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ABSTRACT 

The widely-held view that Fitts' law expresses a speed-
accuracy trade-off is certainly correct but vague. We outline a 
simple trade-off theory of Fitts' law in which movement time 
and error trade for each other. The theory accounts quite 
accurately for the data of Fitts’ (1954) seminal study, as well 
as some fresh data of our own. Although our experimental 
protocol differed from Fitts’ and we, unlike Fitts, focused on 
the best performance of our best performers, we found 
evidence in both data sets that the time/error trade-off obeys a 
power law. Fitts’ data suggest that the time/error trade-off 
might boil down to a square root function with a single 
adjustable constant. Our data, which we could analyze more 
thoroughly than Fitts’, are consistent with this view. We 
suggest that a combination of trade-off and information theory 
should improve the account of Fitts' law. 
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1.  INTRODUCTION 
This paper introduces a new formulation of Fitts’ law which 
specifies one sense in which the law can be said to be a trade-
off. That Fitts' law is an instance of a “speed-accuracy trade-
off” has been a traditional claim in HCI [12] as well as 
psychology [15,16], but it will become apparent below that 
some clarification is needed.  

A Fitts' law equation is an empirical regularity that relates 
mean movement time µT to an index of difficulty ID computed 
as a simple mathematical transform of D/W, the ratio of target 
distance D to target width W. A few well-known formulations 
of the law are 

µT = a * log2 (2D/W) +b       Fitts (1954) [2]          (1) 

µT = a * log2 (D/W) +b   Crossman (1956) [1]              (2) 
µT = a * log2 (D/W +1) +b    MacKenzie (1992) [12]       (3) 
µT = a * (D/W)b                    Meyer et al. (1990) [15]      (4) 

where µT denotes mean movement time and a and b stand for 
adjustable coefficients (a>0). Why Equation 3, known as the 
Shannon version of Fitts' law [11,12], is the most popular in 
HCI is an issue we will leave aside in the present paper: rather 
than the differences, here we must consider the equivalence 
class µT=f(D/W). The starting point of this analysis is that 
Equations 1-4 do not describe a speed-accuracy trade-off.  

2.  THE BASIC MEASURES OF FITTS’ LAW: TIME AND 
ERROR 

2.1. Time Is Not Speed 
First, the dependent variable that stands on the left-hand side 
of Fitts' law equations is a time measure. It is intuitively 
obvious that the shorter the µT the higher the average speed of 
a movement. Nevertheless, it is only in casual language that 
the confusion between a time measure and a speed measure is 
tolerable, if only because their physical dimensions differ, [T] 
vs. [LT-1] [9]. 

2.2. Accuracy: Neither Information Nor Difficulty  
Second, the quotient of D/W which determines the ID on the 
right-hand side of the equations does not explicitly measure 
accuracy. In light of information theory [20], Fitts [2] assumed 
that the information conveyed by a movement is log2(2D/W), a 
formula which MacKenzie [11,12] corrected into 
log2(D/W+1). The information and the accuracy of movements 
must be linked somehow, but as far as we know that link 
remains to be identified in the specific context of Fitts' law.  

The assumption that the mathematical transforms of D/W 
which feature in Equations 1-4 estimate the difficulty of 
movements tasks does not take us any closer to a measure of 
movement accuracy. In the Shannonian Fitts-MacKenzie 
tradition, difficulty is measured in bits and calculated, in the 
way specified by Equations 1-3, from an objective property of 
the target layout—the ratio of lengths D and W. But this is just 
information. For lack of an operational definition of its own, it 
is hard to see how task difficulty might relate to accuracy.  

If one wants to characterize difficulty as net subjective effort 
[17], then one has the problem that none of the above IDs bear 
a monotonic relationship with this effort. There is no question 
that in the upper region of the ID spectrum (over 4 bits or so, 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada. 
Copyright 2011 ACM  978-1-4503-0267-8/11/05...$5.00. 

To appear in Proceedings of CHI 2011, ACM Conference on Human Factors in Computing Systems 



 2 

using the Shannon ID), the higher the ID, the more difficult 
the task. But the opposite is obviously true in the lower region 
of the spectrum—ask any participant: when it comes to ID = 3 
and below, the lower the ID, the more difficult the task. It is 
well known that participants, no matter their good will, 
systematically fail to produce large enough spreads of 
movement endpoints—effective width becomes less than 
nominal width and the error rate drops to zero [1,4,12]. 
Bearing in mind that the kinetic-energy cost of an aimed 
movement varies with the square of its velocity, a Fitts task 
with a very low ID is actually very difficult (physically). The 
participants’ failure to comply with instructions in such 
conditions is likely to just reflect their reluctance, or mere 
inability to produce fast enough movements because of the 
excessive energetic cost of the movements they are asked to 
perform. Notice that this conjecture, which we judge almost 
trivial, is likely to be ignored in an approach exclusively based 
on Shannonian information. From the moment it is recognized 
that aimed movements involve not only bits of information, 
but also joules of energy, it becomes clear that movement 
difficulty, characterized as subjective effort, can only bear a 
U-shaped relation with the variable known as the ID in Fitts' 
law research [7]. Information, as captured by any ID estimate, 
cannot be taken as an index of subjective difficulty or effort.  

Thus a typical Fitts' law equation expresses, not a relation 
between movement speed and movement accuracy, but rather 
a relation between movement time and a certain dimensionless 
ratio whose relation with both accuracy and difficulty is 
unclear. We now present some terminological distinctions 
which we think are useful to rephrase Fitts' law as an explicit 
trade-off. 

