoint of
the movement. The target being displayed as aesing, we
manipulated the balance between the
minimization efforts by means of different setsradtructions.
Such an approach offered us a chance to explorilfhenge

of Sls. Experimenters, never knowing in advance the muppe

and lower extremes of the Ps’ strategic imbalamteose

their ranges ofD more or less arbitrarily. We asked our Ps to

cover the whole spectrum of imbalances betweeandRVE
from the case of maximum speed to the case of marim
accuracy.

10 This experiment is part of a larger project aina¢dinderstanding
the interaction of the difficulty and scale factars simple aimed
movement performance.

two concurren

5.1. Method

Speed-Accuracy Instructions

We used five sets of instructions: 1) Max speeds{@ed
emphasis, 3) speed/accuracy balance, 4) accuraphasis,
and 5) max accuracy. In the max-speed conditiorPthevere
to just minimize movement time, the only requiremen
regarding accuracy being to refrain from committimg
systematic error: no matter the dispersion of mam@m
endpoints, Ps were just to manage to terminater thei
movements at about the targeh average At the other
extreme, the max-accuracy instructions asked By to bring
the cursor exactly to the target (zero pixel etronpking as
many corrective sub-movements and taking as muok-
but not more—as needed. These two extremes beiimede
we simply inserted three intermediate levels otrirdions,
one unbiased (speed/accuracy balance) and twodb{apeed
emphasis, accuracy emphasis). The ordinal leviHisimetric
(with no assumption about the separating intervi@8) was
not a concern in this study, focused on the mutelaition of
two random variablegr andRVE

Apparatus and Setup

The experiment involved a 1280x1024-pixel screed an
Wacom Intuos3 digitizing tablet connected to a R@ning

Linux Ubuntu. The screen permanently displayed wenical

lines extending from top to bottom, located 150mparg

which marked the start point (left) and the targight) of the
movement. Both lines were 1-pixel thick and appeanered

color over a white background. Also displayed wasabile

1-pixel thick cross-hair cursor, black in color, @ge motion
was controlled by the stylus. The tablet being useabsolute
mode with a control-display gain of 1, the hand badnove
150mm from its home position for the crosshair¢ach the
target line.

The P was seated at a table supporting the Wachbiet tand
the screen, with a viewing distance of about 50 Bmring
initial warm up trials the Ps (all right-handersgre allowed to
optimize the orientation of the tablet in the horital plane to
facilitate the execution of the required left-tght movement.
They typically chose to slightly tilt the tablet ithe
counterclockwise direction. On the tablet was sedun
horizontal 8-mm thick plastic ruler, along whictethtylus tip
pas to be slid, allowing a strictly one-dimensiortand
movement. The ruler offered a mechanical stopsaleit end
so that the start position of the stylus was stedided to the
nearest screen pixel. To help initial positionirgy OK
message appeared on the screen when the crossimaided
with the start line.

We developed our own software, using Lib USB, fablét-
data acquisition, to minimize display latency refatto tablet
events and to exploit the full resolution of thevide
(5080dpi). The tablet coordinates were translated pixels
using floating values to maximize visual-feedbackuaacy.
The sampling frequency of the tablet revolved aldidt Hertz
(minimum 85 Hz, maximum 125 Hz).

Task and Movement Measurement Algorithms
To begin each trial the P immobilized the screessshair at
the start line by positioning the stylus on thdeaht the ruler



stop for a few seconds. When ready, the P movedittihes to
the target position by sliding it against the rul@mishing up
with a dwell, then lifted the stylus and, after ewfseconds
rest, proceeded to the next trial. The movement g@int
obviously corresponded to the place and instantreviiee
crosshair left its home position while exhibitingsitive
(rightward) acceleration. Determination of the muoeat
endpointin time and space was a more subtle issue
detailed explanations about the offline algorithmattwould
serve were part of the instructions received byRbe

We used two different criteria, depending on th&rinctions
condition. For the max-speed condition, it was meldar to
the Ps that the algorithms was going to take fitst zero-
crossing of instantaneous velocity as the movereadpoint,
thus ignoring any subsequent episode of velocithetiver
deliberate (a corrective sub-movement) or accidef@tg., a
mechanical rebound due to the elasticity of the)aFor the
other four instructions conditions (which expligitnentioned
an accuracy component), the movement endpoint wfised
as the beginning of thiast dwelling period in the kinematic
record, meaning that the algorithm would take extoount all
corrective sub-movements, if any. The criterion fibwell
identification was the crosshair remaining statignéor at
least 100ms at least 50mm away from the home pasiti

Procedure

Sixteen volunteers participated (all right-handensedian
age=27.5 years, interquartile range=2.5, four fesjalThe
experiment consisted of 25 blocks of 15 movemeatsh
block being run with a given set of instructionsll Ave

instructions were presented in one order, ascending
descending, the order being reversed from one gobujve

blocks to the next. The experiment was run indiglfjuand

lasted about 40mn, including 20mn warm up.