2.3. Relative Target Distance D/W vs. Relative Target 
Tolerance W/D 
When Fitts [2] (p. 266) introduced what he named the index of 
difficulty, he wrote ID= – log2(W/2D), rather than 
ID= log2(2D/W). These being just two different ways of 
writing the same thing mathematically, whether the 
independent variable of Equations 1-4 is D/W or W/D might be 
judged an idle question.1 In fact that question must certainly be 
asked because the quotients of these two divisions designate 
different measures in the physical world of relevance to 
experimenters. The quotient of D/W is a measure of relative 
target distance (RTD)—i.e., D scaled to, or expressed in units 
of W. In contrast, the quotient of W/D is a measure of relative 
target tolerance (RTT)—i.e., target tolerance scaled to, or 
expressed in units of D.2 Although it has been traditional in the 
literature to formulate Fitts' law as an equation of the form 

                                                           
1 Since (D/W)b can be rewritten as (W/D)-b, a power law like Equation 
4 is no less indeterminate with regard to the physical identity of the 
independent variable to which the expression is supposed to refer. 
Meyer et al. [15] used the phrase “speed-accuracy trade-off” in the 
very title of their 1990 article, but they did not explain how their ID 
(Equation 4) captures accuracy. 
2 We apologize to the reader for using a number of non-conventional 
terms and notations which turned out to be necessary. A glossary is 
provided in Section 9. 

µT=f(D/W), we may mention two independent reasons to 
prefer the inverse writing µT=f(W/D) [8].  

One argument is based on a scale of measurement 
consideration [23]. Relative target distance or D/W lacks a true 
zero because the limiting case where D=0 and W>0 and hence 
D/W=0 violates the very definition of a Fitts task—if D=0, 
then no movement is required.3 In contrast, relative target 
tolerance or W/D does enjoy a true zero: the limiting case 
where W=0 and D>0, hence W/D=0, corresponds to a zero-
tolerance aiming task, which makes sense in Fitts’ paradigm 
and has been actually investigated in [19]. Thus only 
RTT=W/D, and not RTD=D/W, runs on a ratio (equal-interval) 
scale of measurement [23]. The reason why this matters is 
because a higher level of measurement for experimental 
variables means a more constraining framework for testing 
theoretical hypotheses [18].4  

The other reason why RTT or W/D is preferable over RTD or 
D/W for the statement of Fitts' law is that any measure of 
accuracy, whether absolute or relative, must involve error as a 
component. It seems sensible to ground one’s characterization 
of accuracy on a measure of tolerance (i.e., permitted error) 
like W/D rather than on a measure of distance like D/W. 

2.4. Task Geometry vs. Movement Performance 
Considering the variables of relevance to the accuracy issue, 
there is a certain dichotomic distinction that has received little 
attention in the literature, perhaps because it is all too obvious. 
On the one hand D and W are two systematic, deterministic 
variables over which experimenters have full control. D and W 
characterize the geometrical layout of targets and serve to 
prescribe to Ps a certain mean amplitude of movements and a 
certain spread of movement endpoints, respectively. On the 
other hand we have variables that characterize the Ps’ 
performance. Here the elemental measures are the duration T 
and the amplitude A of the movement, from which a terminal 
error can be computed as E=A−D. Unlike D and W, variables 
T and A (as well as E) are random variables, reflecting the 
natural variability of human performance, and so we often 
need to distinguish T, A and E, to be measured at the level of 
individual movements, from central-trend statistics like means 
µT, µA, and µE, to be calculated over samples of movements.  

We deliberately wrote Equations 1-4 above as MT=f(D/W) 
rather than MT=f(A/W), the formulation of Fitts' law that has 
been customary since Fitts [2] but which is somewhat wobbly. 
If W unambiguously designates a property of the target layout 
(tolerance), it is always unclear whether the symbol A 
designates a property of the movement  (µA) or a property of 
the target layout (D).   

The accuracy issue can be approached in Fitts’ paradigm from 
two markedly different, though equally legitimate, angles. In 

                                                           
3 With the reciprocal protocol movement may be sensibly asked of Ps 
only so long as W/D<1 (i.e., W<D). If W/D≥1, the two targets 
overlap, precluding the very necessity of movement [8]. 
4 For the y-intercept of an empirical regression line to be interpretable 
one needs a true physical zero on the x variable [8].  
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one approach, Fitts' law is all about the dependency of µT upon 
the dimensionless ratio W/D (or its inverse D/W), as suggested 
by the formulations we chose for Equations 1-4. The emphasis 
in this approach is placed on the task geometry, and the 
problem of accuracy must be phrased in terms of D/W or W/D. 
In the alternative approach, Fitts' law is all about the mutual 
dependency of two random variables, movement time and 
relative variable error RVE. We take the latter to be best 
represented by σA/µA, a regular coefficient of variation in 
which µA and σA denote the mean and standard deviation of 
movement amplitude [8]. Thus Fitts' law can be formulated 
either as µT=f(W/D), expressing the causal dependency of a 
temporal random variable upon a systematically-varied 
geometrical variable, or alternatively as µT=f(σA/µA), 
expressing the mutual dependency of two random variables.  

In general HCI researchers need to evaluate or predict the 
pointing performance allowed by certain target layouts and so 
they naturally adopt the former approach, assuming that 
movement performance is causally dependent on the target 
layout. It is the alternative approach, however, that paves the 
way for a trade-off analysis. If one wants to understand Fitts' 
law as a trade-off, one needs to write the law in the form of a 
mutual dependency, with movement time depending on 
movement error and vice versa—it should not matter whether 
Fitts' law is written as µT=f(σA/µA) or, reciprocally, as 
σA/µA =g(µT). 

3.  A SIMPLE TRADE-OFF THEORY OF FITTS' LAW 
A trade-off is a mutual dependency between two utilities that 
conflict with each other because they both draw on the same 
limited-resource pool. The better the performance on one 
front, the worse it is on the other. Below are listed a set of 
basic assumptions needed for a trade-off theory of Fitts' law. 
Note that the trade-off we are considering here is not between 
speed and accuracy, but, strictly speaking, between movement 
time µT and relative variable error RVE=σA/µA.  

1. Utility. Movement time and relative variable error are both 
negative utilities, that is, quantities that must be minimized—
the shorter the µT, the better the performance; the smaller the 
RVE, the better the performance.  

2. Trade-off. The two minimization efforts conflict with each 
other: the less of one negative utility, the more of the other. 
This is a trade-off of the min-min category.5 

3. Limited Resource Pool. The trade-off results from the fact 
that the two concurrent minimization efforts draw from a 
common pool of resources, and this pool is limited. This 
assumption is the counterpart, within the trade-off theoretical 
approach, of Fitts’ [2] limited-capacity channel assumption. 
We may designate the content of the hypothetical pool, whose 
nature is unknown, as the effort. We just need to assume, using 
the usual economical analogy, that some generic currency is 
convertible into speed and/or accuracy and that the available 
amount of this currency is finite, being a characteristic of 
                                                           
5 An example of a max-max trade-off is that between speed and 
accuracy, both positive utilities: the faster and the more accurate the 
movement, the better the performance. 

every individual placed in a given situation. Devising a 
method for estimating that amount is our first important 
challenge here.  

4. Less-than-Total Resource Exploitation. In any Fitts' law 
experiment Ps are instructed to constantly do their best —i.e., 
to invest 100% of their resources. Human effort, however, is 
subject to random fluctuations and so the amount of resource 
actually available to an individual at a given point in time can 
be less—but never more—than these 100%. The limited 
resource pool, in other words, must be thought of as an upper 
bound. This realistic assumption seems to have escaped 
researchers’ attention so far, but we believe it is mandatory in 
any approach (including the information theoretic approach) to 
Fitts' law.  

5. Resource allocation strategy. Faced by resource scarcity in 
a Fitts task, Ps can deliberately modulate the balance between 
their concurrent time-minimization and error-minimization 
efforts. Quantifying that imbalance, estimating its range of 
variation, and understanding its dependency upon 
systematically-manipulated experimental conditions—
different target layouts in Fitts’ [2] experiment (Section 4), 
different verbal instructions in ours (Section 5)—constitute the 
second challenge of this analysis. 

4. FITTS’ (1954) TAPPING DATA: EVIDENCE OF A 
TIME/ERROR TRADE-OFF 
This section aims to show that Fitts’ data can indeed be 
formulated explicitly as a trade-off between two conflicting 
utilities. Focusing on the min-min trade-off of movement time 
µT and relative variable error σA/µA, we will introduce a 
simple geometrical method for characterizing quantitatively 
the size of the resource pool as well as the strategic imbalance. 

At first sight, the suitability of Fitts’ 1954 experimental 
protocol for a trade-off analysis of his data might seem 
questionable. Recall that Fitts did not ask his Ps to minimize 
movement time and relative error concurrently. He asked them 
to minimize a single variable, µT, under a variable tolerance 
constraint. As tolerance had (and still has today in typical 
experiments) the status of a systematically-manipulated factor, 
it is easy to overlook that error, just like movement time, is a 
negative utility. A target layout is usually displayed with 
various levels of RTT to communicate various levels of RVE to 
the P. In fact, if µT and RVE trade for each other and the Ps 
invest all their instantaneous resources, as assumed above, a 
systematic variation of the RVE recommendation via RTT and 
a systematic variation of the balance between µT and RVE 
amount to essentially the same.  

We will consider the data Fitts [2] obtained in his famous 
reciprocal tapping experiment, tabulated in his Table 1 (p. 
264).6 Fitts reported µT estimates on average over his 16 Ps for 
each of his 16 factorial combination of D and W. However, he 
did not actually record the position of movement endpoints, 

                                                           
6 We focus on the light-stylus version of Fitts’ tapping experiment, 
whose data has been traditionally used as a benchmark (e.g., [10]). 
This is not a critical option, however, as Fitts obtained essentially the 
same results with a heavier stylus (464gr rather than 28g). 
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just tabulating percentages of target misses. Capitalizing on 
Fitts’ report (p. 265) that undershoot and overshoot aiming 
errors were about equally frequent in his light-stylus 
experiment, we simply assumed µA=D. To infer endpoint 
spreads from error rates we used the technique described by 
MacKenzie [10] (Section 2.5). For each combination of D and 
W we computed effective width We (for a fixed 4% error-rate 
constraint, under the hypothesis of a Gaussian spread of 
endpoints) and then calculated σA=We/4.133.  

Note that our analysis below separates the different levels of 
scale, characterized by D or µA, following the recommendation 
of Guiard [6]. We assume the two orthogonal factors of Fitts’ 
paradigm to be the quotient of the Weber fraction W/D (or 
σA/µA), which specifies relative target tolerance RTT (resp. 
relative variable error RVE), and the scale factor D (resp. µA), 
which specifies the size of the target layout (resp. of the 
movement). 