5.2. Results and Discussion

Systematic Error, Variable Error

On average over all Ps mean aiming ergg-150mm) was
less than 1 screen pixel in all instructions candg but the
max-speed condition, where we found a consistehtdther
small 5.5mm overshoot erran£=4.504,p<.0005). It is fair to
say that Ps constantly aimed to the target andg ésatxpected,
it was their variable errooa/pa that was influenced, along
with pr, by the variation of instructions.

Effect of Instructions on Movement Time and RVE.
With increasing emphasis on accuraB®VYE decreased non-

linearly, while pr lengthened about linearly (Figure 6).

Although the max-speed instructions allowed anyeagrof
movement endpointsRVE hardly reached 8%, a finding
reminiscent of Fitts’ data (see Figure 5).
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Figure 6. The effect of instructions manipulation a pr and RVE,
on average over all Ps. Error bars are 95% confidere limits
based on between-P standard deviations.
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gure 7. Panel A: a power curve (dashed line) wadtid to all the
data points delivered by the P; the data points uner the curve
(filled discs) were then selected. Panel B: a poweurve was fitted
to the selected data points, providing an approxintion of the
convex front of performance.

Assumption #4 of our trade-off theory, less-thataitoesource
exploitation, will help understand Figure 7, whitlistrates
for one representative P the trade-off betwgerand RVE
Plotting the whole set of data points, one pet tilack, for
that P (Figure 7A), the best fit was a power fumttiwith a
substantial amount of noise, hence a moderatelyasspver?
of .87. The Ps having tried to minimize baqth and RVEin
different proportions, we may liken their data gsirwith
particles attracted to the West and to the Southtvey
magnetic fields whose respective strengths are fatmtl by
instructions. Viewing the scatter as a mixture afefunning
and dawdling particles, we resorted to a simpléatiemous
criterion assuming that the forerunners and thedterns were
the data points under and above the curve, respéctt If the

"' we thank Eric Lecolinet for suggesting this siegblution.



resource pool is limited (assumption #3) then fameers must
have been constrained by a hard wall—the very todfle
curve we are looking for, which conceptually is atber than
the borderline that separates in the equation sgfezeegion
of the doable (above the curve) from the region of the

own, despite our different experimental protocol.odt
interestingly, the exponemt of the best-fitting power model
was similar, considering the two scales conditiohsFitts’
study that approximately corresponded to ours. itts’Fdata
the exponent was -0.54 f@=10cm and -0.38 fob=20cm

undoable (below). That hard wall must have prevented (Figure 1); in our data, witD=15cm, the exponent was -0.47

forerunning data points from spreading any furtirerthe

South-West direction. But there must be dawdlessu(aption
#4) and that constraint must have affected themato
attenuated extent. The data is quite consisterit this view.
As shown in the lower graph of Figure 7, restrigtthe fit to
the subset of forerunners improved the fit considlr (2

rising in the example considered from .87 to .97).

In fact this result was observed in all 16 Ps: wiie fit
restricted to forerunners, thiéimproved on average from .852
to .972 (Student;s=8.83,p<.0001). In contrast, restricting the
fit to the data points resting above the first eurfi.e.,
selecting the dawdlers) did not improve the fit tgbaver, the
rz changing on average over all Ps from .852 to (8530.03,
p=.97). This outcome is congruent with the view ttiegt data
points near the South-West quadrant of the conwdixofi the
scatter are those which, being most constrained thy
resource limitations, are the most informative.sTparticular
subset, indicative of the P’s best performance whith we
call theconvex frontof performance, is our focus in the rest of
this report.

Logarithmic, Exponential, and Power Fits

We tested the simple two-coefficient models thatn ca
accommodate the convex-down curvature evident iouadpr
vs. RVE trade-off functions, the logarithmic, the expornaint
and the power equation. Fitting the three candidateels to
the full individual data sets (i.e., to the 25 paif measures
originating from all trial blocks) resulted in thpwer model
doing best in 10 cases (mea=.853 over all Ps), the
exponential model doing best in four cases (méar803) and
the log model in two (mear?=.803). In general, the log and
the exponential equation (most blatantly) failede dto
insufficient curvature. Fitting the three modelsaiagto the
convex-front data, the power model turned out tvigle the
best fit for all but one (P11) of our 16 Ps, witlet2 now
ranging between .923 and .992 (me&n972, to be compared
with .937 and .880 for the log and the exponemntiadel,
respectively). Therefore we retained the power tgoa
pr=q*RVEP for modeling the trade-offs.

A Closer Look at Individual Exponents: Evidence for a One-
Coefficient SQRT Relation

Thus, a simple power relation turned out to descmjite
accurately the time/error trade-off in both Fittkita and our

2 The Ut vs. RVErelation involves two random variables neither of
which is ‘dependent’ or ‘independent’. In such asedhe so-called
standard major axis method of curve fitting is kmaw be preferable
over traditional linear regression, which measwgesrs only along
the verticaly axis [21]. Here both methods yielded nearly idsaiti
estimates (not surprisingly, given the very highrelations found in
log-log plot betweeny; and RVE [21]), and so we judged it
superfluous to depart from the ordinary least-seuaethod.

on average. We further inquired into this issueabking how
the exponent varied with the goodness of fit anith wie value
taken byg, the other adjustable coefficient of Equation &e(s
Figure 8).

To reiterate, any individual P produces a mixturg@od and
poor performance (assumption #4), but there isnéinity of
ways of performing poorly and in principle only thmest
(convex-front) performance of that P is informatilteshould
be realized that as one switches from a withina teetween-
individual logic this argument works just the sarbifferent
individuals being unequally able (or willing) to Iy
concentrate on a repetitive movement task, thereviry
reason to focus on the data of the best perforimene’s
quest for a consistent quantitative law. A remal&ab
suggestion emerges from the data: (i) the betffithof the
power model, the closer the exponent to -1/2 (Ed#k), and
(ii) the smaller the value of the P’s coefficienfi.e., the better
the performer, as explained in Section 4.2), thesenl the
exponent to -1/2 (Figure 8B). Three individual esties of the
exponent diverged appreciably from -1/2, namely sého
delivered by P6, P8, and P1p=(.60, -0.34, and -0.32,
respectively), but these happened to be the sampbgist
credible estimates. P6 and P8 were two Ps for wiizen
power fit was distinctively worse than average (§égure
8A). As for P11, we can see in Figure 8B that fhisanked
15"/16 for performance, next to P8, who ranked last—a
further reason to moderately trust P8’s data.
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Figure 8. The exponenp of Equation 5 plotted (A) against ther2

of the power fit and (B) against the value of coeiffient g. Each
data point corresponds to an individual P.

Coefficient q (s)

Thus, focusing on thbest performancé.e., the convex-front
of performance) of oubest performergactually 13 of our 16
Ps), we found that the trade-off @f and RVE can be
satisfactorily modeled in our data by a square-rgpation
with a single adjustable constant:

pr=q* RVE*™  or

Mr =g/ SQRTEA/HA) (11)
where the multiplicative constaut is information about the
amount of resources invested by each participant.



Constant Resource Pool and Variable Strategic Imbalance

To the extent that Equation 11 is a true descmptid the
time/error trade-off in our simple aimed-movemesgk it is
also true, to the same degree of approximationt tha
quantityg=p*SQRT(Ca/Ha) is conserved within individual Ps
across the variation of strategic imbalance (Secdi®), and
that the strategic imbalance can simply be quadtifas the
variable raticSEu/SQRTEA/Ha) (Section 4.3).
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Figure 9. Example, in one participant, of (A) thefit of the one-
coefficient model of Equation 11 and (B) the appramate
conservation ofq across a considerable variation ofty.