4.1. A Power Relationship Between Movement Time and  
Relative Variable Error 
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Figure 1. A movement time vs. RVE trade-off in Fitts’ data.  

As shown in Figure 1, Fitts’ data is closely modeled, for each 
scale level, as a power function (.989<r²<.999):  

 µT = q * RVE p    (5) 
where p and q represent adjustable coefficients (p<0, q>0).7 

4.2. Amount of Resources 
Equation 5 may be rewritten as 
 µT * RVE–p = q    (6)  

or, since relative variable error RVE is defined as σA/µA,  
 µT * (σA/µA)–p = q.   (7) 
Equation 7 is the statement of a constant product. Within each 
scale condition, the product of µT and RVE raised to the power 
–p was conserved despite Fitts’ systematic change of the target 
layout and consequently of µT. The conservation of quantity q 
is illustrated in Figure 2. For each of the four scale conditions 
the slope of the regression line is virtually zero—as movement 
time varied over a range of about 2:1, q remained remarkably 
stable.  

In light of the trade-off theory outlined in Section 3, it is clear 
that the constant q tells us about the amount of resources that 
                                                           
7 The logarithmic fit is nearly as good as the power fit. Averaging 
over the four scale conditions, r²=.993 and .996 respectively.  

were available to Fitts’ Ps, in fact on average over the 16 of 
them—for lack of Fitts’ individual data, we cannot check 
whether q was an individual constant, as one must suppose. 
The constant q is indicative, not of an amount of resources, but 
more exactly of resource scarcity. The smaller the product of 
the two negative utilities, the better the performance. 
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Figure 2. Conservation, within each scale condition, of the 

product q across the variation of µµµµT.8 

The rather different elevations of the four flat curves of Figure 
2 suggest that the amount of resources available to Fitts’ Ps 
was scale dependent. The constant q reached a minimum in the 
D=10.16cm condition, presumably reflecting a scale optimum.  
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Figure 3. A plot of Equation 7 for the D=40.64cm scale condition, 
where exponent p is -0.3509. ABCD are Fitts’ actual data points. 

Point E is an arbitrary extrapolation on the same trade-off 
function. 

Figure 3 plots Equation 7 for the case D=40.64cm, whose best 
fit is µT=0.1036/RVE 0.3509 (r²=.9992, see Figure 1), with the 
curve extrapolated on both sides of the actual range of x 
values. It is easy to see that the rectangle obtained by drawing 
straight horizontal and vertical lines to the axes from any point 
of the curve has a constant surface area (if y=q/x, then xy=q). 
This area is no other than the coefficient q of Equation 7, 
whose estimate in that particular scale condition is 0.1036s. 

                                                           
8 Needless to say, essentially the same flat curves obtain whether q is 
plotted against RVE or RTT. 
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The rectangle’s surface area is the same not only for Fitts’ four 
data points, but also for any point of the extrapolated curve 
like point E. 

4.3. Resource Allocation: Strategic Imbalance 
It is important to realize that different points along the curve of 
Figure 3 correspond, for a given amount of resources, to 
different degrees of imbalance between the concurrent time- 
and error-minimization efforts. While the product xy (the 
rectangular surface area in the figure) is conserved all along 
the curve, reflecting the limitation of resources, the ratio y/x 
(the rectangle’s aspect ratio) changes gradually, reflecting 
different resource-allocation options. For any data point of the 
curve the actual strategic imbalance (SI) of Ps can be 
quantitatively characterized by this aspect ratio, that is, 
 SI = µT / RVE-p.      (9) 
Since relative variable error RVE = σA/µA, we may write 
 SI = µT / (σA/µA)-p.     (10) 
With this definition of the aspect ratio (which we arbitrarily 
chose to compute as y/x rather than x/y), SI increases in Figure 
3 from right to left: the more cautious (and the slower) the 
movement, the higher the SI. Thus the SI index correlates 
positively with—is an index of—the relative strength of the 
error-minimization component of the effort.  
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Figure 4. SI as a function of RTT in Fitts’ data.  

Figure 4 shows the dependency of SI, which characterizes the 
actual strategy of Fitts’ Ps, upon RTT, the geometrical 
characteristic of the target layout which Fitts manipulated as 
an attempt to control his Ps’ strategy. This dependency is 
highly non-linear, confirming that the target-layout 
manipulation technique that Fitts introduced in his 1954 study 
actually provided him with mediocre control over the resource 
allocation strategy of his Ps. 

That mediocrity is also visible in Figure 5, which plots RVE, a 
characterization of performance, as a function of RTT, a 
characterization of the target layout. Although Fitts varied the 
tolerance over a very large range indeed (in fact up to the point 
where the two targets touched each other, i.e., W/D=1 or 
W=D),9 RVE hardly exceeded 10% in the most tolerant 
condition.  

                                                           
9 Using the reciprocal protocol, the condition W=D, which  yields a 
Shannon ID of 1, corresponds to the highest possible level of 
tolerance. If W≥D, hence ID>1, the two targets overlap [8].  

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Relative target tolerance RTT  = W/D    (-)

Relative 
variable

error
RVE

= σσσσA/µµµµA 

(-)

D=5.08

D=10.16cm

D=20.32cm

D=40.64cm

 

Figure 5. RVE as a function of RTT (the dashed line represents 
the theoretical case where RVE=RTT). 

Back to Figure 4, notice the intriguing suggestion that Fitts’ Ps 
had two different strategic attitudes in the face of four 
different movement scales. Considering RTT<25%, where the 
x ranges covered by the four curves substantially overlap, thus 
making it possible to compare SIs for geometrically-similar 
target layouts, it seems that Fitts’ Ps had about the same set of 
strategic imbalances in the two larger-scale conditions D=20 
and 40cm, while they apparently had another, more cautious 
set of strategies in the two smaller-scale conditions D=5 and 
10cm. This finding, whose statistical reliability cannot of 
course be tested, might have resulted from the fact that large 
speeds cannot be attained over small amplitudes. 

It should be remarked that if the pattern is quite conspicuous in 
the plot of Figure 4, it is virtually undetectable in the classic 
plot of µT vs. ID. Also note that it could not have been 
deduced from our previous observation that the resource pool 
was maximal in Fitts’ Ps for 10cm movements (Figure 2)— 
the aspect ratio (the quotient of µT/RVE-p) and the surface area 
(the constant product q=µT*RVE–p) of the rectangles of Figure 
3 are two independent quantities.  

4.4. Discussion 
The foregoing shows that Fitts' classic data can be 
satisfactorily interpreted as a trade-off between two negative 
utilities, time and error. Thus, not only can we view Fitts' law 
as the demonstration that throughput—the inverse of the law’s 
slope, whose dimensions are bits/s—is conserved as the task 
ID is made to vary, we can just as well view the law as 
evidence that a certain pool of effort resources is conserved in 
the people across the variation of strategic imbalance. Both the 
information theoretic approach and the trade-off approach may 
help us understand Fitts' law.  

5. SOME FRESH DATA: TIME/ERROR TRADE-OFF IN A 
NEW VARIANT OF FITTS TASK 
This section reports a very simple experiment which only 
varied task instructions so as to induce a systematic variation 
of the Ps’ strategic imbalance in the face of the concurrent 
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time- and error-minimization efforts. Movement amplitude 
was invariably a comfortable 150mm.10 

Among our motivations for running a fresh experiment was 
the fact that Fitts’ [2] individual data are not available. From 
the standpoint of trade-off theory, one expects some 
quantities—notably the coefficient q of Equation 5—to behave 
as within-individual constants while at the same time varying 
from participant to participant. Also of considerable interest is 
the variability of the strategic imbalance among and within 
individuals. Whether experimenters manipulate the target 
layout, as has been customary since Fitts, or speed/accuracy 
instructions, they face human beings with idiosyncratic 
strategic styles. No two participants will identically interpret 
instructions to move, say, as fast as possible; no two 
participants will show the same degree of flexibility in 
response to changing instructions. 

Our discussion of Fitts’ data above did not refer to less-than-
total resource exploitation, assumption #4 of our trade-off 
theory, whose illustration or testing require individual data. 
Below we will see that this assumption is quite useful to 
estimate individual trade-offs. 

There were two notable differences between our protocol and 
Fitts’. The first is that our aiming task was discrete, rather than 
reciprocal, our Ps having to return to a fixed home position 
after each aimed movement. This option makes it possible to 
clarify the status of our temporal and spatial variables. 
Whereas in the reciprocal protocol µT is the time it takes not 
only to carry out a movement, but also to evaluate the error 
inherited from the previous movement and to prepare the next 
[3], in the discrete protocol µT measures the duration of a pure 
movement-execution process. The meaning of the movement’s 
endpoint spread σA is also interpretable more safely in the 
discrete case, that variability being generated just by the 
execution of the movement, whereas in the reciprocal case σA 
must also reflect, to some unknown extent, the variability of 
the start point [3]. Finally, one should perhaps recall that most 
pointing actions in real world of HCI are of the discrete sort.  

The other notable difference is that we did not specify 
tolerance W, just specifying target distance D by displaying 
two lines indicating the start point and the desired endpoint of 
the movement. The target being displayed as a single line, we 
manipulated the balance between the two concurrent 
minimization efforts by means of different sets of instructions. 
Such an approach offered us a chance to explore the full range 
of SIs. Experimenters, never knowing in advance the upper 
and lower extremes of the Ps’ strategic imbalance, choose 
their ranges of ID more or less arbitrarily. We asked our Ps to 
cover the whole spectrum of imbalances between µT and RVE, 
from the case of maximum speed to the case of maximum 
accuracy.  

                                                           
10 This experiment is part of a larger project aimed at understanding 
the interaction of the difficulty and scale factors in simple aimed 
movement performance.  

5.1. Method 

Speed-Accuracy Instructions 
We used five sets of instructions: 1) Max speed, 2) speed 
emphasis, 3) speed/accuracy balance, 4) accuracy emphasis, 
and 5) max accuracy. In the max-speed condition the Ps were 
to just minimize movement time, the only requirement 
regarding accuracy being to refrain from committing a 
systematic error: no matter the dispersion of movement 
endpoints, Ps were just to manage to terminate their 
movements at about the target on average. At the other 
extreme, the max-accuracy instructions asked Ps to try to bring 
the cursor exactly to the target (zero pixel error), making as 
many corrective sub-movements and taking as much time—
but not more—as needed. These two extremes being defined, 
we simply inserted three intermediate levels of instructions, 
one unbiased (speed/accuracy balance) and two biased (speed 
emphasis, accuracy emphasis). The ordinal level of this metric 
(with no assumption about the separating intervals) [23] was 
not a concern in this study, focused on the mutual relation of 
two random variables, µT and RVE.  