Figure 9, which uses the data from the same P gsrd-i7,
gives an example of the fit obtained with the onefficient
model of Equation 11 and of the within-individuanserva-
tion of g across the variation qit. The orderly pattern visible
in panel A was the rule. On average over the 1®lRsse data
had proved reliable (all but P6, P8, and P11), thedor
Equation 11 was .964 (.888<.986), meaning that the fit was
virtually as good with Equation 11 as with the mélexible
two—coefficient model of Equation 5 (mean?=.967,
.89142<,987). Panel B displays a scatter plot with somise
but no evidence of any correlation betwegandpr The point
being made in this figure is thatr failed to exert any
consistent influence on coefficieqtdespite a considerable 7-
fold variation. Indeed, considering our 13 reliablata sets,
the slope of this relation (-0.0034s on average) dot
significantly depart from zerd,=-1.42,p=.182, two-tailed).

Figure 10 shows the trade-off curves of two indixt Ps
whoseq coefficientstook distinctively different values. It is
easy to see that P12 invested more resources itaskethan

max-speed instructions he did not explore his cuasefar

down as P12 did hisS{,,= 1.07 vs. 0.35). Thus the
comparison of two individual Ps delivers two piecek

evidence: beside the fact that P12 invested maseurees

than P13, he was more speed-biased.
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Figure 10. Comparing two individual trade-off curves.

6. IMPLICATIONS FOR HCI AND BASIC RESEARCH

The trade-off approach to Fitts' law helps undactéhat
target-acquisition performance, whose relevance HGI
research is obvious [12], is an inherentlyo-dimensional
object whose complete description requires botlintansive
and a qualitative characterization. If the inteesaspect is
explicitly addressed by the throughput, reminisceftthe
coefficient g of our trade-off analysis, apparently the
information theoretic framework has little to salyoat the
gualitative aspect. The fact that the speed/acgustrategic
balance is variable has been considered a worrisome
complication calling for a certain correction—thgbstitution

of effective to nominal width [1,12]—so as to eng with a
single synthetic measure of performance. The ctorebeing
done, the throughput is quite insensitive to sutish
variations of the speed-accuracy imbalance [4 RGj.the fact
that throughput (or the coefficientof our trade-off analysis)
is not influenced by strategic variations does maan that
these variations are unimportant—a conclusion thatpid
reading of [13] might suggest. The cognitive settodled by
speed-accuracy instructions, which strongly modslat
movement times and endpoint spreads, is obviously a
important factor. This factor does not influenceotighput,
but it does influence another aspect of performatiesl.

The one-dimensional reduction to throughput hasoat.c
Suppose for example that, comparing two interaction
techniques A and B, one finds more throughput vétthnique

A in the presence of more errors. The conclusicat th
outperforms B may be correct, assuming an apprapria
adjustment for errors, but a full half of the stdrgs been
erased by the adjustment procedure. In some réseantexts
(e.g., where safety matters critically), it mayussy useful to
not ignore that different interface arrangementsnteraction

did P13 ¢=0.0425 and 0.0621, respectively). But the graph,technique may induce different speed/accuracy ientzas in

by exhibiting different distributions of data panalong their
respective curves, also reveals that P12 and Pd3liff@rent

strategic preferencesor resource allocation. In response to

our max-accuracy instructions P13 climbed his cumigher

than P12 did hisSl.=22.5 vs. 18.9), and in response to our
9

their users.

The trade-off and the information theoretic apphesc are
certainly not incompatible with each other, as geiped in
practice by Fitts and Radford [4], who (althougktidid not



theorize on strategic imbalance) did manipulate edpe
accuracy instructions. Indeed the right-hand sitiEguation
11 rewritten as logur) minus a constant = -¥2 lg@a/a) can
be viewed to display bits of information. But tleétihand side
of this equation, as already hinted above, is yikelcall for a
model involving joules of energy. Thus, one intigy
outcome of this trade-off analysis is the suggesttbat
information theory should certainly participate ifut
probably will not suffice to wholly account for thempirical
phenomenon known as Fitts' law.
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9. APPENDIX: GLOSSARY OF IMPORTANT VARIABLES

Task geometry
Target distance D (cm)
Target width or tolerance w (cm)
Relative target distance RTD =D/W (-)
Relative target tolerance RTT=W/D (%)
Elemental movement measures
Movement time T (s)
Movement amplitude (cm)
Movement error E=A-D (cm)
Movement statistics
Mean movement time Hr (s)
Mean movement amplitude Ha (cm)
Systematic (or constant) error pa—D (cm)
Variable error (SD oh) Oa (cm)

Relative variable error RVE=0x/ps (%)

of