Apparatus and Setup 
The experiment involved a 1280x1024-pixel screen and a 
Wacom Intuos3 digitizing tablet connected to a PC running 
Linux Ubuntu. The screen permanently displayed two vertical 
lines extending from top to bottom, located 150mm apart, 
which marked the start point (left) and the target (right) of the 
movement. Both lines were 1-pixel thick and appeared in red 
color over a white background. Also displayed was a mobile 
1-pixel thick cross-hair cursor, black in color, whose motion 
was controlled by the stylus. The tablet being used in absolute 
mode with a control-display gain of 1, the hand had to move 
150mm from its home position for the crosshair to reach the 
target line.  

The P was seated at a table supporting the Wacom tablet and 
the screen, with a viewing distance of about 50 cm. During 
initial warm up trials the Ps (all right-handers) were allowed to 
optimize the orientation of the tablet in the horizontal plane to 
facilitate the execution of the required left-to-right movement. 
They typically chose to slightly tilt the tablet in the 
counterclockwise direction. On the tablet was secured a 
horizontal 8-mm thick plastic ruler, along which the stylus tip 
was to be slid, allowing a strictly one-dimensional hand 
movement. The ruler offered a mechanical stop at its left end 
so that the start position of the stylus was standardized to the 
nearest screen pixel. To help initial positioning, an OK 
message appeared on the screen when the crosshair coincided 
with the start line.  

We developed our own software, using Lib USB, for tablet-
data acquisition, to minimize display latency relative to tablet 
events and to exploit the full resolution of the device 
(5080dpi). The tablet coordinates were translated into pixels 
using floating values to maximize visual-feedback accuracy. 
The sampling frequency of the tablet revolved about 100 Hertz 
(minimum 85 Hz, maximum 125 Hz). 

Task and Movement Measurement Algorithms 
To begin each trial the P immobilized the screen crosshair at 
the start line by positioning the stylus on the tablet at the ruler 
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stop for a few seconds. When ready, the P moved the stylus to 
the target position by sliding it against the ruler, finishing up 
with a dwell, then lifted the stylus and, after a few seconds 
rest, proceeded to the next trial. The movement start point 
obviously corresponded to the place and instant where the 
crosshair left its home position while exhibiting positive 
(rightward) acceleration. Determination of the movement 
endpoint in time and space was a more subtle issue and 
detailed explanations about the offline algorithm that would 
serve were part of the instructions received by the Ps. 

We used two different criteria, depending on the instructions 
condition. For the max-speed condition, it was made clear to 
the Ps that the algorithms was going to take the first zero-
crossing of instantaneous velocity as the movement endpoint, 
thus ignoring any subsequent episode of velocity, whether 
deliberate (a corrective sub-movement) or accidental (e.g., a 
mechanical rebound due to the elasticity of the arm). For the 
other four instructions conditions (which explicitly mentioned 
an accuracy component), the movement endpoint was defined 
as the beginning of the last dwelling period in the kinematic 
record, meaning that the algorithm would take into account all 
corrective sub-movements, if any. The criterion for dwell 
identification was the crosshair remaining stationary for at 
least 100ms at least 50mm away from the home position.  

Procedure  
Sixteen volunteers participated (all right-handers, median 
age=27.5 years, interquartile range=2.5, four females). The 
experiment consisted of 25 blocks of 15 movements, each 
block being run with a given set of instructions. All five 
instructions were presented in one order, ascending or 
descending, the order being reversed from one group of five 
blocks to the next. The experiment was run individually and 
lasted about 40mn, including 10mn warm up. 

5.2. Results and Discussion 

Systematic Error, Variable Error 
On average over all Ps mean aiming error (µΑ-150mm) was 
less than 1 screen pixel in all instructions conditions but the 
max-speed condition, where we found a consistent but rather 
small 5.5mm overshoot error (t15=4.504, p<.0005). It is fair to 
say that Ps constantly aimed to the target and that, as expected, 
it was their variable error σΑ/µA that was influenced, along 
with µT, by the variation of instructions. 

Effect of Instructions on Movement Time and RVE.  
With increasing emphasis on accuracy, RVE decreased non-
linearly, while µT lengthened about linearly (Figure 6). 
Although the max-speed instructions allowed any spread of 
movement endpoints, RVE hardly reached 8%, a finding 
reminiscent of Fitts’ data (see Figure 5).  
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Figure 6. The effect of instructions manipulation on µµµµT and RVE, 
on average over all Ps. Error bars are 95% confidence limits 

based on between-P standard deviations.  
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Fi
gure 7. Panel A: a power curve (dashed line) was fitted to all the 
data points delivered by the P; the data points under the curve 

(filled discs) were then selected. Panel B: a power curve was fitted 
to the selected data points, providing an approximation of the 

convex front of performance. 

Assumption #4 of our trade-off theory, less-than-total resource 
exploitation, will help understand Figure 7, which illustrates 
for one representative P the trade-off between µT and RVE. 
Plotting the whole set of data points, one per trial block, for 
that P (Figure 7A), the best fit was a power function, with a 
substantial amount of noise, hence a moderately impressive r² 
of .87. The Ps having tried to minimize both µT and RVE in 
different proportions, we may liken their data points with 
particles attracted to the West and to the South by two 
magnetic fields whose respective strengths are modulated by 
instructions. Viewing the scatter as a mixture of forerunning 
and dawdling particles, we resorted to a simple dichotomous 
criterion assuming that the forerunners and the dawdlers were 
the data points under and above the curve, respectively.11 If the 

                                                           
11 We thank  Eric Lecolinet for suggesting this simple solution.  

A 

B 
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resource pool is limited (assumption #3) then forerunners must 
have been constrained by a hard wall—the very trade-off 
curve we are looking for, which conceptually is no other than 
the borderline that separates in the equation space the region 
of the doable (above the curve) from the region of the 
undoable (below). That hard wall must have prevented 
forerunning data points from spreading any further in the 
South-West direction. But there must be dawdlers (assumption 
#4) and that constraint must have affected them to an 
attenuated extent. The data is quite consistent with this view. 
As shown in the lower graph of Figure 7, restricting the fit to 
the subset of forerunners improved the fit considerably (r² 
rising in the example considered from .87 to .97). 

In fact this result was observed in all 16 Ps: with the fit 
restricted to forerunners, the r² improved on average from .852 
to .972 (Student t15=8.83, p<.0001). In contrast, restricting the 
fit to the data points resting above the first curve (i.e., 
selecting the dawdlers) did not improve the fit whatsoever, the 
r² changing on average over all Ps from .852 to .853 (t15=0.03, 
p=.97). This outcome is congruent with the view that the data 
points near the South-West quadrant of the convex hull of the 
scatter are those which, being most constrained by the 
resource limitations, are the most informative. This particular 
subset, indicative of the P’s best performance and which we 
call the convex front of performance, is our focus in the rest of 
this report. 

Logarithmic, Exponential, and Power Fits 
We tested the simple two-coefficient models that can 
accommodate the convex-down curvature evident in all our µT 
vs. RVE trade-off functions, the logarithmic, the exponential, 
and the power equation. Fitting the three candidate models to 
the full individual data sets (i.e., to the 25 pairs of measures 
originating from all trial blocks) resulted in the power model 
doing best in 10 cases (mean r²=.853 over all Ps), the 
exponential model doing best in four cases (mean r²=.803) and 
the log model in two (mean r²=.803). In general, the log and 
the exponential equation (most blatantly) failed due to 
insufficient curvature. Fitting the three models again to the 
convex-front data, the power model turned out to provide the 
best fit for all but one (P11) of our 16 Ps, with the r² now 
ranging between .923 and .992 (mean r²=.972, to be compared 
with .937 and .880 for the log and the exponential model, 
respectively). Therefore we retained the power equation 
µT=q*RVE p for modeling the trade-offs.12  

A Closer Look at Individual Exponents: Evidence for a One-
Coefficient SQRT Relation 
Thus, a simple power relation turned out to describe quite 
accurately the time/error trade-off in both Fitts’ data and our 

                                                           
12 The µT vs. RVE relation involves two random variables neither of 
which is ‘dependent’ or ‘independent’. In such a case the so-called 
standard major axis method of curve fitting is known to be preferable 
over traditional linear regression, which measures errors only along 
the vertical y axis [21]. Here both methods yielded nearly identical 
estimates (not surprisingly, given the very high correlations found in 
log-log plot between µT and RVE [21]), and so we judged it 
superfluous to depart from the ordinary least-square method. 

own, despite our different experimental protocol. Most 
interestingly, the exponent p of the best-fitting power model 
was similar, considering the two scales conditions of Fitts’ 
study that approximately corresponded to ours. In Fitts’ data 
the exponent was -0.54 for D=10cm and -0.38 for D=20cm 
(Figure 1); in our data, with D=15cm, the exponent was -0.47 
on average. We further inquired into this issue by asking how 
the exponent varied with the goodness of fit and with the value 
taken by q, the other adjustable coefficient of Equation 5 (see 
Figure 8).  

To reiterate, any individual P produces a mixture of good and 
poor performance (assumption #4), but there is an infinity of 
ways of performing poorly and in principle only the best 
(convex-front) performance of that P is informative. It should 
be realized that as one switches from a within- to a between-
individual logic this argument works just the same. Different 
individuals being unequally able (or willing) to fully 
concentrate on a repetitive movement task, there is every 
reason to focus on the data of the best performers in one’s 
quest for a consistent quantitative law. A remarkable 
suggestion emerges from the data: (i) the better the fit of the 
power model, the closer the exponent to -1/2 (Figure 8A), and 
(ii) the smaller the value of the P’s coefficient q (i.e., the better 
the performer, as explained in Section 4.2), the closer the 
exponent to -1/2 (Figure 8B). Three individual estimates of the 
exponent diverged appreciably from -1/2, namely those 
delivered by P6, P8, and P11 (p=-.60, -0.34, and -0.32, 
respectively), but these happened to be the sample’s least 
credible estimates. P6 and P8 were two Ps for whom the 
power fit was distinctively worse than average (see Figure 
8A). As for P11, we can see in Figure 8B that this P ranked 
15th/16 for performance, next to P8, who ranked last—a 
further reason to moderately trust P8’s data.  
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Figure 8. The exponent p of Equation 5 plotted (A) against the r² 
of the power fit and (B) against the value of coefficient q. Each 

data point corresponds to an individual P. 

Thus, focusing on the best performance (i.e., the convex-front 
of performance) of our best performers (actually 13 of our 16 
Ps), we found that the trade-off of µT and RVE can be 
satisfactorily modeled in our data by a square-root equation 
with a single adjustable constant: 
 µT = q * RVE-1/2    or    
 µT = q / SQRT(σA/µA)   (11) 
where the multiplicative constant q is information about the 
amount of resources invested by each participant.  

A B 
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Constant Resource Pool and Variable Strategic Imbalance  
To the extent that Equation 11 is a true description of the 
time/error trade-off in our simple aimed-movement task, it is 
also true, to the same degree of approximation, that the 
quantity q=µT*SQRT(σA/µA) is conserved within individual Ps 
across the variation of strategic imbalance (Section 4.2), and 
that the strategic imbalance can simply be quantified as the 
variable ratio SI=µT/SQRT(σA/µA) (Section 4.3). 
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Figure 9. Example, in one participant,  of (A) the fit of the one-
coefficient model of Equation 11 and (B) the approximate 
conservation of q across a considerable variation of µµµµT. 

Figure 9, which uses the data from the same P as Figure 7, 
gives an example of the fit obtained with the one-coefficient 
model of Equation 11 and of the within-individual conserva-
tion of q across the variation of µT. The orderly pattern visible 
in panel A was the rule. On average over the 13 Ps whose data 
had proved reliable (all but P6, P8, and P11), the r² for 
Equation 11 was .964 (.889<r²<.986), meaning that the fit was 
virtually as good with Equation 11 as with the more flexible 
two–coefficient model of Equation 5 (mean r²=.967, 
.891<r²<.987). Panel B displays a scatter plot with some noise 
but no evidence of any correlation between q and µT. The point 
being made in this figure is that µT failed to exert any 
consistent influence on coefficient q despite a considerable 7-
fold variation. Indeed, considering our 13 reliable data sets, 
the slope of this relation (-0.0034s on average) did not 
significantly depart from zero (t12=-1.42, p=.182, two-tailed).  

Figure 10 shows the trade-off curves of two individual Ps 
whose q coefficients took distinctively different values. It is 
easy to see that P12 invested more resources in the task than 
did P13 (q=0.0425 and 0.0621, respectively). But the graph, 
by exhibiting different distributions of data points along their 
respective curves, also reveals that P12 and P13 had different 
strategic preferences for resource allocation. In response to 
our max-accuracy instructions P13 climbed his curve higher 
than P12 did his (SImax=22.5 vs. 18.9), and in response to our 

max-speed instructions he did not explore his curve as far 
down as P12 did his (SImin= 1.07 vs. 0.35). Thus the 
comparison of two individual Ps delivers two pieces of 
evidence: beside the fact that P12 invested more resources 
than P13, he was more speed-biased.  
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Figure 10. Comparing two individual trade-off curves. 

6.  IMPLICATIONS FOR HCI AND BASIC RESEARCH  
The trade-off approach to Fitts' law helps understand that 
target-acquisition performance, whose relevance to HCI 
research is obvious [12], is an inherently two-dimensional 
object whose complete description requires both an intensive 
and a qualitative characterization. If the intensive aspect is 
explicitly addressed by the throughput, reminiscent of the 
coefficient q of our trade-off analysis, apparently the 
information theoretic framework has little to say about the 
qualitative aspect. The fact that the speed/accuracy strategic 
balance is variable has been considered a worrisome 
complication calling for a certain correction—the substitution 
of effective to nominal width [1,12]—so as to end up with a 
single synthetic measure of performance. The correction being 
done, the throughput is quite insensitive to substantial 
variations of the speed-accuracy imbalance [4,13]. But the fact 
that throughput (or the coefficient q of our trade-off analysis) 
is not influenced by strategic variations does not mean that 
these variations are unimportant—a conclusion that a rapid 
reading of [13] might suggest. The cognitive set controlled by 
speed-accuracy instructions, which strongly modulates 
movement times and endpoint spreads, is obviously an 
important factor. This factor does not influence throughput, 
but it does influence another aspect of performance, the SI.  

The one-dimensional reduction to throughput has a cost. 
Suppose for example that, comparing two interaction 
techniques A and B, one finds more throughput with technique 
A in the presence of more errors. The conclusion that A 
outperforms B may be correct, assuming an appropriate 
adjustment for errors, but a full half of the story has been 
erased by the adjustment procedure. In some research contexts 
(e.g., where safety matters critically), it may be very useful to 
not ignore that different interface arrangements or interaction 
technique may induce different speed/accuracy imbalances in 
their users.  

The trade-off and the information theoretic approaches are 
certainly not incompatible with each other, as recognized in 
practice by Fitts and Radford [4], who (although they did not 
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theorize on strategic imbalance) did manipulate speed-
accuracy instructions. Indeed the right-hand side of Equation 
11 rewritten as log2(µT) minus a constant = -½ log2(σA/µA) can 
be viewed to display bits of information. But the left-hand side 
of this equation, as already hinted above, is likely to call for a 
model involving joules of energy. Thus, one intriguing 
outcome of this trade-off analysis is the suggestion that 
information theory should certainly participate in, but 
probably will not suffice to wholly account for the empirical 
phenomenon known as Fitts' law. 
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9.  APPENDIX: GLOSSARY OF IMPORTANT VARIABLES  

Task geometry 

Target distance    D  (cm) 

Target width or tolerance   W  (cm) 

Relative target distance   RTD = D/W  (-) 

Relative target tolerance    RTT = W/D  (%) 

Elemental movement measures 

Movement time    T  (s) 

Movement amplitude   A  (cm) 

Movement error    E = A−D (cm) 

Movement statistics 

Mean movement time    µT                (s) 

Mean movement amplitude   µA    (cm) 

Systematic (or constant) error  µA – D   (cm) 

Variable error (SD of A)   σA    (cm) 

Relative variable error   RVE = σA/µA   (%) 

 

 

 


